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Synthetic Aperture Hitchhiker Imaging
Can Evren Yarman, Member, IEEE, Birsen Yazıcı, Senior Member, IEEE

Abstract—We introduce a novel synthetic-aperture imaging

method for radar systems that rely on sources of opportunity.

We consider receivers that fly along arbitrary, but known,

flight trajectories and develop a spatio-temporal correlation-

based filtered-backprojection-type image reconstruction method.

The method involves first correlating the measurements from two

different receiver locations. This leads to a forward model where

the radiance of the target scene is projected onto the intersection

of certain hyperboloids with the surface topography. We next use

microlocal techniques to develop a filtered-backprojection-type

inversion method to recover the scene radiance. The method

is applicable to both stationary and mobile, and cooperative

and non-cooperative sources of opportunity. Additionally, it is

applicable to non-ideal imaging scenarios such as those involving

arbitrary flight trajectories, and has the desirable property of

preserving the visible edges of the scene radiance. We present

an analysis of the computational complexity of the image recon-

struction method and demonstrate its performance in numerical

simulations for single and multiple transmitters of opportunity.

I. INTRODUCTION

A
hitchhiker is a passive radar receiver that relies on

sources of opportunity to perform radar tasks [1], [2],

[3]. With the rapid growth in the number of TV and radio

broadcasting stations [4], [5], [6], [7], [8], mobile phone base

stations [9], [10] in addition to terrestrial and space-based

communication and navigation satellites [11], [12], [13], [14],

[15], [16], hitchhikers offer a viable approach to urban and

rural imaging either as a stand-alone system or adjunct to

active radar systems.

A synthetic-aperture radar (SAR) [17], [1] system is one

that uses an antenna on a moving platform, such as an aircraft

or a satellite, and which forms an effective long aperture

by coherently combining views from different locations. In

this paper, we consider a synthetic-aperture imaging system

consisting of receivers traversing arbitrary flight trajectories

that use sources of opportunity for imaging as illustrated in

Figure 1. Due to its combined synthetic aperture and hitch-

hiking structure, we refer to the system under consideration

as synthetic aperture hitchhiker (SAH). We introduce a novel
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spatio-temporal-correlation-based, filtered-backprojection-type

image reconstruction method for SAH imaging. This method

first correlates the received signals measured at different

locations on the receiver flight trajectory(ies), and next ap-

plies a microlocal based filtered-backprojection technique on

the correlated measurements. The method has the following

practical advantages: (1) as compared to the existing passive

radar detection systems [12], [13], [14], [5], [7], [9], [18], [8],

it does not necessarily require receivers with high directivity;

(2) it can be used in the presence of both cooperative and non-

cooperative sources of opportunity; (3) it can be used with

stationary and/or mobile sources of opportunity; (4) it can be

used with one or more airborne receivers; (5) it can handle

non-ideal imaging scenarios such as arbitrary flight trajectories

or non-flat topography; (6) it has the desirable property that

the visible edges in the image not only appear at the right

location and right orientation but also at the right strength in

the reconstructed image for the case of cooperative sources; (7)

it is a non-iterative, analytic image reconstruction technique

which can be made computationally efficient [19].

There are two equivalent spatio-temporal correlation-based

imaging approaches [20], [21], [22], [23], [24], [25], [26].

In the first approach, signals received from different receiver

locations are backpropagated to focus at each point of interest

and images obtained from each receiver pair are summed to

form the final image [22], [25], [26]. In the second approach,

for each pair of receivers an image is formed by first cor-

relating the received signals from different receiver locations

and then backprojecting the correlated measurements into the

image domain. The final image is formed by averaging over

the images obtained for each receiver pair [20], [21], [23],

[24]. In both methods, the image represents the incoherent-

field approximation of the target scene radiance.

To the best of our knowledge, both classes of methods

consider imaging with discrete sparse apertures where the

receivers and/or transmitters are static. In this paper we

consider synthetic aperture imaging and present a new image

reconstruction method that falls into the second type of spatio-

temporal correlation imaging methods.

Our treatment combines the spatio-temporal correlation

methods presented in [27], [21], [24] with the microlocal

techniques [28], [29], [30] to develop a filtered-backprojection

(FBP)-type reconstruction methods for SAH, which we refer to

as correlation filtered-backprojection (C-FBP). Given multiple

sparsely distributed receivers, the spatio-temporal correlation

method correlates the measurements from different receivers to

detect targets within the illuminated scene by means of relative

change [31], [27], [32]. This process eliminates the need for

knowledge about the transmitter location and waveform. The

correlation process also leads to a forward model in which

the scene radiance is projected onto the intersection Hij of
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the hyperboloid with the ground topography (see Section IV

for the definition of Hij). Microlocal techniques provide an

approximate FBP-type inversion with the advantages outlined

in (5)-(7) above. Additionally, if an exact inversion is possi-

ble, microlocal techniques often provide the exact inversion

formula. Thus, the C-FBP method performs reconstruction in

three steps: First, it correlates the received signals at different

receiver locations; next, it filters the correlated signal; and

finally, the resulting signal is backprojected along the inter-

section Hij of the illuminated surface and the hyperboloid.

For ease of exposition, we present our results for the case

of static sources of opportunity; however, extensions to the

case of mobile sources of opportunity is straightforward. We

compare our method to the backprojection method, present the

analysis of the computational complexity of both methods, and

compare their performances in numerical simulations.

The organization of the rest of the paper is as follows:

In Section II, we introduce the synthetic aperture hitchhiker

and present the forward model. In Section III, we present the

spatio-temporal correlated signal model for non-cooperative

and cooperative sources of opportunity. In Section IV, we

present the correlation-filtered-backprojection-type image re-

construction methods for both cooperative and non-cooperative

sources of opportunity. In Section V, we present our recon-

struction algorithm and its computational complexity analysis.

In Section VI, we demonstrate the performance of our method

in numerical simulations for single and multiple receiver and

transmit antennas for both cooperative and noncooperative

sources of opportunity. Finally, we conclude our discussion in

Section VII. The paper includes an appendix on the stationary

phase theorem, which is repeatedly used throughout the paper,

and a table of notations.

II. MEASUREMENT MODEL

Assume that there are N ≥ 1 airborne antennas flying over a

scene as shown in Figure 1. Let γRi
(s), s ∈ R, i = 1, . . . , N ,

be the ith SAH trajectory. Let x = (x, ψ(x)) ∈ R
3 denote

the surface of the earth, where x = (x1, x2) and ψ : R
2 → R

is a known smooth function.

We assume that the electromagnetic waves propagate in

free space and then scatter in a thin region at the earth’s sur-

face. Under the start-stop approximation, the single-scattering

(Born) approximation of the contribution to the received signal

at the ith receiver, i = 1, . . . , N , due to a transmitter located

at y ∈ R
3 can be modeled as [28]:

di,y(t, s) ≈
∫

e−i2πω(t−ri,y(s,x)/c0) G(x)

× ARi
(ω, s, x) AT (ω, x,y) dω dx, (1)

where i =
√
−1, t is the fast-time variable, s is the slow-

time variable which parameterizes the antenna trajectory, c0

denotes the speed of light in free-space, ri,y(s,x)/c0, where

ri,y = |y − x| + |x − γRi
(s)|, is the total travel time, G(x)

denotes the scene reflectivity, and

ARi
(ω, s, x) =

√

π

2

ω JRi
(ω, s,x)

|γRi
(s) − x| (2)

AT (ω, x,y) =

√

π

2

ω JT (ω, x,y)

|x − y| . (3)

In (3) JRi
is the ith receiver antenna beam pattern and JT is

the transmitter antenna beam pattern located at y (which also

includes the transmitted waveform). Note that for the current

discussion we will only consider static sources of opportunity

to simplify our notation. However, the model in (1) and (3)

can be easily extended to mobile sources of opportunity by

introducing a slow-time (s) dependence in the transmitter

antenna beam pattern, i.e. JT (ω, s, x,y(s)). The discussion

in the rest of the paper applies equally well to this case.

The received signal at the ith receiver is given by the

superposition of (1) over all transmitters:

di(t, s) =

∫

di,y(t, s) dy. (4)

Note that without loss of generality the integration above can

be replaced with a summation for finitely many sources of

opportunity.

Standard SAR image reconstruction problem involves es-

timation of scene reflectivity, G, from the measurements

di(t, s), for some range [sa, sb] and [0, t0] of s and t, re-

spectively. For monostatic SAR and BISAR one approach

for estimating G is to perform matched filtering followed by

filtered backprojection (MF-FBP) [28], [30], [33]. The MF-

FBP approach introduced in [30], [34], [33], however, requires

knowledge of transmitter location, waveform and antenna

beam pattern, and assumes that the received signal di(t, s)
in (4) can be decomposed into the components di,y(t, s) due

to each transmitter. In this paper, we introduce a new image

reconstruction method that uses (4) as the received signal

model and does not necessarily require the knowledge of

transmitter location, waveform or beam pattern. This method

reconstructs the scene radiance, a quantity associated with the

scene reflectivity, which we will introduce in the next section.

III. SPATIO-TEMPORAL CORRELATION OF RECEIVED

SIGNALS

We address the image reconstruction problem for two dif-

ferent cases: reconstruction in the presence of (i) cooperative

sources of opportunity, where the information (transmitter

location, waveform, antenna beam pattern, etc.) about the

sources are available, and (ii) non-cooperative sources of

opportunity where such information is not available. We will

first develop a model that connects the correlated measure-

ments with the scene radiance, and then introduce the filtered-

backprojection method.

We define the spatio-temporal correlation of di and dj by

dij(t, s, s
′) =

∫

di(s, τ)d∗j (τ − t, s + s′)dτ, (5)

where ∗ denotes complex conjugation and s′ is the slow-

time delay. For the rest of the manuscript, we use dij(t, s, s
′),
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Fig. 1. Synthetic aperture hitchhiker geometry. A point on the earth’s surface is denoted by x = (x, ψ(x)) ∈ R
3, where x ∈ R

2 and ψ(x) ∈ R denotes
ground topography; t and s are the fast-time and slow-time variables used to parameterize the measurement time and flight trajectories; γRi

(s) denotes the

trajectory of the ith receiver; Ti denotes ith transmitter, at location yi(s). For static transmitters yi(s) = yi.

s, s′ ∈ [sa, sb], t ∈ [0, t0], i, j = 1, . . . , N , to reconstruct an

image of the scene.

Note that for a single receiver (N = 1) dij = d11. We will

reconstruct images for each i, j pair for a range of s, s′ and t
and sum all images to form the final image.

A. Non-cooperative Sources of Opportunity

If the sources of opportunity are non-cooperative, we use a

stochastic model for the unknown terms, namely the transmit-

ter antenna beam pattern JT and the scene reflectivity G.

Let CG and CJT
denote the correlation function of G and

JT , respectively:

CG(x,x′) =E[G(x)G∗(x′)], (6)

CJT
(ω, x,x′,y,y′) = E[JT (ω, x,y)J∗

T (ω, x′,y′)] (7)

where ∗ denotes complex conjugate. We make the assump-

tion that scene reflectivity G and the transmit antenna beam

pattern JT are statistically independent. Next, we make the

incoherent-field approximation [35] by assuming that G and

JT satisfy the following equalities:

CG(x, x′) = RG(x)δ(x − x′) (8)

CJT
(ω, x, x,y,y′) = RT (ω, x,y)δ(y − y′). (9)

Here RG is referred to as the scene radiance and RT

as the transmitter irradiance (see page 525 of [35] for a

definition of irradiance). Note that RT is the average power of

electromagnetic radiation emitted by the transmitter at location

y that is incident on the target surface at x.

Plugging (1) and (4) in (5), performing the τ integration,

assuming that G and JT are statistically independent, and

using (8) and (9), we find that the expected value of the

correlated signal can be expressed as

E[dij(t, s, s
′)] =

∫

e
−i2πω(t−[|x−γRi

(s)|−|x′−γRj
(s+s′)|]/c0)

×
[∫

ei2πω([|y−x|−|y′−x
′|]/c0)

RT (ω, x,y) δ(y − y′)

|x − y| |x′ − y′| dy dy′

]

× ω2π

2
ARij

(ω, s, s′, x, x′)RG(x)δ(x − x′) dω dx dx′,

i, j = 1, . . . , N, (10)

where

ARij
(ω, s, s′,x,x′) = ARi

(ω, s, x)A∗
Rj

(ω, s + s′, x′),

i, j = 1, . . . , N. (11)

Carrying out the x′ and y′ integrations in (10), we note

that the dependence of the phase on the transmitter locations

y and y′ disappear, and we have simply

E[dij(t, s, s
′)] = F [RG](t, s, s′)

:=

∫

e−i2πω(t−rij(s,s′,x)/c0)ARij
(ω, s, s′,x,x)

× R̃T (ω,x)RG(x) dω dx, i, j = 1, . . . , N, (12)

where

R̃T (ω, x) =
ω2π

2

∫

RT (ω, x,y)

|x − y|2 dy (13)

and

rij(s, s
′,x) = |x − γRi

(s)| − |x − γRj
(s + s′)|. (14)

We will refer to rij as the hitchhiker range. Note that

R̃T (ω, x) is the total average power incident upon the ground

surface at x due to all the transmitters. Therefore, we will

refer to R̃T (ω, x) as the total average transmitter irradiance.
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B. Cooperative Sources of Opportunity

If the sources of opportunity are cooperative, we use a

stochastic model for unknown scene reflectivity G; however,

we assume that we have the full knowledge of transmitter lo-

cations and beam patterns. Thus, we treat JT deterministically.

The expected value of the correlated signal is then

E[dij(t, s, s
′)] =

∫

e
−i2πω(t−[|x−γRi

(s)|−|x′−γRj
(s+s′)|]/c0)

× ARij
(ω, s, s′, x, x′)BT (ω, x, x′)CG(x,x′)dω dx dx′,

i, j = 1, . . . , N, (15)

where CG is the autocorrelation of G given by (6), ARij is as

in (11) and

BT (ω, x,x′) =

[∫

ei2πω|y−x|/c0AT (ω, x,y)dy

]

×
[∫

ei2πω|y′−x
′|/c0AT (ω, x′,y′)dy′

]∗

. (16)

Next, we make the incoherent-field approximation (8) to (15),

and simplify (15) to

E[dij(t, s, s
′)] = F [RG](t, s, s′)

:=

∫

e−i2πω(t−rij(s,s′,x)/c0)ARij
(ω, s, s′,x,x)

× R̃T (ω, x)RG(x) dω dx, i, j = 1, . . . , N, (17)

where R̃T (ω,x) = BT (ω, x, x), rij is the hitchhiker range,

and F is referred to as the forward modeling operator.

Note that (17) and (12) are exactly of the same with the

exception that R̃T in (17) is given as a function of the

deterministic transmit antenna beam pattern, whereas in (12)

R̃T is given as a function of the autocorrelation of the transmit

antenna beam pattern. Thus the inversion formula for (17) and

(12) will be the same.

IV. IMAGE FORMATION VIA C-FBP

In the presence of sources of opportunity, our objective is

to reconstruct RG given E[dij(t, s, s
′)] for some range of s,

s′ and t using the model (17) and (12).

We assume that for some mARij
, ARij

and R̃T in (17) and

(12) satisfy

sup
(s,s′,x)∈K

∣

∣

∣∂α
ω∂β

s ∂β′

s′ ∂ρ1
x1

∂ρ2
x2

ARij
(ω, s, s′, x, x)R̃T (ω, x)

∣

∣

∣

≤ CA(1 + ω2)
(mARij

−|α|)/2
(18)

where K is any compact subset of R×R×R
2, and the constant

CA depends on K,α, β, β′, ρ1, and ρ2. This assumption is

needed in order to make various stationary phase calculations

hold. In practice (18) is satisfied for transmitters and receivers

sufficiently away from the illuminated region. This is the case

especially for air-/space-borne transmitters and receivers, and

broadcasting stations located on high grounds.

Under the assumption (18), equations (17) and (12) define

F as a Fourier integral operator [36] whose leading-order

contribution comes from those points lying in the intersection

of the illuminated surface and the hyperboloid {x ∈ R
3 :
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Fig. 2. Iso-range contours (Hij(t, s, s
′)) for the hitchhiker range

r11(−π/8, π/4, x) of a circular flight trajectory (dashed line) γR1
(s) =

γC(s), over a flat topography where white and black triangles are γC(−π/8)
and γC(π/8), respectively. (see Equation (14) and Section VI, Figure 5, for
explicit formulae of rij(s, s

′, x) and γC(s), respectively.)

rij(s, s
′,x) = c0t}. We denote the curves formed by this

intersection by Hij(t, s, s
′) = {x : rij(s, s

′,x) = c0t}
and refer to Hij(t, s, s

′) as an iso-range contour. For flat

topography, ψ(x) = 0, the iso-range contours are given

by hyperbolas on the plane x3 = 0. For circular receiver

flight trajectories over flat topography we present the iso-

range contours in Figure 2. Thus our inverse problem is to

reconstruct the target scene radiance RG from the averaged

measurements E[dij ] by inverting the Fourier integral operator

F given in (17) or (12).

Note that many sources of opportunity, such as satel-

lite communications and cell-phone towers, transmit multiple

pulses to combat noise. Therefore, one method of obtaining

an estimate of E[dij ] is to average dij’s over multiple pulses

received at every point on the flight trajectory. Alternatively,

dij itself can serve as an estimate of E[dij ].

A. The Filtered-Backprojection Operator

Since F is a Fourier integral operator, an approximate

inversion of F can be computed by a suitable filtered-

backprojection operation [36]:

K [F [RG]] (z) =
∑

ij

∫

ei2πω(t−rij(s,s′,z)/c0)Qij(z, ω, s, s′)

×F [RG](t, s, s′) dt dω ds ds′, (19)

where K will be referred to as the filtered-backprojection

operator with Qij being the filter to be determined. We will

refer to the special case of Qij = 1 (19) as correlation-

backprojection (C-BP) reconstruction.
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We should note that for some mQij , Qij must satisfy

sup
(s,s′,z)∈K

∣

∣

∣
∂α

ω∂β
s ∂β′

s′ ∂ρ1
z1

∂ρ2
z2

Qij(z, ω, s, s′)
∣

∣

∣

≤ CQ(1 + ω2)(mQij
−|α|)/2

(20)

where K is any compact subset of R×R×R
2, and the constant

CQ depends on K,α, β, β′, ρ1, and ρ2.

Substituting (17) into (19), we approximate RG by

R̂G(z) = KF [RG](z) =

∫

L(z, x)RG(x)dx, (21)

where

L(z,x) =
∑

ij

∫

ei2πω[rij(s,s′,x)−rij(s,s′,z)]/c0

× Qij(z, ω, s, s′)Aij(ω, s, s′, x, x)dω ds ds′, (22)

is the point spread function, and Aij = ARij R̃T .

Under the assumptions (18) and (20), K produces an ap-

proximation R̂G to RG. As we see in the next section, any

non-zero choice of filter leads to an R̂G whose visible edges of

RG are at the correct location and orientation. However, not all

filters reconstruct the visible edges with correct amplitude [28],

[29], [37], [38].

The filter Qij can be determined with respect to various cri-

teria [38]. Here, we will determine Qij so that the point spread

function of the resulting imaging operator is approximately a

Dirac delta function, δ(x − z) =
∫

exp(i2π(x − z) · ξ) dξ.

This choice of Qij reconstructs visible edges with correct

amplitude [28], [29], [37], [38].

B. Determination of the FBP Filter

Let us write

L(z, x) =
∑

ij

∫

Lij(z, x, s′) ds′, (23)

where

Lij(z, x, s′) =

∫

ei2πω[rij(s,s′,x)−rij(s,s′,z)]/c0Qij(z, ω, s, s′)

× Aij(ω, s, s′,x,x)dω ds. (24)

We will determine the filter Qij such that Lij(z, x, s′) is as

close as possible to the Dirac delta function (δ(z−x)), so that

the leading order contribution to the point spread function is

the sum of Dirac delta functions.

Applying the method of stationary phase (see AppendixA)

to the ω and s integrals, we find that the main contribution to

Lij(z, x, s′) come from those critical points of its phase. The

critical points satisfy the conditions

∂ω(ω[rij(s, s
′,x) − rij(s, s

′, z)]/c0) = 0

=⇒ rij(s, s
′,x) = rij(s, s

′, z) (25)

∂s(ω[rij(s, s
′,x) − rij(s, s

′, z)]/c0) = 0

=⇒ fij(s, s
′,x) = fij(s, s

′, z), (26)

−5 0 5 10 15 20 25

−5

0

5

10

15

20

25

Fig. 3. Iso-Doppler contours Fij(s, s
′, C) for the hitchhiker Doppler

f11(−π/8, π/4,x) of a circular flight trajectory (dashed line) γR1
(s) =

γC(s), over a flat topography where white and black triangles are γC(−π/8)
and γC(π/8), respectively. (see Equation (27) and Section VI, Figure 5,
for explicit formulae of the hitchhiker Doppler fij(s, s

′,x) and γC(s),
respectively.)

where

fij(s, s
′,x) =

ω

c0

[

γ̇Ri
(s)· γRi

(s) − x

|γRi
(s) − x|

− γ̇Rj
(s + s′)·

γRj
(s + s′) − x

|γRj
(s + s′) − x|

]

. (27)

We will refer to fij as the hitchhiker Doppler. Here

γ̇Ri,Rj
(s) = ∂sγRi,Rj

(s) is the partial derivative of the

trajectories with respect to s. Thus the hitchhiker Doppler is

defined by the difference between the radial velocities of the

receivers Ri and Rj with respect to the point x divided by

the wavelength c0/ω.

For each (s, s′), we refer to the locus of points that is

formed by the intersection of the surface topography and

{x ∈ R
3 : fij(s, s

′,x) = C}, for some constant C, as an

iso-Doppler contour. We denote an iso-Doppler contour by

Fij(s, s
′, C) = {x : fij(s, s

′,x) = C}. Figure 3 shows

the iso-Doppler contours for circular flight trajectory and flat

topography.

The critical points z of the phase of Ls′ are those points

that have the same hitchhiker range and hitchhiker Doppler

with x. We assume that the flight trajectories of the receivers

are smooth and that the receiver antenna beam patterns are

focused on a region of interest where every pair of iso-

range (Hij(t, s, s
′)) and iso-Doppler (Fij(s, s

′, C)) contours

intersect at a single point within the region of interest. In other

words, we assume that the only critical point within the region

of interest is z = x.
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Using the fundamental theorem of Calculus [39]:

h(x) − h(z) =

∫ 1

0

∂

∂λ
h(z + λ(x − z)) dλ (28)

= (x − z) ·
∫ 1

0

∇h(z + λ(x − z)) dλ, (29)

we write

[rij(s, s
′,x) − rij(s, s

′, z)] = (x − z) · Ξij(s, s
′, x, z),

(30)

where

Ξij(s, s
′, x, z) =

∫ 1

0

∇rij(s, s
′,z + λ(x − z))dλ. (31)

For fixed s′, x and z, we make the following change of

variables

(ω, s) → ξij =
ω

c0
Ξij(s, s

′,x, z), (32)

in the integral of (22) to obtain the point spread function as

L(z,x) =
∑

ij

∫

ei2π(x−z)·ξij Qij(z, ξij , s
′)

× Aij(ξij , s
′, x, x) η(x, z, ξij , s

′)dξij ds′, (33)

where Qij(z, ξij , s
′) = Qij(z, ω(ξij , s(ξij)), s

′), and

η(x,z, ξij , s
′) = |∂(ω, s)/∂ξij |, is the determinant of the

Jacobian that comes from the change of variables (32).

It can be shown, by treating (33) as a distribution and using

the method of stationary phase, that under the assumption

(18), the leading-order contribution to R̂G is at z = x.

Consequently, we approximate (33) as

R̂G(z) ≈
∑

ij

∫

Ωij,z,s′

ei2π(x−z)·ξij Qij(z, ξij , s
′)

× Aij(ξij , s
′,z, z) η(z, z, ξij , s

′) RG(x)dx dξij ds′, (34)

where

Ωij,z,s′ = {ξij = ω/c0 Ξij(s, s
′, z, z) |

Aij(ω, s, s′,z, z) 6= 0, s ∈ [sa, sb]}, (35)

with

Ξij(s, s
′,z, z)=Dψ(z)·

[

γRj
(s + s′)−z

|γRj
(s + s′)−z| −

γRi
(s)−z

|γRi
(s)−z|

]

.

(36)

Here,

Dψ(z) =

[

1 0 ∂ψ(z)/∂z1

0 1 ∂ψ(z)/∂z2

]

. (37)

For flat topography, we present an illustration of

Ξij(s, s
′, z, z) in Figure 4.

Thus, with the choice of

Qij(z, ω, s, s′) =
χΩij,z,s′

(ξij(ω, s))

η(z, z, ξij , s
′)

A∗
ij(ω, s, s′, z,z)

|Aij(ω, s, s′,z, z)|2
(38)

where χΩij,z,s′
is a smooth cut-off function equal to one in

most of the interior of Ωij,z,s′ and zero in the exterior of

Ωij,z,s′ , (34) becomes

R̂G(z) ≈
∑

ij

∫

ei(x−z)·ξij χΩij,z,s′
(ξij)RG(x)dx dξij ds′.

(39)

Equation (39) shows that the image R̂G is a band-limited

version of RG whose frequency content, by (32), is determined

by Ωz =
⋃

ij,s′ Ωij,z,s′ . We will refer to Ωz as the data

collection manifold at z. In this regard, we will refer to

Ωij,z,s′ as the partial data collection manifold at z obtained

by ith and jth receiver pair at slow-time delay s′.

Mircolocal analysis of (39) tells us that an edge at point z

is visible if the direction nz normal to the edge is contained

in the data collection manifold Ωz [28], [29], [37], [38].

Consequently, we say an edge at point z with nz normal

to the edge is visible, if there exists i, j, s and s′, such that

Ξij(s, s
′, z, z) is parallel to nz . We see from (39) that we can

only reconstruct the edges of RG that are visible. Furthermore,

with the choice of (38), we can reconstruct not only the correct

location and orientation but also the correct amplitude of the

visible edges [28], [29], [38].

In the case of non-cooperative sources of opportunity,

if R̃T is not available, we may assume that the scene is

homogeneously illuminated by isotropic transmitters and set

R̃T = 1. Note that this assumption can be interpreted as an

uninformative prior on the transmit antenna beam patterns. As

a consequence Aij will be equal to ARij
. With this choice

of filter we are still able reconstruct the visible edges at the

correct location and orientation but not with correct ampli-

tude [28], [29], [37], [38]. Thus the reconstruction formula

becomes

K[dij ](z) =
∑

ij

∫

ei2πω−rij(s,s′,z)/c0
χΩij,z,s′

(ξij(ω, s))

η(z, z, ξij , s
′)

×
A∗

Rij
(ω, s, s′, z, z)

|ARij
(ω, s, s′,z, z)|2 dij(t, s, s

′) dt dω ds ds′. (40)

V. RECONSTRUCTION ALGORITHM AND THE ANALYSIS OF

COMPUTATIONAL COMPLEXITY

In this section, we present our numerical implementation of

the C-FBP method, analyze its computational complexity.

We implemented the inversion formula (19) and (38).

Let Ξij(s, s
′, z, z) = (Ξij,1, Ξij,2) and ∂sΞij(s, s

′, z, z) =
(Ξ̇ij,1, Ξ̇ij,2). Then, by (32) and (36),

1

η(z, z, ξij , s
′)

=

∣

∣

∣

∣

∂ξij

∂(ω, s)

∣

∣

∣

∣

=
|ω|
c2
0

∣

∣

∣
Ξij,1Ξ̇ij,2 − Ξij,2Ξ̇ij,1

∣

∣

∣
.

(41)

Then, we can rewrite the filter (38) as

Qij(z, ω, s, s′) = Qij,1(s, s
′, z)Qij,2(ω, s, s′, z)|ω|, (42)
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z = (z, ψ(z))

γRi
(s)

γRj
(s + s′)

vi =
γRi

(s)−z

|γRi
(s)−z|

Dψ(z) · [vj − vi] = Ξij(s, s
′, z, z)

γj(s+s′)−z

|γj(s+s′)−z|
= vj

Fig. 4. An illustration of the vector Ξij(s, s
′, z, z) in the data collection manifold Ωij,z,s′ for flat topography, ψ(z) = 0. Ξij(s, s

′, z, z) is the projection

of the difference of the vectors vi and vj onto the tangent plane at location z. (See Equation (36) for explicit formula of Ξ(s, s′, z, z)).

where

Qij,1(s, s
′, z) =

∣

∣

∣
Ξij,1Ξ̇ij,2 − Ξij,2Ξ̇ij,1

∣

∣

∣
(43)

Qij,2(ω, s, s′, z) =
χΩij,z,s′

(ξij(ω, s))

c2
0

A∗
ij(ω, s, s′, z,z)

|Aij(ω, s, s′,z, z)|2 .

(44)

Additionally, we assume that a single realization of di(t, s)
(see Equation (4)) is available and replace all E[dij ]’s in our

reconstruction formulae with dij’s.

Thus, using (19) and (38), our reconstruction formula be-

comes

R̂G(z) =
∑

ij

∫

e−i2πωrij(s,s′,z)/c0 |ω|Dij(ω, s, s′)

× Qij,1(s, s
′, z) Qij,2(ω, s, s′,z) dω ds ds′, (45)

where

Dij(ω, s, s′) =

∫

ei2πωtdij(t, s, s
′) dt. (46)

Assuming that there are O(N) samples in both fast-time and

slow-time variables, and the scene is sampled at O(N × N)
points, for each i and j, the steps of the reconstruction and

their corresponding computational complexity are as follows:

1) Computing the Fourier Transform in Fast-time: For each

s and s′, (46) can be computed using the fast Fourier

transform (FFT) in O(N log N) computations. Thus, for

all s and s′, the computational complexity of this step

is O(N3 log N).
2) Ramp Filtering: In tomography literature, multiplication

with |ω| in the Fourier domain is referred to as the

Ram-Lak or the ramp filter [40]. Let

D̃ij(ω, s, s′) = |ω|Dij(ω, s, s′), (47)

be the Fourier transform of the ramp filtered measure-

ments. For each s and s′, (47) can be computed in O(N)
number of computations. Thus, for all s and s′, the

computational complexity of the ramp filtering step is

O(N3).
3) Filtering with Qij,2: Let

D̃ij,Qij,2
(ω, s, s′, z) = D̃ij(ω, s, s′)Qij,2(ω, s, s′,z).

(48)

For each s, s′ and z, (48) can be computed in O(N)
number of computations. Thus, for all s, s′ and z the

computational complexity of this step is O(N5). If Qij,2

is independent of z, then the computational complexity

of this step reduces to O(N3).
4) Backprojection Step: Let

R̂Gij,2
(s, s′, z) =

∫

e−i2πωrij(s,s′,z)/c0

× D̃ij,Qij,2
(ω, s, s′,z)dω. (49)

For each s, s′ and z, (49) can be computed using

FFT or direct computation in O(N log N) and O(N)
computations, respectively. Thus, for all s, s′ and z, the

computational complexity of this step is O(N5 log N)
using FFT and O(N5) by direct computation. If Qij,2 is

independent of z then the computational complexity of

this step reduces to O(N3 log N) using FFT and O(N5)
by direct computation.

5) Partial Image Formation: We form the partial image

R̂Gij
by:

R̂Gij
(z) =

∫

Qij,1(s, s
′, z)R̂Gij,2

(s, s′, z) ds ds′.

(50)

The computational complexity of this step is O(N4).
6) Complete Image Formation: Finally, we form our image

R̂G by summing over partial images:

R̂G(z) =
∑

ij

R̂Gij
(z). (51)

For each pair of i and j, the computational complexity

of our algorithm up to the complete image formation step
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is determined by the backprojection step when Qij,2 is z

dependent (O(N5)) or the partial image formation step when

Qij,2 is z independent (O(N4)). For flat topography and

isotropic receiver antennas, Qij,2 is independent of z. If both

Qij,1 and Qij,2 are independent of z then the computational

complexity of C-FBP up to the complete image formation step

reduces down to O(N3 log N), which is the case for C-BP

reconstruction. The total computational complexity, including

the complete image formation step, is N2 times the computa-

tional complexity of the partial image-formation algorithm.

For the case of a single receiver antenna (i = j =
1), although C-FBP has a greater computational complex-

ity ( O(N3 log N) — O(N5) ) than that of MF-FBP (

O(N2 log N) — O(N3) ) [34], C-FBP does not require the

knowledge of the transmitter locations or other transmitter

related information, and can therefore be used for multiple,

non-cooperative sources of opportunity.

VI. NUMERICAL SIMULATIONS

In this section we demonstrate the performance of our

method in numerical simulations under variety of operat-

ing conditions and assumptions. These include the following

cases: a) single transmitter and single receiver, b) multiple

transmitters and single receiver, c) single transmitter and

multiple receivers, and d) multiple transmitters and multiple

receivers. For the single-receiver case, we consider both co-

operative and non-cooperative sources of opportunity. For the

multiple-receiver case, to keep our discussion brief, we con-

sider only non-cooperative sources of opportunity. The C-FBP

reconstructions are compared with the C-BP reconstructions

for all cases.

In accordance with the incoherent field approximation, we

consider the following idealized target model for the scene

reflectivity:

G(x) =

N
∑

n=1

gnδ(x − xn), (52)

where {gn} are independent normal random variables with

mean µn and variance σ2
n. The corresponding scene radiance

is given by

RG(x) = E[G(x)G∗(x)] =
∑

n

(µ2
n + σ2

n)δ(x − xn). (53)

For most of our simulations, we consider a deterministic

reflectivity and set σ2
n = 0. In all cases, we use N = 9

and approximate the delta functions of (53) by square target

reflectors of size 344× 344m2, each having a unit reflectivity

(µn = 1). These reflectors are located in a scene of size

[0, 22] × [0, 22] km2 with flat topography. We discretize the

scene by 128 × 128 pixels. Figures 5 and 17 show the scene,

receiver trajectories and the transmit antenna locations. In all

cases, we use isotropic receiver antennas.

We use a transmitted pulse at center frequency 0Hz with

bandwidth equal to .873MHz in computing the projection data.

We heuristically chose the sampling rates of 1.746MHz and

670.25MHz in fast-time and slow-time, respectively. At these

rates, the area under the numerically computed point spread

function of the imaging operator is small enough as compared

(a)

0 5 10 15 20

0

5

10

15

20

 y
0

→

← y
1

 y
2

→

← y
3

(b)

Fig. 5. (a) 3D and (b) 2D views of the scene with transmitters located at
y0 = (0, 0, 6.5) km, y1 = (22, 22, 6.5) km, y2 = (0, 22, 6.5) km, and
y3 = (22, 0, 6.5) km, and circular receiver trajectory (solid line) γC(s) =
(11 + 11 cos(s), 11 + 11 sin(s), 6.5) km.

to the size of the point scatterers in the scene that the resulting

images are alias free.

For a collection of point scatterers, the normal direction of

the edge is given by all directions. (For a precise definition of

a point scatterer and normal direction of an edge, see [38].)

Therefore a flight trajectory encircling the scatterers provides

the best data collection manifold. Thus, for the single receiver

case, we choose a circular flight trajectory γC(s) = (11 +
11 cos(s), 11 + 11 sin(s), 6.5) km, uniformly sampled in s ∈
[0, 2π) at 512 points (see Figure 5); and consider isotropic

stationary transmitter antennas.

For multiple receiver flight trajectories, we choose two

receiver antennas traversing linear and parabolic flight tra-

jectories, γL(s) = (s, 0, 6.5) km and γP (s) = ((22s −
s2)22/121, s, 6.5) km, respectively, uniformly sampled for s ∈
[0, 22) at 512 points (see Figure (17)), and consider isotropic

static non-cooperative transmitter antennas.

For the single receiver and multiple transmitter case, we also

include a numerical simulation in which the ground reflectivity

is statistical. In target model (53), we assume that the {gn}
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are zero-mean normal random variables with variance σ2
n = 1.

The projection data used in the reconstruction are generated

from multiple realizations of the ground reflectivity.

For the single receiver cases, since i = j = 1, for

notational brevity, we drop the ij(= 11) dependence, i.e.,

we set d11(t, s, s
′) = d(t, s, s′), r11(s, s

′,x) = r(s, s′,x),
ξ11 = ξ, etc.

A. Single Transmitter and Single Receiver

We consider the geometry shown in Figure 5, with a

receiver traversing the circular trajectory γ(s) = γC(s) =
(11 + 11 cos(s), 11 + 11 sin(s), 6.5) km (uniformly sampled

for s ∈ [0, 2π) at 512 points) and a stationary transmitter

located at y0 = (0, 0, 6.5) km. The transmitter radiates a

delta-like impulse. We generate the data (see Figure 6(b)) by

substituting ARi(ω, s, x) = |γ(s) − x|−1
and AT (ω, x,y) =

δ(y − y0) |x − y|−1
in (1):

dy0(t, s) =

∫

δ(t − [|y0 − x| + |γ(s) − x|]/c0)

|γ(s) − x||x − y0|
G(x) dx.

(54)

1) Cooperative Transmitter: If the transmitter is cooper-

ative, then the corresponding C-FBP reconstruction formula

becomes

R̂G(z) ∼ |z − y0|2
∫

ei2πω(t−r(s,s′,z)/c0)

× |γ(s) − z| |γ(s + s′) − z|
∣

∣

∣Ξ1Ξ̇2 − Ξ2Ξ̇1

∣

∣

∣

× |ω| d(t, s, s′) dt dω ds ds′, (55)

where Ξ = (Ξ1, Ξ2), which by (36), is given by

Ξ(s, s′, z,z)=

[

1 0 0
0 1 0

]

·
[

z−γ(s)

|z−γ(s)| −
z−γ(s + s′)

|z−γ(s + s′)|

]

.

(56)

For comparison purposes, we also perform C-BP

reconstruction. The computational complexity of our

implementation of C-FBP and C-BP are O(N4) and

O(N3 log N), respectively. The corresponding reconstructed

images are presented in Figure 7. Our numerical simulations

demonstrate that both the C-BP and C-FBP reconstructions

produce all singularities at the correct location and orientation.

This is due to the fact that the set Ωz contains all directions.

The C-BP reconstruction appears as a smoothed version of

the C-FBP one; this is because it is missing the ramp part of

the filter (47). In general C-BP does not correctly capture the

strength of the singularities, whereas C-FBP does as predicted

by the theory.

The Data Collection Manifold: Since visibility of an edge at z

is determined by the directions contained in the data collection

manifold Ωz , it is sufficient to consider the Ξij(s, s
′, z, z) that

are contained in the data collection manifold. Figure 8 shows

an illustration of the vectors Ξ(s, s′, z,z) contained in the data

collection manifolds Ωz,s′=π/4 and Ωz =
⋃

s′ Ωz,s′ , respec-

tively at various points z in the scene. All the directions are

included in both Ωz,s′ and Ωz , however, Ωz,s′ is significantly

smaller than Ωz . This means that the spatial frequency content

provided by Ωz,s′=π/4 is less than that of Ωz . To illustrate this

numerically, we define

R̂G(s′=π/4)
(z) =

∫

ξ(ω,s,s′=π/4,z)∈Ω
z,s′=π/4

ei2πω(t−r(s,s′=π/4,z)/c0)

× Q(z, ω, s, 0)d(s, 0, t) dt dω ds, (57)

and present R̂G(s′=π/4)
in Figure 9. Clearly, since Ωz,s′=π/4 ⊂

Ωz , the frequency content of R̂G(s′=π/4)
is significantly less

than R̂G as shown in Figures 9 and 7(b).

20 40 60 80 100 120

20

40

60

80

100

120

Fig. 9. R̂G(s′=π/4)
, the image reconstructed using the vectors in the data

collection manifold Ωz,s′=π/4 for a single cooperative transmitter located
at y0 as shown in Figure 5 (a) and a receiver traversing a circular flight
trajectory γC(s) (see Figure 5 for an explicit formula of γC(s)). Note that
Ωz,s′=π/4 is formed by correlating the received signal at a single slow-time

delay, s′ = pi/4. This reconstruction when compared to the one in Figure
7(b) shows that correlating the received data at multiple slow-time delays
on the flight trajectory improves the reconstructed image as predicted by the
theory.

2) Non-cooperative Transmitters: In the case of non-

cooperative transmitters, we assume that the scene is homoge-

neously illuminated by isotropic transmitters and set R̃T = 1.

Consequently, we use the following reconstruction formula:

R̂G(z) ∼
∫

ei2πω(t−r(s,s′,z)/c0)|γ(s) − z| |γ(s + s′) − z|

×
∣

∣

∣
Ξ1Ξ̇2 − Ξ2Ξ̇1

∣

∣

∣
|ω| d(t, s, s′) dt dω ds ds′, (58)

Note that setting R̃T = 1 can be interpreted as an uninfor-

mative prior on the transmitter anttenna beam patterns.

The reconstructed image for the case of a single non-

cooperative transmitter is presented in Figure 10. With the

loss of transmitter-related geometrical spreading factors in the

reconstruction formula, the scatterers closer to the transmitter

appear brighter than those that are further away. In the next

subsection, we will see how this result may change with the

introduction of additional transmitters illuminating the scene.

B. Multiple Transmitters and Single Receiver

In order to use MF-FBP [34] in the presence of multiple

transmitters, we need to have the capability to isolate di,y

from di for each receiver location. This is not an easy task
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Fig. 6. (a) Discritized scene reflectivity used in numerical simulations. (0, 0, 0) km and (22, 22, 0) km are located at the upper left and lower right corners,
respectively. (b) The projection data of the scene obtained for a single transmitter located at y0 and receiver traversing circular flight trajectory γC(s) (see
Figure 5 for explicit formula of γC(s)).
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Fig. 7. Reconstructed images for SAH using (a) C-BP and (b) C-FBP for a single cooperative transmitter located at y0 and receiver traversing circular flight
trajectory γC(s) (see Figure 5 for explicit formula of γC(s)).
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Fig. 8. The vectors Ξ(s, s′, z, z) (see Equations (56) and (34)) contained in the data collection manifolds (a) Ωz,s′ for the slow-time delay s′ = π/4, and
(b) Ωz =

⋃

s′ Ωz,s′ at various points z within the target scene. The receiver is traversing γC(s) (dashed line) (see Figure 5 for the explicit formula of

γC(s) and Figure 4 for an illustration of Ξ(s, s′, z, z)). Clearly, correlation of the received data at multiple viewing angles provides a larger data collection
manifold, then the one with a single slow-time delay correlation.
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Fig. 10. Reconstructed image by C-FBP using (58) for a single non-
cooperative transmitter located at y0 and receiver traversing the circular flight
trajectory γC(s) (see Figure 5 for explicit formula of γC(s)).

and sometimes not possible, especially in the presence of

non-cooperative sources of opportunity. Decomposition of the

received signal, however, is not required when using C-FBP.

We demonstrate the performance of the C-FBP method

in the presence of multiple transmitters in two sets of nu-

merical simulations. In the first set of simulations, we con-

sider two isotropic transmitters at y0 = (0, 0, 6.5) km and

y1 = (22, 22, 6.5) km. In the second set of simulations,

we consider four isotropic transmitters, located at y0, y1,

y2 = (0, 22, 6.5) km, and y3 = (22, 0, 6.5) km. In both cases,

the receiver follows the path γC as before. We generated data

d by adding up the separately generated data for each of the

transmitters by

d(t, s) =
∑

i

dyi(t, s). (59)

We show data for the two- and four-transmitter cases in Figure

11.

1) Cooperative Transmitters: In the case of cooperative

transmitters, we have

AT (ω, x,y) =

∑

i δ(y − yi)

|x − y| , (60)

therefore,

R̃T (ω, x) =

[∫

ei2πω|y−x|/c0

∑

i δ(y − yi)

|x − y| dy

]

(61)

×
[∫

ei2πω|y′−x|/c0

∑

j δ(y′ − yj)

|x − y′| dy′

]∗

=
∑

i,j

ei2πω(|yi−x|−|yj−x|)/c0
1

|x − yi||x − yj |
,

=
∑

i,j>i

[

1

|x − yi|2
+

cos(2πω[|yi − x| − |yj − x|])
|x − yi| |x − yj |

]

.

Since transmitters are far away from the scene, lie at the

same altitude, and are equidistant from the center of the scene,

we make the approximation |x − yi| ≈ |x − yj | in (61), and

write

R̃T (ω, x) ≈
∑

i,j>i

[

1

|x − yi|2
+

1

|x − yi| |x − yj |

]

. (62)

Replacing R̃T in A11 with (62), the C-FBP formula becomes

R̂G(z) =





∑

i,j>i

[

1

|z − yi|2
+

1

|z − yi| |z − yj |

]





−1

R̂G(z),

(63)

where R̂G is the reconstruction for non-cooperative transmit-

ters given in (58).

We present the reconstructed images using C-FBP for

two- and four-cooperative transmitter cases in Figure 12. For

comparison purposes, we also present the C-BP reconstruction

for the two- and four-cooperative transmitter case in Figure 13.

Reconstructed images show that the C-FBP method for

two and four transmitters produces images that are similar

to the image reconstructed in the presence of single trans-

mitter presented in Figure 7. Similar to the single transmitter

case, both C-BP and C-FBP methods lead to reconstruction

of singularities at the right location and orientation in the

presence of both cooperative and non-cooperative sources

of opportunity. Furthermore, in the presence of cooperative

sources of opportunity, the singularities reconstructed by C-

FBP have the correct strength, as suggested by the theory.

2) Non-cooperative Transmitters: If the transmitters are

non-cooperative, we perform the C-FBP reconstruction by us-

ing (58). We present the reconstructed images for two and four

non-cooperative transmitters in Figure 14. The reconstructed

images show that while the singularities appear at the correct

location, they do not necessarily have the correct strength.

Note that the performance of the C-BP is the same for both

cooperative and non-cooperative sources since the transmitter-

related information is needed only at the filtering step which

is not present in the C-BP algorithm.

3) Single Receiver and Multiple Transmitters With Statisti-

cal Ground Reflectivity: We consider the scene radiance (53)

in which the means µn are all zero.

We generate the expected data d by averaging the data

obtained from 10 different realizations of the scene reflectivity

(52). Figure (15) shows the expected value of the data for four

transmitters located at y0, y1, y2 and y3 as shown in Figure

(5).

The corresponding reconstructed radiance image using (58)

in the presence of non-cooperative transmitters and using

(63) in the presence of cooperative transmitters are presented

in Figure 16. Note that for both the cooperative and non-

cooperative cases, the reconstructed image for the statistical

ground reflectivity has fewer artifacts than the deterministic

reconstruction. This can be explained by the fact that the scene

radiance satisfies assumption (8); and reconstruction uses data

averaged averaged over several passes, which has a better

compliance with the assumptions of our method as shown in

equations (12) and (17).

This can explained by the fact that the scene radiance

satisfies assumption (8).
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Fig. 11. The data collected over a circular receiver trajectory γC(s) due to (a) two transmitters located at y0 and y1 and (b) four transmitters located at
y0, y1, y2 and y3 (see Figure 5 for explicit formula of γC(s)). Note that grey scales are different for the two plots; the data is larger in magnitude for the
four-transmitter case, as expected.
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Fig. 12. Reconstructed images using C-FBP in the presence of (a) two cooperative transmitters located at y0 and y1, and (b) four cooperative transmitters
located at y0, y1, y2 and y3. In both cases, the receiver traverses the circular trajectory γC(s) (see Figure 5 for explicit formula of γC(s)).
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Fig. 13. Reconstructed images using C-BP in the presence of (a) two cooperative transmitters located at y0 and y1, and (b) four cooperative transmitters
located at y0, y1, y2 and y3. In both cases, the receiver traverses the circular trajectory γC(s) (see Figure 5 for explicit formula of γC(s)).
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Fig. 14. Reconstructed images using C-FBP in the presence of (a) two non-cooperative transmitters located at y0 and y1, and (b) four non-cooperative
transmitters located at y0, y1, y2 and y3. In both cases, the receiver traverses the circular trajectory γC(s) (see Figure 5 for explicit formula of γC(s)).
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Fig. 16. Reconstructed images for the statistical ground reflectivity using C-FBP in the presence of (a) non-cooperative and (b) cooperative transmitters located
at y0, y1, y2 and y3 and receiver traversing circular trajectory γC(s) (see Figure 5 for explicit formula of γC(s)).
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Fig. 15. The expected projection data collected over a circular receiver
trajectory γC due to transmitters located at y0, y1, y2 and y3 (see Figure
5 for explicit formula of γC(s)) for a statistical reflectivity function.

C. Multiple Receivers and Single Transmitter

In the previous two subsections, we presented and compared

the performance of C-BP and C-FBP reconstruction methods

for a single receiver trajectory in the presence of boht single

and multiple cooperative and non-cooperative sources of op-

portunity. In this and the following subsection, we demonstrate

the performance of our method for multiple airborne receivers.

For brevity, we consider only non-cooperative sources of

opportunity.

We consider two receiver flight trajectories, namely, linear

and parabolic: γL(s) = (s, 0, 6.5) km and γP (s) = ((22s −
s2)22/121, s, 6.5) km, respectively, uniformly sampled for s ∈
[0, 22) at 512 points.

We use a single non-cooperative transmitter located at y0 =
(0, 0, 6.5) km, as shown in Figure 17, radiating a delta-like

impulse. As in Section VI-A, we generated the data using

(54).

The data for linear and parabolic receiver trajectories are

presented in Figure 18. The corresponding C-BP and C-FBP

reconstructions using (58) are presented in Figures 19 and 20,

respectively.

The two reconstructed images capture different frequency
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content of the scene. In particular, let Ωij,z =
⋃

s′ Ωij,z,s′

denote the frequency content of the image obtained from the

correlation of the data obtained from the ith and jth receiver

trajectories, i, j ∈ {1, 2}. The frequency content contribution

Ω11,z due to the linear receiver flight trajectory is significantly

less than that of the parabolic receiver flight trajectory, Ω22,z

(see Figures 21 (a) and (b)). This is a direct consequence of the

fact that the linear flight trajectory provides a smaller aperture

than that of the parabolic flight trajectory.

Summing the reconstructed images obtained from the lin-

ear and parabolic receiver flight union of Ω11,z and Ω22,z

(see Figure 22 (a) and (b)). The frequency content of the

reconstructed image can be further increased by incorporating

the image reconstructed from the cross correlation of the

data obtained from the linear and parabolic trajectories. A

diagram of Ξij(s, s
′, z,z), i, j ∈ {1, 2}, contained in the

cross terms, Ω12,z = −Ω21,z , and in the data collection

manifold Ωz =
∑

i,j∈{1,2} Ωij,z , are shown in Figures 21 (c)

and (d). The C-BP and C-FBP reconstructed images with the

frequency content Ωz are presented in Figures 22 (c) and (d),

respectively.

As in the previous cases, both C-BP and C-FBP reconstruct

the singularities at the correct location and orientation. Fur-

thermore, since C-FBP method corrects for the receiver-related

amplitude factors, the amplitude of the singularities are better

captured by C-FBP than by C-BP, as shown in Figure 22.

D. Multiple Receivers and Multiple Transmitters

Finally, we consider four non-cooperative transmitters lo-

cated at y0 = (0, 0, 6.5) km, y1 = (22, 22, 6.5) km, y2 =
(0, 22, 6.5) km, and y3 = (22, 0, 6.5) km and the two re-

ceiver flight trajectories, namely, linear (γL(s)) and parabolic

(γP (s)) as shown in Figure 17.

The reconstructed C-BP and C-FBP images are shown in

Figure 23. As in the multiple-receiver, single-transmitter case,

the data-collection manifold increases with the inclusion of

the cross-correlation term. Compared to the single-transmitter

case, the strengths of the singularities are improved in the

four-transmitter case.

VII. CONCLUSION

We presented a novel image reconstruction method,

correlation-filtered-backprojection (C-FBP), for synthetic-

aperture hitchhiker systems in the presence of cooperative

and non-cooperative sources of opportunity using single or

multiple receivers.

We combined correlation-based imaging and microlocal

techniques to provide an analytic inversion formula to recover

ground radiance. The inversion formula has the desirable

property of reconstructing the visible edges of the scene at

the correct location and orientation and at the correct strength

for the case of cooperative sources of opportunity.

We developed an algorithm to implement the C-FBP in-

version formula and analyzed its computational complexity.

We demonstrated the performance of the C-FBP algorithm in

comparison to C-BP algorithm in extensive simulations.
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Fig. 17. (a) 3D and (b) 2D views of the scene with transmitters located at
y0 = (0, 0, 6.5) km, y1 = (22, 22, 6.5) km, y2 = (0, 22, 6.5) km, and
y3 = (22, 0, 6.5) km, and linear (solid line), γL(s) = (s, 0, 6.5) km, and
parabolic (dashed line), γP (s) = (22s−s2, s, 6.5) km, receiver trajectories.

The method is also applicable to mobile sources of op-

portunity following arbitrary trajectories. The method can be

extended to include the case where the projection data is

contaminated with additive noise following the framework

introduced in our prior work [38].

Additionally, the method can be also utilized in optical

coherence tomography, passive/micro seismic imaging and

other passive or active imaging modalities.
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APPENDIX

The stationary phase theorem states [41], [42], [43] that if

a is a smooth function of compact support on R
n, and φ has
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Fig. 18. The data collected over (a) linear, γL(s), and (b) parabolic, γP (s), receiver trajectories due to a transmitter located at y0 (see Figure 17 for explicit
formulae of γL(s) and γP (s)).
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Fig. 19. Reconstructed images using (a) C-BP and (b) C-FBP for a single non-cooperative transmitter located at y0 and a linear receiver trajectory, γL(s)
(see Figure 17 for explicit formula of γL(s)).
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Fig. 20. Reconstructed images using (a) C-BP and (b) C-FBP for a single non-cooperative transmitter located at y0 and parabolic receiver trajectory, γP (s)
(see Figure 17 for explicit formula of γP (s)).
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Fig. 21. The vectors Ξij(s, s
′, z, z), i, j ∈ {1, 2} (see Equation (36)), contained in the data collection manifolds (a) Ω11,z (obtained by autocorrelation of

data collected over linear flight trajectory), (b) Ω22,z (obtained by autocorrelation of data collected over parabolic flight trajectory), (c) Ω12,z = −Ω21,z

(obtained by cross-correlation of data collected over linear and parabolic flight trajectories) and (d) Ωz =
⋃

i,j∈{1,2} Ωij,z at various points within the target

scene. Here the linear (solid line) and parabolic (dashed line) receiver trajectories are γ1(s) = γL(s) and γ2(s) = γP (s), respectively (see Figure 17 for
explicit formulae of γL(s) and γP (s)).

only non-degenerate critical points, then as ω → ∞,

∫

ei2πωφ(x)a(x)dnx

=
∑

{x0:Dφ(x0)=0}

(

1

ω

)n/2

a(x0)
ei2πωφ(x0)ei(π/4)sgnD2φ(x0)

√

|detD2φ(x0)|

+ O(ω−n/2−1). (64)

Here Dφ denotes the gradient of φ, D2φ denotes the Hessian,

and sgn denotes the signature of a matrix, i.e., the number of

positive eigenvalues minus the number of negative ones.
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TABLE OF NOTATIONS

γRi
(s) Flight trajectory of ith receiver (pg. 2)

x ∈ R
3 or x = (x, ψ(x)) A point in space or on the surface of the earth (pg. 2)

y Transmitter location (pg. 2)

di,y(t, s) Received signal at the ith receiver due to transmitter at y(s) (pg. 2)

t Fast-time (pg. 2)

s Slow-time (pg. 2)

c0 Speed of light in free-space (pg. 2)

ri,y(s,x)/c0 Total travel time (pg. 2)

G(x) Scene reflectivity (pg. 2)

JRi ith receiver antenna beam pattern (pg. 2)

JT Transmitter antenna beam pattern (pg. 2)

dij(t, s, s
′) Spatio-temporal correlation of di and dj (pg. 2)

s′ Slow-time delay (pg. 2)

CG(x,x′) Correlation function of G (pg. 3)

CJT
(ω, x, x′,y,y′) Correlation function of JT (pg. 3)

RG(x) Scene radiance (pg. 3)

RT (ω, x,y) Transmitter irradiance (pg. 3)

rij Hitchhiker range (pg. 3)

R̃T (ω, x) Total average power incident upon x (pg. 3)

F Forward modeling operator (pg. 4)

Hij(t, s, s
′) Iso-range contours (pg. 4)

K Filtered-backprojection operator (pg. 4)

Qij Filter of K (pg. 4)

R̂G(z) Reconstructed image of RG(z) (pg. 5)

L(z, x) Point spread function (pg. 5)

δ(x) Dirac delta function (pg. 5)

fij Hitchhiker Doppler (pg. 5)

Fij(s, s
′, C) Iso-Doppler contours (pg. 5)

η(x, z, ξij , s
′) Determinant of the Jacobian (pg. 6)

Ξij(s, s
′, z, z) see Equation (36) (pg. 6)

χΩij,z,s′
Smooth cut-off function (pg. 6)

Ωz Data collection manifold (pg. 6)

Ωij,z,s′ Partial data collection manifold (pg. 6)

|ω| Ram-Lak/Ramp filter (pg. 7)

R̂Gij
(z) Partial reconstructed image of R̂G(z) (pg. 7)


