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Abstract
Intensity inhomogeneities often occur in real-world images and may cause considerable difficulties
in image segmentation. In order to overcome the difficulties caused by intensity inhomogeneities,
we propose a region-based active contour model that draws upon intensity information in local
regions at a controllable scale. A data fitting energy is defined in terms of a contour and two fitting
functions that locally approximate the image intensities on the two sides of the contour. This energy
is then incorporated into a variational level set formulation with a level set regularization term, from
which a curve evolution equation is derived for energy minimization. Due to a kernel function in the
data fitting term, intensity information in local regions is extracted to guide the motion of the contour,
which thereby enables our model to cope with intensity inhomogeneity. In addition, the regularity
of the level set function is intrinsically preserved by the level set regularization term to ensure accurate
computation and avoids expensive reinitialization of the evolving level set function. Experimental
results for synthetic and real images show desirable performances of our method.

Index Terms
Image segmentation; intensity inhomogeneity; level set method; region-scalable fitting energy;
variational method

I. INTRODUCTION
Active contour models have been extensively applied to image segmentation [4], [7], [10],
[19]. There are several desirable advantages of active contour models over classical image
segmentation methods, such as edge detection, thresholding, and region grow. First, active
contour models can achieve sub-pixel accuracy of object boundaries [3]. Second, active contour
models can be easily formulated under a principled energy minimization framework, and allow
incorporation of various prior knowledge, such as shape and intensity distribution, for robust
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image segmentation [5], [14]. Third, they can provide smooth and closed contours as
segmentation results, which are necessary and can be readily used for further applications, such
as shape analysis and recognition.

Existing active contour models can be categorized into two major classes: edge-based
models [3], [10]–[12], [18], [19], [28], [30], and region-based models[4], [23], [25]–[27],
[29]. Edge-based models use local edge information to attract the active contour toward the
object boundaries. Region-based models aim to identify each region of interest by using a
certain region descriptor to guide the motion of the active contour. However, popular region-
based active contour models [4], [23], [25], [26] tend to rely on intensity homogeneity in each
of the regions to be segmented. For example, the popular piecewise constant (PC) models are
based on the assumption that image intensities are statistically homogeneous (roughly a
constant) in each region.

In fact, intensity inhomogeneity often occurs in real images from different modalities. For
medical images, intensity inhomogeneity is usually due to technical limitations or artifacts
introduced by the object being imaged. In particular, the inhomogeneities in magnetic
resonance (MR) images arise from the nonuniform magnetic fields produced by radio-
frequency coils as well as from variations in object susceptibility. Segmentation of such MR
images usually requires intensity inhomogeneity correction as a preprocessing step [9].

Intensity inhomogeneity can be addressed by more sophisticated models than PC models. Vese
and Chan [29] and Tsai et al. [27] independently proposed two similar region-based models
for more general images. Aiming at minimizing the Mumford–Shah functional [21], both
models cast image segmentation as a problem of finding an optimal approximation of the
original image by a piecewise smooth function. These models, widely known as piecewise
smooth (PS) models, have exhibited certain capability of handling intensity inhomogeneity.
However, the PS models are computationally expensive and suffer from other difficulties.
Recently, Michailovich et al. [20] proposed an active contour model using the Bhattacharyya
difference between the intensity distributions inside and outside a contour. Their model does
not rely on the intensity homogeneity and, therefore, to some extent, overcome the limitation
of PC models.

In this paper, we propose a new region-based active contour model in a variational level set
formulation. We first define a region-scalable fitting (RSF) energy functional in terms of a
contour and two fitting functions that locally approximate the image intensities on the two sides
of the contour. The optimal fitting functions are shown to be the averages of local intensities
on the two sides of the contour. The region-scalability of the RSF energy is due to the kernel
function with a scale parameter, which allows the use of intensity information in regions at a
controllable scale, from small neighborhoods to the entire domain. This energy is then
incorporated into a variational level set formulation with a level set regularization term. In the
resulting curve evolution that minimizes the associated energy functional, intensity information
in local regions at a certain scale is used to compute the two fitting functions and, thus, guide
the motion of the contour toward the object boundaries. As a result, the proposed model can
be used to segment images with intensity inhomogeneity. Due to the level set regularization
term in the proposed level set formulation, the regularity of the level set function is intrinsically
preserved to ensure accurate computation for the level set evolution and final results, and avoid
expensive reinitialization procedures.

Note that our model, originally termed as local binary fitting model, was first presented in
[15], and published later in [16] as a full conference paper. Recently, local intensity averages
were also introduced to active contour models in the context of geodesic active contour model
[13] or piecewise smooth models [1], [2], [24]. These models exhibit certain capability of
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handling intensity inhomogeneity. In this paper, local intensity averages are derived as the
minimizers of the proposed energy functional in a distinct variational formulation.

The remainder of this paper is organized as follows. In Section II, we first review some well
known existing region-based models and their limitations. The proposed method is introduced
in Section III. The implementation and results of our method are given in Section IV, followed
by some discussions in Section V. This paper is summarized in Section VI.

II. REGION-BASED ACTIVE CONTOUR MODELS
Let Ω ⊂ ℜ2 be the image domain, and I : Ω → ℜ be a given gray level image. In [21], Mumford
and Shah formulated the image segmentation problem as follows: given an image I, find a
contour C which segments the image into nonoverlapping regions. They proposed the
following energy functional:

(1)

where |C| is the length of the contour C. The minimization of Mumford–Shah functional results
in an optimal contour C that segments the given image I, and an image u that approximates the
original image I and is smooth within each of the connected components in the image domain
Ω separated by the contour C. In practice, it is difficult to minimize the functional (1) due to
the unknown contour C of lower dimension and the nonconvexity of the functional.

Chan and Vese [4] proposed an active contour approach to the Mumford–Shah problem for a
special case where the image u in the functional (1) is a piecewise constant function. For an
image I(x,y) on the image domain Ω, they propose to minimize the following energy:

(2)

where outside(C) and inside(C) represent the regions outside and inside the contour C,
respectively, and c1 and c2 are two constants that approximate the image intensity in outside
(C) and inside(C). We call the first two terms in (2) the global fitting energy. This energy can
be represented by a level set formulation, and then the energy minimization problem can be
converted to solving a level set evolution equation [4].

The optimal constants c1 and c2 that minimize the above global fitting energy are the averages
of the intensities in the entire regions outside(C) and inside(C), respectively. Such optimal
constants c1 and c2 can be far away from the original image data, if the intensities within outside
(C) or inside(C) are not homogeneous. They do not contain any local intensity information,
which is crucial for segmentation of images with intensity inhomogeneity. As a consequence,
the PC model [4] generally fails to segment images with intensity inhomogeneity. Likewise,
more general piecewise constant models in a multiphase level set framework [23], [29] are not
applicable for such images either.

The difficulties in segmenting images with intensity inhomogeneity can be seen from the
following examples. The vessel image and a brain MR image in the first column in Fig. 1 are
typical examples of images with intensity inhomogeneity. For such images, simple
thresholding cannot segment them correctly. In fact, no matter what threshold value is selected,
some part of the background/foreground is incorrectly identified as the foreground/
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background, as shown in the second column. The third column of Fig. 1 shows similar
erroneous results obtained by applying Chan and Vese’s PC model [4]. These examples show
the inability of the PC model and simple thresholding in segmenting images with intensity
inhomogeneity.

The PS models in [29] and [27] overcome the limitation of PC models in segmenting images
with intensity inhomogeneity. In [29], Vese and Chan introduced an energy functional on a
level set function ϕ and two smooth functions u+ and u− that are defined on the regions outside
and inside the zero level contour of a level set function ϕ, respectively. The energy functional
has a data fitting term, which describes the approximation of the image by u+ and u− in their
corresponding subregions, and a smoothing term that forces u+ and u− to be smooth.

The minimization of the energy functional in the PS model consists of the following three
computational tasks. The first one is to solve the PDE of the main function ϕ by a sequence of
iterations. Second, at every certain number of iterations for ϕ, the fitting functions u+ and u−
have to be updated by solving two elliptic PDEs. Third, the functions u+ and u−, which are
defined on different regions, have to be extended to the entire image domain. In addition,
periodic reinitialization is typically necessary to repair the level set function degraded by the
evolution. Obviously, the involved computation in PS model is expensive, which limits its
applications in practice.

III. REGION-SCALABLE FITTING MODEL
A. Region-Scalable Fitting Energy

In this section, we propose a region-based model using intensity information in local regions
at a controllable scale. We first introduce a nonnegative kernel function K : ℜn → [0, +∞) with
the following properties:

1. K(−u) = K(u);

2. K(u) ≥ K(v), if |u| < |v|, and lim|u|→∞ K(u) = 0;

3. ∫ K(x)dx = 1.

We call property 2) a localization property of the kernel K. The kernel function and its
localization property play a key role in the proposed method.

Consider a given vector valued image I : Ω → ℜd, where Ω ⊂ ℜn is the image domain, and
d ≥ 1 is the dimension of the vector I(x). In particular, d = 1 for gray level images, while d =
3 for color images. Let C be a closed contour in the image domain Ω, which separates Ω into
two regions: Ω1 = outside(C) and Ω2 = inside(C). For a given point x ∈ Ω, we define the
following local intensity fitting energy:

(3)

where λ1 and λ2 are positive constants, and f1(x) and f2(x) are two values that approximate
image intensities in Ω1 and Ω2, respectively. The intensities I(y) that are effectively involved
in the above fitting energy are in a local region centered at the point x, whose size can be
controlled by the kernel function K, as explained below. Therefore, we call the local intensity
fitting energy in (3) a region-scalable fitting (RSF) energy of a contour C at a point x.
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The choice of the kernel function K is flexible, as long as it satisfies the above three basic
properties. In this paper, it is chosen as a Gaussian kernel

(4)

with a scale parameter σ > 0.

It is necessary to elaborate on the meaning of the fitting energy  defined by (3) in the
following. First,  is a weighted mean square error of the approximation of the image
intensities I(y) outside and inside the contour C by the fitting values f1(x) and f2(x), respectively,
with K(x − y) as the weight assigned to each intensity I(y) at y. Second, due to the localization
property of the kernel function, the contribution of the intensity I(y) to the fitting energy 
decreases and approaches to zero as the point y goes away from the center point x. Therefore,
the energy  is dominated by the intensities I(y) of the points y in a neighborhood of x. In
particular, the Gaussian kernel Kσ(x − y) decreases drastically to zero as y goes away from x.
Roughly speaking, the Gaussian kernel Kσ(x − y) is effectively zero when |x − y| > 3σ.
Therefore, only the intensities in the neighborhood {y : |x − y| ≤ 3σ} are dominant in the energy

. In this sense, we say that the fitting energy  is localized around the point x.

The fitting energy in (3) is region-scalable in the following sense. The fitting values f1(x) and
f2(x) approximate the image intensities in a region centered at the point x, whose size can be
controlled by the scale parameters σ. The fitting energy (3) with a small σ only involves the
intensities within a small neighborhood of the point x, while the fitting energy with a large σ
involves the image intensities in a large region centered at x. Note that, in our preliminary work
[16], the energy (3)was termed as a local fitting energy, as opposed to the global fitting energy
(2) in Chan and Vese’s PC model [4]. However, it is more appropriate to call the energy (3) a
region-scalable fitting energy, since the intensities for the fitting energy (3) are not restricted
to a small local region. In fact, the intensities I(y) for the fitting energy (3) can be in a region
of any size: from a small neighborhood to the entire image domain. This region-scalability is
a unique and desirable feature of the proposed method.

Given a center point x, the fitting energy  can be minimized when the contour C is exactly
on the object boundary and the fitting values f1 and f2 optimally approximate the local image
intensities on the two sides of C. To obtain the entire object boundary, we must find a contour
C that minimizes the energy  for all x in the image domain Ω. This can be achieved by
minimizing the integral of  over all the center points x in the image domain Ω, namely,

. In addition, it is necessary to smooth the contour C by penalizing its
length |C|, as in most of active contour models. Therefore, we define the following energy
functional:

(5)

This energy functional is defined for a contour C. To handle topological changes, we will
convert it to a level set formulation in the next subsection.

B. Level Set Formulation
In level set methods [22], a contour C ⊂ Ω is represented by the zero level set of a Lipschitz
function ϕ : Ω → ℜ, which is called a level set function. In this paper, we let the level set
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function ϕ take positive and negative values outside and inside the contour C, respectively. Let
H be the Heaviside function, then the energy functional  can be expressed as

(6)

where M1(ϕ) = H(ϕ) and M2(ϕ) = 1 − H(ϕ). Thus, the energy Ɛ in (5) can be written as (7),
shown at the bottom of the next page, where the last term ∫ |∇H(ϕ(x))|dx computes the length
of the zero level contour of ϕ. Note that this length term has been commonly used in variational
level set methods for the regularization of the zero level contour [4], [29]. The length of the
zero level contour can be equivalently expressed as the integral ∫ δ(ϕ)|∇ϕ|dxwith the Dirac delta
function δ, which has often been used in variational level set methods [5], [18].

(7)

In practice, the Heaviside function H in the above energy functionals is approximated by a
smooth function Hϵ defined by

(8)

The derivative of Hϵ is

(9)

By replacing H in (7) with Hϵ, the energy functional Ɛ in (7) is then approximated by (10),
shown at the bottom of the page, where  and 

(10)

To preserve the regularity of the level set function ϕ, which is necessary for accurate
computation and stable level set evolution, we introduce a level set regularization term in our
variational level set formulation. As proposed in [18], we define the level set regularization
term as

(11)

which characterizes the deviation of the function ϕ from a signed distance function. Therefore,
we propose to minimize the energy functional
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(12)

where µ is a positive constant. To minimize this energy functional, its gradient flow is used as
the level set evolution equation in the proposed method.

C. Energy Minimization
We use the standard gradient descent (or steepest descent) method to minimize the energy
functional (12). For a fixed level set function ϕ, we minimize the functional ℱ(ϕ, f1, f2) in (12)
with respect to the functions f1(x) and f2(x). By calculus of variations, it can be shown that the
functions f1(x) and f2(x) that minimize ℱ(ϕ, f1, f2) satisfy the following Euler–Lagrange
equations:

(13)

From (13), we obtain

(14)

which minimize the energy functional ℱ(ϕ, f1, f2) for a fixed ϕ. The functions f1(x) and f2(x)
given by (14) are weighted averages of the intensities in a neighborhood of x, whose size is
proportional to the scale parameter σ. Note that the denominators in (14) are always positive,
due to the fact that  and  by the definition of Hϵ in (8).

Keeping f1 and f2 fixed, we minimize the energy functional ℱ(ϕ, f1, f2) with respect to ϕ using
the standard gradient descent method by solving the gradient flow equation as follows:

(15)

where δϵ is the smoothed Dirac delta function given by (9), and e1 and e2 are the functions

(16)

where f1 and f2 are given by (14).

The above (15) is the level set evolution equation to be solved in the proposed method. The
term −δϵ(ϕ)(λ1e1 − λ2e2is derived from the data fitting energy, and, therefore, is referred to as
the data fitting term. This term plays a key role in the proposed model, since it is responsible
for driving the active contour toward object boundaries. The second term νδϵ(ϕ)div (∇ϕ/|∇ϕ|)
has a length shortening or smoothing effect on the zero level contour, which is necessary to
maintain the regularity of the contour. This term is called the arc length term. The third term
µ (∇2ϕ − div (∇ϕ/|∇ϕ|)) is called a level set regularization term, since it serves to maintain the
regularity of the level set function.
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D. Regularity of Fitting Functions and Level Set Function
In the proposed model, we introduce two fitting functions f1 and f2. They are different from
the data fitting functions u+ and u− in the PS model, due to the different natures of the data
fitting energy terms in the two models. In the fitting energy  in (6), each integral is a weighted
average squared distance from the fitting value f1(x) (or f2(x)) to all the image intensities I(y)
the region outside(C) (or the region inside(C)), with the kernel Kσ(x − y) as the weight. Due
to the localization property of the kernel Kσ, the values f1(x) and f2(x) that minimize  are
determined by all the intensities I(y) in a neighborhood of x. When the point x moves to an
adjacent point x′ = x + Δx for a small displacement Δx, the majority of points in the
neighborhood of x remain in that of x′. Therefore, the values of fl(x′) and f2(x′) which minimize

 are close tofl(x) and f2(x) that minimize , due to the overlap of the neighborhoods of x and
x′. This implies the smoothness of the functions fl and f2. The smoothness of fl and f2 is also
confirmed by the Gaussian convolutions in (14).

The regularity of the level set function ϕ is also important for stable evolution and accurate
computation in level set methods. In our method, the regularity of the level set function ϕ is
inherently ensured by the level set regularization term in our level set formulation. Without
the level set regularization term, the level set function ϕ typically grows to very large values
on both sides of the zero level set, which yields an arbitrarily small value of δϵ(ϕ) as a factor
in the evolution (15). Thus, the motion of the contour becomes much slower and can even be
stopped before it reaches the desired object boundaries. More importantly, the irregularity of
ϕ make the involved computation inaccurate and, therefore, causes erroneous segmentation
results. For more details about the significance and the mechanism of the level set regularization
term, the readers are referred to [18].

Note that the irregularity of the level set function occurs in the PS model. The regularity of the
level set function can be eventually violated by the level set evolution according to the PS
model. Therefore, an extra numerical remedy, known as reinitialization, is usually needed to
periodically stop the evolution and reshape the degraded level set function as a signed distance
function for further computation. However, the practice of reinitialization may cause some
undesirable side effects, such as preventing the detection of interior boundaries within an
object, as pointed out in [4]. In our model, the regularity of the level set function is inherently
maintained by the level set regularization term. This term is associated with the penalizing term

(ϕ) as a soft constraint on the regularity of the level set function ϕ, which regularizes the
evolving level set function ϕ by penalizing its deviation from a signed distance function, instead
of forcing ϕ to be a signed distance function.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS
A. Implementation

All the partial derivatives ∂ϕ/∂x and ∂ϕ/∂y in (15) can be simply discretized as central finite
differences. The temporal derivative is discretized as a forward difference. An iteration scheme
is then obtained by discretizing the PDE (15). The level set function ϕ can be simply initialized
as a binary step function which takes a negative constant value −c0 inside a region R0 and a
positive constant value c0 outside, for a constant c0 > 0. We choose c0 = 2 in the experiments
shown in this paper. The advantage of using binary step function as the initial level set function
is that new contours can emerge easily and the curve evolution is significantly faster than the
evolution from an initial function as a signed distance map. In our implementation, the
functions f1 and f2 are updated at every time step according to (14) before the update of the
level set function ϕ.
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To compute the convolutions in (14) more efficiently, the kernel Kσ can be truncated as a w ×
w mask, where w is the smallest odd number no less than 4σ. For example, given a scale
parameter σ = 3.0, we have w = 13 and the size of the mask is 13 × 13. The difference between
using the above specified size of the mask and a larger mask of Kσ, such as 41 × 41 for σ =
3.0, has been found to be neglectable in terms of segmentation results. Therefore, it is advisable
to use the above given mask size to compute the convolutions efficiently.

The main computational cost in our method is for computing f1 and f2 in (14) and λ1e1 −
λ2e2 in the level set evolution (15). There are four convolutions in the numerators and
denominators in (14). However, we notice that f2 in (14) can be written as

where 1 is the constant function with value 1. In the above expression of f2, the second terms
in the numerator and the denominator are the same as the numerator and the denominator in
f1, while the terms Kσ * I in the numerator and Kσ * 1 in the denominator do not depend on the
evolving level set function ϕ. Therefore, the two convolutions Kσ * I and Kσ * 1 can be computed
only once before the iterations. During the iterations, only the two convolutions Kσ * [Hϵ (ϕ)
I] and Kσ * Hϵ(ϕ) are computed for the evolving ϕ. The term λ1e1 − λ2e2 in (15) can be expressed
as a combination of three convolutions, with one independent of ϕ, which can be computed
only once before the iterations. Therefore, there are totally four convolutions to be computed
at each iterations in the above implementation.

B. Results
The proposed method has been tested with synthetic and real images from different modalities.
Unless otherwise specified, we use the following parameters in this paper: σ = 3.0, λ1 = λ2 =
1.0, time step Δt = 0.1, µ = 1, and ν = 0.001 × 255 × 255. We use relatively small scale parameter
σ for the experiments in this section. In general, our method with a smaller scale σ can produce
more accurate location of the object boundaries, while it is more independent of the location
of the initial contour when a larger σ is used. The influence of different scale parameters on
the behavior of our method will be discussed in Section V.

We first show the results for three synthetic images in Fig. 2. These images have the same
objects but different distribution of intensities. The initial and the final contours are plotted on
the images in the first column and the second column, respectively. To clearly see the profile
of the functions f1 and f2 associated with the final level set function ϕ, we plot a 1-D cross
section at the middle row of f1 and f2 and the input image I in the third column. The intensity
of the image in the first row is piecewise constant. There are three distinct intensities in the
three regions. The result in Row 1 shows that our method is able to segment images with
multiple distinct means of image intensities.

The second and third rows in Fig. 2 show the results for two images corrupted by intensity
inhomogeneity. The image in third row was generated by adding Gaussian noise to the clean
image in the second row. The standard deviation of the noise is 4.0, which is quite high relative
to the image contrast. As explained in Section III-D, the functions f1 and f2 given by (14) are
smooth enough, even in the presence of noise. This is con-firmed by the smoothness of f1 and
f2 plotted in the second and third rows. In addition, we can see that the fitting functions f1 and
f2 are only affected marginally by the added noise, even though the noise is quite high. As a
result, the segmentation results for the clean image and the noise contaminated version are very
close. This demonstrates the robustness of our method to the noise.

Li et al. Page 9

IEEE Trans Image Process. Author manuscript; available in PMC 2009 August 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3 shows the results for two synthetic images, two X-ray images of vessels, and a real image
of a T-shaped object. All of them are typical images with intensity inhomogeneity. In particular,
the vessel image in the third row has been used in Fig. 1, by which we have shown that the PC
model fails to segment the images due to the intensity inhomogeneity. The image in the second
row was created with intensity inhomogeneity and contaminated with high level noise. Our
method successfully extracts the object boundaries for these two images, as shown in Fig. 3.
The third and the fourth rows in Fig. 3 show the results of our method for two real images of
blood vessels. In these two images, part of the vessel boundaries are quite weak, which renders
it a nontrivial task to segment the vessels in the images. The image in the bottom row is a real
image with intensity inhomogeneity due to nonuniform illumination. Satisfactory
segmentation results have been obtained for these challenging images, as shown in Fig. 3.

Intensity inhomogeneity also often occurs in MR images, such as the one shown in the upper
row in Fig. 4. Some intensities of the white matter in the upper part are even lower than those
of the gray matter in the lower part. Nevertheless, our method successfully segments the white
matter in these two images. For this image, we use the parameters σ = 3.0, λ1 = 1.0, λ2 = 2.0,
time step Δt = 0.1, µ = 1, and ν = 0.003 × 255 × 255. Note that we choose a larger value λ2
than λ1 for this image to avoid the emergence of new contours far away from the initial contour,
such as the skull boundaries, as explained in Section IV-C. In this experiment, we choose a
larger ν than in other experiments to further penalize the length of the contour, which also
discourages the expansion of the contour to some extent. The lower row in Fig. 4 shows the
result for a CT image of a liver with a tumor (the dark area in the middle). For this image, we
used the scale parameter σ = 4.0. This image is rather noisy and part of the tumor boundary is
weak. Our method successfully extracts the object boundaries in this image.

Fig. 5 shows an application of our model to a color image of potatoes. With this experiment,
we also demonstrate the smoothness of the fitting images f1 and f2 by showing the images of
them. The first row shows the active contours on the original images from its initial to
converged state. The second and third rows show the corresponding fitting images f1 and f2,
computed by (14). It is clearly seen that these images are smooth, which experimentally verifies
the regularity of the fitting functions f1 and f2 as mentioned in the previous section. It is

interesting to note that their combination  enhances the features in the images,
such as object boundaries, when it converges to its final result (the last image in the fourth
row).

C. Remarks on the Behavior of Curve Evolution
Note that new contours can emerge during the curve evolution in our method. This has been
observed in the experiments for the images in the second and third rows of Fig. 3 and the first
row in Fig. 4. The emergence of new contours speeds up the curve evolution toward final
results, and enables the detection of interior boundaries, such as the two interior boundaries
within the white matter in Fig. 4.

The emergence of new contours is possible because the data fitting term −δϵ(ϕ)(λ1e1 − λ2e2)
in (15) has influence on the change of ϕ in the entire image domain, as the factor δϵ(ϕ) is
nonzero by the definition of δϵ in (9). For points x far away from the zero level contour but
near an object boundary, the values of (λ1e1 − λ2e2) may still be large. Although the factor
δϵ(ϕ) takes small values far away from the zero level set, the data fitting term −δϵ(ϕ)(λ1e1 −
λ2e2) is not zero and cannot be ignored, which can eventually change the value of ϕ. As a result
of cumulative change of ϕ, new zero level contours may emerge at strong object boundaries.
Especially, when the level set function ϕ is initialized to be small values, such as the binary
step function used in our implementation (see Section IV-A), new contours can emerge more
easily and quickly. In our experiments, the initial level set function ϕ0 is defined as a binary
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step function that takes values of c0 and −c0 with a small value of c0 = 2. As a result, the factor
δϵ(ϕ) takes relatively larger values in the beginning of the level set evolution, which leads to
faster emergence of new contours at strong edges, even at locations far away from current zero
level set. Of additional note, a larger ϵ gives a broader profile of δϵ, which makes it easier for
new contours to emerge. However, broader profile of δϵ decreases accuracy in the final contour
location.

The coefficients λ1 and λ2 are the weights of the two integrals in (3), or equivalently (6), over
the regions outside(C) and inside(C), respectively. In most cases, we set the coefficients as the
same constant λ1 = λ2, which leads to a fair competition between the regions inside and outside
the zero level contour during the evolution. However, when different weights λ1 and λ2 are
used, the amounts of penalty imposed on the integrals over outside(C) and inside(C) are
different. For example, when λ2 is larger than λ1, larger penalty is imposed on the integral over
the region inside(C) in the data fitting energy, which implies a larger penalty on the area of
inside(C). Due to this larger penalty on the area of inside(C), the emergence of new contour
outside the initial contour, which would increase the area of inside(C), is to some extent
prevented. Especially, at locations far away from the current zero level set, we have e1 ≈ e2,
and, thus, the signs of −δϵ(ϕ)(λ1e1 − λ2e2) tend to be positive there, because λ2 > λ1. As a result,
ϕ does not decrease at these locations, where ϕ is initially positive, and, thus, no new contours
are created there.

D. Comparison With Piecewise Smooth Model and Mean Shift Algorithm
It is obvious that PC models by nature cannot address intensity inhomogeneity. Previous
experimental results in Section II for Chan and Vese’s PC model shown in Fig. 1 and those of
our method shown in Fig. 3 and Fig. 4 have demonstrated the advantage of our method over
the PC model. We now compare our model with the PS model in [29] and the well-known
mean shift algorithm [8], both of which possess certain capability of handling intensity
inhomogeneity.

We first show the results of the comparison with the PS model. As described in Section II, the
PS model consists of quite a few computationally expensive steps. By comparing the
computational procedures in the PS model and our model, it is clear that our method is much
simpler and more efficient than the PS model. This is demonstrated by the following
experiments of comparing the computation time in both methods for five images.

Fig. 6 shows the results of our model and PS model using the same images and the same initial
contours in the upper row and the lower row, respectively. The CPU times for these images
are listed in Table I, which were recorded from our experiments with Matlab code run on a
Dell Dimension 4600 PC, with Pentium 4 processor, 2.80 GHz, 1 GB RAM, with Matlab 7.4
on Windows XP. The sizes of these images are also shown in this table. In the experiments
with the images in Fig. 6, our model is about 15 to 60 times faster than the PS model. This
demonstrates the significant advantage of our model in terms of computational efficiency.

Our model is also superior in terms of accuracy. This is obvious for the MR image in the fifth
column in Fig. 6. Our method extracts the white matter boundary accurately, while the contour
of the PS model skips some parts of the white matter boundary and is finally attracted to the
outer boundary of the gray matter. The right most column in Fig. 6 is an enlarged view of the
lower left portion of the figures in the fifth column, which clearly shows the advantage of our
model over the PS model.

For comparison with the mean shift algorithm, we used the software EDISON downloaded
from http://www.caip.rutgers.edu/riul/research/code/EDISON, which is based on a fast
implementation of the mean shift algorithm using a speed-up scheme described in [6]. Fig. 7
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shows the results of mean shift algorithm for the same images in Fig. 6 for the comparison
with the PS model. The result of mean shift algorithm for the first image is similar to that of
our method, showing certain ability of the mean shift algorithm in handling intensity
inhomogeneity. However, for the first vessel image, a small portion of the vessel is missing.
For the rest three images, the errors of mean shift algorithm are even more obvious. We notice
that the segmentation result of mean shift algorithm is somewhat sensitive to the choice of two
major parameters: spatial bandwidth hs and range bandwidth hr. We have tweaked these two
parameters and other minor parameters for the best segmentation results for these five images.

V. FURTHER DISCUSSION
A. Discussion on Region-Scalability

It is necessary to examine the influence of the scale parameter σ on the segmentation results
of the proposed method, although the same scale parameter σ = 3.0 has been used for most of
the images previously in this paper. For this purpose, we apply our method using three different
scale parameters σ = 3.0, 6.0, and 10.0 for the same MR image used in Fig. 4. The results for
these three scale parameters are shown in Fig. 8. These results are grossly similar, while
differences in fine details of the resulting white matter boundaries can be observed. The most
accurate segmentation result is obtained for the smallest scale parameter σ = 3.0.

Our method with a larger scale parameter σ is more robust to the location of the initial contour.
For sufficiently large scale σ, our method can be as insensitive to the initialization as the PC
model [4]. In fact, the PC model [4] can be considered as an extreme case of the proposed RSF
model for σ → ∞. This can be seen from the limit of the fitting function f1 and f2 in (14) as σ
→ ∞. From (14) and the definition of Kσ, it can be shown that

(17)

The right-hand sides in (17) are the means of the intensities in the regions {ϕ > 0} and {ϕ <
0}, respectively, which are the same constants that fit the intensities in these two regions in the
PC model [4].

To examine the performances of our method using a relatively small and a sufficiently large
scale parameters σ, we use σ = 3.0 and σ = 30.0 for an MR image of bladder with intensity
inhomogeneity. The initial contour shown in Fig. 9(a) is used in both cases. The corresponding
results for σ = 3.0 and σ = 30.0 are shown in Fig. 9(b) and (c), respectively. It can be seen that
the result for σ = 3.0 is desirable, with the bladder and the surrounding minor structures
segmented very well. The result of our method with σ = 30.0, however, is similar to the result
of the PC model, shown in Fig. 9(d), both missing a significant part of the bladder.

An important advantage of the proposed model is its region-scalability: it allows the choice of
the scale parameter σ to exploit intensity information in regions of different scales, from small
neighborhoods to the entire image domain. For many real-world images, the intensity
inhomogeneity is not so severe. In this situations, a reasonably large σ can be used in our model,
so that it is more independent of initialization, while achieving satisfactory accuracy in
segmentation. For example, we set σ = 10.0 in our model and tested it with four different initial
contours (shown as black dashed rectangles or circles) for the same image in the lower row of
Fig. 9. For these four diverse initializations, almost the same segmentation results (shown as
white solid contours) were obtained, as shown in the lower row of Fig. 9. The boundary of the
object of interest (the bladder) is extracted very well for these different initializations. We
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remark that using a larger scale parameter σ increases the computational cost of the
convolutions in each iteration than using a smaller one. However, the number of total iterations
can be reduced by using a larger σ. Therefore, the total computational costs are comparable
for both cases.

B. Some Extensions
Note that the level set formulation proposed in this paper is a two-phase model, which cannot
segment regions with multiple junctions. This limitation can be easily overcome by extending
the formulation in this paper to a multiphase level set formulation. The extension to multiphase
level set formulation is simply established by generalizing the local intensity fitting energy in
(3) as

where f1, …, fN are N fitting functions associated with N disjoint regions Ω1, …, ΩN in Ω.
These N regions can be represented with multiple level set functions as in [29] to define an
energy functional of the level set functions. During the preparation of this paper, we have
reported our results of the multiphase formulation for 3-D segmentation of white matter, gray
matter, and cerebral-spinal fluid in brain MR images in [17].

The experiments in Section V-A show the advantages of using small and large scale parameters
in the proposed RSF model. In this paper, we only use one scale parameter σ in the RSF energy
for each given image. However, the proposed RSF model provides basic elements that can be
used in more sophisticated ways to further improve both accuracy and robustness, such as
combining RSF energy terms with different scale parameters. The computational efficiency
can also be significantly improved by narrow band implementation of the proposed model.
Due to the space limit, the detail of the above extensions are not included in this paper.

VI. CONCLUSION
We have presented a new region-based active contour model that draws upon intensity
information in local regions at a controllable scale. The proposed model is able to segment
images with intensity inhomogeneity, and has desirable performance for images with weak
object boundaries. With the level set regularization term in the proposed level set formulation,
the regularity of the level set function is intrinsically preserved to ensure accurate computation
and avoid expensive reinitialization procedures. Experimental results have demonstrated the
advantages of our method over several well-known methods for image segmentation.
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Fig. 1.
Error of thresholding and Chan–Vese model for images with intensity inhomogeneity. Column
1: Original images. Column 2: Thresholding results. Column 3: Results of Chan–Vese’s PC
model.
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Fig. 2.
Results of our method for three synthetic images. Column 1: Initial contour and original image.
Column 2: Final contour. Column 3: 1-D cross section of the fitting functions f1 (dashed lines),
f2 (dotted lines), and the original image I (solid lines), for the final level set function ϕ. Column

4: 1-D cross section of the fitting image  (dashed lines) for the final level set
function ϕ and the original image I (solid lines).
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Fig. 3.
Results of our method for synthetic images and real images. The curve evolution process from
the initial contour (in the first column) to the final contour (in the fourth column) is shown in
every row for the corresponding image.
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Fig. 4.
Results of our method for MR and CT images. The curve evolution process from the initial
contour (in the first column) to the final contour (in the fourth column) is shown in every row
for the corresponding image.
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Fig. 5.
Results of our method for a color image of potatoes. Row 1 shows the curve evolution process
from the initial contour to the final contour. Row 2, Row 3, and Row 4 show f1, f2, and the

fitting image , respectively, at different time steps.
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Fig. 6.
Comparison of our model with PS model. The initial contours and the final contours are plotted
as the dashed green contours and solid red contours, respectively. Upper row: The results of
our model. Lower row: The results of PS model.

Li et al. Page 21

IEEE Trans Image Process. Author manuscript; available in PMC 2009 August 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
Results of mean shift algorithm for five images with spatial bandwidth hs and the range
bandwidth hr represented as a pair (hs, hr) = (3,8), (7,8), (4,3), (4,4), and (6,6) in the order from
left to right.
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Fig. 8.
Results of our model with scale parameters σ =3.0, 6.0, and 10.0 (from the left to the right).
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Fig. 9.
Experiments for an MR image of bladder. (a) Initial contour and the original image. (b) Result
of our method for σ = 3:0. (c) Result of our method for σ = 30:0. (d) Result of the PC model.
(e)–(h) Results (white solid contours) of our model for four different initial contours (the black
dashed rectangles or circles), with the same scale parameter σ = 10:0. Image courtesy of
University of Graz.
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