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Unsupervised bayesian convex deconvolution

based on a field with an explicit partition

function
J.-F. Giovannelli

Abstract

This paper proposes a non-Gaussian Markov field with a special feature: anexplicit partition function.

To the best of our knowledge, this is an original contribution. Moreover, the explicit expression of the

partition function enables the development of anunsupervisededge-preserving convex deconvolution

method. The method is fully Bayesian, and produces an estimate in the sense of the posterior mean,

numerically calculated by means of a Monte-Carlo Markov Chain technique. The approach is particularly

effective and the computational practicability of the method is shown on a simple simulated example.

Index Terms

Deconvolution, Bayesian statistics, regularization, convex potentials, partition function, hyperparam-

eters estimation, unsupervised estimation, Monte-Carlo Markov Chain.

I. INTRODUCTION

The research concerning regularization for ill-posed inverse problems was first carried out by Phillips,

Twomey and Tikhonov in the sixties and are compiled in [1]. For the specific problem of deconvolution

they lead to the contributions of Hunt [2] based on toroidal models and fast implementation byFFT.

These methods rely on quadratic penalizationi.e., Gaussian laws in a Bayesian framework. The solutions

thus formulated are linear w.r.t. the data and numerically efficient. However, their resolution is limited:

the capability to properly restore sharp edges is limited.
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At the beginning of the eighties, in order to overcome these limitations, Geman & Geman [3] (see

also [4]) introduced a much superior Markovian field including hidden variables [5]. The hidden variables

(also referred to as dual or auxiliary variable) are binary and interactive variables modeling sharp edges

and closed contours. The data processing then relies on a detection-estimation strategy and allows the

recovery of distinct zones with abrupt changes. The calculation of the solution in the sense of the

maximuma posteriori is based on a simulated annealing algorithm which requires intensive numerical

computations. For the sake of computational efficiency in some cases, Geman & Reynolds [6] and then

Geman & Yang [7] introduced auxiliary (also referred to as dual) variables: the sampling of a correlated

non-Gaussian field reduces to the sampling of a correlated Gaussian field for one part and to the sampling

of a separable field for the other. Furthermore, the construction proposed by [7] is founded on the work

of Hunt and the toroidal models: the sampling of the correlated Gaussian field reduces to the sampling

of an inhomogeneous white Gaussian field followed by anFFT. The proposal below takes advantage of

this construction.

The case of fields with convex potential [8–13] (see also [14,15]) was laid down in the nineties as

fulfilling a compromise between the quality of the reconstructed images and the computational burden. In

this framework, a particular attention has been paid to the case of L2 − L1 potentials [9–13]: a quadratic

behavior around the origin and a linear behavior at large values allow edge preservation. In this context,

the constructions of [6] and [7] respectively led to two algorithms: ARTHUR and LEGEND [16] (see

also [17]). The work presented here concerns this type of potential.

With such potentials, the regularized solutions usually necessitate the adjustment of three hyperparam-

eters: two parameters to control the law for the image and oneparameter to control the law for the noise.

Several attempts are dedicated to the question of hyperparameter estimation and the investigated solutions

are frequently based on statistical approaches: (approximated or pseudo) likelihood, Bayesian strategies,

EM and SEM algorithms. . . The reader may consult papers such as [18–24] and reference books such

as [25, Part.VI], [26, Ch.7] or [27, Ch.8]. These approachesare potentially very powerful but they come

up against a major difficulty: the partition function of existing a priori fields depends on hyperparameters

and is not explicitly given.

The first novelty of the paper lies in the fact that it proposesa new random field with an explicit partition

function. To this end, the paper build an original type of compound (toroidal) field with L2−L1 potential.

The work is largely inspired by the Bayesian interpretationof dual variables in terms of Location Mixture

of Gaussian proposed by [28]. Moreover, it is also inspired by [29] (itself based on the contributions

of Hunt [2] and Geman & Yang [7]). However, none of these contributions put forward the idea of a
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field with an explicit partition function. Afterwards, the paper proposes a second novelty: a full Bayesian

unsupervised (i.e., including hyperparameter estimation) edge-preserving convex deconvolution method,

thanks to the knowledge of the partition function. It is based on aposterior law for the whole set of

unknown parameters (including hyperparameters) and a Minimum Mean Square Error strategy.

The paper is presented in the following manner. Section II introduces the notations and states the

problem. Section III is devoted to the construction of the proposed field, Section IV proposes its use

for image deconvolution and demonstrates the numerical practicability. Conclusions and perspectives are

delivered in Section V. Most of the calculations are explained in Appendices I to VIII.

II. N OTATION AND PROBLEM STATEMENT

Work is carried out onP × P real images, withN = P 2 pixels, represented in a matrix form.apq

denotes the generic element of the matrixA, N2(A) =
∑ | apq |2 its squared norm and

◦

A its FFT-2D.

The transformation is normalized: the Parseval relationship is written asN2(A) = N2(
◦

A) and the sum

of the pixels is
∑
apq = P

◦

a00. The symbols⋆ and ⊗ respectively represent the circular convolution

and the Schur product (termwise) of matrices. IfF represents a circular filter andI an input object, the

output is writtenO = F ⋆ I in the spatial domain resulting in
◦

O =
◦

F ⊗
◦

I in the Fourier domain. If
◦

fpq 6= 0 for all p, q, the associated filter is invertible.

In the subsequent developments about deconvolution,Y , X, H, and N respectively denote the

observed data, the unknown object, the convolution matrix and the observation noise. With these notations,

the observation equation is written:

Y = H ⋆X +N . (1)

The deconvolution problem consists in recovering the unknown objectX given the observed dataY and

given the observation modelH. The ill-posedness of the problem has been well identified for several

decades and the problem is nowadays often tackled in a Bayesian framework using Markov priors. In a

Gibbs form, the prior law writes:

fX [X] = K−1
X exp [−Φθ (X)] ,

whereKX is the partition function (normalizing constant) andΦθ is the Gibbs energy controlled by

a set of parameters (such as variance, threshold, scale, correlation length. . . ) collected in a vectorθ.

The general methodology is well-known: the solution is determined from thea posteriori law and a

point estimate can be chosen as the mean or the maximizer, forinstance. Anyway, the posterior law

(and the point estimates) depends upon hyperparameters notably on the parameters of the priorθ. The
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inference about these parameters can be attempted in a statistical framework whose keystone is an exact

and explicit likelihood function (in an usual sense or in a posterior sense). This function is itself founded

on a complete expression for the prior law including the partition function as it depends onθ. It is given

as a large dimension integral:

KX = KX (θ) =

∫

R

N

exp [−Φθ (X) ] dX . (2)

It is a commonplace to say thatKX (θ) can be explicitly given for two well-known classes of

(continuous state) field:

(i) Φ is quadratic,i.e., the field is Gaussian

(ii) Φ is separable,i.e., the field is white.

In other cases and especially for non-separable and non-Gaussian fields, the theoretical calculation and

the numerical computation of (2) are desperate tasks [25, p.281] and they have never been achieved1.

However, its achievement is made possible and simple in the next Section, for a special non-separable

and non-Gaussian field.

III. PRIOR FIELD WITH PARTITION FUNCTION

Taking advantage of (i) and (ii) above, the proposed random field is a compound field involving two

variables: a pixel variable noted asX and an auxiliary (or dual or hidden) variable noted asB. The

joint law for (X ,B) is defined by the law ofX|B for one part and by the law ofB for the other part.

The former is a Gaussian component (case (i) above) and the latter is a separable component (case (ii)

above).

A. Toroidal Gaussian Field forX|B

Let us consider two matricesB andF with
◦

fpq 6= 0 for all p, q and the toroidal (circular shift invariant)

Gaussian field with a density parametrized in the form:

fX|B [X|B] = K−1
X|B exp [−γdN2(F ⋆X −B)/2] , (3)

where γd > 0 is an inverse variance. The matrixF designs the field structure and especially the

neighborhood system and the form of the cliques. In the Fourier domain, the potential is separable

1The partition function is however known for the Ising field [30]. It is a binary field out of the scope of the developed work.
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and naturally develops in two forms:

N2(F ⋆X −B) = N2

(
◦

F ⊗
◦

X −
◦

B
)

=
∑

pq

|
◦

fpq
◦

xpq −
◦

bpq |2

=
∑

pq

|
◦

fpq|2 | ◦

xpq −
◦

bpq/
◦

fpq |2

which has three essential consequences for the following developments.

1) The law for
◦

X is separable and each
◦

Xpq is Gaussian with mean
◦

bpq/
◦

fpq and inverse variance

γd|
◦

fpq|2. As a result, the sampling ofX reduces to the sampling of an inhomogeneous white

Gaussian noise followed by anFFT-2D.

2) The change of variableX = F ⋆X is invertible,X is white and eachXpq is Gaussian with mean

bpq and common inverse varianceγd.

3) The partition functionKX|B is easily tractable in the Fourier domain thanks to a change of variable

KX|B =

∫

R

N

exp [−γdN2(F ⋆X −B)/2] dX

=
[
γ
N/2
d (2π)−N/2

∏
|
◦

fpq|
]−1

,

and does not depend onB.

In relation to existing works such as [7, 16, 27–29], the mainidea here is simply to focus on the case

where the change of variableX = F ⋆X is invertible (point 2 above) that is to say the number of cliques

and the number of pixels are equal.

Remark 1 — The partition functionKX|B does not depend onB as a counterpart of a limitation: the

number of cliques and the number of pixels are equal. As an illustration of the limitation, let us point

out thatKX|B depends onB for a field based on horizontal cliques plus vertical cliques(the number of

cliques is greater than the number of pixels).

B. Compound Field

A separable and homogeneous field is then introduced for the auxiliary variableB with a density

fB [B], product of thefB [ bpq ]. The joint density is written asfX ,B [X,B] = fX|B [X|B] fB [B] and

the marginal law is obtained by integrating the auxiliary variables:

fX [X] =

∫

R

N

fX|B [X|B] fB [B] dB .

October 28, 2018 DRAFT
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Fig. 1. A sample of the field, withγd = γb = 1 (ε is also set to 1).
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Fig. 2. Histograms (image at Fig. 1). From top to bottom: histogram of image pixelsX, histogram of auxiliary variablesB

and histogram of differencesX.

Since the partition functionKX|B does not depend onB, the calculations can be achieved

fX [X]

= K−1
X|B

∫

R

N

fB [B] exp [− γdN2(F ⋆X −B) /2] dB

= K−1
X|B

∏

pq

∫

R

fB [ bpq ] exp
[
− γd (xpq − bpq)

2 /2
]

dbpq

October 28, 2018 DRAFT
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which involves a separable convolution product.

Remark 2 — The proposed construction is possible for any probabilitydensity functionfB . In this

sense, it is possible to design a large class of potential functions.

Thus, a wide range of law is available, but the convex potential case is the one of interest here, as

mentioned in the introduction. So, the following property is of importance.

Property 1 — For any log-concave probability density functionfB, the probability density functionfX

is log-concave [31, Theo. 7], [32].
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Fig. 3. From top to bottom: potential function, first and second derivative. Solid line: Log-Erf potentialϕ(x) of Eq. (6) and

dotted line: corresponding Huber potential of Eq. (7). The potential parameters areγd = γb = 1 and hence the equivalent Huber

parameters areλ ≃ 0.32 ands ≃ 1.56, according to Eq. (8).

C. Laplace Law for Auxiliary Variables

The following developments are dedicated to the case of auxiliary variables under a Laplace law

suggested by [28].
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Fig. 4. λ and s as a function ofγb, for a fixedγd (γd = 1) on a log-log scale. As expected, the plot essentially showstwo

linear behaviors and a critical case forγb =
√
2π (log

10

√
2π ∼ 0.4).

As mentioned by [28] itself, among the Huber-like distributions, such a Laplace-convolved-Gauss prob-

ability will have two main advantages: (i) the convolution involved in the marginal lawfX (Section III-B)

will be made explicit and (ii) the sampling of auxiliary variables (Section IV-C) will bedirectly feasible

thanks to the inversion of the cumulative density functionFB|X .

The Laplace law is written in the form:

fB [B] = K−1
B exp [− γbN1(B) /2] , (4)

whereγb > 0 is a scale parameter, andN1(B) =
∑ |bpq| is the L1 norm. The partition function is

simply calculated thanks to separability

KB =

∫

R

N

exp [− γbN1(B) /2] dB = [γb/4]
−N .

According to (3) and (4) the joint density for(X ,B) takes the form:

fX ,B [X,B] =

K−1
X ,B exp [− γdN2(F ⋆X −B) + γbN1(B) /2]

(5)

and the partition function is explicit:KX ,B = KX|BKB.

The marginal law forX involves the one-dimensional convolution of a Gaussian density and a Laplacian

October 28, 2018 DRAFT
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density.

fX [X]

= K−1
X ,B

∏

pq

∫

R

exp
[
− γd (xpq − bpq)

2 + γb |bpq| /2
]

dbpq

= K−1
X ,B

∏

pq

I(+∞, xpq, γd, γb)

whereI is defined in Appendix II. Thus, the potential functionϕ appears:

fX [X] = K−1
X ,B exp

[
−

∑

pq

ϕ(xpq) /2

]
,

with:

ϕ(x) = −2 log I(+∞, x, γd, γb) . (6)

It is named the Log-Erf potential and it is shown in Fig. 3. Thedetails of the calculations concerning

this potential are given in Appendix III. Concerning the first derivative, one has:

ϕ′(0) = 0 and ϕ′(+∞) = γb ,

and concerning the second derivative at origin, one has:

ϕ′′(0) =
γ2b
2

[(
η
√
π erfcx [η]

)−1 − 1
]

with η = γb/
√
8γd (erfcx [·] is given in Appendix I). As expected (see Property 1), this isa convex

potential. It is a L2 − L1 potential which can be reconciled with other more common L2 − L1 potentials

(Huber, log-cosh, hyperbolic, fair function). In the case of the Huber potential:

x 7→ λ




x2 if |x | ≤ s

2s |x | − s2 if |x | ≥ s

(7)

by identifying the second derivatives at zero and the slopesat infinity, one has:

λ =
1

2
ϕ′′(0) and s =

ϕ′(+∞)

ϕ′′(0)
. (8)

Compared Log-Erf and Huber potentials and their derivatives are shown in Fig. 3. Using the expan-

sions (14) and (13) of Appendix I, two limit cases can be identified, according to the value of the ratio

October 28, 2018 DRAFT
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η:

for η ≫ 1 : λ ≃ γd ; s ≃ γb
2 γd

for η ≪ 1 : λ ≃ γb

√
γd
2π

; s ≃
√

π

2 γd

In the two limit cases, on a log-log scale, there is linear behavior of λ ands as a function ofγb, for a

fixed γd (see Fig. 4). The intersection of the two linear behaviors can be identified as a critical behavior

for γb =
√
2πγd. The critical value will be used for the initialization of simulations of Section IV-D (see

also Appendix VIII).

D. Practical Case

In practice, the field is based on a3 × 3 Laplacian filter, defined by[0 , 1 , 0 ; 1 ,−4 , 1 ; 0 , 1 , 0] and

represented by the matrixD. At null frequency one has
◦

d00 = 0 and as a consequence the mean level of

the image is not managed. So, an extra parameter is introduced to drive the mean level: it is denoted by

ε (ε ≥ 0) and the characteristic matrixF is set toFε = D + ε.

Remark 3 — If ε = 0 the field cannot be normalized and each clique is formed from the four nearest

neighbors (cross-like clique). Ifε 6= 0, the field can be normalized and each clique is spread out over

the entire image.

The following developments takeε > 0 and the partition function of the joint field writes:

K−1
X ,B = δ ε γ

N/2
d γN

b , with δ = (32π)−N/2
∏

(p,q)
6=(0,0)

|
◦

dpq| .

Fig. 1 gives a sample of the field withγd = γb = 1 and Fig. 2 gives histograms of the image pixels,

the auxiliary variablesB (a Laplace histogram) and the differencesX (an over-Gaussian histogram).

Remark 4 — It is noteworthy that the marginal modelX is homogeneous, but the conditional model

X|B is non-homogeneous (except if all thebpq are equal).

IV. D ECONVOLUTION

As a result of the previous Section, a new random field is now available with a special feature: an

explicit (and simple) partition function. In the present Section, the field serves as a prior in a deconvolution

method whose specificity is to be unsupervised (i.e., including hyperparameter estimation). More precisely,

the method relies on a full Bayesian framework and the solution is determined from ana posteriori law

based on ana priori law (given below) for the object, the noise and the hyperparameters.
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A. Prior choices

1) Object law: The a priori field is defined in the previous section. The joint density for(X ,B) is

given by (5) and it is driven by three parameters:γd, γb andε.

2) Noise law:The present work is founded on the usual case of zero-mean white Gaussian noise with

inverse variance denotedγn. The density is written:

fN (N) = (2π)−N/2 γN/2
n exp [− γn N2(N)/2] .

3) Hyperparameter law:Four parameters are to be managed:γn, γd, γb andε. The three parameters

of major importance areγ = [γn, γd, γb]; the fourth parameterε drives the prior mean level of the image

and it is considered as a nuisance parameter. Anyway, very few is a priori known about these parameters

and the idea is to use non-informative or diffuse and separable priors.

• The proposed prior law for the three parametersγn, γd andγb is a conjugate law. It is a gamma law

(see Eq. (15), Appendix IV) with parameters respectively denoted(αn, βn), (αd, βd) and (αb, βb).

It allows for easy computations with the posterior law. Moreover, it includes diffuse and non-

informative prior: the uniform prior and the Jeffrey’s prior are obtained as limit cases for(α, β) =

(1,∞) and for (α, β) = (0,∞) respectively.

• The last parameterε is considered as a nuisance parameter and the proposed strategy resorts to

integration out. The desired prior law is a Dirac law, so thatno information is accounted for about

the mean level of the image (it is set on the basis of observed data only). Formally, in a first step

a uniform density over[ 0,Mε ] is introduced and in a second step the limit law forMε → 0 is

considered.

B. Joint Law

Thus, the joint law is established for(Y,X ,B, C, E):

fY ,X ,B,C,E(Y ,X,B,γ, ε) =

δ′ γ
αn−1+N/2

n γ
αd−1+N/2

d γ αb−1+N
b ε M−1

ε 1[ 0,Mε ](ε)

exp− {Qε/2 + γn/βn + γd/βd + γb/βb}

October 28, 2018 DRAFT
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whereδ′ = (2π)−N/2 δ/βαn
n Γ[αn] β

αb

b Γ[αb] β
αd

d Γ[αd] is a normalization constant andQε is part of the

Co-logarithm of the density involvingFε:

Qε = γnN2(Y −H ⋆X) + γdN2(Fε ⋆X −B) + γbN1(B) .

The a posterioridensity is formed forX , B, C andE , givenY thanks to the Bayes rule:

fX ,B,C,E|Y(X,B,γ, ε|Y ) =

fX ,B,C,E,Y(X,B,γ, ε,Y )∫

X,B,γ,ε
fX ,B,C,E,Y(X,B,γ, ε,Y ) dX dB dγ dε

,

and it is parametrized by the(α, β) andMε. Then,ε is integrated out and the law forX , B, C givenY
writes

fX ,B,C|Y(X,B,γ|Y ) =

∫

ε
fX ,B,C,E|Y(X,B,γ, ε|Y ) dε .

It is also parametrized by the(α, β) andMε, so, the limit is set whenMε tends to 0. The detail of the

calculations is given in Appendix V and it is shown that a probability density function is obtained if the

mean level of the object is observed,i.e.,
◦

h00 6= 0.

C. Posterior Law and Posterior Mean

Thus, the Total Posterior Law can be deduced for all the unknown parameters(X ,B, C) given the

observed dataY:
fX ,B,C|Y(X,B,γ|Y ) ∝

γ
αn−1+N/2

n γ
αd−1+N/2

d γ αb−1+N
b

exp− {Q0/2 + γn/βn + γd/βd + γb/βb}

(9)

whereQ0 involvesF0 = D:

Q0 = γnN2(Y −H ⋆X) + γdN2(D ⋆X −B) + γbN1(B) .

In practice, the chosen point estimate is the posterior mean(i.e., the Minimum Mean Square Error).

Its calculation is performed by means of Monte-Carlo MarkovChain stochastic sampling algorithm [25,

33]: auxiliary variables, object and hyperparameters are successively sampled given the other in a Gibbs

strategy.
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Data PM CPM CPM CPM CPM MAP-LogErf MAP-Huber

(bestγb) (bestγd) (bestγn)

Dist. L2 11.62% 3.93% 3.94% 3.87% 3.85% 3.81% 5.56% 5.63%

Dist. L1 35.47% 19.47% 19.50% 18.92% 19.40% 19.18% 20.68% 20.84%

TABLE I

QUANTITATIVE COMPARISON BY MEANS OF L2 AND L1 DISTANCES BETWEEN TRUE IMAGE AND DATA(COLUMN 1), TRUE

IMAGE AND ESTIMATED IMAGES (COLUMN 2 TO 8).

1) Sampling auxiliary variables:The sampling of auxiliary variables is delicate but can be directly

done. It is based on the inversion of the cumulative density function (cdf)FB|X . It is sufficient to uniformly

sampleu in [0, 1] and to computeb = F−1
B|X (u). The calculations can be found in Appendix VI.

2) Sampling object:The object is a toroidal Gaussian field and the
◦

Xpq are independent with mean
◦

µpq and inverse variance◦νpq (see calculations in Appendix VII)

◦

νpq = γn |
◦

hpq|2 + γd |
◦

dpq|2 (10)

◦

µpq =
[
γn

◦

h
∗

pq
◦

ypq + γd
◦

d
∗

pq

◦

bpq

]
/

◦

νpq (11)

where superscript∗ stands for the complex conjugate. Thus, the sampling is reduced to the sampling of

an inhomogeneous white Gaussian noise followed by anFFT-2D.

3) Sampling hyperparameters:Each parameterγn, γd andγb follows a gamma2 law derived form (9)

(see Appendix IV) with respective parametersα andβ

α = αn +N/2 and β−1 = β−1
n +N2(Y −H ⋆X)/2

α = αd +N/2 and β−1 = β−1
d +N2(D ⋆X −B)/2

α = αb +N and β−1 = β−1
b +N1(B)/2 .

The description of the method and the algorithm are now complete and synthesized in Table II. The

remainder of this Section illustrates the implementation practicability.

2The sampling of the Gamma variables is achieved using the Matlab functiongamrnd.
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Fig. 5. From left to right : original imageX⋆, observed dataY , deconvolved imagecXPM and deconvolved imagecXMAP.

At the top: gray level images and at the bottom: profile of the 100-th row (which encroaches on both the rectangle and the

rhombus). In order to evaluate the relative dynamics in eachcase, all the images are shown in the same gray-scale between-0.5

and 2. The four shown profiles are also presented between -0.5and 2.

D. Computation feasibility

This part illustrates the previous developments and it onlyaims at demonstrating the numerical

practicability of the method. It is built on a deliberately simple imageX⋆ appropriate in order to evaluate

the capabilities and the limitations of the proposed approach: the image is set up from homogeneous

zones separated by sharp edges (see Fig. 5, on the left). It isa 128 × 128 image composed of a black

background and three objects with gray levels gradually changing between 0.7 and 2.1. The difference

between neighboring pixels varies between 0 and 2.1 in absolute value. Regarding the Laplacian of the

image,X = F ⋆X, the set ofXk can be split in two sets: 94 % of theXk are less than2.10−4 (inside

homogeneous zones) and 6 % of theXk are greater than3.10−2 (located around edges). No value is

between2.10−4 and3.10−2.

The impulse response of the system is Gaussian shaped with 6 pixels width at half-maximum, the

noise variance is2.10−2 and the resulting observed imageY is shown in Fig. 5 (in the second column).

The resolution is clearly degraded and details of the edges are no longer visible (neither on the gray

level image nor on the shown profile). The dynamic is also strongly affected, notably at about the 64-th

sample of the shown profile.

The procedure is initialized by the empirical least-squares hyperparameters given in Appendix VIII.

The objectX is initialized by the observed data (and there is no need to initialize the auxiliary variables).
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Initialize

• N = 1, Delta = inf

• HatX = Data

• GamN, GamD, GamB (Annex VIII)

Repeat

• Sample step

– Auxiliary variables B (Sect. IV-C.1)

– Object X (Sect. IV-C.2)

– Hyperparameter GamN,GamD,GamB (Sect. IV-C.3)

• Update

– N = N+1

– Delta = ( HatX - X ) / N

– HatX = ( (N-1)*HatX + 1*X ) / N

Until Delta<eps

TABLE II

DETAILED ALGORITHM (PSEUDO-CODE).

Moreover, practically, the(α∗, β∗) are set to(0,∞) corresponding to the Jeffrey’s prior.

The proposed algorithm3 generates samples of thea posteriori law fX ,B,C|Y(X,B,γ|Y ). Practically,

the algorithm behaves as expected: the stationary law is attained after a burn-in time (about 200 iterations)

and remains in a steady behavior. The empirical mean of the generated images is recursively computed

and the algorithm is stopped when its variation becomes smaller than a given valueT (in quadratic norm).

In the presented exampleT = 5.10−4, the algorithm produced 953 iterations and computation time was

47 seconds.

The resulting generated hyperparametersγb, γd andγn are shown in Fig. 7. The left part of the figure

shows the 953 iterates of the three parameters: after about 200 iterations the three parameters are stabilized

and seem to be under the stationary law of the chain. The empirical mean value (approximating the

PosteriorMean) of the parameters respectively areγ̂b = 2.88 102, γ̂d = 5.91 104 andγ̂n = 1.99 103. The

iterates are also shown on the right hand side of Fig. 7 as histograms: they are clearly very concentrated

3The proposed algorithm has been implemented with the computing environment Matlab on a PC, with a 2 GHz AMD-Athlon

CPU, and 512 MB of RAM. Code is∼ 100 lines long.
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Fig. 6. Distances between the true imageX⋆ and Conditional Posterior MeancXCPM as a function of the parametersγb, γd

andγn, around theposterior mean valuebγ . From left to right: error is shown as a function ofγb, γd andγn. Top row gives

L2 distance and bottom row gives L1 distances. The black dotsgive the minimum distances reported in Table I.

around thePosterior Mean (with small variance),i.e., the marginal law for the hyperparameters are

quasi-Dirac distributions.

Considering the numerical value, in the sense of Eq. (8), theequivalent regularization parameter is

λ̂ = 2.17 101 and the equivalent threshold iŝs = 6.67 10−3. It is noticeable that the threshold value

correctly split theXk in two sets (less than2.10−4 – greater than3.10−2). The point is that the method

automatically adjusts hyperparameters to correctly separate theXk. This is a first argument in favor of

the proposed strategy in order to tune the threshold of an L2 − L1 Gibbs potential.

The resulting image is shown in Fig. 5 (on the third column). The effect of deconvolution is notable

on the image in gray level as well as on the shown profile. The three objects are correctly positioned,

the orders of magnitude are respected and the zero level is correctly reconstructed: it can be seen on the

entire image and in particular on the shown profile. The dynamic is also correctly restored: this aspect is

notable on the shown profile around the maximum (64-th sample). The true dynamic occupies the range

0 – 1.9 whereas the dynamic of the observed data scarcely exceeds 0 – 1.4: the proposed method restores

the dynamic to 0 – 1.88 that is to say 99% of the original variation.

A global quantitative comparison has been achieved by evaluating (i) the distance between original
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Fig. 7. Monte-Carlo Markov Chain for the three hyperparameters generated by the proposed Gibbs sampler. From top to

bottom:γb, γd andγn. The left part of the figure shows the samples as a function of iteration index and the right part of the

figure shows the samples as histograms.

imageX⋆ and observed dataY and (ii) the distance between original imageX⋆ and estimated image

X̂PM. The considered distances are normalized L2 and L1 distances. The main results are listed in Table I,

first and second columns and show an improvement by a factor 2.95 (11.62% to 3.93%) for L2 distance

and a factor 1.82 (35.47% to 19.47%) for L1 distance.

In order to deepen the numerical study, a second estimate hasbeen computed:̂XCPM the Conditional

Posterior Mean (CPM),i.e., the mean of the conditionalposterior law fX ,B|Y ,C(X,B|Y ,γ). X̂CPM is

clearly a function of the hyperparametersγ and a twofold evaluation is proposed.

• The first estimate is the one obtained withγ = γ̂. Practically, the marginal estimatêXPM and

the conditional estimatêXCPM(γ̂) are quasi-equal; this is due to the fact that the marginal law

for the hyperparameters are quasi-Dirac distributions. Quantitatively, regarding L2 distances, the

PM produces 3.93% whereas the CPM produces 3.94%; regardingL1 distances, the PM produces
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19.47% whereas the CPM produces 19.50%. In both cases, the modification is almost imperceptible.

• The measurement of errors has also been explored for the CPM as a functionγb, γd andγn, around

the posterior meanγ̂. Results are given on Fig. 6: in each case, smooth variation of distances is

observed when varying parameters and an optimum is visible.It is reported on Table I and shows

almost imperceptible modification: optimization of the hyperparameters (based on the true image

X⋆) allows negligible improvement (smaller than 0.1% for L2 error and smaller than 0.5% for

L1 error). So, the main conclusion is that, the unsupervisedproposed approach is a relevant tool in

order to tune parameters: it works (without the knowledge ofthe true image) as well as an optimized

approach (based on the knowledge of the true image).

Finally, a third estimate has been computed: the MaximumA posteriori(MAP). It has been computed

for the LogErf and the Huber potentials. Both of them have been computed with equivalent hyperparame-

ters (given above):(γ̂b, γ̂d, γ̂n) for the LogErf potential and(λ̂, ŝ) for the Huber potential. The two MAP

solutions (LogErf and Huber) are visually indiscernible: this is expected from so similar potential. The

results are presented in Fig. 5, right column: the estimatedmap suffers from cross-like artifact, due to

the cross-like structure of the neighborhood system. Quantitatively speaking, the measurements of errors

are given on Table I: LogErf and Huber produce almost similarerrors. Moreover, the errors are greater

than the one produced by the PM and the CPM.

The restoration is nevertheless imperfect and of limited resolution: the sharp edges remain slightly

smoothed and limited in amplitude. The ringing effect also affects the quality of the deconvolved image.

This diagnostic is long awaited in the framework of convex deconvolution. Anyway, the important point is

not so much the property of the deconvolved image itself (intrinsic of any convex deconvolution) but the

(new) practical capability to automatically tune the hyperparameters. Moreover, the potential improvement

is certainly wide considering more heavy-tailed law for theauxiliary variables, as explained in the next

section.

V. CONCLUSION

This paper presents a twofold novelty in the field of statistical image reconstruction and restoration.

1) The partition function is explicitly given for a specific non-Gaussian Markov field, with an L2−L1

Gibbs potential. It is built as a compound field involving: anauxiliary variable following a separable

Laplace distribution and a pixel variable following a Gaussian distribution given the auxiliary

variable.
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2) An unsupervised deconvolution method is deduced, based on the exact likelihood taking advantage

of the knowledge of the partition function. The method is fully Bayesian, and the point estimate

is the posterior mean computed thanks to a Monte-Carlo Markov Chain technique.

The paper focuses on the deconvolution problem, but it is also possible to deal with simpler questions

than deconvolution: parameter estimation from direct observation of the field, edge enhancement or

denoising.

Moreover, the paper relies on Gaussian noise, but the case ofnon-Gaussian noise is also envisaged,

in particular the use of robust norms to reject abnormal data(outliers). To this end, a separable version

of the L2 − L1 proposed field could be suitable as a law for noise measurement.

The proposed method can be directly applied in the case of large support operator,e.g.,reconstruction

problems such as Fourier synthesis [34]. The proposed methodology also remains valid for other linear

model and the required modification concerns the sampling ofthe object. It remains Gaussian but its

sampling is no longer possible in a single step for the entireimage byFFT-2D. The Gibbs sampling

techniques constitute an adapted tool but the calculation time would be (maybe dramatically) extended.

For non-linear problems, the law for the object is no longer Gaussian and a case by case study is required.

Concerning thea priori field, other laws for auxiliary variables are certainly desirable. The possible

improvements are numerous considering more heavy-tailed law in order to overcome the limitation of the

convex deconvolution. The methodology still remains validbut the difficulty then concerns the sampling

of the auxiliary variables. The direct sampling by inversion of the cumulative density function may not

be possible, however, the rejection or the Hastings-Metropolis algorithms could be used to overcome this

difficulty.

In the case of myopic deconvolution, it is also conceivable to estimate (part of) the parameters of the

observation system. Here again, a case by case study is necessary, but the delicate question of the system

parameter sampling can probably be tackled by means of rejection or Hastings-Metropolis algorithms.

APPENDIX I

ERF, ERFC, ERFCX

The erf function is defined forx ∈ R by:

erf [x] =
2√
π

∫ x

0
exp

[
−t2

]
dt , (12)
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andierf denotes the reciprocal function. Elsewhere,erfc [x] = 1−erf [x] anderfcx [x] = exp
[
x2

]
erfc [x].

Concerning the latter, there are the following expansions:

erfcx [x] ∼
+∞

[
1− x−2

]
/
(
x
√
π
)

(13)

erfcx [x] ∼
0

1− 2x/
√
π . (14)

and the derivativeerfcx [x]′ = 2x erfcx [x]− 2/
√
π.

APPENDIX II

GAUSS AND LAPLACE CONVOLUTION

Considering the calculations, a large part of the proposed developments is based on the convolution

of a Gaussian function and a Laplacian function.

A. Preliminary Calculi

For x0 ≥ 0 andx ∈ R, write:

J(x0, x, d, b) =

∫ x0

0
exp

[
−
{
d(y − x)2 + by

}
/2
]
dy ,

simply written asJ(x0, x) when there is no ambiguity. On rewriting the argument of the exponential,

we have:

d(y − x)2 + by = d
[
(y − x̃)2 + (x2 − x̃)2

]

with x̃ = x− b/2d. The change of variablet = (y − x̃)
√
d/2, yields:

J(x0, x) =
√
π/2d exp

[
b2/8d

]
exp [−bx/2]

{
erf

[
x̃
√
d/2

]
− erf

[
(x̃− x0)

√
d/2

]}
,

where the functionerf is defined by (12). In particular, one has:J(0, x) = 0 and

J(+∞, x) =
√
π/2d exp

[
b2/8d

]

exp [−bx/2] erfc
[
−x̃

√
d/2

]
.
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B. Convolution

For x0, x ∈ R, write:

I(x0, x, d, b) =

∫ x0

−∞
exp

[
−
{
d(y − x)2 + b|y|

}
/2
]
dy ,

written simply asI(x0, x) when there is no ambiguity. By the change of variablesy′ = −y, y′ = by,

andy′ = y
√
d, it is shown that:

I(+∞, x, d, b) = I(+∞,−x, d, b)

I(x0, x, d, b) = I(bx0, bx, d/b
2, 1) / b

I(x0, x, d, b) = I(x0
√
d, x

√
d, 1, b/

√
d) /

√
d

It can thus be deduced that:

I(x0, x, d, b) = J(+∞,−x, d, b) − J(−x0,−x, d, b)

I(x0, x, d, b) = J(+∞,−x, d, b) + J(x0, x, d, b)

respectively forx0 < 0 andx0 ≥ 0. These relationships are useful for the study of the potential function

(next Appendix) and for the inversion of the cdf ofB|X (Appendix VI).

APPENDIX III

LOG-ERF POTENTIAL FUNCTION

According to the results of the previous Appendix the potential function of the marginal fieldX ,

Eq. (6), Section III-C is written:

ϕ(x) = −2 log I(+∞, x, γd, γb) .

By putting: χ(x) = exp [γb x/2] erfc
[
(ρ+ x)

√
γd/2

]
, ρ = γb/2γd the potential function can be

written:

ϕ(x) = −2 log [χ(x) + χ(−x)] ,

up to additive constants. The derivation shows that :

χ′(x) =
γb
2
χ(x)−

√
2 γd
π

exp
[
−γd

(
ρ2 + x2

)
/2
]

χ′′(x) =
γb
2
χ′(x) +

√
2 γ3d
π

x exp
[
−γd

(
ρ2 + x2

)
/2
]
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and it can easily be deduced that:

ϕ′(x) = −2
χ′(x)− χ′(−x)
χ(x) + χ(−x) = −γb

χ(x)− χ(−x)
χ(x) + χ(−x)

and in particular

ϕ′(0) = 0 and ϕ′(+∞) = γb .

Moreover, concerning the second derivative at origin

ϕ′′(0) = − 2
χ′′(0)

χ(0)
= − γb

χ′(0)

χ(0)

=
γ2b
2

[(
η
√
π erfcx [η]

)−1 − 1
]

with η = γb/
√
8γd.

APPENDIX IV

GAMMA PROBABILITY DENSITY FUNCTION

The gamma probability density function is parametrized byα > 0 andβ > 0 in the form:

fγ (x ; α, β) =
1

βα Γ[α]
xα−1 exp [−x/β] 1

R+
(x) , (15)

where1
R+

is the indicator function ofR+. The expected value isαβ, the variance isαβ2 and it is

maximal forx = β(α− 1) in the caseα > 1.

APPENDIX V

INTEGRATION OF HYPERPARAMETER

A. Preliminary Result

Given a functionf : R → R+, C∞ and assume thatg(x) = xf(x) can be integrated. By integrating

from 0 to M the Taylor expansion ofg(x) at origin, one shows that:

1

M2

∫ M

0
x f(x) dx −→

M=0

1

2
f(0) . (16)

Then, give a functionψ : RQ × R → R+ such thatεψ(u, ε) can be integrated overRQ+1. By

using (16), it can be seen that:
∫ M

0
ε ψ(u, ε) dε

∫

v

∫ M

0
η ψ(v, η) dη dv

−→
M=0

ψ(u, 0)∫

v

ψ(v, 0) dv
(17)

provided thatψ(v, 0) can still be integrated overRQ.

October 28, 2018 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 23

B. Posterior Law

The a posteriori law (Section IV-B) forX , B, C andE givenY (parametrized by the coefficientMε)

is written, after simplification byδ′Mε:
∫ Mε

ε=0
ψ(u, ε) dε

∫

XBγ

∫ Mε

ε=0
ψ(v, ε) dε dγ dX dB

whereu represents all the parametersX,B,γ and:

ψ(u, ε) = δ′ γ
αn−1+N/2

n γ
αd−1+N/2

d γ αb−1+N
b ε

exp− {Qε/2 + γn/βn + γd/βd + γb/βb} .

To apply the relationship (17), it is sufficient to ensure that ψ(v, 0) can be integrated. Since the norms

in RN are equivalent,k ∈ R+ can be found such asN1(B) < kN2(B) for all B. Thus the integrand

can be majored by a Gaussian integrand and convergence ensured if and only if
◦

h00 6= 0.

In the limit, whenMε → 0, we have the result (9).

APPENDIX VI

INVERSION OFB|X CDF

The sampling of auxiliary variables (Section IV-C) given the object is based on the inversion of cdf

of B|X . For u ∈ [0, 1]:

u = FB|X (b) =

∫ b

−∞
fB|X =

I(b, b̄, γd, γb)

I(+∞, b̄, γd, γb)
. (18)

is to be resolved. In order to solve this equation, writeρ = γb/2γd

θ− = exp
[
+γb b̄/2

]
erfc

[
(ρ+ b̄)

√
γd/2

]

θ+ = exp
[
−γb b̄/2

]
erfc

[
(ρ− b̄)

√
γd/2

]

andθ = θ−+ θ+. Moreovers = FB|X (0) = θ−/θ andū = θu− θ−. Equation (18) is resolved differently

depending on whetheru ≤ s (i.e., b ≤ 0) or u ≥ s (i.e., b ≥ 0) and yields:

b = b̄+ ρ− ierf {T−}
√

2/γd if u ≤ s

b = b̄− ρ− ierf {T+}
√

2/γd if u ≥ s
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whereierf {·} is defined in Appendix I and

T− = erf
[
(b̄+ ρ)

√
γd/2

]
− ū exp

[
−γb b̄/2

]

T+ = erf
[
(b̄− ρ)

√
γd/2

]
− ū exp

[
+γb b̄/2

]
.

Thus it is possible to sampleB|X simply from u uniformly distributed over[0, 1].

APPENDIX VII

CONDITIONAL POSTERIOR LAW FORX

The posterior law(X ,B, C|Y) given by Eq. (9) in Section IV-C involves

Q0 = γnN2(Y −H ⋆X) + γdN2(D ⋆X −B) + γbN1(B) ,

and the conditional posterior law(X|B, C,Y) required to sample object in Section IV-C.2 involves

Q0| = γnN2(Y −H ⋆X) + γdN2(D ⋆X −B) .

In the Fourier domain:

Q0| = γnN2(
◦

Y −
◦

H ⊗
◦

X) + γdN2(
◦

D ⊗
◦

X −
◦

B)

=
∑

pq

γn |◦ypq −
◦

hpq
◦

xpq|2 + γd |
◦

dpq
◦

xpq −
◦

bpq|2

that is to say a separable summation. Moreover, it can be rewritten and identified to a sum of quadratic

terms:

Q0| =
∑

pq

◦

νpq| ◦xpq − ◦

µpq|2

with ◦

νpq and ◦

µpq given in Eq. (10) - (11).

APPENDIX VIII

EMPIRICAL LEAST SQUARES HYPERPARAMETERS

The initialization of the algorithm is based on second orderstatistics of the analyzed data, in the Fourier

domain. Considering the structure of thea priori field and the noise, for all(p, q), such as
◦

fpq 6= 0 one

has:
◦

Xpq =
√
rd

◦

Gpq/
◦

fpq and
◦

Npq =
√
rn

◦

G
′

pq
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where
◦

Gpq and
◦

G
′

pq are two independent zero-mean white Gaussian noise with unitary variance. Moreover,

considering the observation equation (1), one also has
◦

Y pq =
◦

hpq
◦

Xpq +
◦

Npq. With
◦

Zpq = |
◦

Y pq|2 and
◦

rpq = |
◦

hpq|/|
◦

fpq|, we have:

E
[ ◦

Zpq

]
= rd

◦

rpq + rn .

Thus the parametersrd andrn can be selected at the minimum of the least squares criterion:

J(rd, rn) =
∑

pq

(
◦

zpq − rd
◦

rpq + rn)
2 .

It is found that:

rd =
γ − αδ

β − α2
and rn =

βδ − αγ

β − α2

with Nα =
∑ ◦

rpq, Nβ =
∑ ◦

r
2
pq, Nγ =

∑ ◦

rpq
◦

zpq, andNδ =
∑ ◦

zpq. These values forrd and rn are

used to initialize the proposed algorithm (Section IV-C):γd = 1/rd andγn = 1/rn. The third parameter

γb is initialized at the critical value:γb =
√
2πγd.
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