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Bistatic Synthetic Aperture Radar Imaging
for Arbitrary Flight Trajectories

Can Evren Yarman, Member, IEEE, Birsen Yazıcı, Senior Member, IEEE, and Margaret Cheney, Member, IEEE

Abstract—In this paper, we present an analytic, filtered backpro-
jection (FBP) type inversion method for bistatic synthetic aperture
radar (BISAR). We consider a BISAR system where a scene of in-
terest is illuminated by electromagnetic waves that are transmitted,
at known times, from positions along an arbitrary, but known,
flight trajectory and the scattered waves are measured from posi-
tions along a different flight trajectory which is also arbitrary, but
known. We assume a single-scattering model for the radar data,
and we assume that the ground topography is known but not nec-
essarily flat. We use microlocal analysis to develop the FBP-type
reconstruction method. We analyze the computational complexity
of the numerical implementation of the method and present nu-
merical simulations to demonstrate its performance.

Index Terms—Bistatic, filtered backprojection, microlocal anal-
ysis, radar, synthetic aperture imaging.

I. INTRODUCTION

I N synthetic aperture radar (SAR) imaging, a scene of interest
is illuminated by electromagnetic waves that are transmitted

from an antenna mounted on a plane or satellite. The aim is to
reconstruct an image of the scene from the measurement of the
scattered waves.

Unlike its monostatic counterpart, where transmitter and re-
ceiver antennas are co-located (Fig. 1), in bistatic SAR (BISAR)
[1], transmitter and receiver antennas are located on separate
platforms (Fig. 2). This allows the transmitter and its heavy
power supply to be flown on a platform different from that of
the cheap, expendable receiver. Also, some of the electronic
countermeasures that have been devised to thwart monostatic
configurations are less effective against bistatic systems [2], [3].
Finally, bistatic measurements can provide better ability to dis-
tinguish targets from clutter [4].
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Fig. 1. Acquisition geometry for monostatic SAR.

Fig. 2. Acquisition geometry for BISAR.

For SAR systems whose antennas are able to form a narrow
beam, the image reconstruction algorithms are well known
[5]–[12]. However, these algorithms are not useful for imaging
systems using antennas having poor directivity where the
antenna footprint is large.

In [13]–[17], reconstruction algorithms for monostatic SAR
with poor antenna directivity traversing straight and arbitrary
flight trajectories have been developed. To our knowledge, the
acquisition geometry of BISAR studies for the case of poor an-
tenna directivity are limited to isotropic antennas traversing cer-
tain flight trajectories (straight [18], [19] or circular [20], [21]
flight trajectories) over flat topography.

In this paper, we focus on BISAR with poor antenna direc-
tivity and address the image reconstruction problem when trans-
mitter and receiver are traversing arbitrary, but known, flight tra-
jectories over a known, but not necessarily flat, topography.

In particular, we have used microlocal techniques to develop
an approximate analytic image reconstruction method for
BISAR. Microlocal techniques leads to inversion methods that
have the desirable property that visible edges in the scene will
appear in the reconstructed image at the correct location and
orientation. They can also account for various factors such
as the arbitrary flight trajectory, nonflat ground topography,
antenna beam pattern, transmitted waveform and geometric
spreading. Furthermore, microlocal techniques give rise to
filtered-backprojection (FBP-) type inversion, which is a direct
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(noniterative) method and can be potentially implemented fast
[16]. If an exact inversion is possible, the FBP-type inversion
often reduces to the exact inversion formula.

We describe the steps of the algorithm for numerical imple-
mentation of the inversion method and analyze its computa-
tional complexity. We present the performance of the algorithm
in numerical simulations using circular and distorted circular
flight trajectories over flat topography. Numerical simulations
support the theory and show that the edges are recovered at the
correct location and orientation and at the correct strength.

The organization of the paper is as follows. In Section II,
we introduce our forward model. In Section III, we present the
FBP-type image formation method along with an example. In
Section IV, we present the reconstruction algorithm and its com-
putational complexity analysis and numerical simulations to il-
lustrate our theoretical results and the performance of the re-
construction algorithm. Our conclude our discussion with Sec-
tion V. Finally, we provide the stationary phase theorem in the
Appendix.

II. FORWARD MODEL

Let , be the transmitter and re-
ceiver trajectories, respectively. We assume that the earth’s sur-
face is located at the position , where

, is a known smooth function, and scattering takes
place in a thin region near the surface. Following [14], [15],
and [22], under the single-scattering (Born) approximation, we
model the received signal as follows:

(1)

where
is the total traveled distance, also known as the bistatic range
[1], denotes the surface reflectivity, denotes the speed
of light and denotes the temporal frequency. is a
complex amplitude function that includes the transmitter and
receiver antenna beam patterns, the transmitted waveform, ge-
ometrical spreading factors, etc. [14], [15], [22]. For example,
for an isotropic transmitter transmitting a waveform
and isotropic receiver, can be approximated by

. Here
denotes the fast time and , which is referred to as the slow

time, parameterizes the trajectory.
Unless otherwise stated, the bold Roman, bold italic, and

italic small letters will denote points in and , respec-
tively, i.e., , with and .

We assume that for some satisfies the symbol
estimate [14], [15]

(2)

where is any compact subset of , and the constant
depends on and integers , and . This assumption is
true when the antenna is broadband and the source waveform is
a band-limited waveform.

Fig. 3. Isorange contour for (dashed line) a distorted circular flight trajectory



 (s) = 


 (s+�=4) = 


 (s) over a flat topography where black and white
triangles are the transmitter and receiver platforms, respectively [see Section IV
for an explicit formula of 


 (s)].

In fact, under assumption (2), (1) defines as a Fourier inte-
gral operator [23]–[25] whose leading order contribution comes
from those points lying in the critical set of the phase, i.e., inter-
section of the illuminated surface and the ellipsoid

. Since is a Fourier integral operator, an
approximate inverse of can be computed by a suitable back-
projection onto these intersections. The curves formed by the in-
tersection of the surface and are also referred to as iso-range
contours [1] for the slow-time . For flat topography ,
the iso-range contours are given by ellipses on the plane
(see Fig. 3), which we will revisit in Section III-C.

The ideal image formation problem is to estimate from
knowledge of for some range of and .

III. IMAGE FORMATION

In general, the strategy for estimating is to apply an imaging
operator to the data . The image for the target can,
thus, be written . The operator contains
the information about how the image is related to the actual
target scene . The kernel of is called the point spread func-
tion.

Since is a Fourier integral operator, an approximate inverse
of can be computed by another Fourier integral operator .
Our strategy is to determine so that the point spread function
of approximates the Dirac delta function. In this regard, we
extend the monostatic SAR reconstruction techniques based on
microlocal analysis [14], [15] to BISAR to determine .

The microlocal-analysis-based reconstruction method can be
viewed as a generalized FBP-type reconstruction method where
the data is first filtered and then backprojected. It is a direct con-
sequence of microlocal analysis of the backprojection operator
that the visible edges of the scene appear in the correct location
and correct orientation in the image obtained by backprojection
[14], [15].
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Fig. 4. Iso-doppler contour for (dashed line) a distorted circular flight trajectory



 (s) = 


 (s+�=4) = 


 (s) over a flat topography where black and white
triangles are the transmitter and receiver platforms, respectively [see Section IV
for an explicit formula of 


 (s)].

A. FBP Operator

We use the following FBP operator to form an image of
the scene:

(3)

where
is the Fourier transform of in

fast-time, and is the filter to be determined below. We
assume that for some satisfies the symbol estimate

(4)

where is any compact subset of , and the constant
depends on and . Assumption (4) makes a
Fourier integral operator. In the next section, we will determine
the filter and see that indeed satisfies the assumption
(4).

Substituting (1) into (3) results in

(5)

where

(6)

is the point spread function with
. We would like to make as close as possible

to the Dirac delta function .
Applying the stationary phase theorem (see Appendix) to the
and integrations in (6), we see that the main contributions

to come from those critical points of its phase at which
is nonzero. Thus, the critical points satisfy

(7)

(8)

where

(9)

is the bistatic Doppler frequency [1] with
being the partial derivative of the trajectories with respect to
and denoting the unit vector along . The contours that are
formed by the intersection of the surface and

for some constant are referred to as the iso-doppler con-
tours (see Fig. 4). Thus, the critical points are those that have
the same bistatic range and Doppler as . In other words,
is a point that belongs to the intersection of the iso-range and
iso-doppler contours from . For the rest of the paper, we will
assume that the flight trajectories and antenna beam patterns of
the transmitter and receiver are focused to one side of their flight
trajectories, so that the iso-range and iso-doppler curves inter-
sect only at a single point. Thus, we assume that the only critical
point of the intersection is .

For fixed and , we write as

(10)

where

(11)

Here, we use the identity

(12)

with . For

(13)
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where

(14)

and superscript denotes transposition. Note that the
columns of J span the tangent plane of the surface at
point . Thus, is given by the projection of

onto the tangent plane at .
Substituting (10) into (6), we obtain the point spread function

becomes

(15)

Under the assumptions (2) and (4), becomes a pseudo-differ-
ential operator [23]–[25], which implies that the location and the
orientation of the visible edges will be correctly reconstructed.

B. Filter

In order to reconstruct the edges with the correct strength (i.e.,
magnitude of the jump) and order (i.e., not smoothed), we use
the filter obtained from the following argument.

For fixed and , we make the change of variables

(16)

in the integral of (15), and obtain

(17)

where , etc., and

(18)

is the determinant of the Jacobian that comes from the change
of variables (16).

Substituting (17) into (5) gives

(19)

A stationary phase analysis of (19) in the variables and can
be carried out as follows: First we make a change of variables

to obtain a large parameter . We also write the ampli-
tude in terms of its Fourier transform

(20)

and again make the change of variables to introduce
the same large parameter . The critical conditions are
and . Thus, we see that the leading-order contribution to
(19) comes from .

At this point, we see that the desired choice of the filter
is

(21)

where

(22)

and is a smooth cut-off function equal to one in the interior
of and zero in the exterior of . We refer to (22) as the data
collection manifold at ; it is this set that determines many of
the properties of the image. We note that since satisfies
the symbol estimate (2), by (21), also satisfies the symbol
estimate (4) [23]–[25].

With the choice (21), the leading-order contribution to (19)
becomes simply . However, it is more illuminating to use
(21) in (19) and use the fact that the leading-order contribution
is at to write

(23)

Equation (23) shows that the image is a band-limited ver-
sion of whose frequency content, using (16), is determined by
the union . The data collection manifold describes the
frequency content and, thus, the resolution of the reconstructed
image at . The bigger the data collection manifold, the better
the resolution of the reconstructed image. Microlocal analysis of
(23) tells us that an edge at is visible if the direction normal
to the edge is contained in [14], [15], [26]. Furthermore, the
frequency contribution of to a visible edge at is
given by , where denotes the Euclidean
length. Thus, by (23), one can only reconstruct the visible edges
of in the aforementioned sense. With the choice of the filter
in (21), edges are also recovered at the right strength and order.

The part of the filter includes a number
of operations such as matched filtering, compensation of geo-
metrical spreading factors, etc.

Connections with the tomography literature can be seen
from closer examination of the Jacobian determinant ap-
pearing in (21). In particular, let and

. Then, by (13), (16), and (18), we
have

(24)

In the tomography literature [27], in (24) is referred to as
the Ram-Lak or the ramp filter. Its linear growth corresponds
to a derivative; without it, the edges appear smoothed. We see
that, in general, is a combination of the matched filter and
ramp filter together with an additional weighting factor due to
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geometric spreading and a local scaling factor .
In most radar systems, however, issues associated with the ab-
solute value do not arise, because the received signal is de-
modulated in such a way that for the “analytic signal” can be
assumed to be positive.

C. Example: Isotropic Antenna and Flat Topography

Let , which corresponds to an isotropic transmit
antenna radiating a delta-like impulse, an isotropic receive an-
tenna and compensation of geometric spreading factors in the
data. Then, using the definition of Dirac delta function and its
homogeneity property, we have

(25)

The expression inside the Dirac delta defines an ellipsoid. Thus,
(25) gives us the integral of along the curves obtained by the
intersection of and the ellipsoid

.
Let the topography be flat, i.e., . Then the equation

of the ellipse formed by the intersection of the plane and
the ellipsoid is

(26)

where and are defined in the first equation shown
at the bottom of the page. For notational brevity, we will omit the

dependence. Let denote the center
and denote the major and minor axis,
respectively, and denote the angle of rotation of the
ellipse. Then and are given by the second equation
shown at the bottom of the page. Let

(27)

(28)

Thus, in polar coordinates, (25) becomes

(29)

providing an efficient way to implement (25).
Under the flat topography assumption, by (21), the backpro-

jection filter is given by

(30)
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where the data collection manifold is

(31)

with

(32)

Here

and

(33)

1) Monostatic SAR: In monostatic SAR, and

(34)

Thus, reduces to the filter of the monostatic SAR [15]

(35)

Here, by (13) and (22), the data collection manifold is given
by , where

.
2) Static Transmitter: Let the transmitter be static,

. This is the case for a passive surveillance scenario,
when there is a remote high-powered transmitter on the ground
or space, or a radio or television station and the receiver is

Fig. 5. Acquisition geometry for static transmitter.

mounted on an airborne platform flying over an area of interest,
(see Fig. 5). Then

(36)

and, hence

(37)

where . The data collection man-
ifold is given by , where

.
By reciprocity, (37) can be modified to obtain the filter for

static receiver and mobile transmitter by interchanging and
.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

AND NUMERICAL SIMULATIONS

In this section, we will first present our numerical implemen-
tation of the FBP method, analyze its computational complexity
and next present numerical simulations.

A. Reconstruction Algorithm and Computational Complexity

Substituting (30) into (3), we write the corresponding recon-
struction formula for (25) as

(38)

where

(39)

is the Fourier transform of with respect to the fast-time.
We implemented the reconstruction formula (38) in four

steps. Assuming there are samples in both the fast-time
and slow-time variables and the image is of size ,
the steps of the reconstruction and their corresponding compu-
tational complexity are as follows.

1) Computing the Fourier Transform in Fast Time: For each
, (39) can be computed using the fast Fourier transform



90 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 1, JANUARY 2008

Fig. 6. (Left) 3-D and (right) 2-D views of (dashed line) circular and (solid line) distorted circular flight trajectories. The axes labels are in kms.

(FFT) in computations. Thus, for all , the
computation complexity of this step is .

2) Ramp Filtering: Let

(40)

For each , (40) can be computed in number of com-
putations. Thus, for all , the computation complexity of
this step is .

3) Backprojection Operation: Let

(41)

For each , (41) can be computed using FFT in
computations. Thus, for all , the com-

putational complexity of this step is . At this
stage, the edges are positioned correctly in the image. In
order to get the strengths correct, we need the following
step.

4) Image Formation: Finally, we form the image by

(42)

The computational complexity for this step is .

B. Numerical Results

We performed five numerical experiments: 1) monostatic
SAR with circular transmitter and receiver flight trajectories,
2) bistatic SAR with circular transmitter and receiver flight
trajectories, 3) bistatic SAR with a static transmitter and cir-
cular receiver flight trajectory, 4) bistatic SAR with a static
transmitter and linear receiver flight trajectory, and 5) bistatic
SAR with distorted circular transmitter and receiver flight
trajectories.

Continuing with the example of Section III-C, in our nu-
merical simulations, we considered a square target of size
5.5 km and a rectangular target of size 3.3 8.8 km located
in a scene of size km with their centers
located at (8.8,12) km and (15.4,10) km (see Fig. 6). We
discretize the scene with 128 128 pixels, where (0,0,0) km
and (22,22,0) km correspond to the pixels (1,1) and (128,128),
respectively (see Fig. 7). We used a discrete version of (29)
to generate our simulation data. The parameters we used
correspond roughly to a system bandwidth of .873 MHz. In

Fig. 7. Scene used in numerical simulations. The axes are labeled according to
pixel number; this convention is also used for all the reconstructions below.

these experiments, we considered a circular flight trajectory
km, and a linear flight

trajectory km, uniformly sampled for
at 512 points.

For comparison purposes, we also reconstructed images using
backprojection (BP) [18], [21] only, where we set .

For monostatic SAR (experiment 1), we set
. The projection data and reconstructed images

using BP and FBP are presented in Fig. 8.
For experiment 2 (BISAR with moving transmitter and re-

ceiver), both the transmitter and receiver move along the same
path: we set the transmitter trajectory to and the
receiver trajectory to be . The projection
data and reconstructed images are presented in Fig. 9. For ex-
periment 3 (BISAR with static transmitter), we fix the trans-
mitter at the location km and choose the re-
ceiver trajectory to be . The projection data and
reconstructed images are presented in Fig. 10. For experiment
4 (BISAR with static transmitter and linear receiver trajectory),
we put the transmitter at km and took the linear
receiver trajectory to be . The flight
path and reconstruction are shown in Fig. 11. Finally, for exper-
iment 5 (BISAR with perturbed circular trajectories), we used
the trajectory

km and took the transmitter
and receiver flight trajectories to be

(see Fig. 6). Again, we took 512 points, uniformly sam-
pled in . The reconstructed images are presented in
Fig. 12. All reconstructions are done with parameters that cor-
respond roughly to a system bandwidth of .873 MHz.
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Fig. 8. (Left) Projection data for monostatic SAR with circular flight trajectory and reconstructed images obtained by (middle) backprojection and (right) FBP.
Both methods reconstruct the visible edges of the scene at the correct location and orientation. However, the edges in the backprojected image are smoothed; this
is corrected in the FBP image, as predicted by the theory.

Fig. 9. (Left) Projection data for BISAR with circular transmitter and receiver trajectories, with reconstructed images obtained by (middle) backprojection and
(right) FBP. Both methods reconstruct the visible edges of the scene at the correct location and orientation. However, the edges in the backprojected image are
smoothed; this is corrected in the FBP image, as predicted by the theory.

Fig. 10. (Left) Projection data for BISAR with a static transmitter and circular receiver trajectory, and reconstructed images obtained by (middle) backprojection
and (right) FBP. Both methods reconstruct the visible edges of the scene at the correct location and orientation, but FBP provides sharper edges than BP method.
These images are of lower quality than those of Fig. 9 because 
 is smaller.

Figs. 11 and 13 contain diagrams that show how the set (22)
predicts what appears in the image. In particular, which edges
are visible is determined by (22) and (13). For flat topography
and a circular trajectory, both in monostatic SAR and in BISAR
with a mobile transmitter, for each contains all directions
in . Since we are able to reconstruct edges that are perpendic-
ular to the directions in , all the edges of the scene are visible.
Fig. 13(a) and (b) shows (a sampling of) the directions in for
monostatic SAR and BISAR with a mobile transmitter, respec-
tively.

Fig. 13(c) shows the a diagram of for the case of
BISAR with a static transmitter and circular receiver tra-
jectory. To understand this diagram, we note that for
a given point ranges over all directions
as the receiver traverses its trajectory. Thus, from (13),

vanishes along
certain directions. Thus, for BISAR experiment 3 is smaller

than that for BISAR experiment 2, and the reconstructed edges
are degraded.

Fig. 11 shows the corresponding plot for BISAR with a static
transmitter ( km) and linear receiver trajectory

. In this case, only a small subset of
the possible directions in are contained , and consequently
we reconstruct only a small subset of the edges.

Even more information can be obtained from the set as
follows. From (13), we see that

(43)

Thus, for flat topography, obtains its maximum
when and are in the same direction,
i.e., when we consider a monostatic SAR system. Thus, we will
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Fig. 11. (Left) 3-D view of (dashed line) linear receiver flight trajectory (axes labels are in km s) and (right) the vectors from 
 with fixed frequency ! = :1,
for some zzz on the edges, overlaid on the FBP reconstructed image (axes labels are in pixel number). The data collection manifold includes fewer directions than
for the geometry of Fig. 13. Thus, fewer edges are visible, and the frequency content of the reconstructed edges is significantly less than for BISAR with static
transmitter and circular receiver flight trajectory.

Fig. 12. (Left) Projection data for BISAR for distorted circular transmitter and receiver trajectories, and reconstructed images obtained by (middle) the back-
projection and (right) the FBP methods. While the edges are of the right strength and order, as in the circular BISAR case shown in Fig. 9, the distorted circular
trajectory leads to more artifacts [which arise from (7) and (8) but are not analyzed in this paper].

Fig. 13. Vectors in 
 at fixed frequency ! = :1, for some zzz on the edges, overlaid on the reconstructed images for (left) monostatic SAR, (center) BISAR with
mobile transmitter, and (right) BISAR with static transmitter. For (left) monostatic SAR and (middle) BISAR with a mobile transmitter, 
 includes all directions
from 360 ; thus, all the edges are visible. For (right) BISAR with static transmitter and circular receiver trajectory, only the directions from a little more than 180
are included in 
 . Thus, although all the edges are visible, the frequency content of the reconstructed edges is significantly less than that of the monostatic SAR
and BISAR with mobile transmitter.

expect to see sharper edges in the monostatic SAR images than
in BISAR images for the same bandwidth. Also, for a point
near the center of the scene is larger than that for a point near
the trajectory, which implies that edges in the center of the scene
are sharper than those near the flight path.

V. CONCLUSION

In this paper, we developed a new explicit filtered-back-
projection-type bistatic synthetic-aperture radar inversion
method for arbitrary flight trajectories. The method is based

on microlocal analysis and preserves the location, orientation,
strength, and order of the visible edges. The method can be
extended to multiple bistatic SARs, assuming the receiver can
determine which transmitter emitted the waves, in a straight-
forward manner.

We demonstrated the performance of the inversion method
in numerical simulations, which is in correspondence with the
theoretical expectations.

We leave for the future the task of applying the techniques of
[28] to BISAR.
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APPENDIX

STATIONARY PHASE THEOREM

The stationary phase theorem states [25], [29], [30] that if
is a (possibly complex-valued) smooth function of compact

support on , and is a real-valued function with only nonde-
generate critical points, then as

(44)

Here, denotes the gradient of denotes the Hessian,
and sgn denotes the signature of a matrix, i.e., the number of
positive eigenvalues minus the number of negative ones.
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