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Abstract—We present a multilevel extension of the popular
“thresholded Landweber” algorithm for wavelet-regularized
image restoration that yields an order of magnitude speed im-
provement over the standard fixed-scale implementation. The
method is generic and targeted towards large-scale linear inverse
problems, such as 3-D deconvolution microscopy. The algorithm
is derived within the framework of bound optimization. The key
idea is to successively update the coefficients in the various wavelet
channels using fixed, subband-adapted iteration parameters (step
sizes and threshold levels). The optimization problem is solved effi-
ciently via a proper chaining of basic iteration modules. The higher
level description of the algorithm is similar to that of a multigrid
solver for PDEs, but there is one fundamental difference: the
latter iterates though a sequence of multiresolution versions of the
original problem, while, in our case, we cycle through the wavelet
subspaces corresponding to the difference between successive ap-
proximations. This strategy is motivated by the special structure
of the problem and the preconditioning properties of the wavelet
representation. We establish that the solution of the restoration
problem corresponds to a fixed point of our multilevel optimizer.
We also provide experimental evidence that the improvement in
convergence rate is essentially determined by the (unconstrained)
linear part of the algorithm, irrespective of the type of wavelet.
Finally, we illustrate the technique with some image deconvolution
examples, including some real 3-D fluorescence microscopy data.

Index Terms—Bound optimization, confocal, convergence ac-
celeration, deconvolution, fast, fluorescence, inverse problems,

-regularization, majorize-minimize, microscopy, multigrid,
multilevel, multiresolution, multiscale, nonlinear, optimization
transfer, preconditioning, reconstruction, restoration, sparsity,
surrogate optimization, 3-D, variational, wavelets, widefield.

I. INTRODUCTION

A. Motivation and Originality of the Present Work

I NVERSE problems arise in various imaging applications
such as biomicroscopy [1], [2], medical imaging [3], [4], or

astronomy [5], [6]. An increasingly important issue for recon-
struction and restoration tasks is the mass of data that is now
routinely produced in these fields. The instrumentation typically
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allows for high-dimensional and multimodal imaging, fostering
the evolution of experimental practices towards more quantita-
tive and systematic investigations. This trend will arguably per-
sist over the forthcoming years, and, as a result, computation
time will remain a serious bottleneck for restoration methods,
despite the progress of computer hardware. In this context, ad-
vanced (nonlinear) restoration methods that were developed for
traditional 2-D imaging cannot be applied directly; larger-scale
problems require more efficient algorithmic implementations.

The concept of “sparsity” has drawn considerable interest
recently, leading to a new and successful paradigm for the reg-
ularization of inverse problems. The main idea is to constrain
the restored image to have only a few nonzero coefficients
in a suitable transform domain. Based on this principle, a
simple and elegant iterative algorithm—which we shall call the
“thresholded Landweber” (TL) algorithm—was independently
derived by several research groups [7]–[9]. The method has the
advantage of being very general. However, it is known to con-
verge slowly when applied to ill-conditioned inverse problems
[10]–[12], which restrains its suitability for large data sets.

In this paper, we construct a multilevel version of the TL al-
gorithm that is significantly faster; this allows us to apply the
method for the restoration of real 3-D multichannel fluores-
cence micrographs. To do so, we specifically consider the case
where the sparsity constraint is enforced in the wavelet domain,
which was shown to yield state-of-the-art results for 2-D image
restoration (see [7]). From a numerical standpoint, the advan-
tage of using wavelet representations is twofold. First, their tree
structure naturally leads to efficient computational schemes in
the spirit of Mallat’s Fast Wavelet Transform [13]. Second, the
spectral localization properties of wavelets make them suitable
for preconditioning, that is, for partly compensating the poor
conditioning of the inverse problem.

The structure and the convergence speed of our multilevel al-
gorithm make it comparable to multigrid schemes [14], [15].
These schemes belong to the most efficient known methods for
the numerical resolution of partial differential equations; they
are typically one order of magnitude faster than standard itera-
tive methods. In fact, the connection between wavelet and multi-
grid theory was recognized early on [16]–[19]. Surprisingly,
though, the potential of wavelet-based multilevel methods for
image restoration has hardly been exploited so far. An exception
is the paper by Wang et al. [20], which is, however, restricted to
linear restoration and based on a relatively empirical reformu-
lation of the image-formation model in the wavelet domain.

Our approach is based on a nonquadratic variational formu-
lation (leading to a nonlinear restoration method) and on the
principle of bound optimization [21], [22]. This principle also
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underlies the derivation of [8] and is known under several alter-
native denominations, such as optimization transfer, surrogate
functional optimization or majorize-minimize (MM) strategy.

Our method can be related to the family of “block-alter-
nating MM algorithms” [23]. In the context of statistical signal
processing, one of the earliest representatives of this family is
the “Space-Alternating Generalized EM” (SAGE) algorithm
of Fessler and Hero [24]. More recently, a bound-optimization
approach was also used by Oh et al. to derive a multigrid
inversion method for nonlinear problems [25]. While the works
[23]–[25] do not involve wavelets, the latter can be related to the
so-called lazy wavelet transform [26], which itself corresponds
to the anterior concept of hierarchical basis in the finite element
and multigrid literature [27], [28]. Similarly, our work can be
related to generalizations of the hierarchical-basis method [17],
[29].

To achieve our goal, we construct a family of bounds that
allow us to divide the original variational problem into a collec-
tion of smaller problems, corresponding to the different scales
of the wavelet decomposition. The bounds can be made par-
ticularly tight for specific subbands. This leads to subband-de-
pendent iteration parameters (step sizes and threshold levels),
which are the key to faster convergence. The bound optimiza-
tion framework provides a rationale for choosing these parame-
ters in a consistent manner. At the same time, this framework is
simple to deploy and guarantees that the underlying cost func-
tional is monotonically decreased.

B. Image-Formation Model

We will be concerned with the recovery of signals that are
distorted by a linear measurement device and noise. Throughout
the paper, we will use a discrete description where the measured
signal is given by the algebraic relation

Here, the vector holds lexicographically ordered
samples of the original -dimensional signal (

is the product of the number of samples along each
dimension). is a transform matrix modeling the image-for-
mation device and represents the noise component.

The estimation of the original signal from the measure-
ment is an ill-posed inverse problem [30]. Most approaches
for overcoming this ill-posedness can be described in a varia-
tional framework, where one looks for an estimate that mini-
mizes a predefined cost functional. This functional is typically
the sum of a data term and a regularization term. Without going
into the details of a Bayesian interpretation [5], [7], the former
term enforces a certain level of consistency between the esti-
mate and the measured signal (with respect to the image-for-
mation model). The latter term prevents overfitting—and, thus,
instability—by favoring estimates that are close to some desir-
able class of solutions (according to some regularity measure).

C. Regularized Inversion Using a Wavelet-Domain Sparsity
Constraint

The discovery that natural images can be well approximated
using only a few large wavelet coefficients can be traced back to
the seminal work of Mallat [13] and is, for example, exploited

in the JPEG2000 compression format [31]. Following several
recent works (see below), we will use a regularization term that
promotes estimates with a sparse wavelet expansion; the data
term will be a standard quadratic criterion.

In the sequel, we assume that the reader is familiar with the
filter-bank implementation of the wavelet transform [26]. We
will denote by the vector that contains the coefficients of an
estimate in a preassigned wavelet basis; we shall refer to this
basis as the synthesis wavelet basis. Introducing the synthesis
matrix , whose columns are the elements of this basis, we
can write that

Later in this paper, we will also use the analysis matrix ,
whose columns are the elements of the dual wavelet basis. The
perfect-reconstruction condition can be expressed as
, where denotes transposition (or Hermitian transposition in

the case of a complex wavelet transform). Note that the present
formulation also includes the case of overcomplete wavelet rep-
resentations ( and are then nonsquare matrices).

With these notations, we consider that a solution to the in-
verse problem is given by , where minimizes the
functional

(1)

Here, represents the -norm of the wavelet coefficients,
that is, the sum of their absolute values. Compared to the stan-
dard Euclidian norm (denoted by ), the -norm puts more
weight on small coefficients, and less weight on large coeffi-
cients. Thus, depending on the magnitude of the regularization
parameter , it favors estimates whose energy is mostly concen-
trated in a few large wavelet coefficients. Note that in general the
coarsest-scale scaling-function coefficients are not included in
the regularization term (see Section III-C for more details).

An algorithm for the minimization of (1) has been derived
in [7]–[9], as well as in the earlier works [32], [33]. A sim-
ilar procedure is also described in [34], [35]. The beauty of
the method resides in its simplicity: it essentially consists in
alternating between a Landweber iteration [36] and a wavelet-
domain thresholding operation [37]—hence the name “thresh-
olded Landweber” (TL) algorithm. When is adequately nor-
malized and is orthonormal (implying that ),
the TL algorithm can be described by the recursive update rule1

(2)

starting from some arbitrary initial estimate . Here,
stands for a pointwise application of the well-known soft-thresh-
olding function [38], which can be defined for as

where
if
otherwise.

1To keep the notations simple, we do not introduce a specific index to distin-
guish between the individual estimates. Instead, we use the assignment operator
“ ” whenever a quantity (such as the estimate) is updated. The algorithmic sig-
nification of this operator is that the expression on the right-hand side is evalu-
ated and the result is stored in the left-hand side variable
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The presence of in (2) guarantees that a certain fraction of
wavelet coefficients will be set to zero, depending on the mag-
nitude of the regularization parameter .

D. Recent Relevant Work and Objectives of the Paper

The present work represents a substantial extension of a pre-
vious algorithm of ours [12], which was specific to convolu-
tive image-formation operators and to a sparsity constraint in
the (bandlimited) Shannon wavelet basis [26]. Here, the goal is
to derive a comparably fast algorithm for an arbitrary wavelet
basis, without making the assumption that the image-formation
operator leaves the different subbands uncoupled. The approach
described in the present paper differs fundamentally from [12]
in that it is based on a sequential update of the wavelet subbands,
instead of a parallel update. This requires a more sophisticated
multilevel algorithm.

Similarly to what is done in some presentations of the multi-
grid methodology—where a “model problem” is often used
to convey the intuition [15]—we will motivate and illustrate
our approach in the context of deconvolution. In this case,
can be thought of as a (block-)circulant matrix corresponding
to a given convolution kernel; our multilevel method is then
particularly efficient, thanks to the shift-invariant structure of
the wavelet subspaces. However, its principle can be applied
to more general inverse problems. The most direct extension
concerns inverse problems for which can be approx-
imated by a convolution matrix—specifically tomographic
image-reconstruction, where corresponds to a discretized
Radon transform. The subclass of inverse problems involving a
unitary image-formation operator (such that )—e.g.,
denoising, reconstruction from K-space (frequency-domain)
samples or digital holography microscopy [39]—may also
benefit from the method. In the present work, we have tried to
provide a general and modular pseudo-code description of the
multilevel TL algorithm that is readily transposable to machine
implementation.

Several works have already extended the standard TL algo-
rithm (which was originally formulated only for orthonormal
bases) to more general decompositions, including overcomplete
wavelet representations [10], [40]. Nevertheless, the principle
and the convergence properties of the algorithm were not fun-
damentally changed in these settings (although [40] is based on
a quite different proximal thresholding interpretation).

Faster methods for the minimization of (1) have only been
proposed very recently. We are aware of two-step methods [11],
[41], [42], line-search methods [43]–[45], coordinate-descent
methods ([46] and also [43] and [44]) and a domain-decomposi-
tion method [47]. The latter is based on a well-established con-
cept from the finite-element literature, so that it is arguably the
closest to our approach. However, it is not specific to wavelets
and relies entirely on dimension-reduction effects for decreasing
the computational complexity.

The above methods differ with respect to the number and
the determination of their step sizes. Among the fixed-step-size
strategies, the domain-decomposition approach [47] uses the
same step size for all subspaces, whereas the coordinate-de-
scent methods described in [43], [44], and [46] use step sizes
that are adapted to each atom individually. The methods of Bi-

oucas-Dias, Figueiredo, and Nowak [11], [41], [42] have the ad-
vantage of simplicity, because they use only two iteration pa-
rameters that are also determined a priori (however, these pa-
rameters may require some hand tuning based on the outcome
of a small number of preliminary iterations). The principle of the
line-search methods [43]–[45] is that the step sizes are adjusted
depending on the context, which involves additional computa-
tions at every iteration. Our algorithm is somewhere in between
all these approaches: the step sizes are adjusted at the level of in-
dividual wavelet subbands, they can be precomputed for a given
image-formation operator and wavelet family, and they remain
fixed during the entire algorithm.

In summary, to the best of our knowledge, a wavelet-based
multilevel method comparable to ours—which combines cyclic
updates of the different resolution levels with the precondi-
tioning effect of subband-specific iteration parameters—has not
been proposed so far. Therefore, we have chosen to focus on
the derivation and the experimental validation of our algorithm.
A theoretical study of its convergence properties and a compar-
ison with the aforementioned techniques is a research subject
in its own right that will certainly be investigated in the future.

The remainder of the paper is organized as follows. In Sec-
tion II, we revisit the derivation of the TL algorithm (2) which
was presented in [8], introducing additional degrees of freedom
into the bound optimization framework. This leads to our multi-
level algorithm, described in Section III. Section IV is dedicated
to numerical experiments.

II. DIVIDE—THE THRESHOLDED LANDWEBER

ALGORITHM, REVISITED

A. Notations

In this section, we will primarily be interested in the subspace
structure of the wavelet representation. The tree-structure of the
wavelet transform—that is, the embedding of the underlying
scaling-function subspaces—will become important for the al-
gorithmic considerations of the next section. To account for both
aspects, we introduce the following notations, which are illus-
trated in Fig. 1. Throughout this paper, we shall use the terms
“scale,” “resolution level,” “decomposition level,” and “level”
interchangeably.

• : number of resolution levels of the wavelet representa-
tion ( : scale index).

• : number of wavelet subbands at scale , excluding the
scaling-function subband ( : subband index).

• : general subband index. Our convention will be
that corresponds to the scaling-function subband at
scale ; however, for the sake of conciseness, we will often
simply write instead of . The context will indicate
whether we are referring to the scaling-function subband
or to the decomposition level.

• : indexing set for
all wavelet subbands at a scale . At the
coarsest level, we include the scaling-function subband:

.
• : indexing set for all subbands produced by a -scale de-

composition (including the coarsest-scale scaling-function
subband)
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Fig. 1. Complementary notations reflecting the tree structure (notations associated with continuous lines) and the subspace structure (notations associated with
dashed lines) of the wavelet representation. Here, the number of decomposition levels is . The number of subbands is at every scale , which is
typical for a 2-D separable wavelet representation.

• : wavelet or scaling-function coefficients of the current
estimate corresponding to subband . is the concatena-
tion of for every . Note that is an alias for .

• : matrix corresponding to the reconstruction part (up-
sampling and filtering using the synthesis filters) of the
channel of the filter bank at scale , to go from to

.
• : “restriction” of the synthesis matrix to subband ,

such that

(3)

More precisely, this is a cascade of upsampling and fil-
tering operations defined recursively by

for . (4)

B. Estimation of the Cost Functional Using
Subband-Dependent Bounds

Our algorithm is based on the availability of a wavelet-do-
main estimation of that takes the following form: we assume
that there are constants such that

(5)

We shall assume for now that this inequality holds for an
arbitrary vector of wavelet coefficients , and we shall re-
visit the derivation of the bound-optimization algorithm of
Daubechies et al. [8]. Rather than directly considering the

original cost functional , the idea is to iteratively construct
a series of auxiliary functionals that are easy to minimize.

Given an estimate of the minimizer of , say , we
define

(6)
This functional has three important characteristics.

1) When , takes the same value as .
2) For all other values of , is an upper-bound of ,

by virtue of (5).
3) admits a minimizer with a closed-form expression.

The first two properties imply that, if we find a new estimate
that minimizes (or at least decreases) , we also de-

crease . We simply have to observe that

The third property allows us to actually construct such a new
estimate. It originates from the negative (rightmost) term in (6),
which cancels out the coupling of the wavelet coefficients in

. As a result, the auxiliary functional can be rewritten as

(7)

where the constant does not depend on . This expression re-
veals that the auxiliary functional is essentially a weighted sum
of “subfunctionals” that depend on distinct subbands. Further-
more, the wavelet coefficients appear to be completely decou-
pled in each subfunctional. This means that once we have com-
puted for every subband , we
can minimize each subfunctional using solely pointwise opera-
tions.

This minimization procedure can be related to two standard
image-restoration methods. First, the computation of
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may be seen as a wavelet-domain Landweber iteration
[30], [36]: the wavelet decomposition of the “reblurred residual”

serves as a correction-term, which is ap-
plied with a (subband-dependent) step size . Let us point
out, however, that the decomposition of the residual must be
performed using the synthesis basis. Second, each subfunctional
can be interpreted as a denoising functional where
represents the wavelet coefficients of a signal to be denoised and

is a regularization parameter (again subband-dependent).
The minimizer of such a functional is unique and is obtained
by soft-thresholding the coefficients of the noisy signal, with a
threshold level equal to half the regularization parameter [48].

C. Relation With the Standard Thresholded Landweber
Algorithm

Iterating the previous minimization scheme produces a se-
quence of estimates that are guaranteed to monotonically de-
crease the cost functional. The procedure can be summarized
by the following two-step update rule:

For every
For every (8)

Note that the threshold levels must be adjusted proportionally
to the inverse of the bound constants.

In particular, when the bounds are the same for all subbands
( for every ), one obtains the standard “thresholded
Landweber” (TL) algorithm. This algorithm uses the same step
size and the same threshold level for all sub-
bands. It is relatively easy to obtain an admissible value for
when is an orthonormal matrix. We can then write that, for
an arbitrary vector of wavelet coefficients

Here, denotes the spectral radius of ; when
is a convolution matrix, this is simply the maximum over the
squared modulus of its frequency response. Thus, for (5) to hold,
it is sufficient to choose for every . Note that
(2), which corresponds to , is a space-domain
reformulation of the TL algorithm that is made possible by using
an orthonormal basis. This description is quite natural, since
eventually we are interested in .

However, we have already mentioned that the TL algorithm
converges slowly, especially when the image-formation matrix

is ill-conditioned. This can be explained intuitively by the
fact that using the same bound for all subbands can only give
a very limited account of the spectral characteristics of . The
corresponding auxiliary functionals will thus be relatively poor
approximations of the original cost functional, and many inter-
mediate minimization steps will be required before getting a rea-
sonable estimate of the minimizer.

D. Single-Level Thresholded Landweber Algorithm

Our motivation for introducing subband-dependent bounds is
to design auxiliary functionals that better reflect the behavior of
the underlying cost functional by exploiting the spectral local-
ization properties of the wavelet basis. Specifically, we would

like to use an estimate (5) that is tighter—i.e., that involves
smaller constants —than the aforementioned bound for the
standard TL algorithm.

In the sequel, will denote the largest singular
value of the matrix . In particular,

is the spectral radius of ;
when is a convolution matrix, this is the upper Riesz bound
of the filtered version of the wavelet that spans subspace .
Note that can be significantly smaller than . As
an intuitive example, one could imagine the case where
corresponds to a low-pass filter and is a high-frequency
wavelet subband.

The quantity is important because it represents
a lower limit for . Indeed, for a vector with a
single nonzero wavelet subband, say , (5) reduces to

. For this inequality to hold for every
, we must choose .

A particular case arises when the subspaces spanned by the
matrices are mutually orthogonal. We can then use ex-
actly the value , since

Our previous work [12] was based on the fact that the bandlim-
ited Shannon wavelet basis exhibits this decorrelation property
with respect to convolution operators. In such a situation we can
directly apply algorithm (8).

When considering arbitrary wavelet families and image-for-
mation operators, we must a priori bound numerous cross-sub-
band correlation terms, since in general

(9)

This would require constants that are significantly larger than
. However, we can make the following observation: if we im-

pose that , inequality (5) remains valid for all vectors
that have at most one nonzero subband. This means that (6)

would define a valid upper-bound of the cost functional under
the constraint that and differ by only one subband, that
is, under the constraint that we update only one subband at a
time.

In practice, owing to the structure of the wavelet representa-
tion, it is algorithmically more efficient to be able to update all
subbands at a given scale simultaneously. We, thus, propose to
replace (8) by

For every
For every

(10)
This choice only requires taking into account correlations be-
tween a small number of subbands (those located at the same
scale), so that the resulting constants are still close to .
More precisely, the following property provides a valid upper-
bound under the constraint that we update only a single scale.

Property 1: If we set

(11)
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Fig. 2. Principle of the coarse-to-fine thresholded Landweber (CFTL) algorithm for a two-level decomposition.

for every , then inequality (5) holds for an arbitrary vector of
wavelet coefficients satisfying the following constraint: there
is a scale such that for all subbands , .

Proof: Equality (9) reduces to

Combining this with the fact that, for every ,

(12)

we obtain

Appendix A describes an algorithm for computing the con-
stants in the convolutive case; for more general operators
one may use the power method [49]. Let us emphasize that,
under the condition of Property 1, every application of (10) is
guaranteed to decrease the auxiliary functional (and, thus, the
original cost functional), despite the fact that only a subset of
subbands is updated. This follows from (7), which shows that
the minimization of the auxiliary functional can always be di-
vided into a collection of subband-specific—hence, indepen-
dent—minimization problems. Of course, by letting vary at
every iteration, we can successively update the subbands at all
scales. The next section describes an efficient method for doing
this.

III. CONQUER—MULTILEVEL THRESHOLDED

LANDWEBER ALGORITHM

The general idea behind our multilevel scheme is to interlace
the computation of the residual and the minimization procedure.
To give the reader the intuition of this principle, we focus on
the description of a simplified strategy that consists in applying
(10) successively from the coarsest-scale to the finest-scale sub-
bands.

A. Coarse-to-Fine Update Strategy

Let be the residual corresponding
to the current estimate. Assume that is modified at scale

by applying procedure (10). In general, this will imply a
modification of the residual in all subbands (due to the matrix

, which couples the subbands). If the next itera-
tion is performed at scale , it is, however, not necessary to
recompute the entire residual; instead, one can simply update
the subbands . Denoting by the modifica-
tions that have been applied to the estimate, the corresponding
correction that must be applied to the residual in a subband

is

The above equality stems from the cascade implementation of
the wavelet transform—see (4). Thus, an updated version of the
residual at scale is obtained as follows:

1) transfer all modifications to the scaling-function subband
at the next finer scale ;

2) apply the “correction matrices”
for every ;

3) subtract the results from the respective subbands.
This principle is illustrated in Fig. 2; its recursive application

leads to the “coarse-to-fine thresholded Landweber” (CFTL)
algorithm. A pseudo-code description is given below. Note
that all modifications—including those from subbands located
at coarser scales than the current scale —are progressively
transfered to finer scales. The CFTL algorithm depends on
the “single-level thresholded Landweber” (SLTL) procedure,
which essentially corresponds to the updating rule (10). The
only difference is that the modifications that are applied to the
estimate are stored in intermediate variables so as to be able
to update the residual. For simplicity, the variables ,
and are considered to be global (for every subband ) in all
pseudo-code descriptions given in this paper.

We emphasize that the correction steps 2) and 3) above
are the only additional operations compared to the standard
TL algorithm. These steps should require little computational
effort at coarse levels, thanks to the pyramidal structure of
(decimated) wavelet representations. In other words, they can
be implemented efficiently if the computational complexity of
evaluating (the forward image-formation model followed
by the corresponding “back-projection”) scales well with this
data-size reduction.

A particular case arises when is a convolution matrix.
The shift-invariant structure of wavelet subspaces then implies
that the correction steps essentially reduce to filtering opera-
tions. Here we refer to Appendix A, which also gives a recursive
method for precomputing the correction filters: the procedure
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is akin to a wavelet decomposition of the convolution kernel
corresponding to and is easily implementable in the fre-
quency domain (see also [50]). The correction steps can be im-
plemented with a linear cost provided that we store the DFTs
of the individual wavelet subbands; the actual wavelet coeffi-
cients are only needed for the thresholding operations and can
be computed efficiently using the FFT algorithm. In terms of
computational work, one iteration of our algorithm is, there-
fore, equivalent to two FFTs per subband, which amounts to
two FFTs at the signal level (level 0). The overall complexity of
a full coarse-to-fine run is, thus, on the same order as one run
of the standard TL algorithm, which also requires two FFTs per
iteration in the convolutive case.

With a slight anticipation of the next subsection, we conclude
this part by noting that multigrid methodologies sometimes
advocate the approximate resolution of coarse-level problems
[15]. In the particular situations where the wavelet subbands
are weakly coupled by the image-formation operator, we
have indeed observed that the CFTL algorithm converges
even if the correction steps are not applied; that is, if the
residual is only updated at the beginning of the iteration loop.
This amounts to applying (8) using fairly optimistic bound
constants—without guarantee that the cost functional is mono-
tonically decreased—and calls for further investigation. This
approach may turn out to be useful when dealing with complex
image-formation models that can not be evaluated easily at
coarse levels.

Algorithm 1

For every :
•
•
•

Algorithm 2 CFTL

• Initialization:
— Choose some initial estimate
— Compute its wavelet decomposition:

• Repeat times:
— Compute the residual: for every ,

— Update the subbands from coarse to fine levels, i.e., for
, :

• Update the subbands at the current level:
• Transfer the modifications to the next finer level:

• If , correct the residual for the wavelet
subbands at the next finer level:
for every ,

— Set
• Return

B. General Multilevel Scheme

With the previous algorithm in mind, one can conceive of
more general multilevel strategies for updating the different
scales in a more flexible manner. In Appendix B, we provide a
pseudo-code description of a method that is strongly inspired by
the multigrid paradigm. However, there is one fundamental dif-
ference: traditional multigrid schemes typically cycle through
nested subspaces corresponding to increasingly coarse dis-
cretizations of the original inverse problem [51]. In the present
context, we successively update the wavelet subbands at every
scale; that is, we reinterpret the different scales of the wavelet
transform as a multilevel representation of the inverse problem.
The corresponding subspaces are not nested—they contain the
oscillating components corresponding to the difference between
successive coarse-level approximations. Incidentally, early at-
tempts to apply the multigrid paradigm to image-restoration
problems remained relatively unsuccessful because they were
concentrating on slowly oscillating components [52], [53].

We have tried to specify the “multilevel thresholded
Landweber” (MLTL) algorithm in a modular way that is
relatively close to machine implementation. Its main building
block, UpdateLevel , depends on three parameters so as
to be able to mimic typical multigrid schemes (see Fig. 3).
The parameters are, thus, named , and , following
the conventions of the multigrid literature [15], [54]. In the
particular case , and , one retrieves the
coarse-to-fine update described in the preceding subsection
[Fig. 3(a)]. However, we should note that the MLTL algorithm
is numerically (slightly) more stable, because the current esti-
mate is explicitely reconstructed from its wavelet coefficients
at every iteration.

The different modules of Appendix B can be summarized as
follows.

• UpdateResidual : updates the residual for the subbands
at scale (if needed). Uses the correction principle of Fig.
2 if the wavelet subbands have not been modified so far.
Otherwise, the update is performed by temporarily moving
up to the next finer scaling-function subband.

• UpdateLevel : recursive procedure which
— updates the subbands at coarser scales by calling itself

times;
— updates the subbands at scale by calling (the

number of updates before and after a recursive call are
fixed by and , respectively).

Note that the procedure must compute the current residual
for the scaling-function subband at scale before calling
itself. This is either done by applying the correction prin-
ciple of Fig. 2 in the opposite direction (from the wavelet
subbands to the scaling-function subband), or by going to
the next finer scale using UpdateResidual .

• MLTL: main routine that performs initialization tasks
followed by several iterations of the update procedure.
One may devise even more general—e.g. “full multigrid”
[14]—schemes by adapting this routine.

C. Fixed-Point Property

A comprehensive study of the convergence properties of the
MLTL algorithm is well beyond the scope of the present work.
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Fig. 3. Examples of multigrid-like updating schemes made possible by the gen-
eral MLTL algorithm. Each dot corresponds to an application of (10) at the cor-
responding level. (a) Coarse-to-fine ( ; ; ); (b) V-cycles
( ; ); (c) W-cycles ( ; ).

In particular, obtaining tight theoretical convergence-rate esti-
mates is a difficult problem even for linear subspace-correction
methods [51]. In the next section, we thus propose a numerical
study of the convergence rate of the MLTL algorithm, based on
the following concise characterization of the minimizer(s) of the
cost functional (1). We provide a proof in Appendix C for com-
pleteness (see also [8] and the general results in [40] and [55]).

Property 2: is a minimizer of if and only if it is a
fixed point of the standard TL algorithm, that is, if and only if
there is an arbitrary step size such that

. Furthermore the minimizer is unique
if is positive definite.

A similar property can be obtained for the MLTL algorithm.
This ensures that we obtain a minimizer of the cost functional
whenever the MLTL algorithm converges (which is essentially
guaranteed by the monotonicity of the algorithm [21]). In the
sequel, stands for the th component of a vector .

Property 3: is a minimizer of if and only if it is a
fixed point of the MLTL algorithm; that is, if and only if it is
not modified by a sequence of successive applications of (10)
at different scales, such that every subband is updated at least
once.

Proof:
• Necessary part: is assumed to be a minimizer of .

The characterization of Property 2 is equivalent to the fol-
lowing statement: there is a such that, for every
component of

either and
or and

(13)
Multiplying by a suitable constant shows that the step size

can actually be chosen arbitrarily. In particular, if
corresponds to a wavelet coefficient of subband , (13)

also holds for . Using this argument for all wavelet
coefficients shows that is a fixed point of (10) at any
scale .

• Sufficient part: is assumed to be invariant under a se-
quence of successive applications of (10), such that every
scale is visited at least once.
We first observe that, for a given scale , (10) computes
the minimizer of the auxiliary functional considered as
a function of only. Because this minimizer is
unique, the result of applying (10) is either to leave the esti-
mate unchanged, or to strictly decrease the auxiliary func-
tional—and, thus, the original cost functional by construc-
tion.
The fixed-point assumption excludes the latter case. There-
fore, it must be that is invariant under each individual
application of (10). Let be an arbitrary component of ,
e.g. corresponding to a subband . Since we assume
that (10) was applied at scale at least once, (13) holds
with ; in fact, it holds for an arbitrary . Using
this argument for all wavelet coefficients, one retrieves the
characterization of Property 2.

Before proceeding to the experimental part of this work, we
mention two straightforward extensions of the MLTL algorithm.
First, it is clear that the algorithm (and the above results) can be
extended to a cost functional with subband-specific regulariza-
tion parameters . In particular, the coarsest-scale saling-func-
tion subband is not thresholded in practice, i.e., .
Second, one can also replace the -regularization in (1) by an-
other coefficient-wise penalization in the wavelet-domain. This
will essentially amount to changing the thresholding function;
as long as the regularization term is convex, the same bound-op-
timization framework can be deployed.

IV. NUMERICAL EXPERIMENTS

In the experiments presented below, we use an norm for the
regularization term. Unless specified otherwise, we use the same
regularization parameter for all wavelet subbands; the scaling-
function subband is never penalized.

A. Asymptotic Convergence (1-D Experiments)

To evaluate the convergence behavior of the MLTL algo-
rithm, we designed an experiment where the true minimizer
of the cost functional is used as a gold standard. Each test
case was constructed as follows. The standard “bumps” signal
[Fig. 4(a)] is convolved with an -periodic low-pass kernel
defined by for ;
the corresponding convolution matrix is normalized such
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that . White Gaussian noise is added to the
result, so as to simulate a measurement . The standard TL
algorithm (with a step size ) is then initialized with this
measurement and run for 50000 iterations in order to obtain our
reference solution . Since is positive-definite
for the convolution kernel defined above (the smallest DFT
coefficient of being 0.06), Property 2 implies that this
minimizer is unique. Fig. 4(b) and (c) shows an example of
the measurement and of the corresponding minimizer .
Fig. 4(d) shows the locations of the nonzero wavelet coeffi-
cients of the solution (we use a 3-level wavelet decomposition
and the upper plot represents the finest-resolution subband).

We then used this reference to compare the asymptotic be-
havior of the TL and MLTL algorithms. To this end, we per-
formed a series of experiments where the algorithms are applied
to the minimization of (1) and initialized with the measurement

. Although the asymptotic convergence rates that are presented
here may not be directly relevant to practical situations, they
give a quantitative indication of the acceleration potential of the
MLTL algorithm. Our asymptotic study required several thou-
sand iterations of the TL and MLTL algorithms in various con-
figurations, which is why we resorted to a small-scale problem
( and ). The MLTL algorithm was used with the
parameters , and (coarse-to-fine strategy).
The computational cost of one complete MLTL iteration is then
essentially the same as the cost of one TL iteration (each sub-
band is updated once per iteration). This allows for a direct com-
parison of both algorithms in terms of number of iterations.

The decay of the cost functional towards its minimal value
is represented in Fig. 4(e). This decay is only limited

by the numerical precision of the computer environment (we
used Matlab on a 64-bit Intel Xeon workstation). To reach this
limit with the MLTL algorithm, the number of iterations is di-
vided by more than 10 compared to the TL algorithm. We also
display the distance between the estimate and the minimizer
[Fig. 4(f)]; here, the “signal-to-error-ratio gain” is defined as

. As expected,
both algorithms converge to the minimizer, but the MLTL algo-
rithm is again faster by more than one order of magnitude for
reaching the level of numerical precision.

To obtain a more quantitative insight, we repeated the exper-
iment in several test cases and computed the slope of the SERG
curves between 100 and 250 dB. This measurement gives an es-
timate of the asymptotic convergence rate, in dB per iteration.
The results are summarized in Table I, for various orthonormal
wavelet bases and different values of the regularization param-
eter, corresponding to different noise levels (from top to bottom,
the values of correspond to BSNR noise levels of 60, 50,
40, 30, 20, 10 dB, respectively—see [12] for the definition of
BSNR).

For validation purposes, we computed a theoretical conver-
gence-rate estimate in the case where . With this particular
choice, both algorithms reduce to linear (least squares) restora-
tion procedures: since the thresholding step disappears, the TL
algorithm reduces to the standard Landweber iteration and the
MLTL algorithm corresponds to a wavelet-based multilevel im-
plementation of the Landweber iteration. For this type of linear
iterations, the asymptotic convergence rate can be estimated

Fig. 4. Experiment with a known minimizer (Symlet8, ). (a) Orig-
inal signal ; (b) measurement ; (c) minimizer ; (d) active wavelet
coefficients of ; (e) cost function: ; (f) SERG (dB).

using the spectral radius of the so-called iteration matrix (see
e.g. [54]). This spectral radius can be obtained directly for the
TL algorithm because we consider orthonormal wavelet bases
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TABLE I
CONVERGENCE RATES (IN dB PER ITERATION) FOR DIFFERENT VALUES OF THE REGULARIZATION PARAMETER AND VARIOUS ORTHONORMAL WAVELET BASES

(the computation is essentially the same as in Section II-C). For
the MLTL algorithm, the small dimension of the problem allows
us to explicitly construct the iteration matrix in order to evaluate
its spectral radius. The resulting theoretical convergence-rate es-
timates (expressed in dB per iteration for comparison purposes)
are reported in the first row of Table I.

The theoretical and the measured values are in good agree-
ment for , suggesting that our experimental method for
measuring the asymptotic convergence rate is reliable. The re-
sults for corroborate the former observation [7], [12] that
the TL algorithm tends to converge faster for higher values of .
This can be explained by the fact that the variational problem is
more constrained, thus compensating for the unfavorable con-
ditioning of the convolution kernel. Nevertheless, the conver-
gence rates of the MLTL algorithm are consistently one order
of magnitude larger than those of the TL algorithm. The figures
suggest that the strongest acceleration is generally obtained for
higher-order wavelets, which can be related to their improved
frequency selectivity. The Shannon wavelet basis provides per-
fect frequency selectivity, a property that was exploited in our
previous work [12].

B. Computation Time (2-D Experiments)

In our second series of experiments, we evaluated the perfor-
mance of the MLTL algorithm in terms of computation time.
This type of assessment is most relevant in practical situations,
but it depends on computer hardware parameters. Therefore, we
always provide a comparison with the standard TL algorithm.

We first simulated the effect of a defocusing blur on a 512
512 test image [Fig. 5(a)]. We used a standard diffrac-

tion-limited point spread function (PSF) model for widefield
fluorescence microscopy [1]. The result was then corrupted
by additive white Gaussian noise with a BSNR of 40 dB
[Fig. 5(b)]. We restored this simulated measurement using the

TL and MLTL algorithms. Both were initialized with the mea-
surement. We used a separable orthonormalized cubic spline
wavelet basis with four decomposition levels. The regulariza-
tion parameter was the same for both algorithms; it was
adjusted using multiple trials, so as to give the best restoration
quality after the MLTL algorithm had converged. Fig. 5(d)
and (e) show the evolution of the restoration quality measure

, where
stands for the original signal and is the estimate. One
can observe that the coarse-to-fine MLTL algorithm requires
1 s of computations to reach an improvement of 8 dB [result
shown in Fig. 5(c)]. The TL algorithm needs approximately
10 s to reach the same figure. We found that the performance
of the MLTL algorithm can be further improved by using

, i.e., with a modified W-cycle iteration. This makes
sense since natural images tend to have mostly low-frequency
content; thus, iterating on coarse-scale subbands brings the
largest improvement in the beginning, unless the algorithm is
initialized with a very accurate estimate.

We used a similar protocol for the second part of our 2-D
experiments, where we replicated the standard test case used
by Figueiredo and Nowak in [7] (Cameraman image convolved
with a 9 9 uniform blur; additive white Gaussian noise with
a BSNR of 40 dB; initialization with a Wiener-type estimate).
In particular, we introduced a random shift of the estimate at
the beginning of every TL and MLTL iteration; the authors
found that this method gave optimal results with nontransla-
tion-invariant wavelet transforms. We present results for three
wavelet bases, including biorthogonal 9/7 wavelets. We always
used three decomposition levels and the same regularization
parameter . The second and fourth columns of Table II
show the restoration quality of the MLTL algorithm after
1 and 4 s, respectively. The third and fifth columns give the
minimum TL computation time that is required to reach the
same restoration quality. Again, the MLTL algorithm provides
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Fig. 5. Computation time comparison (in seconds). (a) Original; (b) measured;
(c) restored (MLTL after 1 sec.); (d) SERG versus computation time; (e) SERG
versus computation time (zoom).

an acceleration of roughly one order of magnitude. Our results

confirm the superiority of the Haar basis among separable
wavelet bases for 2-D image restoration; this fact is already
known from denoising applications [56]. In general, the ability
to use other wavelet bases than the Shannon wavelet basis leads
to substantial improvements over our previous work [12]. In
summary, the MLTL algorithm can yield state-of-the-art results
(similar to those obtained in [7]) in a substantially shorter time
than the TL algorithm.

C. Application to Real Fluorescence-Microscopy Data (3-D
Experiments)

To conclude this experimental part, we applied the MLTL
algorithm to real 3-D fluorescence-microscopy data. Similarly
to our experiment in [12], we acquired two image-stacks of the
same sample (a C. Elegans embryo), one of them serving as a
visual reference to assess the restoration quality. For the present
work we acquired a much larger, two-channel data set.

Both data sets were acquired on a confocal microscope, which
has the ability to reject out-of-focus light using a small aperture
in front of the detector. This creates a relatively sharp but noisy
image [Fig. 6(d)]. When the aperture is opened the signal in-
tensity is improved, but the measurement gets blurred by the
contributions of defocused objects. This results in hazy images
that are characteristic for widefield microscopes [Fig. 6(a)].

We applied the MLTL algorithm to the widefield-type stack,
with three decomposition levels. To account for the anisotropic
sampling scheme of the microscope, we used an orthonormal-
ized linear spline wavelet for the X-Y dimensions, and a a Haar
wavelet for the Z dimension. We kept the random-shift method
of [7] and we used scale-dependent regularization parameters
that were adjusted with the confocal stack as a visual refer-
ence. The channels were processed independently, using com-
puter-generated PSFs based on a 3-D version of the diffrac-
tion-limited model used in the previous subsection. The parame-
ters of this model were adjusted according to manufacturer-pro-
vided specifications of the objective, the immersion oil and the
fluorescent dyes (NA, refractive index, emission wavelength).

The result is shown in Fig. 6(c): the restored image-stack
provides significantly better contrast than the original widefield
image, especially for the filaments (green channel). The chro-
mosomes and their centromeres (blue channel) appear almost
as sharp as in the confocal image.

For completeness, we have included the result of the TL algo-
rithm after the same number of iterations [Fig. 6(b)]. It is seen
that the resulting image-stack is still very hazy; the TL algo-
rithm fails to produce a visible deconvolution effect within the
assigned budget of iterations. The computation time was on the
order of 5 minutes for both algorithms.

V. DISCUSSION AND CONCLUSION

We have presented a wavelet-based multilevel image-restora-
tion algorithm inspired from multigrid techniques. The method
is one order of magnitude faster than the standard algorithm
for sparsity-constrained restoration, whose results belong to the
state-of-the-art in the field of image processing.

The MLTL algorithm allows for typical multigrid iteration
schemes such as V-cycles and W-cycles. However, it differs
from textbook multigrid schemes, which iterate on nested
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TABLE II
COMPUTATION TIME REQUIRED TO REACH A GIVEN LEVEL OF RESTORATION QUALITY, FOR THE SECOND EXPERIMENT OF SECTION IV-B

subspaces corresponding to different “resolution levels” of the
inverse problem. Our algorithm, by contrast, iterates on the
wavelet subbands, which are the complements of the standard
multigrid spaces. Yet our algorithm takes advantage of the
underlying multiresolution structure, which greatly contributes
to the efficiency of the method. The other key point is the
preconditioning effect of wavelets.

We have provided theoretical convergence rates for the linear
parts of the TL and MLTL algorithms, giving a quantitative in-
sight into the convergence acceleration of the latter. Our exper-
imental results show that one can achieve the same kind of ac-
celeration in the general nonlinear case (with thresholding).

Our method is directly applicable to separable wavelet bases
in arbitrary dimensions. We obtained promising results in the
context of 3-D fluorescence microscopy using such bases,
extending our previous work [12]. Nevertheless we have tried
to provide a sufficiently general description that should require
little adaptation for more “exotic” wavelet representations,
e.g. with quincunx subsampling schemes [57], or nonsta-
tionary refinement filters [58], [59]. The algorithm is readily
implementable using our modular specification and standard
wavelet-decomposition/reconstruction building blocks.

We are currently investigating the benefits of the MLTL algo-
rithm for redundant wavelet representations. We have not specif-
ically explored this possibility here because we were primarily
interested in high-dimensional inverse problems that do typi-
cally not allow for redundant decompositions. We have already
obtained promising results for medical applications (specifically
fMRI signal restoration and tomographic image reconstruction)
which will be the subject of forthcoming reports.

APPENDIX

A. A Method for Precomputing the Bound Constants and the
Correction Filters

To keep the presentation simple, we will consider the 1-D
situation where is a (positive) circulant matrix.

Its eigenvalues (DFT coefficients) are real and positive and can
thus be denoted , . Furthermore, we will
consider a wavelet decomposition with a dyadic subsampling
scheme. The method presented below can easily be extended to
higher dimensions and more general wavelet representations.

To compute the bound constants defined in (11), one must
essentially estimate the inner products of (12). These can be
rewritten in the frequency domain as

where we use the following conventions.
• denotes the DFT of the wavelet coefficients corre-

sponding to a subband at a given level . Since we as-
sume a dyadic subsampling scheme, can be seen as
an -periodic sequence, with .

• denotes the DFT of the wavelet or scaling function
that spans the subspace associated with subband . Note
that if we define , the discrete version of the
standard scaling relation [26] can be stated as

(14)

where is the -periodic filter corresponding to
(see below).

Our multilevel method only requires the explicit value of the
constants when and are subbands located at the same
level, that is, when for some . In this case,

and have the same period . We can thus write
that

where

(15)
Inequality (12) is then obtained by defining

.
When is a circulant matrix and , the matrix

is also circulant and its DFT coefficients
are precisely given by , for . This property
allows for an efficient frequency-domain implementation of the
residual correction steps in the CFTL and MLTL algorithms.

To prove the property, we introduce the general notation
for arbitrary subbands , . We

also define . We can then proceed by recurrence.
For , is circulant and its DFT coefficients are given
by (15) with . For , we assume that
is a circulant matrix whose DFT coefficients are .
The cascade structure of the wavelet representation (4) implies
that, for
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For a given subband , the algorithmic interpretation of is
1) dyadic upsampling, followed by 2) filtering with . Its
transpose stands for 1) filtering with , followed by
2) dyadic downsampling. Therefore, is also a circulant
matrix with DFT coefficients

(16)
The equality stems from definition (15) for , and from
the scaling relation (14); this completes the proof by recurrence.

Note that relation (16) provides a way to recursively compute
the filters and the corresponding constants (with

).

B. Pseudo-Code Description of the General MLTL Algorithm

As in the previous subsection, we use the notation
. The general MLTL algorithm uses both the

matrices and , for . It is useful to ob-
serve that : in the convolutive case, this implies that

.

Algorithm 3 UpdateResidual

• If for some :
—
— For every , .

• Otherwise, if : for every , .

Algorithm 4 UpdateLevel

• Initialization:
— For every , .
— For every , .

• Repeat times:
— Repeat times:

• UpdateResidual .
• SLTL .

— If :
• If for some :

• If , UpdateResidual .
• Otherwise, .

• .
• UpdateLevel .
• .

— Repeat times:
• UpdateResidual .
• SLTL .

• .

Algorithm 5 MLTL

• Initialization:
— Choose some initial estimate and set .

Fig. 6. Three-dimensional deconvolution results (maximum-intensity projec-
tions of image stacks). (a) Original widefield stack (input data);
(b) deconvolution result after 15 TL iterations; (c) deconvolution result after 15
MLTL iterations; (d) confocal reference stack.

— Compute its wavelet decomposition (keeping the
coarse approximations):
for , for every ,

.
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• Repeat times:
— .
— UpdateLevel(1).

• Set and return .

C. Proof of Property 2

A short computation reveals that

(17)

where and are arbitrary vectors of wavelet coefficients.
• Necessary part: we assume that for every

.
— Suppose that for

some . Given a real and strictly positive constant , we
define the vector by

if
otherwise.

In view of (17), can always be chosen such that
, a contradiction. Therefore, it must be

that for every .
— Choosing and inserting into

(17) gives the necessary condition

If it were true that
, we could find a sufficiently small such

that this necessary condition is violated. Thus, it must be
that .
Since for every , it
follows that
whenever .

The combination of both results is equivalent to the fixed-
point property.

• Sufficient part: is assumed to be a fixed point of the TL
algorithm.
We use the same equivalence:
— Since

whenever , we know that
and (17) reduces to

— Since for every , it
follows that

This also shows the unicity of the minimizer when
is positive definite.
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