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Detecting Wide Lines Using
Isotropic Nonlinear Filtering
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Abstract—Lines provide important information in images, and
line detection is crucial in many applications. However, most of
the existing algorithms focus only on the extraction of line posi-
tions, ignoring line thickness. This paper presents a novel wide line
detector using an isotropic nonlinear filter. Unlike most existing
edge and line detectors which use directional derivatives, our pro-
posed wide line detector applies a nonlinear filter to extract a line
completely without any derivative. The detector is based on the
isotropic responses via circular masks. A general scheme for the
analysis of the robustness of the proposed wide line detector is in-
troduced and the dynamic selection of parameters is developed. In
addition, this paper investigates the relationship between the size
of circular masks and the width of detected lines. A sequence of
tests has been conducted on a variety of image samples and our ex-
perimental results demonstrate the feasibility and effectiveness of
the proposed method.

Index Terms—Curvilinear structures, feature extraction,
isotropic nonlinear filter, line detection, wide line detector.

I. INTRODUCTION

THE analysis of images in the fields of pattern recognition
and computer vision generally requires the detection of

lines, also called curvilinear structures, from grayscale images.
Line detection plays an important role for the success of higher
level processing such as matching and recognition [1]–[6]. So
far, many algorithms for line detection have been developed for
different applications. The Hough transform [7]–[9], which is a
widely used line detection method, was initially proposed to find
analytically defined curvilinear structures (e.g., straight lines,
circles, ellipses, etc.). Although the generalized Hough trans-
form [10] can be used to detect arbitrary curvilinear structures in
theory, it requires the complete specification of the exact shape
of the curvilinear structure which is very difficult and even un-
feasible for complex curvilinear structures in practice. One pow-
erful approach is based on edge extraction and treats lines as
objects with parallel edges [11]–[16]. An edge extraction algo-
rithm [17] is first used to find all the edges in the image. The edge
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image is then analyzed to find the particular lines. However,
the success of this approach depends on the accuracy of edges
and the line thickness was not considered. Another popular ap-
proach is to use differential geometric properties to extract lines
as ridges and valleys in the image [18]–[23]. A popular ridge
detector [24] is based on the eigenvectors of the Hessian matrix
which is given by the local second order derivatives. This de-
tector extracts the ridges as points for which the intensities are
maxima or minima in the main principal curvature direction, i.e.,
the direction of the maximum eigenvalue of the Hessian matrix.
Nevertheless, this approach is sensitive to noise due to the use
of second order of derivatives.

Although the line position detection is important, it would be
useful if all the line’s pixels (i.e., the pixels that comprise the
full cross-sectional width) were also extracted. Koller et al. [25]
presented an edge-based line finder for extracting line structures
and their widths. This line finder employs the first derivative of
Gaussian edge detectors and combines their outputs nonlinearly.
This approach can detect lines of arbitrary widths by iterating in
scale space and selecting as the line width the scale that yields
the maximum of a scale-normalized response. However, due to
the quantization of the scale space, this approach is computa-
tionally expensive and gives only a coarse estimate of the line
width. Steger [26] proposed a ridge-based line detector which
uses a line model with an asymmetrical profile to remove the
bias of the line position as well as to extract the line width. This
line detector overcomes the problem that the ridge-based line
detection approach will return inaccurate line locations when
the contrast on one side of the line is different from the contrast
on the other side of the line. Moreover, since Gaussian masks are
used to estimate the derivatives of the image, the line detector
can scale to lines of arbitrary widths. Although this approach is
useful for line width information detection, it has its limitations.
Since this approach extracts lines as the maxima of the mag-
nitude of the second directional derivatives, it can detect only
salient lines. Also, once the selected becomes so large that
neighboring lines start to influence each other, the line model
will fail and the results will deteriorate.

The two line detection approaches, however, do not detect the
whole of the line. A line, mathematically, is a 1-D figure without
thickness, but an image line generally appears as a line of one
or several pixels wide, i.e., as a thin/narrow or thick/wide line,
having linear or curvilinear structures. In image processing and
pattern recognition applications, line thickness or a line’s full
cross section is important in, for example, segmenting multiple
orientation lines [27], in recognizing roads, railroads, or rivers
from satellite or aerial imagery [11], [21], in extracting anatom-
ical features in medical imaging for diagnoses [24], [28], [29],
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and in detecting biometric traits for personal authentication [30].
It is, thus, important to detect not simply the line edges but rather
the whole of the line.

In this paper, which has partly appeared in a preliminary form
in [31], we present a robust method to detect the whole of the
line, which we call the wide line detector. This wide line de-
tector is implemented by employing a nonlinear filter without
the use of any derivative. Isotropic responses are obtained by
using circular masks which contain either a normalized constant
weighting or a Gaussian profile. We restrict the sizes of circular
masks so as to ensure that lines of different widths can be ex-
tracted in their entirety. We also design a line model which can
analyze the robustness of the proposed wide line detector and
which allows the automatic selection of parameters.

The paper is organized as follows. Section II introduces the
line model and the relevant design issues. Section III presents
the isotropic nonlinear filter based line detection method. In
Section IV, we analyze the robustness of the proposed method
and show how to automatically select parameters. Section V
describes the results of our experiments. Section VI offers our
conclusion.

II. MODEL DESIGN

In this section, we first introduce the models for line profiles
in 1-D and then describe the design issues for the proposed line
detection method with particular reference to 2-D line detection.

A. One-Dimensional Line Profile Model

Many line detection approaches model lines in 1-D as bar-
shaped [25], i.e., the ideal line of width and height is
assumed to have a profile given by [26]

(1)

However, the flatness of this profile is rarely found in real im-
ages. Generally speaking, in terms of different gray levels, there
are three regions in a line image: the line part having a gray level

, the edge region having a gray level , and the back-
ground having a gray level . As an example, consider a
bright line on a dark background, then we get

. In this paper, therefore, a model for the common line pro-
file in 1-D, the edge-based bar-shaped line, is defined as

(2)

where and and is a scale or a vector,
which represents height in the 1-D case and intensity in the 2-D
case. For a bright line, also called a positive line, . For a
dark line, also called a negative line, .

B. Two-Dimensional Line Detection

We now address the design issues for the proposed line detec-
tion method. Fig. 1 shows a dark line in 2-D based on
the 1-D ideal line model as in (1). A circular mask is shown at
four image positions in Fig. 1. The detector groups pixels whose
brightness is similar to the brightness at the center of the mask

Fig. 1. Four circular masks at different positions on a line image based on the
1-D ideal line model IL as in (1).

into a weighted mask having similar brightness (WMSB). This
similarity can be measured by

if
if

(3)

where is the coordinate of the center, is the coor-
dinate of any other pixel within the mask, is the bright-
ness of the pixel , and is the brightness contrast threshold.
The summation of the outputs within the circular mask gives
the mass of WMSB. According to (3), when the center of the
mask moves to a line on the image, the WMSB reaches the
global maximum as the mask lies in a flat region of the image
(as the mask shown) and decreases when the center of the
mask is very near a straight edge (as shown in the mask ) and
decreases even further when very near the straight edge while
remaining nonetheless in the line region (as shown in the mask

). Therefore, the smaller the WMSB mass, the larger the fea-
ture response. This is similar to the idea used for edge extraction
and corner detection in [32]. Hence, to detect a line completely,
the WMSB mass of any pixel on the line should be less than that
of any background pixel.

Now let us consider a general situation: a line with an edge re-
gion in 2-D based on the common 1-D line profile as in (2).
Fig. 2 provides an illustration in which a dark line is bounded
by a gray band against a white background. In proximity to the
lines are five circular masks. According to (3), in order to com-
pletely detect the line it is necessary that . It is
obvious that no matter what value and take in (2), the three
different gray level regions (Fig. 3) have only four relations

(4)

Now the question is how the edge region affects the WMSB
mass of the line and the background pixels and thereby in-
fluences line detection. These matters will be considered in
Section IV-B.

III. LINE DETECTION METHOD

The wide line detector is implemented to give isotropic line
responses by applying a set of rules in a circular mask. Using
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Fig. 2. Five circular masks at different positions of a line image based on the
1-D common line profile GL as in (2).

Fig. 3. Illustration of gray-level relations between three regions. Gr , Gr ,
and Gr are gray levels of the line part, the edge region, and the background,
respectively. The difference of the gray levels between the line (Gr ) and the
background (Gr ) is larger than the brightness contrast threshold t (a) with or
(b) without larger than 2 � t; (i)–(iv) show the corresponding relations in (4),
respectively.

a square kernel, the circular mask is digitally approximated to
either with a constant weighting

if
otherwise

(5)
or with a Gaussian profile

(6)

where is the radius of the circular mask. The normalization of
the circular mask is obtained by the rule

(7)

As is usual when locally processing an image, the mask is
centered on each pixel in the image and the brightness of any
other pixel within the mask is compared with that of the center
pixel. The comparison is determined by the rule defined in (3)
along with a weighting function

(8)

TABLE I
DEVIATION OF FUNCTION sech((I(x; y)� I(x ; y ))=t) FROM (3). HERE, c
IS THE SUBTRACTION OF (11) FROM (3), AND jcj IS THE ABSOLUTE VALUE OF c

where is the output of the weighting comparison. This compar-
ison is done for each pixel within the mask. The WMSB mass
of the center is given by

(9)

The initial line response is the inverse WMSB mass obtained
by

if,
otherwise

(10)

Here, is the geometric threshold and , where
is the maximum value which can take (usually

). The fixed threshold for (10) is the theoretical
optimum which is shown in the later analyses.

According to (3), the comparison varies dramatically when
a slight change of the brightness difference occurs very near the
brightness contrast threshold . In order to produce a smooth
profile near the brightness contrast threshold, a hyperbolic se-
cant function was used to give a much more stable and sensible
version of (3) and is defined as

(11)

where . The use of the fifth power in-
troduces the minimum difference from (3), as shown in Table I.
This equation is plotted along with (3) in Fig. 4, where is set
to 10. It can be seen that, compared with (3), (11) produces
a smoother profile and does not have too large an effect on
as a pixel’s brightness changes slightly. This equation makes a
tradeoff between stability about the threshold and the original
requirement of the function, which is to take pixels having in-
tensities similar to that of the center together into the mass of
the circular mask.

Although the wide line detector is isotropic and can detect
the whole of a line without the need to find the direction of line
pixels, line direction is still necessary either for postprocessing
or for application requirements. From (10), the direction of a
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Fig. 4. Brightness difference versus the similarity functions defined in (3) and
(11), respectively. Here, the brightness contrast threshold t is set to 10.

pixel with a nonzero line response is determined by finding the
longest axis of symmetry

if
otherwise

(12)

(13)

(14)

(15)

where . The value of is exactly correct
only for lines parallel to one of the coordinate axes or at an angle
of to a coordinate axis. In other cases, deviations of the
calculation of will occur. However, such deviation of from
the line orientation is small and can be ignored.

In some cases, only dark or bright lines are required, for ex-
ample, with reference to blood vessels in X-ray images (dark
lines generally required) and aerial images (bright lines gener-
ally required). Introducing a step function, , we can im-
plement the wide line detector to extract bright or dark lines
according to need

(16)

where
else

and

if dark line
if bright line.

IV. PARAMETER SELECTION

The proposed line detection method requires two parame-
ters—the radius of the circular mask and the brightness con-
trast threshold . In this section, we provide analyses to show

how the two parameters affect the line detection result and then
present approaches for automatically selecting the two parame-
ters so that the proposed method is robust.

A. Radius of Circular Mask,

Obviously, complete line detection requires that the circular
mask should at least be bigger than the line width. The radius
of the circular mask must, therefore, be restricted so as to en-
sure that the whole of the line can be detected using the inverse
WMSB mass. In this section, we analyze the relationship be-
tween the radius of a circular mask and the width of the line
detected , first with regard to circular masks with a normal-
ized constant weighting, and then those with a Gaussian profile.

1) Circular Mask With Normalized Constant Weighting: In
this section, we employ the line mode to discuss the relation-
ship between the size of circular mask with constant weighting
and the width of detected line.

Definition 1: Given an image region and a line of width
, for any given point , the distance of to , , is

defined by the rule

(17)

where is the middle axis of in the line direction.
Definition 2: Let denote a circle region with radius in an

image. The mass of point , the center of the circle region, is
defined as

(18)

if
if

(19)

where is any other point in the circle region and is the
intensity of point .

Proposition 1: Denote the background
. For each , , if ,

there exist the following.
1) is monotonically decreasing relative to and

for each .
2) is monotonically increasing relative to and

for each
.

Proof: Assume that the center of circular region is the
coordinate origin. Rotate the coordinate axes about the origin so
that the axis is parallel to , as shown in Fig. 5. We define

and , where
and are the coordinates of the
right- and left-most intersection points of the circle region
and the line , respectively. As there exists , for
each , , according to (18) and (19), we can get

and .

1) For each , when the circle is centered on [as
shown in Fig. 5(a)], we have (20), shown at the bottom
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Fig. 5. Illustration of Proposition 1 and its proof.

of the page, where . For convenience,
denote

(21)

where . Then, the (20) can be rewritten as

where . It is obvious that the derivative
. Therefore, is monotonically decreasing relative

to . Hence, when , and takes
the maximum value

(22)

2) For each , when the circle is centered on
[as shown in Fig. 5(b)], we have

and

where . It is obvious that . Therefore,
is monotonically increasing relative to . Hence,

for each , reaches the minimum
value , and takes the minimum value

(23)

The meaning of Proposition 1 is that, no matter what size of
the circular mask, the smaller the distance of the pixel to ,
the larger the WMSB mass if the pixel is on the line, while the
smaller the WMSB mass if the pixel on the background. Conse-
quently, pixels on the middle axis of a line take the local max-
imum value of the WMSB mass, whereas pixels on the back-
ground very near the edges of the line take the local minimum
WMSB mass. As mentioned in Section II-B, in order to detect a
line completely, the maximum of the WMSB mass that the line
pixel can take should be less than the minimum that the back-
ground pixel can take. Therefore, according to Proposition 1 and
its proof, from (22) and (23), we get

(24)

where .
Fig. 6 illustrates the inequality relations defined by (24). We

can see that only meets the inequality. Given the line
width, the smaller the value, the larger the mask size . There
is a tradeoff to be made here as a smaller ratio means a slower
detection yet the use of a larger ratio, and, therefore, a smaller
mask will undermine line detection. Hence, we set by
experience. The relationship between the width of detected line,

, and the radius of a constant weighting circular mask, ,
is

(25)

According to (22), the maximum of WMSB mass which line
pixels can take is . Therefore, the geometric
threshold used in (10) is equal to

.

(20)



LIU et al.: DETECTING WIDE LINES USING ISOTROPIC NONLINEAR FILTERING 1589

Fig. 6. Illustration of the inequality relation about the ratio of the width of the
line detected to the radius of a circle mask with normalized constant weighting.

2) Circular Mask With Gaussian Profile: Now we discuss the
relationship between the width of the line detected and the size
of a circular mask with a Gaussian profile. Although Proposition
1 is for a constant weight, it is evident that we can get the same
conclusion for a Gaussian weight. That is, the WMSB area of
a line reaches a local maximum when the line passes through
the center of the circular mask. Assume that a circle with a
radius has a density and a line of width

traverses the center of the circle. Let denote the part of
the line within the circle. According to the definition of line
response [see (10)], if a line of width is to be completely
detected by using a Gaussian mask with radius , it requires

(26)

which is equivalent to

(27)

The right hand side can be simplified as

(28)

Therefore

(29)

This equation determines the relationship between the width
of the line detected and the radius of a circular mask with a
Gaussian profile. Given a mask with a radius , the critical width
of the line detected is obtained when the left and right argu-
ments of (29) are equal. As the analytic form of the left function
is not available, we provide only the approximate critical width

TABLE II
RELATIONSHIP BETWEEN RADII OF GAUSSIAN MASKS AND APPROXIMATELY

CRITICAL WIDTHS OF LINES (ACLW) DETECTED

of the line detected as shown in Table II, as well as the corre-
sponding digital approximations. Therefore, given a Gaussian
profile mask of radius , a line is definitely detected if it is not
wider than the digital approximation of the corresponding crit-
ical width.

B. Brightness Contrast Threshold,

Ideally, a line is defined as the profile of two distinctive re-
gions as described in Section II-A (see Fig. 1). However, in gen-
eral, there are shaded areas between the two distinctive regions,
as shown in Fig. 2. Here, we call such area as the edge region.
Therefore, we have to take into account the influence of the edge
region on the WMSB mass, which is related to the brightness
contrast threshold that defines the minimum contrast of the de-
tected features. In this section, we first analyze the relationship
between the brightness contrast threshold and the WMSB mass
and then give the automatic selection of a proper .

Proposition 2: Given a line of width bounded by
an edge region of width denoted by

and a circle of radius
with the constraint . Define the background

. For each , ,
, if 1) and 2) , there exists

. Here, the sign “ ” means

much less than.
Proof: From Proposition 1, condition 2) can be rewritten

as . As discussed in Section II-B, there are only
four relations between three different gray-level regions.
Case 1) and . Suppose

, then is a line with a width of
and . According to Definition 1, we

always have . From Proposition 1, for
each , is monotonically decreasing
relative to . Therefore, for each , ,

, we get .
Case 2) and . From Propo-

sition 1, for each , when



1590 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 6, JUNE 2007

Fig. 7. (a) Segmented palmprint image. Palm-line response images obtained using brightness contrast thresholds t of (b) 6, (c) 7, (d) 8, (e) 9, (f) 10, (g) 11, (h) 15,
(i) 20, and (j) 25.

, approaches the maximum
value , and reaches the minimum value

. From , we always
get . There-
fore, for each , , , we have

.
Case 3) and . According to

(18) and (19), we have .

Obviously, for each , , , we
always have .

Case 4) and . Based on Proposi-
tion 1, when , takes the maximum value

. Suppose , then for
each , when

, reaches the minimum , takes the
minimum value . Owing
to , from Fig. 6, we can get .
Therefore, for each , , , we
have .

Hence, from Cases 1) and 2), if , we have
; from Cases 3) and 4), if , we have
.

From Proposition 2 and its proof, we conclude that for a given
image, if the contrast between the edge region and the back-
ground is less than the threshold , the edge region can be re-
garded as one part of the line; otherwise, the edge region must
be regarded as one part of the line. That is, for a given image, a
large brightness contrast threshold may result in a “narrow” line
being detected, while a small brightness contrast threshold must
result in a “broad” line being detected. Therefore, the brightness
contrast threshold qualitatively determines the width of lines
detected.

Fig. 7 gives an example of line response images with different
. Here, dark line pixels are extracted directly from the input

segmented palmprint image [see Fig. 7(a)] by using a constant
weighting mask with a radius of 8 pixels. It can be seen that as
the brightness contrast threshold increases, the number of false
response pixels and true response pixels are both decrease. It is,

thus, necessary to select a proper to guarantee the detection of
the whole line. By experience, we defined as

(30)

where is the standard deviation function, means the
nearest integer, and is the input image. According to (30), the
brightness contrast threshold used in Fig. 7(a) is 9.

V. EXPERIMENTAL RESULTS

Our line detection method is implemented for the synthesized
image and real images in several different applications to com-
pletely detect lines of different widths. For the purpose of es-
tablishing the effectiveness and robustness of our line detection
method, the output images of our wide line detector are com-
pared with those of line detection approaches based on edge ex-
traction [25] and ridge detection [26], which are designed to ex-
tract the line width along with the line position. For speed, the

to the fifth power formula in (11) is implemented using a
look up table.

A. Synthesized Image

We synthesized an image including straight lines and curves
(curvilinear structures) with different widths and different
intensities. Fig. 8(a) shows the synthesized image. Applying
the proposed wide line detector we obtain the result shown in
Fig. 8(d). Here, we employed the core function defined in (11).
The brightness contrast threshold used is 11 according to (30).
The maximum width in Fig. 8(a) is 5, and, thus, the operating
radius of circular mask is 7 according to (25). Fig. 8(b) and
(c) shows the line detection results by the edge-based line
finder [25] and the ridge-based line detector [26], respectively.
Since our method detects lines based on extracting the whole
line while the other two approaches detect lines based on
detecting the corresponding edges of each line pixel, we show
the line detection result in the corresponding way, as shown
in Fig. 8(b)–(d). It can be seen that the line detection results
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Fig. 8. (a) Test image including straight lines and curves of different widths. The line detection results obtained using (b) the edge-based line finder, (c) the
ridge-based line detector, and (d) the proposed wide line detector.

by using our method is more accurate than that obtained by
using either the edge-based line finder or the ridge-based line
detector.

B. Real Images

Fig. 9(a)–(c) is taken from [26] including two aerial images
and one X-ray image. Fig. 9(g)–(i) shows the line detection
results obtained using our wide line detector. The brightness
contrast threshold for each input image is calculated by (30). A
circular mask with a normalized constant weighting is used for
each input image to detect lines and the corresponding radius
of the circular mask is determined according to (25) based
on the width of the widest line expected to be detected. In
postprocessing, we discarded very short linear structures ( 10
pixels) and very “rounded” line structures (the eccentricity

0.75). Fig. 9(d)–(f) displays the corresponding line extraction
results reported in [26].

Fig. 9(d) shows the line detection result obtained by using the
ridge-based line detector. We can see that the unjustified edge
points are reported in the junction area because the line width
here exceeds the range of widths that can be detected and, fur-
ther, that the estimation of the line width of the road object in the
bottom of the image is too large due to the effect of the nearby
vegetation. Fig. 9(g) shows the corresponding line detection re-
sult obtained by using our wide line detector. It can be seen that
the method is able to correctly detect the wide lines (i.e., essen-
tially all the pixels that comprise line cross-sectional extents),
even at the junction area in the middle of the image and the

road close to vegetation in the bottom part of the image (see
red circles).

The aerial image at Fig. 9(b) is more of a challenge. It con-
tains a large area where the model of the line does not hold, but
as can be seen in Fig. 9(h), our wide line detector nonetheless
works well. Because bright lines are needed here, we employed
the (16) as the core function of the wide line detector to sup-
press the dark-line response. Comparing the line detection re-
sults obtained by the ridge-based line detection approach [see
Fig. 9(e)] and our method, we can see that the narrow line in
the left upper part, which has a width close to two, is extracted
correctly by using our method, while the corresponding line de-
tected in Fig. 9(e) is not fully extracted as its cross-sectional ex-
tent is too narrow at some positions. Further, the wide line in the
right upper part of the image is detected completely in Fig. 9(h),
while it is missed in Fig. 9(e).

Fig. 9(c) is a low contrast X-ray image. Fig. 9(f) and (i) shows
the line detection results by using the ridge-based line detector
and our method, respectively. It can be seen that our method
certainly performs as well as the ridge-based line detector in
delineating the vascular stenosis in the central part, and is also
able to detect some very narrow and thin arteries (see red circles)
which do not appear in Fig. 9(f).

The next example, Fig. 10, which shows four segmented
128 128 palmprint images (the first row), is from the domain
of biometrics. There are a number of reasons for employing
palmprint images to test our line detection method: 1) palm
lines, referring to principal lines and wrinkles [30], are negative
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Fig. 9. (a), (b) Aerial images and (c) an X-ray image taken from [26]. (d)–(f) Extraction results of line positions and line widths reported in [26] where line
positions are displayed in white with the corresponding edges displayed in black. (g)–(i) Corresponding line detection results obtained using our wide line detector
are drawn in white.

lines of varying widths; 2) there are many details on palm lines
such as corners, junctions and branches; 3) some palmprints
contain complex structures along with different line widths, as
shown in the last image of the first row. This example compares
the line detection results by using our method (see the last
row) with those by the edge-based line finder (see the second
row) and the ridge-based line detector (see the third row),
all of which are displayed in black. We can see that all three
line detectors can extract the principal lines well, however,
our method better detects details such as the ellipse on the
principal line in the first column image (see the red circle), the
intersection of two thin lines in the right parts of images of the
middle two columns (see the red circles), and the branches on
the principal lines in the last column image (see red rectangles).
Further, our line detection method also outperforms the two
other approaches for the last column image, which contains
complex palm lines.

Fig. 11 displays three segmented tongue images in the first
row, which followed by the output images of the edge-based line
finder (the second row), the ridge-based line detector (the third
row) and our wide line detector (the last row), respectively. The
line detection results are all displayed in red. In the first column
image, there is a crackle, which refers to a dark line in a tongue
image, very thick and broad. Our line detection method extracts
this crackle correctly (see yellow circles), whereas the other two
approaches not only fail to correctly extract this crackle but, be-
cause the width of the crackle varies greatly, miss branches of
the crackle. In the middle column, the most salient crackle in
the middle of the image has an irregular structure, especially in
the upper part where the width of the crackle changes dramati-
cally and becomes discontinuous. Again, only our method cor-
rectly extracts the wide line and the interruption to the line (see
the yellow circle). The other two approaches produce unjustified
edge points, and a misleadingly continuous line. The last tongue
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Fig. 10. Segmented (first row) palmprint images and (second row) the palm-line detection results obtained using the edge-based line finder, (third row) the ridge-
based line detector, and (last row) our wide line detector. Detected lines are displayed in black.

image is the most difficult because it is low contrast and contains
many line segments of different thicknesses and widths. Com-
paring the corresponding three output images, it can be seen that
our method outperforms the other two approaches both in the
extraction of the wide line and in the detection of the line struc-
tures (see the yellow circles and rectangle). In addition, because
our method uses no derivative and the implementation of the
circular mask decreases the influence of the directional noise,
our wide line detector gives strong noise rejection, that is, pro-
duces false crackles caused by reflecting points much less than
the other two approaches (see all blue rectangles).

VI. CONCLUSION AND DISCUSSION

This paper presents a novel wide line detector for extracting a
whole line by using an isotropic nonlinear filter. Unlike existing
approaches, our method employs a hyperbolic secant formula
based nonlinear filter to detect the whole of the line. Isotropic

responses are obtained by using a circular mask either with a
normalized constant weighting or with a Gaussian profile. The
method is robust because of the automatic selection of two pa-
rameters—the size of the circular mask and the brightness con-
trast threshold. The line detection method works very well for a
range of images containing lines of different widths, especially
for those where the width of lines varies greatly. Because the
wide line detector is not dependent on the Gaussian kernel to
detect lines, even narrow lines can be extracted well as long as
the intensity difference between the narrow lines and the back-
ground is larger than the brightness contrast threshold.

Although the proposed line detection method focuses on ex-
tracting a whole line, the line position, however, can be easily
obtained through a thinning process. Furthermore, the localiza-
tion of lines via the detection is independent of mask sizes. In
addition, the wide line detector is robust against noise because
the detection is not based on derivatives of images. Hence, it is
effective for practical applications in which noise is inevitable.
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Fig. 11. Segmented (first row) tongue images and (second row) crackle detection results obtained using the edge-based line finder, (third row) the ridge-based
line detector, and (last row) the proposed wide line detector. Detected crackles are displayed in red.

The experimental results demonstrate the feasibility and effec-
tiveness of our method.

Finally, it should be pointed out that the proposed method
requires the maximum width of lines be estimated before de-
tection, which is not considered in this paper. In our method, if
given the maximum width of interested lines, the parameter is
accordingly determined and all lines not wider than this max-
imum width may be detected as long as they are strong enough.

In order to apply our method fully automatically, our future
work is to automatically estimate the maximum line width.
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