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Abstract- In this paper, we propose a new approach to scale-spacenfjltesing a box spline
representation of multidimensional signals. The use of fjgies is motivated by their ability
to better handle complex geometries than tensor-prodiggilides. The box spline we use is
defined by a set of vectors invariant under the multiplicatay a sampling matrix. We show
that such a box spline satisfies a dilation equation whiclhéshiasis for the scale-space
filtering we propose. Several numerical applications in 2IDatude the paper.

Keywords- Scale-space filtering, control net of box splines

EDICS Category:WAVL ,FBNK

March 20, 2007 DRAFT



. INTRODUCTION

Scale-space filtering traditionally consisted in an emlregldf a signal into a one-parameter family of
derived signal constructed by convolution with Gaussiaméls of increasing width. Neurophysiological
research [16] have shown that primary visual cortex respaas be modeled by the convolution with a
superposition of Gaussian derivatives at increasing sctbepractice, when the scale gets larger, many
techniques have been proposed for efficient implementatfoscale-space filtering. Among them, B-
splines or binomials have been widely used to approximageéztaussian kernel [13][15]. In that context,
tensor-product B-splines naturally define bi-dimensiosedle-space filterings. Tensor-product splines
have been shown to be inappropriate for the modeling of cexnpbjects in numerous applications due
to their definition over arbitrary rectangular parametemdm [12]. An important class of functions that
enables the definition of scale-space filtering without timadlvantages of tensor-product surfaces are
box splines.

In this paper, we propose a new scale-space filtering baseal lwox spline representation of mul-
tidimensional signals. Having introduced the main defims& on box splines, we recall the equation
they satisfy for a dilation by a factor of [2]. We then show how to write this equation when is
replaced by an invertible sampling matid [11][8]. When the set of vectors that defines the box spline is
invariant under multiplication bv, we derive a similar equation to that of dilation. We, theref restrict
ourselves to such box splines. We then define a sequencecsfns constant functions that converges
to the box spline under specific conditions. The constractib these piecewise constant functions is
based on the convergence of the control net of box splinesgUhis function and the property of the
box spline with respect to the matri¥I, we are able to define a fast algorithm for multidimensional
continuous scale-space filtering at rational scales ancifgpications. This result is a generalization of
that obtained on one dimensional scale-space filteringgusiB-spline representation of signals [9].

The sketch of the article as follows. In section Il, we redht definition of box splines. Then, we
highlight subdivision schemes for box splines. Finally,negiew the convergence properties of the control
net of box splines. Section Il is devoted to the derivatidracnew scale-space filtering. In section 1V,
we study, in 2D, the general form for the sampling malvikand we put forward, in each case, a vector
set invariant under multiplication biI. Some numerical examples on the new scale-space filtering we

propose conclude the paper.
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Il. SUBDIVISION SCHEMES FORBOX SPLINES, CONVERGENCE OF THECONTROL NET OF BOXx

SPLINES
A. Definition of Box Splines
Let us define a set af vectors, not necessarily distinct, in an s-dimensionatspa
X, = {x1,%x2, -+, xp} C Z°\ {0}.

We assume that at leastvectors ofX,, are linearly independent. Let us rearrange the faXily such
that X, = {x1,---,x,} are linearly independent. Using the notatipq, - - -, x][0, 1[° to denote the
collection of linear combinationij Aix; with A; € [0, 1], we define multivariate box splines as follows
(31110} -

Xy = 1 Ty X b X0 1F
7 0 otherwise
1
ﬁ(X7 Xk) = / ﬁ(x — X, inl)dt’ n>k>s. (1)
0

One can check by induction that the supportsok, X,,) is [x1,x2, -, X,][0, 1]™.

B. Dilation Equation for Box Splines

The dilation equation satisfied by discrete box splinesnéelfias in (1), was introduced in [2]. It is

proved thatg satisfies the relation:

ﬁ(%vxn): Z bm[p,Xn]ﬁ(k—p,Xn) VkeZ’ (2)
PEZ®
with
bonlPs X = —— (bl 1] % -+« % [, %)) [P,

mn—s
whereb,,|., x;] is the succession of. ones in the direction defined by and+ denotes the-dimensional
convolution, thatig fxg)[q] = >_ f[llg[a—1]. Equation (2) is proved using thetransform ofﬁ(%,Xn).
1eZ¢
A more general result holds for atl € RS:
B(x,Xn) = > b[p, XnlB(mx —p,X,) VxRS, (3)

(YA
which we do not prove since it :)s a particular case of what wal dégth next, takingM = ml;,
where I, is the identity matrix of sizes x s (see the definition oM in the following). In case we
consider a centered box spline, thatdigx, X,,) = 8(x — 3(x1 + -+ + x,,),X,,), relation (3) leads to
Be(x) = 3 bim[p, Xn]Be (mx — 252 (x5 + -+ + x,,) — p). For the sake of simplicity, we will maintain

. PEZL? .
the definition (1) of box splines.

March 20, 2007 DRAFT



C. Non-Separable Dilation Equation for Box Splines

In a more general framework, the dilation factar can be replaced by an invertible matiM of
integer entries, having real eigenvalues of modulus btrlatger than1[8]. The matrixM must also be

such that there exists a permutatierof {1,---,n} satisfying
MXp = )\pXJ(p) (4)

with )\, a positive integer. When property (4) is satisfigd, is said to be invariant under multiplication

by M. The definition ofs imposes that whenever two distinct vectors aréip, each of them appears

the same number of times X,,. Let us now state the non-separable dilation equation fardmiines.
Theorem 1:Assume thaitM satisfies hypothesis (4) and thatis defined as in (1) then,

ﬁ(x, Xn) =V |det(M)| Z g[paAnaXo(n)]ﬂ(MX - ann)a

PEZs

whereg|., A, X,] andA,, = (A, -+, \,), is defined by:

| det(M))]
IT»

p=1
The proof is given in Appendix A. TakinyI = mI,, we find equation (3). Going further, we can replace

9P, An, X = (bx, [ xa] by [ %4]) [P

M by M™, leading to another non-separable dilation equation.

Theorem 2:Assuming the same hypotheses as for Theorem 1, we have:

Bx,Xp) = /] det(M)[™ > gm[p, A, X ] B(M™x — p, X,,), (5)
PEZs
with
gm[pv An7 Xn] = (g[a An7 Xo’(n)] Fooeok 9[7 Anv Xo””(n)]) [p]7
where
g[P> Ap, Xo(n)] = g[pa An> Xa(n)]

and forr > 2,

B det(M

g[p7 An7 XJT(n)] = w (b)\l) r—1 [-7 XUT(l)] ook (b)\n) =1 ['7XJT(n)] [p]

H )‘p Tkl;II Adk(l) Tkgl )\dk(n)

=1
The proof is given in Al\)ppendix B.
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D. Convergence of the Control Net of Box Splines

From now on, we assume tht,, - - (X, ,Xn} spansR® for all j € {1,---,n}, wherex; means
we have removed; from X,,. In the following, we consider a box spline defined as in (1f)the results
are also true for a centered box spline, applying apprapsatfts. With the above hypothesis &4,

B(x,X,,) is continuous and the span of its shifts contains linear nontyials [10]. In particular, if we

put
1
np:p+§(xl+"'+xn)> peZsa (6)
we have 3 np6(x — p,X,) = x. Indeed, if we denotep = 3(x; + - - + x,,) the center of the box
pEZ®
spline 5 then,

> npBmo—p,Xn) = ne Y Bno—p,X,)+ Y pBno —p,Xn)
= 1y,

since Y  B(no — p,X,,) = 1 [10] and B(ng — p,X,,) = B(no + p,X,) (the box splines being
PEZs
symmetric with respect to its center). Now, if we dendlg, the directional derivative in the direction

X, a simple computation leads to the equalidy, | > npf(x—p,X,) | = xx, which states the
PEZ®
expected result.
x np
Now, if we defineB(x, X,,) = andch, = m , wWe can write;
PEZ®
It was proved by De Boor eal. [6], that if [xq,---,x,]Z" = Z*, where[x,---,x,]Z" denotes the

collection of linear combinations with integer coefficignthen|ch, — B(x,X,)| = O(X), for anyx

such that3(mx — p, X,,) > 0. This equality implies in particular that:

‘bm[pv Xn] - ﬂ(X, Xn)’ = O(i) (7)

m

If the box spline is continuously differentiable, then thgpeoximation is inO(#).

[1l. PIECEWISE CONSTANT APPROXIMATION OF 3 AND MULTIDIMENSIONAL SCALE-SPACE

FILTERING
A. Definition of a Piecewise Constant Approximationsof
We now explain how to define a sequence of piecewise conataatiébns that uniformly converges

to 3 with m, wherem is the dilation factor of equation (3). We recall that thergsi>2, wheren,, is
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defined in (6), lie on the gric%s translated byﬁ(xl + -+ x,). We therefore consider the piecewise

constant function:

F(x,X,) = bn|p, X,] ¥x € supp(f) (8)

with p = argmin (||x — 22[|) and where||x|l = max|z;|. Conversely, giverp, the set of points
q 7

satisfying this property i$" = {x, |x — 22| < 5= }. Similarly, we define

V, = {x, |x —nplloc < %} 9

We now give a simple condition foF,,, to converge uniformly tqs.
Theorem 3:If we assume that is continuously differentiable, the,, (x, X,,) — 8(x, X,,)| = O(%).

PROOF Any x in supp(f) belongs toV* for somep. A first order Taylor expansion ale leads to:

B %) = AR %) +0()
1

= bplp, X, + O(E) with (7)

= Fp(x,X,) + O(—) with (8).

1
m
B. Multidimensional Scale-Space Filtering

The linear scale-space representation is to make a map gnaldiy changing the scale parameter

continuously. In the language of wavelet transform, thditi@nal scale-space approach can be regarded

as a continuous wavelet transform of the sigfia L2(R*®),

W f(a,x) = /R f(t)%\l/(t_TX)dt _ /R f(x+t)%\1/(2)dt a0,

In a box spline framework, we consider a waveletlefined by

U(x) = /[det(M)[" Y~ am[p, Xn]3(M™x — p, X,,), (10)

pEZ®

and a multidimensional signgl approximated by

fx) &~ f(x) = v/[det(M)[™ D [P, Xn] B(M™x — p, Xo,). (11)

pEZ®

To decompose the signdlin such a way is interesting in that the use of non-diagomaldiag matrices
such as quincunx or hexagonal sampling matrices is knowsatt fo superior results in signal and image

coding [8]. The way the sequenegg, is computed is discussed in the next subsection.
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Since a real number can be approximated arbitrarily close bgtional number, = 71, using (11)

and (14), we derive:

WA %) = [det(M)”| (%)

ma

s)2

m
P2 Xt X /R B2t — p. X, )I(M"x + t - . X, )t
am[Ps Xn]Ym[a, Xn]bm, [k, X5 [0m, [1, X5,

(p,ak,1)e(Z#)*
(B%B)(—mngx —mp+moq—k+1X,),

wheref(x, X,,) = B(—x,X,) andB*3(x, X,,) = [p. 3 )B(x—t, X,,)dt. One notices that*3(x, X,,) =
B(x, X )with X, = [xl, —X1,-*,Xp, —Xp] and is therefore symmetric with respect to zero. Then, takin
x =M B4[i] = B(i, Xn) leads to:
~m; M™™i 1\°
W 1, = (o) (i # o) L X[ (G s B X Gl — 1 K
mo mo mi
(kDe(z)?
1\* N
() (O b Qi B 5) X 12

We now see how to use the piecewise constant fundiigrto avoid the convolution witts,, thus saving
computational time. Ag,, uniformly converges t@ whenm tends to+oo, we can write the following
approximation for largen; andms, for the case wheré is constant:

~m m s m
((p,a)e(Z°)?

Let us then rewrite formally the integral:
meo m
1

t .
= — Z / Finy(—— = P X) Fn, (M"x + — — q, X,,)dt using (9)
ma

1
=— Z b, [ — m1p, Xy ]bm, [r + me(M™x — q), X, ].

2 rezs

Consequently, ik = , the above expression makes sense. We, finally, get theviatjo
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approximation for the scale-space filtering:

~mq M™™i 1 .
Wf( ! ) ~— Z Am [p, Xn]Vm [q, Xn]bml [I‘ — mip, Xn]bmg [I‘ +1— maq, Xn]

my’ ma " (p,a,r)€(Z°)?
= — Z > Amla X b, +1 — maq, Xp] Y [P, X, [r — map, Xo]
reZ qEZs PEZ®
=— Z Ym)ma * bmy) [ 41, Xn] () tmy * bm,) 1, X4
reZ
1 - mp M™™

= < m)Tm bmg m)Im bm1 '7X w a 5 13
e (s b i B ) (%) = WL ). (13)

As expected, to computl’ f, instead of W f avoids the convolution by,. Furthermore, we will see,
in the Numerical Applications section, why such a scalezsditering based on the Iattio(eMn;—mi) ;

2 ie s
is interesting.

C. Computation ofy,, and v,

Let us first sety = +y. The sequence cannot be obtained by interpolation as in the B-spline case
[13] since, in most cases, the decomposition over the spahitit of a box spline is not unique. The
uniqueness is proved if and only if the matfkg, - - -, x,,] is unimodular, that is if the determinant of any
of its submatrices of size? is 1 or —1 [4]. An approach to compute the coefficients of the decontjovsi
over shifted box splines is proposed in [3]. It is based onasginterpolation formulation of the problem.
The interpolation problem is to fing such thatf(p) = Z ~v[1]8(p — 1, X,). Taking thez-transform
of both sides of this equality leads #(z) = I'(z )A(z X n), Where A is the z-transform of 5. If
we putA(z,X,)™' = (1 — D(z,X,))"!, we have the following approximation df(z) for someg:

I'(z) = F(z)(1 + D(z,X,,) + --- + D(z,X,,)). The stability of the method requires that the roots
of A(z,X,,) be inside the unit ball. This is, in practice, a very strongtnietion. For instance, if one

considers the most popular box spline basedXon= {[1 0]7,[-1 1], [0 1]7, [1 1]7}, then we have
1
A(z,X,) = 122_1 (L4 2"+ 2 + 20tz h)
wherez = (z1, z2). One sees that it is null fazr = (1, —1) which is not inside the unit ball. Therefore,
the algorithm proposed in [3] is instable in this case.
We adopt a mean square approach for the computation dhe advantage of such an approach is
that it does not impose any condition gn To computey, we first define

E(y) = % > (f(k) — > Bk - 17Xn)> :

keZs 1€Z2
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If we differentiate this expression with respecttpwe obtain

OyEN = — (f = Ba) ] + (v * Ba * Ba) (1],
where 3;[1] = 8(1,X,,) and 34[l] = B4[—1]. We then use a gradient descent method to compute
such a framework, the value of we obtain corresponds to a local minimum Br In applications, we
always check that the box spline approximation is close &dtiginal image. In [1], a fast approach
for the computation ofy is proposed since, when initial condition is far from an optim solution, the
convergence of the gradient descent method may be slow.
Once~ is computed, we use (5) to write:

) = 3B - 1,X,.)

1€Zs

=V ‘ det(M)’m Z (gm['7 Ay, Xn] * ’YTM”L) [p]ﬂ(MmX - P, Xn)v

PEZ®
where

v[p] if 3 p € Z* such thatg = M"p
v [d] = _
0 otherwise
This means that,,, = g, * Yyvm-
The wavelets we consider are called box spline waveletsdétails on these wavelets see [12]) and

are of the form:

\II(X) = Z a[p]ﬁ(x - b Xn)? (14)
PEZ®
with Y~ «a[p] = 0 wherec is a finite sequence. Indeed, sinfe 6(x, X, )dx = 1, [p. ¥(x)dx = 0. To

peZS . - . - - -y
get a wavelet with a larger number of vanishing moments woetplire to impose stronger conditions

on «, but this is not the point here. Then, with (5), we deduce:

U(x) = VIdetM)[™ D (gl An, Xa] * aaan) [A]HM™x — 6, X).

pEZ®

In all casesp,,, = gm * apvm-
IV. STUDY OF THE MATRIX M WHEN s = 2, DEFINITION OF INVARIANT VECTORSETS

A. General Form for the MatrixVI

We now investigate the case= 2 in detail and more precisely the influence of (4) on maiik
assuming, without any loss of generality, tBat is composed of distinct vectors. We study the length of

the cycles that make up the permutationA cycle of lengthqg is defined by a subsét of X,, such that
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q is the smallest integer satisfyiMyl’x; = a;x; = Ax; for all x; in S. a; is independent from since
a; = [] \i, whereJg is the set of indices corresponding $o Since at least x;s’ are non-collinear,

i€Js
the existence of a cycle of length> 2 implies

M4 = AL (15)

Assume there exists a cycle with> 3 and¢ odd. SinceM is invertible, if the eigenvalues a¥I area
andb and if u andv are eigenvectors associated witrand b respectively, theM%u = a%u = Au and
Miv = b?v = Av. As ¢ is odd, this meana = b and, consequenti\ = )\512.

Now, assume there exists a cycle with> 2 with ¢ even. From (15) and as > 0, %Mg is its own
inverse which implies that the eigenvalueshdf: are +v/\.

Let us assumég is odd. If the eigenvalues d¥1: are equal thelM = )ﬁIz. Otherwise ifu andv
are eigenvectors d¥I associated withu andb respectively, then wa: = —bz, (the relation is obtained
by applyingM % times), leading taz = —b. Thus, whenM is not proportional tds, it is similar to:

AT 0
Mgy, = L . (16)
0 —Ad

When is even,M: has a unique eigenvalug\ (we recall that the eigenvalues M are real) ; that
is Mz = v/\I,. Applying the same reasoning as previously we obtain thatyematrix M that is not
of the formal, and that satisfy property (4) is similar ¥l,;,,,, defined in (16).

We deduce that any matri¥ that is worth studying has a null trace, which leadsM@ = \I,.

Let us now give two illustrations: the first one is the quincwampling matrix and the second is the
hexagonal sampling matrix. The quincunx sampling matrigéfined by [14]

M — -1 1
1 1
Here,M? = 21, andM is thus similar to
V2 0
0 —V2

The hexagonal sampling matrix is

M:

As M? = 4I,, \ = 4 leading toM is similar to
2 0
0 -2
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Fig. 1. (A): 32 x 32 step-edge image (amplitude of the step-edge =2) with sadfor- -,31} x {0, - - -, 31}, the direction of
the edge being the vectd2 1]7; (B): plot of the scale-space filtering, defined by the hexajsampling matrix withn = 1
and applied to image (A), in the directidh — 2]” starting from the initial coordinateg20, 0) with respect to the ordinate.
We considera = 1 for my = 1,mz = 2 or my = 2,mz = 4 or my = 4,mz = 8 (C): diagonal64 x 64 step-edge image
(amplitude of the step edge = 2), with suppft - - -,63} x {0, ---,63}; (D): plot of the scale-space filtering, defined by the
quincunx sampling matrix withn = 1 and applied to image (C), in the directi¢n1 1]7 starting from the initial coordinates

32,0) with respect to the ordinate. We considet= 1 for mi =1,mes =2, 0rm; =2,ma =4 0rm; =4, ms = 8
p 2

B. Invariant Sets of Four Vectors

To apply Theorem 3, we need a $€t, such that{x;,---,x},---,x,} spansR? and we also require
that 8 be continuously differentiable. WheK,, is made of non-collinear vectors, the latter condition

imposes thaiX,, contains at least 4 vectors. Indegtlis in C”(R?) with

r=min {#Y :Y C X, X, \ Y #R?*} -2,
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where #Y stands for the cardinal of [5]. We now assume thaX,, is composed of 4 non-collinear
vectors.X,, must also be such that property (4) is satisfied. We now shiwendvi, how to define such
a vector set.

As M? = \I,,with A > 0, for any vectoru which is not an eigenvector &1, if we put Mu = v, we
necessarily havdlIv = A\u. Therefore, to define a 4 invariant vectors set, it sufficeptwsider two vectors
that are not eigenvectors dfl. Let us consider the sd{1 07,0 1]7,[1 1)7, [-1 1]T}. For any matrix
M at least two of these vectors are not eigenvectors. We caniid first two which are not eigenvectors,
to build the invariant set. For instance, for the quincunxrira[1 0] and[0 1]7 are not eigenvectors
leading to the invariant vector s&,, = {[1 0]7,[-1 1]%,[0 1), [1 1]T}. Similarly, for the hexagonal

sampling,[0 1] and[1 1]7 are not eigenvectors leading %,, = {[0 1J7,[1 —2)7,[1 1}7,[3 —2]7}.

V. NUMERICAL APPLICATIONS

We now study the behavior of the scale-space filtering we ggepln image processing, it is usual to
consider that the first component of a vector (i.e. abscisste coordinate on the vertical axe oriented
downward while the second component (i.e ordinate) is ttmrdinate on the horizontal axe oriented
to the right. This convention holds for the rest of the paper. image boundary conditions, we adopt
mirror conditions that is we symmetrize the image with respe its boundary [7]. In the following two
subsections, we aim at showing that to choose an approgaateling matrix leads to a better resolution
of the scale-space filtering in the direction orthogonalhie ¢dge and, second, that the convergence of
the approximation (13) to the true value (12) is very fast.e&sh sampling matrid is such thafMVi?
is proportional tal,, M~™, m odd is proportional taMI—!, therefore it is essentially worth studying the

approximation (13) whem: = 1.

A. Scale-Space Filtering on Step-Edge Images

To illustrate the interest of using the hexagonal sampliragrix, we first consider a step-edge image
as that of Figure 1.A which is such that the vecibr — 2]” is orthogonal to the step-edge. Whaff
is the hexagonal sampling matrix, computing the scaleesfigtering (13), form # 0 whenm = 1
leads to a four times finer resolution in the direction orthrog to the edge is four times finer than
that with m = 0. For the present example, we thus consider Mats the hexagonal sampling matrix,
X, ={0 171 —2]7,[11)7,[3 —2]7} andm = 1. The waveletd we use here is designed to study

the singularities in the direction of; ; it is defined by (14) witho corresponding to the convolution of
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(&i)1<i<a that is:
dl * 542 * 543 k d4

4= max Z (dl * Qug * O~43 * d4) [k]ﬂ(p - k7 Xn)
PEZ? yc72
with do[—x2] = —1, au[0] = 2, do[x2] = —1 and zero elsewhere and, fpe~ 2, 6;[—x;] = 1, &;[0] = 2,

&;[x;] =1 and zero elsewhere. The wavelet thus defined is such thadliie at integer locations is less
than one. One can also check thiafp])pcz2 sums to zero.

We apply the scale-space filtering defined by (13) to the ste image of Figure 1.A, whose support
is {0,---,31} x{0,---,31}. We considern, = 2 = J, either withm, = 1,my = 2, ormy = 2,my = 4,
or m; =4, my = 8. We display, in Figure 1.B, the coefficieri® f, in the direction of the vectol2 1)
with respect to the ordinate and starting from the point witlordinateg20,0). We do not display the
exact coefficientdV f since whenn, = 4 andmy = 8, W f and W f, are visually indistinguishable.

We then consider a diagonal step-edge function as that ofr&i.C, whose support i), - - -, 63} x
{0,---,63}. Whenm = 1 and the quincunx sampling matrix is used, the resolutiomefscale-space fil-
tering is two times finer in the direction orthogonal to thgedhan whemn = 0. We therefore implement
the scale-space filtering wihI the quincunx sampling matrix aid,, = {[1 0|7, [-1 1]%,[0 17, [1 1]T}.
The wavelet?d we use is designed to study the singularities in the diraatibx,. The filter « is thus
built as previously, taking into account the change of vestt X,,. We display in Figure 1.D, the
coefficientsiV f, in the direction of the vecto-1 1]7 with respect to the ordinate and starting from the
point with coordinateg32,0). Again, a = % = % either withmq =1, mo =2, ormy = 2,mqg = 4 Or
my = 4,m9 = 8. We do not display the exact coefficient given by (12) sincemvin; = 4,m, = 8 the
approximation and the exact scale-space filtering are Wsumlistinguishable.

Of course, different edge orientations would require défé sampling matriced1 but this will be

the topic for future work.

B. An lllustrative Example on a Natural Image

We now apply the scale-space filtering we propose to the iln&dgenna. In this illustrative example,
we consider thalX,, is associated to the quincunx sampling, that the waveleesgded to study the
singularities in the directiorx; = [1 0]” following the same framework as in the previous subsection
and also thatn = 0. We furthermore consider = 2 = % As already pointed out, taking,; = 4 and
mo = 8 provides an approximation of the scale-space filtering twligcvisually indistinguishable from
the true value. We display in Figure 2.A, the original imadgeLenna and then in Figure 2.B-D, the

approximation of the scale-space filtering for a region & ¢ye, of the fur and of the hat respectively
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(B) (©) (D)

Fig. 2. (A): image of Lenna ; (B): scale-space filtering foe tregion of the eye whem; = 4 andm. = 8; (C): similar

computation to (B) for a region of the fur; (D): similar comation to (C) for a region of the hat.

corresponding to the surrounded regions in Figure 2.A. Ufinathese examples, we notice that the scale
space filtering we propose can both handle geometric andrgdxiarts of images, and that, as expected,
the singularities in the vertical direction (i.e. the diten of x;) are well detected and can be precisely
localized, since they correspond to the coefficients withltrgest amplitudes (black or white pixels) in
Figure 2.B-D.

VI. CONCLUSION

In this paper, we have introduced a new scale-space filtdsagpd on a box spline representation
of multidimensional signals. The scale-space filtering ésnputed at rational scales and at locations
dependent on some sampling matrix and on a dilation factor i the paper). Using box splines
is interesting in that it enables the computation of the essplace filtering on a non Cartesian grid. In
particular, this allows a better localization of the edgefin@r scales without increasing the computational

cost. We have also shown that we can save computation timeg asi approximation of the scale-space
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filtering based on box splines. This approximation does motegate any visual distortion provided the
length of the filters used are large enough. In practice,ethmay be chosen with a relatively small
size ; this aspect is important to preserve a low computatioast for the proposed method. In a near
future, we will investigate more in detail the relation betm the sampling matrix and edge orientation
and wether it is possible to build a scale-space filteringlirimg box splines associated with different

sampling matrices.

APPENDIX
A. Proof of Theorem 1

We first recall that the Fourier transform g6fx, X,,) is [3]

n

FB) (. Xn) =[]

1 — e X%

o ixTxp
Then, using property (4), we can write
‘F(ﬁ)(MTX7 Xn) “ 11— efi)‘PXTxU(P) 1
— 11y T = G(x, Xp). 17
F(B)(x; Xn) i Ap 1 —e X Xow) [det(M)] (x ) a7)

Equation (17) then can be written as follows:
“1 T . T
FEM X Xp) = [] -0+ e X0 g e Om e 7(6) (. X,).
p=1""
Let us now recall some basic properties of the Fourier taansf If (h[n]),ez- IS a finite sequence,

for an integrable functiorf defined onRR?, then]—“( > hKf(.— k)) (x) = h(x)F(f)(x), where

keZs
h(x) = 3. h[n]e~27<nXx> with < -,- > being the Euclidean inner product @°. From this we
nezs
deduce
FBXXp) =F (\/det(M) > 9lp A, Ko B(Mx — p,Xn)) (x) (18)
PEZs

for all x in R® where

ol A, X, = YU

I
p=1

Sxa] ok xby [ X)) [Pl

Both terms in equation (18) are ¥ (R?), so that3(x, X,,) = /| det(M)| > g[p, Ax, Xyl B(Mx —
PEZ*
p, X,), almost everywhere. Since each term in the equation isramtis, the equality holds for at.l
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B. Proof of Theorem 2

For anym € N and using the definition of/ given in the proof of Theorem 1, we have:

FBMD)™y,X,) 11 FB(MD)x
(B)YMT)"x, Xn) H (B)(( Tr) 1 H (MTY 1y, X,,)
F(B)(x: Xn) F(B)((ME)r=1x, X -/ det(M
- 1:[ 1:[ )\i oM e*i()\pfl)XTMT’lxg(p)).
As for r > 2, M !x Xo(p) = H Aok (p)Xor(p) @Nd using the same properties of the Fourier transform as

in the proof of Theorem 1, we can write the following equation

Xp) = /| det(M)|™ Z gm[P; Ap, X, ] B(M™x — p, X,,),

PEZ®
with

m[paAan] = (g['aAn)XU(n)] Koew ok g[-,An, Xom(n)]) [p],

whereg[p, An, Xom)l = 9[P; An, X5y @nd forr > 2,

Vldet(M)| (bx,) o [ Xgry] %% (by,) v [+ %or (] | []-M8

g[prA 7X0T ] =
T, Jigw Jigwns
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