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Unsupervised bayesian convex deconvolution
based on a field with an explicit partition

function

J.-F. Giovannelli

Abstract

This paper proposes a non-Gaussian Markov field with a Sfeaiure: arexplicit partition function.
To the best of our knowledge, this is an original contribatiMoreover, the explicit expression of the
partition function enables the development of @msupervisededge-preserving convex deconvolution
method. The method is fully Bayesian, and produces an esiinathe sense of the posterior mean,

numerically calculated by means of a Monte-Carlo Markovi@h@chnique. The approach is particularly

effective and the computational practicability of the nueths shown on a simple simulated example.

Index Terms

Deconvolution, Bayesian statistics, regularization,vesnpotentials, partition function, hyperparam-

eters estimation, unsupervised estimation, Monte-Carokigv Chain.

. INTRODUCTION
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The research concerning regularization for ill-posed risggroblems was first carried out by Phillips,
Twomey and Tikhonov in the sixties and are compiled in [1]t ffr@ specific problem of deconvolution
they lead to the contributions of Hunt [2] based on toroidaldels and fast implementation .
These methods rely on quadratic penalizatien Gaussian laws in a Bayesian framework. The solutions
thus formulated are linear w.r.t. the data and numericdfigient. However, their resolution is limited:

the capability to properly restore sharp edges is limited.
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At the beginning of the eighties, in order to overcome thésétdtions, Geman & Geman [3] (see
also [4]) introduced a much superior Markovian field inchglhidden variables [5]. The hidden variables
(also referred to as dual or auxiliary variable) are binamg ateractive variables modeling sharp edges
and closed contours. The data processing then relies oneatidetestimation strategy and allows the
recovery of distinct zones with abrupt changes. The calicuiaof the solution in the sense of the
maximuma posterioriis based on a simulated annealing algorithm which requiresnsive numerical
computations. For the sake of computational efficiency ims@ases, Geman & Reynolds [6] and then
Geman & Yang [7] introduced auxiliary (also referred to aalfiwariables: the sampling of a correlated
non-Gaussian field reduces to the sampling of a correlated<tan field for one part and to the sampling
of a separable field for the other. Furthermore, the constmu@roposed by [7] is founded on the work
of Hunt and the toroidal models: the sampling of the coreglaBaussian field reduces to the sampling
of an inhomogeneous white Gaussian field followed byran The proposal below takes advantage of
this construction.

The case of fields with convex potential [8—13] (see also IB4), was laid down in the nineties as
fulfilling a compromise between the quality of the reconstied images and the computational burden. In
this framework, a particular attention has been paid to #se ®f I, — L, potentials [9—-13]: a quadratic
behavior around the origin and a linear behavior at largaeshbllow edge preservation. In this context,
the constructions of [6] and [7] respectively led to two alons: ARTHUR and LEGEND [16] (see
also [17]). The work presented here concerns this type adryiat.

With such potentials, the regularized solutions usuallyessitate the adjustment of three hyperparam-
eters: two parameters to control the law for the image andpanameter to control the law for the noise.
Several attempts are dedicated to the question of hypenedea estimation and the investigated solutions
are frequently based on statistical approaches: (appeiginor pseudo) likelihood, Bayesian strategies,
EM and SEM algorithms. .. The reader may consult papers sadi&-24] and reference books such
as [25, Part.VI], [26, Ch.7] or [27, Ch.8]. These approadespotentially very powerful but they come
up against a major difficulty: the partition function of eig a priori fields depends on hyperparameters
and is not explicitly given.

The first novelty of the paper lies in the fact that it propas@sw random field with an explicit partition
function. To this end, the paper build an original type of pownd (toroidal) field with L — L, potential.
The work is largely inspired by the Bayesian interpretatddual variables in terms of Location Mixture
of Gaussian proposed by [28]. Moreover, it is also inspirgd29] (itself based on the contributions

of Hunt [2] and Geman & Yang [7]). However, none of these dbntions put forward the idea of a
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field with an explicit partition function. Afterwards, theper proposes a second novelty: a full Bayesian
unsupervisedi., including hyperparameter estimation) edge-preservimy&o deconvolution method,
thanks to the knowledge of the partition function. It is lhes aposterior law for the whole set of
unknown parameters (including hyperparameters) and anMlimi Mean Square Error strategy.

The paper is presented in the following manner. Sediibn thoduces the notations and states the
problem. Sectiof 1]l is devoted to the construction of thepmsed field, Section IV proposes its use
for image deconvolution and demonstrates the numericakipedility. Conclusions and perspectives are

delivered in Sectiof V. Most of the calculations are exgdiin Appendicefl | tg VI

[I. NOTATION AND PROBLEM STATEMENT

Work is carried out onP x P real images, withV = P? pixels, represented in a matrix form,,
denotes the generic element of the matix No(A) = > | ay,, |2 its squared norm andl its FFT-2D.
The transformation is normalized: the Parseval relatignghwritten asNo(A) = Ng(;l) and the sum
of the pixels is)_ a,, = Pa,. The symbolsx and ® respectively represent the circular convolution
and the Schur product (termwise) of matricesFlfrepresents a circular filter anflan input object, the
output is writtenO = F x I in the spatial domain resulting i® = F ® I in the Fourier domain. If
}’pq £ 0 for all p, ¢, the associated filter is invertible.

In the subsequent developments about deconvoluion, X, H, and N respectively denote the
observed data, the unknown object, the convolution matrikthe observation noise. With these notations,
the observation equation is written:

Y=H~X+N. (1)

The deconvolution problem consists in recovering the umknobjectX given the observed dat and
given the observation moddll. The ill-posedness of the problem has been well identifieds&veral
decades and the problem is nowadays often tackled in a Bayé&simework using Markov priors. In a

Gibbs form, the prior law writes:
fx[X] = Ky' exp[-®g (X)),

where Ky is the partition function (normalizing constant) adg is the Gibbs energy controlled by
a set of parameters (such as variance, threshold, scalelatmn length...) collected in a vectér.
The general methodology is well-known: the solution is dateed from thea posteriorilaw and a
point estimate can be chosen as the mean or the maximizeindtamce. Anyway, the posterior law

(and the point estimates) depends upon hyperparametably@n the parameters of the priér The
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inference about these parameters can be attempted in stisthtiramework whose keystone is an exact
and explicit likelihood function (in an usual sense or in @&tgoior sense). This function is itself founded
on a complete expression for the prior law including theipant function as it depends o#. It is given

as a large dimension integral:

K= Kn(0) = [ exp[ =29 (X)] X )

It is a commonplace to say thdty(6) can be explicitly given for two well-known classes of
(continuous state) field:
(?) ® is quadratic,.e., the field is Gaussian
(i7) ® is separablei.e., the field is white.
In other cases and especially for non-separable and nossiafields, the theoretical calculation and
the numerical computation ofl(2) are desperate tasks [ZB1p.and they have never been achiQ/ed
However, its achievement is made possible and simple in &x¢ Section, for a special non-separable

and non-Gaussian field.

[1l. PRIOR FIELD WITH PARTITION FUNCTION

Taking advantage ofi and (i) above, the proposed random field is a compound field invglvo
variables: a pixel variable noted & and an auxiliary (or dual or hidden) variable noted &sThe
joint law for (X, B) is defined by the law oft'|B for one part and by the law df for the other part.
The former is a Gaussian component (cadeabove) and the latter is a separable component (aase (

above).

A. Toroidal Gaussian Field foft|B
Let us consider two matriceB and F' with }’pq # 0 for all p, ¢ and the toroidal (circular shift invariant)

Gaussian field with a density parametrized in the form:

fxiis | X|B] = K gy exp|—va No(F x X — B) /2] . 3)

wherevq > 0 is an inverse variance. The matrik designs the field structure and especially the

neighborhood system and the form of the cliques. In the Eoutomain, the potential is separable

1The partition function is however known for the Ising field[3It is a binary field out of the scope of the developed work.
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and naturally develops in two forms:
No(F«X —B) = Ny (ﬁ@i{ —1°3>
= Z’qu%pq - bpq‘2
pq
= > 1 fnl’
pq

which has three essential consequences for the followingldements.

° [e] o 2
Tpg — bpq/qu |

1) The law for X’ is separable and eacf(ipq is Gaussian with meaapq/}pq and inverse variance
7d|}pq|2. As a result, the sampling ot reduces to the sampling of an inhomogeneous white
Gaussian noise followed by aFT-2D.

2) The change of variabl& = F x X is invertible, X is white and eachX,, is Gaussian with mean
b, and common inverse varianeg.

3) The partition functionk vz is easily tractable in the Fourier domain thanks to a charfigareable
Kyp = / exp [—va No(Fx X — B)/2] dX
RN

= [ em 2 Tl

and does not depend da.

In relation to existing works such as [7, 16,27-29], the mdea here is simply to focus on the case
where the change of variablé = F « X is invertible (point 2 above) that is to say the number of udis|

and the number of pixels are equal.

Remark 1 — The partition functionk'y 3 does not depend oB as a counterpart of a limitation: the
number of cliques and the number of pixels are equal. As astitition of the limitation, let us point
out that K |3 depends orB for a field based on horizontal cliques plus vertical cliqgee number of

cliqgues is greater than the number of pixels).

B. Compound Field

A separable and homogeneous field is then introduced for tixdisay variable B with a density
fs[B], product of thefs [b,,]. The joint density is written agx 5 [X, B] = fx5[X|B] fs[B] and

the marginal law is obtained by integrating the auxiliaryiables:

folXI= [ fuslXIB) fslB) aB.
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Fig. 1. A sample of the field, withy = 1, = 1 (¢ is also set to 1).
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Fig. 2. Histograms (image at Figl 1). From top to bottom:dusam of image pixelsX, histogram of auxiliary variable®

and histogram of differenceX.

Since the partition functior vz does not depend oB, the calculations can be achieved
fa [X]
= Ky /]RN f5B] exp[~~a No(F X — B) /2] dB

= KQ_(IIB H/]RfB [bpq ] exp | —7a (Tpg — bpg)? /2| dbpg
P
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which involves a separable convolution product.

Remark 2 — The proposed construction is possible for any probabdignsity functionfg. In this

sense, it is possible to design a large class of potentiattfans.

Thus, a wide range of law is available, but the convex patmtse is the one of interest here, as

mentioned in the introduction. So, the following propemgyoff importance.

Property 1 — For any log-concave probability density functigp, the probability density functiorfy
is log-concave [31, Theo. 7], [32].

7,
N -
3l N 5 il
N -
N >
2F N 93 8
N ~
A P
L 7 il
1 N //
ok il
L L L L L L L L L
-5 -4 -3 -2 -1 0 1 2 3 4 5

Fig. 3. From top to bottom: potential function, first and setalerivative. Solid line: Log-Erf potentigh(z) of Eq. (@) and
dotted line: corresponding Huber potential of Ed. (7). Theeptial parameters arg, = v, = 1 and hence the equivalent Huber

parameters arg ~ 0.32 and s ~ 1.56, according to Eq.[{8).

C. Laplace Law for Auxiliary Variables

The following developments are dedicated to the case ofliagkivariables under a Laplace law

suggested by [28].
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Fig. 4. X ands as a function ofy,, for a fixedvq (74 = 1) on a log-log scale. As expected, the plot essentially showes

linear behaviors and a critical case fay = v2r (log,, V27 ~ 0.4).

As mentioned by [28] itself, among the Huber-like distribus, such a Laplace-convolved-Gauss prob-
ability will have two main advantages){he convolution involved in the marginal lafit (SectiorfIII-B)
will be made explicit andif) the sampling of auxiliary variables (Section IV-C) will lokrectly feasible
thanks to the inversion of the cumulative density functigg .

The Laplace law is written in the form:

f5B)=Kg' exp[-mw Ni(B) /2] , @)
where~, > 0 is a scale parameter, ant (B) = > |b,,| is the i norm. The partition function is
simply calculated thanks to separability
Ko= [ expl-9Ni(B) /2 4B = (/1
RN

According to [(8) and[(4) the joint density ¢/, B) takes the form:

fxp[X,B] =
5)
Kylgexp[—7a No(F « X — B) + v, N1(B) /2]

and the partition function is explicit x s = Kx 5 Kp-

The marginal law forY involves the one-dimensional convolution of a Gaussiarsiyeand a Laplacian
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density.

fx [X]

= P_K,IBH/]RGXP [_ Ya (Tpg — bpq)2 + b |bpg| /2| dbyg
pq

= )_(}BHI(_‘_OO?qu?/ydv’yb)
rq

where[ is defined in Appendik]l. Thus, the potential functignappears:

fx[X] = B exp[ Zcp (Tpq /2] ,
with:
p(x) = —2log I(+00, 2, Ya, 1) - (6)

It is named the Log-Erf potential and it is shown in Hig. 3. Tdetails of the calculations concerning

this potential are given in Appendix]Il. Concerning the tfiderivative, one has:
d0)=0 and ¢ (+0) =",
and concerning the second derivative at origin, one has:

2
Z'0) = 2 (v erfexfn) ' 1]

with n = v,/v/87q (erfex [] is given in AppendiX]l). As expected (see Propdrny 1), this isonvex
potential. It is a ks — L, potential which can be reconciled with other more commen-LL; potentials

(Huber, log-cosh, hyperbolic, fair function). In the cadete Huber potential:

z? if|z]<s
T A (7)

25|z | —s? if|z|>s
by identifying the second derivatives at zero and the sl@esfinity, one has:

_ ¢'(+00)
¥"(0)

Compared Log-Erf and Huber potentials and their derivatimes shown in Fig]3. Using the expan-

A= % ¢"(0) and

(8)

sions [14) and[(13) of AppendiX I, two limit cases can be idient, according to the value of the ratio
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b
2794

f0|'77<<11/\2’}/bﬁ;82 T
2 2’yd

In the two limit cases, on a log-log scale, there is linearavar of A and s as a function ofy,, for a

forp>1: A =~ ;s o~

fixed v4 (see Fig[¥). The intersection of the two linear behaviors loa identified as a critical behavior
for v, = +/2m4. The critical value will be used for the initialization ofnsillations of Sectiof IV-D (see
also AppendixX_ V).

D. Practical Case

In practice, the field is based on3ax 3 Laplacian filter, defined by0o,1,0; 1,—4,1;0,1,0] and
represented by the matri&. At null frequency one haéo0 = 0 and as a consequence the mean level of
the image is not managed. So, an extra parameter is intrddocdrive the mean level: it is denoted by

¢ (e > 0) and the characteristic matrik' is set toF. = D + ¢.

Remark 3 — If ¢ = 0 the field cannot be normalized and each clique is formed floenfour nearest
neighbors (cross-like clique). ¥ # 0, the field can be normalized and each clique is spread out over

the entire image.
The following developments take> 0 and the partition function of the joint field writes:

Kyls=8er,"" %, with 6= 32m)"2 ] Idpl-
B
Fig.[1 gives a sample of the field withy = 7, = 1 and Fig.[2 gives histograms of the image pixels,

the auxiliary variables3 (a Laplace histogram) and the differencEs(an over-Gaussian histogram).

Remark 4 — It is noteworthy that the marginal mod& is homogeneous, but the conditional model

X|B is non-homogeneous (except if all thg are equal).

IV. DECONVOLUTION

As a result of the previous Section, a new random field is noailave with a special feature: an
explicit (and simple) partition function. In the presentsen, the field serves as a prior in a deconvolution
method whose specificity is to be unsupervides (ncluding hyperparameter estimation). More precisely,
the method relies on a full Bayesian framework and the smius determined from aa posteriorilaw

based on am priori law (given below) for the object, the noise and the hypenpatars.
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A. Prior choices

1) Object law: The a priori field is defined in the previous section. The joint density (faf, B) is
given by [5) and it is driven by three parameteys; v, ande.
2) Noise law: The present work is founded on the usual case of zero-mear @hiussian noise with

inverse variance denoteg,. The density is written:
() = (2m) 72 V2 exp = Na(N)/2] -

3) Hyperparameter law:Four parameters are to be managed:vq4, 1, ande. The three parameters
of major importance arg = [y,, 74, 7); the fourth parameter drives the prior mean level of the image
and it is considered as a nuisance parameter. Anyway, verysfa priori known about these parameters
and the idea is to use non-informative or diffuse and sepaumioors.

« The proposed prior law for the three parametgrsyq and~, is a conjugate law. It is a gamma law

(see Eq.[(Ib), Appendix1V) with parameters respectivelgaded («y,, 5y ), (g, Sq) and (aw, Bp).

It allows for easy computations with the posterior law. Mawer, it includes diffuse and non-
informative prior: the uniform prior and the Jeffrey’s priare obtained as limit cases fot, 3) =
(1,00) and for(«, 8) = (0, 00) respectively.

« The last parameter is considered as a nuisance parameter and the proposespgtrasorts to
integration out. The desired prior law is a Dirac law, so thatinformation is accounted for about
the mean level of the image (it is set on the basis of obseratal ahly). Formally, in a first step
a uniform density ovef0, M. ] is introduced and in a second step the limit law fat — 0 is

considered.

B. Joint Law

Thus, the joint law is established foy, X, B,C, £):

fy7X,B7C,€(Y7 X7 B7’77 E) =

n_l N2 —1 N2 — _
o' ’Yna +N/ ’Ydad N/ ’Ybab N ¢ M; 11[0,ME}(5)

exp— {Q:/2 + W/Bn + Va/Ba + Ww/Bv}
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whered’ = (2r) V2 5/8% I[ay] By* Tlaw] B3 I'[ag] is @ normalization constant ardgl. is part of the

Co-logarithm of the density involvind.:
Q: =M N2o(Y —H xX)+v9No(F.x X — B) +~, Ni(B).
The a posterioridensity is formed forY', B, C and&, given) thanks to the Bayes rule:

fxpeey(X,B,v,elY) =

frBcey(X,B,v,e,Y)
/ fxBeey(X,B,v,e,Y)dX dBdvyde
X,B,vy,e

)

and it is parametrized by thev, ) and M.. Then,¢ is integrated out and the law foY, 5, C given)

writes
fX,B,C\y(XvB>7|Y) :/fX,B,C,5|y(X7B>77€|Y)d€‘
€

It is also parametrized by they, 5) and M., so, the limit is set wher/. tends to 0. The detail of the
calculations is given in Appendix]V and it is shown that a faitity density function is obtained if the

mean level of the object is observead., ;LOO # 0.

C. Posterior Law and Posterior Mean

Thus, the Total Posterior Law can be deduced for all the uwknparameterg X', 3,C) given the

observed datd’:
frpepy(X,B,7|Y) o

n—14+N/2 —1+N/2 _
’Yna / ’Ydad / ,_Ybozb 1+N (9)

exp— {Qo/2 + Yu/Bu + va/Ba + Ww/Bv}

where )y involves Fy = D:
Q() :’YHNQ(Y—H*X)—l—’YdNQ(D*X—B)-I-’Yle(B).

In practice, the chosen point estimate is the posterior nfeanthe Minimum Mean Square Error).
Its calculation is performed by means of Monte-Carlo Markihain stochastic sampling algorithm [25,
33]: auxiliary variables, object and hyperparameters apeassively sampled given the other in a Gibbs

strategy.

October 28, 2018 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 13

Data PM CPM CPM CPM CPM MAP-LogErf  MAP-Huber
(besty,) (bestys)  (bestyn)
Dist. L2 11.62% 3.93%  3.94% 3.87% 3.85% 3.81% 5.56% 5.63%

Dist. L1 35.47% 19.47% 19.50%  18.92% 19.40% 19.18% 20.68% .8420

TABLE |
QUANTITATIVE COMPARISON BY MEANS OF L2 AND L1 DISTANCES BETWEEN TRUE IMAGE AND DATA(COLUMN 1), TRUE

IMAGE AND ESTIMATED IMAGES (COLUMN 2 TO 8).

1) Sampling auxiliary variablesThe sampling of auxiliary variables is delicate but can bedatly
done. Itis based on the inversion of the cumulative densitgtion (cdf)Fy, x. It is sufficient to uniformly
sampleu in [0, 1] and to computé = Fl;‘;((u). The calculations can be found in Appen{ix VI.

2) Sampling object:The object is a toroidal Gaussian field and tKg, are independent with mean

f1,, @nd inverse variance,, (see calculations in Appendix_V1I)

Upg = 7n|hpq|2+7d|dpq|2 (10)

fipg = | }Ol;q Upq +7a :i;q E)’:vq / Vpq (11)
where superscript stands for the complex conjugate. Thus, the sampling iscextito the sampling of
an inhomogeneous white Gaussian noise followed byrmn2D.

3) Sampling hyperparameter&ach parametey,, v4 and~, follows a gamn‘BIaw derived form[()
(see Appendix1YV) with respective parametersand 3
a=a,+N/2 and Bl1=31+No(Y - HxX)/2
a=aq+N/2 and B~'=p7"+No(Dx X — B)/2
a=a,+N and B l=p51+Ni(B)/2.
The description of the method and the algorithm are now cetapind synthesized in Taljle Il. The

remainder of this Section illustrates the implementaticecpcability.

2The sampling of the Gamma variables is achieved using théaM#tnctiongamrnd.
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Fig. 5. From left to right : original imageX*, observed dat&”, deconvolved image?\pM and deconvolved imagé/(\MAp.
At the top: gray level images and at the bottom: profile of tB@-th row (which encroaches on both the rectangle and the
rhombus). In order to evaluate the relative dynamics in eade, all the images are shown in the same gray-scale bet@&en

and 2. The four shown profiles are also presented betweerar@l 2.

D. Computation feasibility

This part illustrates the previous developments and it aailps at demonstrating the numerical
practicability of the method. It is built on a deliberatelynple imageX™* appropriate in order to evaluate
the capabilities and the limitations of the proposed apgroshe image is set up from homogeneous
zones separated by sharp edges (seelFFig. 5, on the left)altd8 x 128 image composed of a black
background and three objects with gray levels graduallyhgimy between 0.7 and 2.1. The difference
between neighboring pixels varies between 0 and 2.1 in atesehlue. Regarding the Laplacian of the
image, X = F x X, the set ofX;, can be split in two sets: 94 % of th€,, are less thar.10~* (inside
homogeneous zones) and 6% of tRKe are greater thas.10~2 (located around edges). No value is
between2.10~* and3.1072.

The impulse response of the system is Gaussian shaped witkels vidth at half-maximum, the
noise variance i2.10~2 and the resulting observed imadeis shown in Fig[b (in the second column).
The resolution is clearly degraded and details of the edgesa longer visible (neither on the gray
level image nor on the shown profile). The dynamic is alsongfiy affected, notably at about the 64-th
sample of the shown profile.

The procedure is initialized by the empirical least-sqadrgperparameters given in Appendix VIII.

The objectX is initialized by the observed data (and there is no needitialine the auxiliary variables).
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Initialize
e N =1, Delta = inf
¢ HatX = Data
e GamN, GamD, GamB (Annex[VI)

Repeat
e Sample step
— Auxiliary variables B (Sect[IV-C.1)

— Object X (Sect[TV-C2)
— Hyperparameter GamN,GamD,GamB (Sect[IV-C.3)

e Update
- N = N+1
— Delta = ( HatX - X ) / N
— HatX = ( (N-1)*HatX + 1*X ) / N

Until Delta<eps

TABLE I

DETAILED ALGORITHM (PSEUDOG-CODE).

Moreover, practically, théa.,, 8,) are set to(0, co) corresponding to the Jeffrey’s prior.

The proposed algorit}‘érgenerates samples of theposteriorilaw fx 5 cjy(X, B,v|Y'). Practically,
the algorithm behaves as expected: the stationary lawamatt after a burn-in time (about 200 iterations)
and remains in a steady behavior. The empirical mean of thergeed images is recursively computed
and the algorithm is stopped when its variation becomeslentabn a given valu&’ (in quadratic norm).

In the presented example = 5.10~%, the algorithm produced 953 iterations and computatiorm tinas
47 seconds.

The resulting generated hyperparametgysyq and~, are shown in Fig.l7. The left part of the figure
shows the 953 iterates of the three parameters: after abOuteZations the three parameters are stabilized
and seem to be under the stationary law of the chain. The &@lpimean value (approximating the
PosteriorMean) of the parameters respectively aje= 2.88 102, 73 = 5.9110* and+;, = 1.99103. The

iterates are also shown on the right hand side of [Rig. 7 asdreins: they are clearly very concentrated

3The proposed algorithm has been implemented with the campetivironment Matlab on a PC, with a 2 GHz AMD-Athlon
CPU, and 512 MB of RAM. Code is- 100 lines long.
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Fig. 6. Distances between the true ima§e and Conditional Posterior MeaK cpy as a function of the parametefs, va
and vy, around theposterior mean valuey. From left to right: error is shown as a function ¢f, v4 and~,. Top row gives

L2 distance and bottom row gives L1 distances. The black diots the minimum distances reported in Talle |.

around thePosterior Mean (with small variance)i.e., the marginal law for the hyperparameters are
quasi-Dirac distributions.

Considering the numerical value, in the sense of EQ. (8),etipgivalent regularization parameter is
X = 2.1710! and the equivalent threshold &= 6.671073. It is noticeable that the threshold value
correctly split theX, in two sets (less thad.10~* — greater thar3.10~2). The point is that the method
automatically adjusts hyperparameters to correctly sgpaheX . This is a first argument in favor of
the proposed strategy in order to tune the threshold of an L; Gibbs potential.

The resulting image is shown in Figl 5 (on the third columm)eeffect of deconvolution is notable
on the image in gray level as well as on the shown profile. Theetlobjects are correctly positioned,
the orders of magnitude are respected and the zero levetnsctly reconstructed: it can be seen on the
entire image and in particular on the shown profile. The dyinasnalso correctly restored: this aspect is
notable on the shown profile around the maximum (64-th samplee true dynamic occupies the range
0 — 1.9 whereas the dynamic of the observed data scarcelg@x@e— 1.4: the proposed method restores
the dynamic to 0 — 1.88 that is to say 99% of the original veorat

A global guantitative comparison has been achieved by atialy ¢) the distance between original
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Fig. 7. Monte-Carlo Markov Chain for the three hyperpararetgenerated by the proposed Gibbs sampler. From top to
bottom: v, va and~,. The left part of the figure shows the samples as a functiotesftion index and the right part of the

figure shows the samples as histograms.

image X* and observed dat¥ and (i) the distance between original imagé* and estimated image
X\pM. The considered distances are normalized L2 and L1 distaiib& main results are listed in Tabdle I,
first and second columns and show an improvement by a fac6r(21.62% to 3.93%) for L2 distance
and a factor 1.82 (35.47% to 19.47%) for L1 distance.

In order to deepen the numerical study, a second estimatbehﬁscomputedfcpM the Conditional
Posterior Mean (CPM),i.e., the mean of the conditiongdosteriorlaw fx gy (X, B|Y,7). )?CPM is
clearly a function of the hyperparameteysand a twofold evaluation is proposed.

« The first estimate is the one obtained with= 4. Practically, the marginal estimatf(\pM and

the conditional estimaté(\cpM(fy) are quasi-equal; this is due to the fact that the marginal law
for the hyperparameters are quasi-Dirac distributionsar@tatively, regarding L2 distances, the

PM produces 3.93% whereas the CPM produces 3.94%; regdrdimjstances, the PM produces
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19.47% whereas the CPM produces 19.50%. In both cases, ttlification is almost imperceptible.

« The measurement of errors has also been explored for the GRMumctiony,, v4 and~,, around
the posterior mean4. Results are given on Figl 6: in each case, smooth variatiatistances is
observed when varying parameters and an optimum is vidible.reported on Tablg | and shows
almost imperceptible modification: optimization of the byparameters (based on the true image
X*) allows negligible improvement (smaller than 0.1% for L2oerand smaller than 0.5% for
L1 error). So, the main conclusion is that, the unsupervigegosed approach is a relevant tool in
order to tune parameters: it works (without the knowledgtheftrue image) as well as an optimized

approach (based on the knowledge of the true image).

Finally, a third estimate has been computed: the Maxinfuposteriori(MAP). It has been computed
for the LogErf and the Huber potentials. Both of them havenbmmmputed with equivalent hyperparame-
ters (given above)yy, 74, 7n) for the LogErf potential anaﬁ,?) for the Huber potential. The two MAP
solutions (LogErf and Huber) are visually indiscernibleistis expected from so similar potential. The
results are presented in Fg. 5, right column: the estimatag suffers from cross-like artifact, due to
the cross-like structure of the neighborhood system. Quadinely speaking, the measurements of errors
are given on Tablg I: LogErf and Huber produce almost singlaors. Moreover, the errors are greater
than the one produced by the PM and the CPM.

The restoration is nevertheless imperfect and of limitesblegion: the sharp edges remain slightly
smoothed and limited in amplitude. The ringing effect alffeas the quality of the deconvolved image.
This diagnostic is long awaited in the framework of convezateolution. Anyway, the important point is
not so much the property of the deconvolved image itselfifigic of any convex deconvolution) but the
(new) practical capability to automatically tune the hyggameters. Moreover, the potential improvement
is certainly wide considering more heavy-tailed law for thexiliary variables, as explained in the next

section.

V. CONCLUSION

This paper presents a twofold novelty in the field of statédtimage reconstruction and restoration.

1) The partition function is explicitly given for a specifiom-Gaussian Markov field, with aml= L4
Gibbs potential. It is built as a compound field involving:auxiliary variable following a separable
Laplace distribution and a pixel variable following a Gdaasdistribution given the auxiliary

variable.
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2) An unsupervised deconvolution method is deduced, baseleoexact likelihood taking advantage
of the knowledge of the partition function. The method idyfuBayesian, and the point estimate

is the posterior mean computed thanks to a Monte-Carlo Ma@dwain technique.

The paper focuses on the deconvolution problem, but it B pdssible to deal with simpler questions
than deconvolution: parameter estimation from direct okm®n of the field, edge enhancement or
denaising.

Moreover, the paper relies on Gaussian noise, but the casersfzaussian noise is also envisaged,
in particular the use of robust norms to reject abnormal @asidliers). To this end, a separable version
of the L, — L, proposed field could be suitable as a law for noise measutemen

The proposed method can be directly applied in the case @ lsmpport operatoe.g.,reconstruction
problems such as Fourier synthesis [34]. The proposed melihgy also remains valid for other linear
model and the required modification concerns the samplinth@fobject. It remains Gaussian but its
sampling is no longer possible in a single step for the erititage byFFT-2D. The Gibbs sampling
technigues constitute an adapted tool but the calculatine would be (maybe dramatically) extended.
For non-linear problems, the law for the object is no longaugsian and a case by case study is required.

Concerning thea priori field, other laws for auxiliary variables are certainly dable. The possible
improvements are numerous considering more heavy-tailedr order to overcome the limitation of the
convex deconvolution. The methodology still remains valid the difficulty then concerns the sampling
of the auxiliary variables. The direct sampling by inversiof the cumulative density function may not
be possible, however, the rejection or the Hastings-Melislgorithms could be used to overcome this
difficulty.

In the case of myopic deconvolution, it is also conceivabledtimate (part of) the parameters of the
observation system. Here again, a case by case study issaegdat the delicate question of the system

parameter sampling can probably be tackled by means oftimjeor Hastings-Metropolis algorithms.

APPENDIX |

ERF, ERFC, ERFCX

The erf function is defined forr € R by:

erf [z] = % /r exp [—t?] dt, (12)
T Jo
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andierf denotes the reciprocal function. Elsewheide [z] = 1—erf [] anderfex [z] = exp [2?] erfe [z].

Concerning the latter, there are the following expansions:
erfex [7] s [1—27%] ) (zv7) (13)
erfex [z] ¥ 1—2z/7. (14)

and the derivativerfcx [z] = 2z erfex [z] — 2/4/7.

APPENDIX Il

GAUSS AND LAPLACE CONVOLUTION

Considering the calculations, a large part of the proposaaldpments is based on the convolution

of a Gaussian function and a Laplacian function.

A. Preliminary Calculi
For zo > 0 andz € R, write:
Teo,db) = [ e [ {dy - + by} /2] dy.
0

simply written asJ(xq,x) when there is no ambiguity. On rewriting the argument of tkpoaential,
we have:
d(y —x)* +by = d [(y — 7)* + (a? — 7)?]

with # = = — b/2d. The change of variable= (y — %) 1/d/2, yields:
J(xo,x) = +/m/2d exp [b*/8d] exp[—bx/2]
{erf [m d/2} p: [(g:« ~ ) d/2}} ,
where the functiorerf is defined by[(IR). In particular, one has(0,z) = 0 and

J(+o00,x) = +/m/2d exp [b*/8d]
exp [—bz/2] erfc [—i d/Z} .
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B. Convolution

For zg,x € R, write:

Zo

I(mo,x,d,b):/ exp [~ {dy —x)? +blyl} /2] dy,

written simply asI(zq,x) when there is no ambiguity. By the change of variahjes= —y, v/ = by,

andy’ = y/d, it is shown that:
I(+00,2,d,b) = I(+o00,—x,d,b)
I(zg,x,d,b) = I(bxg,bx,d/b* 1) /b
I(zo,2,d,b) = I(zoVd,aVd,1,b/Vd)/Vd
It can thus be deduced that:
I(zg,z,d,b) = J(+o0,—x,d,b) — J(—x¢,—2,d,b)
I(xg,z,d,b) = J(400,—x,d,b) + J(xo,,d,b)

respectively forrg < 0 andxg > 0. These relationships are useful for the study of the paikhinction

(next Appendix) and for the inversion of the cdf BfX (Appendix[Vl).

APPENDIXIII

LOG-ERF POTENTIAL FUNCTION
According to the results of the previous Appendix the paédrfunction of the marginal fieldY,
Eq. (8), Section II-C is written:
(70(3:) = _210g I(_‘_OO?Q:)/Vdv’Vb) .

By putting: x(z) = exp [y, z/2] erfc [(p—l—m) 'yd/Q], p = 7 /27q the potential function can be
written:

p(z) = —2log [x(z) + x(—=)] ,

up to additive constants. The derivation shows that :

X' (z) = % x(z) — 2% exp [—ya (0> + 2°) /2]
3
X' (z) = Jb X (z) + 27% z exp [—7a (p2 + wz) /2]
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and it can easily be deduced that:

and in particular

¢'(0)=0 and ¢'(+00)=",.

Moreover, concerning the second derivative at origin

X0 _ X
x(0) X(0)

= %}% [(77\/7_1' erfex [17])_1 - 1}

¢'(0) = -2

with 7 =y, /v/874.

APPENDIX IV

GAMMA PROBABILITY DENSITY FUNCTION

The gamma probability density function is parametrizedoby 0 and g > 0 in the form:

£y (e B) = ﬁ 2% exp[~z/f] g, (z)., (15)

where 1, is the indicator function ofR.. The expected value is 3, the variance isy p% and it is

maximal forx = B(a — 1) in the casex > 1.

APPENDIXV
INTEGRATION OF HYPERPARAMETER
A. Preliminary Result

Given a functionf : R — R4, C* and assume that(z) = = f(z) can be integrated. By integrating

from 0 to M the Taylor expansion of(z) at origin, one shows that:

M
%/0 xf(ac)dx—)%f(O) (16)

Then, give a function) : R x R — R, such thatsy(u,s) can be integrated oveR?*!. By

using [16), it can be seen that:
M
|| = vtwaree N
M M=0
// n Y(v,n)dndv /1/1(1),0) dv
v JO v

provided thaty(v,0) can still be integrated oveR<.

(17)
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B. Posterior Law

The a posteriorilaw (Sectio 1V-B) forX', B, C and€£ given) (parametrized by the coefficient,)

is written, after simplification by’ M. :

M,

) Y(u,e) de
e=0

M.
/ Y(v,e) de dy dX dB
X By Je=0

wherew represents all the parameteXs, B, ~ and:

W—14+N/2 —14+N/2 .
1/’(“75) =¢ ’Yna / ’Ydad / ’Yba LN €

exp— {Q:/2 + MW/bBn + va/Ba + Ww/Bv} -

To apply the relationshid (17), it is sufficient to ensurettitgw,0) can be integrated. Since the norms
in RY are equivalentt € R, can be found such a&,(B) < kNo(B) for all B. Thus the integrand
can be majored by a Gaussian integrand and convergenceedrisand only ifﬁ00 # 0.

In the limit, whenM. — 0, we have the resulf]9).

APPENDIX VI

INVERSION OFB|X CDF

The sampling of auxiliary variables (Sectibn TV-C) givere thbject is based on the inversion of cdf

of B|X. Foru € [0, 1]: B
I(b7 b7:Yd7 ’Yb)
(+Oo>b77d>/7b)

is to be resolved. In order to solve this equation, wyite: vy, /24

b
u= Fgx(b) = /_ IBlx = 7 (18)

6 = exp[+wb/2] erfe [(p—i—g) ’yd/2]

0. = exp[-wb/2] erfe|(p—b) v3a/2]

andf = 0_ +6,. Moreovers = I (0) = 6_/6 andu = 0u —6_. Equation[(IB) is resolved differently

depending on whether < s (i.e.,b <0) oru > s (i.e., b > 0) and yields:

b=b+p—ierf{T_}\/2/vq if u<s
b=b—p—ierf {T }/2/yqa if u>s
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whereierf {-} is defined in Appendikl| and

T = erf [(B—i—p) ’yd/Z] — @ exp [~ b/2]

T, = erf [(B—p) fyd/2] — 1 exp [+, 0/2] .
Thus it is possible to samplB|X simply from « uniformly distributed ovefo, 1].

APPENDIX VII

CONDITIONAL POSTERIOR LAW FORX

The posterior law( X, B,C|)) given by Eq.[(®) in Section IV-C involves
Qo = N2o(Y — H x X) + 74 No(D* X — B) +7 Ni(B),

and the conditional posterior lap’|8,C, )) required to sample object in Sectibn IV-C.2 involves

Qo = No(Y — H % X) +~7a No(D+ X — B).

In the Fourier domain:
Qo = WMoY —H®X)+7No(D® X — B)
= Z% Ypg — ;qu%pq|2 + 4 |zlpq303pq - lo’:nq|2
Ppq

that is to say a separable summation. Moreover, it can bdttewiand identified to a sum of quadratic

terms:
o o o 2
Qo = Z Vpg|pg = fipg|
pq
with ©,, and i, given in Eq. [(10) -{(111).
APPENDIX VIII

EMPIRICAL LEAST SQUARES HYPERPARAMETERS

The initialization of the algorithm is based on second ostatistics of the analyzed data, in the Fourier
domain. Considering the structure of thepriori field and the noise, for allp, ¢), such as}'pq # (0 one

has:
. o o . ot
Xpg=+ra Gpg/ [y aNd  Nyy = /1y G,
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o ol
whereG), andG,, are two independent zero-mean white Gaussian noise witaryiviariance. Moreover,
considering the observation equatiéh (1), one alsogs= h,, X, + Npg. With Z,, = [V,,[2 and
Fpa = |hpgl/|f pql, We have:

o

E[Zpg] =rd Tpg+ -
Thus the parameters, andr, can be selected at the minimum of the least squares criterion

J(ra,m) = Z(%pq — 74 Tpq + 1)’

Pq
It is found that:

v —ad Bd — ary

rq = 5 a2 and rﬂ:iﬁ—oﬂ

2
pg’

with Na = > 7pg, NG =7
used to initialize the proposed algorithm (Secfion IV-§):= 1/rq and~, = 1/r,. The third parameter

N~ = > Tpe2pg andN§ = > z,,,. These values forq andr, are

1, is initialized at the critical valuey, = +/2774.
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