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Abstract—The accurate registration of multiview images is of
central importance in many advanced image processing applica-
tions. Image super-resolution, for example, is a typical application
where the quality of the super-resolved image is degrading as reg-
istration errors increase. Popular registration methods are often
based on features extracted from the acquired images. The accu-
racy of the registration is in this case directly related to the number
of extracted features and to the precision at which the features
are located: images are best registered when many features are
found with a good precision. However, in low-resolution images,
only a few features can be extracted and often with a poor preci-
sion. By taking a sampling perspective, we propose in this paper
new methods for extracting features in low-resolution images in
order to develop efficient registration techniques. We consider, in
particular, the sampling theory of signals with finite rate of inno-
vation [10] and show that some features of interest for registra-
tion can be retrieved perfectly in this framework, thus allowing an
exact registration. We also demonstrate through simulations that
the sampling model which enables the use of finite rate of innova-
tion principles is well suited for modeling the acquisition of images
by a camera. Simulations of image registration and image super-
resolution of artificially sampled images are first presented, ana-
lyzed and compared to traditional techniques. We finally present
favorable experimental results of super-resolution of real images
acquired by a digital camera available on the market.

Index Terms— Feature extraction, image registration, image
super-resolution, sampling methods, spline functions, wavelet
analysis.

I. INTRODUCTION

M ULTIVIEW camera systems are composed of a set of
cameras positioned at different locations and focusing

on the same scene of interest. Thus, at any given time, the th
camera acquires a sampled image of the particular view

it has of the scene. To take advantage of such systems
and use advanced image processing techniques like super-res-
olution, motion estimation or occlusion removals, the first pro-
cessing task of utmost importance is the accurate registration
of the acquired images. The exact registration of two images
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consists in finding the geometric transformation that exists be-
tween the view of one camera and the view of a second
camera with a different location. However, the continuous views
are usually not available and the registration is done on the ac-
quired digital sampled images and .

Various surveys and books on image registration are available
for an in-depth review of recent and more classic image regis-
tration techniques [5], [19], [49]. These techniques operate ei-
ther in the spatial domain or the frequency domain of the image.
Frequency domain methods can be computationally efficient but
are often limited to global rigid motion as the translations and
rotation are estimated from the aliased spectra [18], [28], [45].
There are a wide variety of registration techniques in the spatial
domain. Earliest methods involved the use of the cross-correla-
tion between images as it is maximized when the two images
are correctly overlaid [35]. Many variations of this model have
been proposed, e.g., by preprocessing the images with an edge
detector [1]. Registration based on mutual information is also
a standard method used in medical imaging [34]. In [23], the
Taylor expansion of the first order is used to find the parameters
of the registration. A large set of methods consist first in ex-
tracting features in images and then matching them across im-
ages in order to calculate the existing transformations. In that
case, the registration is based only on the retrieved features.
Local features are points of interest in the image like the center
of gravity of closed boundary regions [17], [27] or corners. Var-
ious automatic corner detectors have been proposed, like the fa-
mous Harris–Plessey detector [20] or the SUSAN detector [39].
More details on different corner detectors can be found in [37].
In [7], correspondence between features is efficiently carried out
by first computing putative correspondences with a correlation
matching algorithm and then refining them with a RANSAC al-
gorithm [16]. Other types of features are global features which
take into account the whole image. They do not require any fea-
ture correspondence step but a single transformation occurring
between any pair of images must be assumed. Image moments
are the prevailing global features used for estimating image dis-
parity and allow the retrieval of affine transformations [2], [21],
[40].

Image registration is an inverse problem as it tries to estimate
from the sampled images the transforma-
tions that occurred between the views . It is
also dependent on the properties of the camera used for image
acquisition like the sampling rate (or resolution) of the sensor,
the imperfection of the lens that adds blur, and the noise of the
device. As the resolution decreases, the local 2-D structure of
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an image degrades and an exact registration of two low-resolu-
tion images becomes increasingly difficult. In this respect, we
observe that registration and sampling are intimately related. In
order to achieve perfect registration, one “brute-force” solution
would consist in reconstructing perfectly the continuous signals

from their sampled versions and run a registration algo-
rithm on the reconstructed continuous signals. Another solution
is to carry out a perfect estimation of relevant image features in

from and run a registration algorithm based on such fea-
tures alone.

Perfect reconstruction of a signal from its sampled version is
the fundamental problem in sampling theory. For bandlimited
signals, the well-known Nyquist–Shannon sampling theorem
shows that exact reconstruction is possible from the samples
only. Moreover, new sampling schemes have recently emerged
allowing perfect reconstruction of a certain class of nonbandlim-
ited signals called signals with Finite Rate of Innovation (FRI)
[46]. The peculiarity of these signals resides in the fact that they
can be completely described by a parametric expression with
a finite number of degrees of freedom. By taking into account
known properties of the sampling setup, the parameters of the
observed FRI signal can be exactly retrieved. The new sampling
schemes for FRI signals were first proposed by Vetterli et al. in
[46] and then extended in [10] to the case of kernels with com-
pact support. The multidimensional scenario has been consid-
ered in [29] and [38].

In this paper, we provide exact results for feature extraction
in low-resolution images for registration purposes. We are pri-
marily interested in finding the exact localization of features. In
that respect, feature extraction (or localization) algorithms differ
from feature detection techniques which are merely concerned
with the existence or not of feature in an image. We assume that
the sampling kernel is known and consider the latest theoret-
ical results from the sampling theory of FRI signals to derive
new feature extraction techniques. The underlying motivation
in using the FRI sampling theory is due to the fact that some
features used for registration can be modelled as FRI signals for
which perfect reconstruction methods can be established. In par-
ticular, we present two novel feature extraction techniques that
allow to retrieve exactly global features like moments or local
features like step edges in low-resolution images. From the ex-
tracted features, standard feature-based registration algorithms
are used to perform image super-resolution as this application
requires a registration of high quality. We first show super-reso-
lution results on synthetic images obtained by simulating an ac-
quisition device with known characteristics. We then apply the
proposed algorithms to image super-resolution of real images
captured with a camera available on the market. The quality of
the super-resolved images in both cases gives evidence of the
accuracy of the registration and also highlights the validity of
our acquisition model.

The organization of the paper is as follows. Section II presents
the principles of sampling FRI signals and describes the sam-
pling kernels and their properties. It also introduces the image
acquisition model considered and details the problem of image
registration. In Section III, we present an exact method that re-
trieves global features which are then used for registration pur-
poses. In Section IV, we demonstrate a local approach of feature

extraction. We focus on the extraction of step edges from which
corners are inferred. In Section V, both registration methods are
used in the context of image super-resolution and various exper-
imental results are provided. We then conclude in Section VI.

II. PROBLEM SETUP

A. Image Acquisition Model

This section reviews the idealized image formation model
considered in this paper and describes how the samples are re-
lated to the observed view via the Point-Spread Function (PSF)
of the camera. The diagram in Fig. 1(a) presents the main com-
ponents of a camera which lead to a digital image of a given
observed view. The light rays are first focused by the lens of the
camera but, because a lens is never perfect, they are inevitably
blurred before hitting the image sensor. As the quality of the
material and the size of the lens decrease, the amount of blur
introduced increases. Various other sources of blur also partici-
pate to the overall filtering of the ray lights. Thus, a diffraction
phenomenon occurs when the size of the camera aperture is of
the same order as the wavelength of the light rays. This intro-
duces interferences on the camera plane which are often referred
as the “airy disk” or “blob.” Also, some amount of blur caused
by motion or atmospheric conditions can be introduced and de-
teriorate the observed view.

Another main component of a camera is the image sensor, ei-
ther a CCD (Charge Coupled Device) or CMOS (Complemen-
tary Metal Oxide Semiconductor) array. It measures the amount
of light received and outputs a sampled image, the term digital
image usually referring to the quantized sampled image. Since
each pixel value results from the integration of the incoming
light over a finite spatial region defined by the characteristics of
the sensor array (physical size, number of pixel, technology),
the sensor array also contributes in blurring the image. In this
research, we consider that the overall blur introduced by the
camera is characterized by the PSF. The PSF is often modeled
by a Gaussian pulse in the literature but we model here the PSF
with B-spline functions for mainly two reasons. First, B-splines
are very similar to a Gaussian pulse [44]. Second, B-splines
possess properties like polynomial reproduction that we want
to take advantage of. B-splines have already been used as a
PSF model in [33] but their polynomial reproduction capabil-
ities have not yet been exploited.

Fig. 1(b) presents the equivalent idealized model to Fig. 1(a)
in terms of filter and analog-to-digital converter. The incoming
continuous irradiance light-field is first filtered with the
function . This 2-D function is the PSF that character-
izes the camera and is assumed known. The blurred observation

is then uniformly sampled
so that the discrete representation of the observed view is given
by the following equivalent expressions:

(1)
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Fig. 1. Camera model: (a) the incoming irradiance light field is blurred by the lens and sampled by the image sensor; (b) equivalent model: � is the irradiance
light field, � is the point-spread function of the lens, � is the blurred irradiance light field, � is the sampling period and � is the sampled image. (a) From the real
observed view to its digital representation. (b) Model of a camera in terms of filter and analog-to-digital converter.

where . We assume throughout this paper
that the sampling period is equal to in both dimensions in
order to simplify notations. As seen in (1), the impulse response
of the filter representing the lens is expanded by a factor cor-
responding to the sampling period. As in the sampling theory
of FRI signals, the PSF is thereafter referred to as the sam-
pling kernel of the acquisition device. The sampling
kernel is the time-reversed version of the impulse response of
the filter in Fig. 1(b). When writing (1), it is implicitly assumed
that the sampling kernel is spatially invariant. Finally if the
kernel is separable, it can be written as a tensor product of two
1-D functions: so that:

.

B. Sampling Kernels and Finite Rate of Innovation

The recent sampling theory for FRI signals is concerned with
the problem of perfect reconstruction of nonbandlimited sig-
nals. Examples of FRI signals are streams of Diracs or piece-
wise polynomial functions. Such signals are nonbandlimited but
follow a parametric expression with a finite number of degrees
of freedom. For example, a stream of Diracs is completely de-
fined by the location and the amplitude of each Dirac.

In an acquisition device, the incoming signal is first fil-
tered and then sampled. The obtained samples are given by

where the function is the sam-
pling kernel. In this study, we consider the set of sampling ker-
nels known as polynomial reproducing kernels as described in
[10]. The particular property of these kernels is their ability to
reproduce polynomials up to a certain degree by linearly com-
bining several shifted versions, such as

(2)

where are known coefficients and depends on the kernel
itself. Such functions are said to have an approximation order
equal to . In [42], Strang and Fix proved the necessary

and sufficient conditions for a function to possess polyno-
mial reproduction qualities

and

for (3)

where is the Fourier transform of . These conditions
are called the Strang–Fix conditions of order . The co-
efficients used for the reproduction of the monomial are
computed, as follows [4]:

(4)

where is the dual of . The computation of the coeffi-
cients is straightforward when is orthogonal, that is,
when . In this case, and

. It is more involved when is not
orthogonal. In this second situation, one has to evaluate the dual
function first and then the coefficients. The computation of the
dual of a B-spline is discussed later in this section.

There exists a variety of functions satisfying Strang–Fix con-
ditions. We consider in this paper the family of B-spline [43].
This function called centered B-spline of degree P is denoted by

and can be obtained recursively by successive convolu-
tion of the box B-spline

otherwise

The Fourier transform of is given by

(5)
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Fig. 2. (a) Cubic B-spline; (b) cubic dual spline used to calculate the coefficient � ; (c) reproduction (in red) of the polynomial �� � ���� (dotted line) with
a linear combination of scaled and shifted cubic B-splines (in blue) over the support ���� ��.

and satisfies Strang–Fix conditions of order . Now
assume that is a B-spline . The dual B-spline

that forms a biorthonormal basis with so that
can be computed as [44]

where

Here, is the transform of
. For further details on the computation of the dual we

refer to [44]. Fig. 2(a) and (b) shows, as an example, the cubic
B-spline and its dual. Fig. 2(c) presents the reproduction with
B-splines of the polynomial over the interval .

In two dimensions, similar results can be derived. In partic-
ular, when is a separable kernel, each of its components
is reproducing polynomials so that we have

A closer look at (1) also reveals that the sampling period is
also used to rescale the sampling kernel. The reason of this cou-
pling is to maintain a unit spacing (relative to ) between two
consecutive samples in order to satisfy the polynomial reproduc-
tion property as reflected in (2). However, it can happen that, in
a real scenario, the shift between two samples is smaller than .
For example, image acquisition devices like mobile phones or
webcams usually introduce a strong blur due to the low quality
of the lens. In that scenario, the support of the corresponding
sampling kernel is large although the image sensor has a good
resolution. If we assume that the sampling period is reduced by
an integer factor , then the image samples are in this case
given by

The samples can be divided into their polyphase components
and

where
. Each polyphase com-

ponent is treated independently and the corresponding
coefficients are obtained using (4) with the
sampling kernel . This polyphase decomposition will be
used in Section V-B.

C. Multiview Images and Registration Problem

Assuming that each camera of a multiview system has the
same intrinsic parameters and the same sampling kernel ,
then the acquired image by the th sensor is expressed as

(6)

By neglecting border effects, it is often assumed that the dif-
ferent observations can be related to a single observation of
reference (e.g., ) via a geometric transformation of the co-
ordinates

(7)

where is the identity matrix. The transformations can be of
various types depending on the complexity of the scene. Trans-
formations range from simple translation to complex nonlinear
transformations. We consider here linear transformations, i.e.,
translation, rotation, affine transformation and projective trans-
formation. The imaging situation corresponds to an observed
scene that is flat, or to a 3-D scene that is observed from a dis-
tance much greater than the distance between cameras so that
parallax effects are negligible [7]. Combining (6) and (7), we
obtain the following popular model:

(8)

The goal of image registration is, thus, to find the different trans-
formations as accurately as possible given the acquired im-
ages . As the resolution of the images decreases,
less information is available and a correct estimation of the
gets more and more difficult. Image registration based on (local
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Fig. 3. Estimation of image moments of order 2 in function of the image resolution. Lines represent the normalized distances between the true moments and
the discrete moments obtained from (12); the continuous moments obtained from (13); the discrete moments obtained from (12) using the deconvolved samples.
(a) Noiseless case. (b) Noisy case (��� � �� dB).

or global) features therefore relies on the accurate extraction of
features in given the information provided by .

III. IMAGE REGISTRATION WITH CONTINUOUS

MOMENTS FROM SAMPLES

This section describes how the continuous moments of an
image can be calculated exactly from a discrete image when the
assumptions related to the imaging model considered are satis-
fied. From these results, an exact registration can be achieved.

A. Continuous Moments

Since the first work of Hu [22], functions of moments have
been extensively used in pattern recognition to build features
that are invariant to a given transformation [21]. In image recon-
struction, Milanfar et al. showed how a convex bilevel polyg-
onal shape can be perfectly reconstructed from a finite number
of moments [13], [30]. Finally, moments have been used in var-
ious ways to perform image registration [17], [27], [48].

A moment is defined by its type (geometric, central or com-
plex ) and its order. The basic moments are the geometric
moments , of order , which are obtained in 2-D by
inner product between polynomial planes and the function of
interest

(9)

The barycenter of is defined as
. The central moments

are then expressed as

(10)

The complex moments are defined on the complex image
plane as

(11)

As shown above, the various types of moments can be obtained
by a linear combination of the geometric moments which there-
fore constitute the basic elements of moment-based analysis.

With an image acquisition system, the observed view
is not available so the true moments of the continuous
function cannot be directly computed. Instead, they are
approximated from the acquired image using the discretized
version of (9)

(12)

When the resolution of gets low, the discrete moments
do not provide a good approximation of the continuous mo-
ments and this discrepancy can degrade the performance of any
moment-based techniques dramatically. An alternative solution
might be to deconvolve each image first and then evaluate the
discrete moments on the deconvolved samples. This approach
may improve the end result but does not solve the problem when
the resolution is low as indicated in Fig. 3.

In [10] and [38], new sampling results were proposed for 1-D
and 2-D FRI signals. In particular, it is shown that it is pos-
sible to compute the exact moments of an FRI signal from its
sampled version, provided that the sampling kernel satisfies the
Strang–Fix conditions. In this paper, we propose to use these
results on real images in order to extract the true continuous
moments of a real object from its samples . The continuous
moments are obtained by linear combination of the samples with
the coefficients as follows:

(13)

where and follow, respectively, from (2) and (1). Thus,
the proposed combination of the samples with allows the
extraction of the exact moments from a sampled version of the
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observed continuous scene. Once the continuous geometric mo-
ments are obtained, other types of continuous moments (e.g.,
central or complex) can be calculated using equations like (10)
and (11).

Fig. 3(a) and (b) shows how the estimation of the moments
using (12) or (13) changes when the resolution decreases.
Fig. 3(a) is the case when there is no noise on the samples
and Fig. 3(b) is when a white Gaussian noise is added to
the samples ( dB). For this experiment, 20 stan-
dard images (e.g., Lena, Goldhill, Peppers, Mandril) of size
512 512 are artificially blurred and downsampled to generate
different square images with resolutions 256, 128, 64, 32, 16,
and 8 pixels. Given these low-resolution images, the estimated
moments using either (12) or (13) are compared to the
true moments of the original image by calculating the
normalized distance between them

where defines the order of the moments considered. Fig. 3
shows the variation of the average normalized distance with
respect to the resolution of the sampled images for moments
of order 2. For completeness, we also plot the normalized dis-
tance of the moments estimated using (12) and the samples after
deconvolution. When the sampling kernel is known and repro-
duces polynomials, the moments obtained with (13) provide
much more accurate results than those obtained with (12) (with
or without deconvolution before computation) and this is true
even in the presence of noise.

B. Registration Method and Simulation Results

Moments of an image can be used as features for registra-
tion. Since they are obtained from all the samples of the consid-
ered image, moments convey a global information on the image.
Thus, in order to use the moments of two different images for
registration, the observed views should not have new objects ap-
pearing or disappearing. We consider the case of objects which
are always visible on a uniform background. If the background
is uniform only in the neighborhood of the object of interest,
then background subtraction and segmentation techniques can
be used to extract the objects of interest from the background
and treat each object as if the background was globally uniform.
This was shown in [8].

Let and be two acquired images of the views and
obtained as in (6). Using the continuous moments, we want to
find the transformation which relates the coordinates of to
the coordinates of [see (7)]. We assume that the transforma-
tion is an affine transformation represented by a translation
in x and y directions and by a 2 2 matrix composed of a ro-
tation , a scaling and a shear

with

(14)

It is shown in [40] that if and are transformed into their
canonical forms (i.e., their covariance matrix is equal to the

identity matrix), then the affine problem simplifies to finding
a rotation angle which can then be retrieved using complex mo-
ments. This can be achieved by applying a whitening transform
as in [21] where the expressions relating the central moments of
the original signals and the complex moments of the signals in
their canonical forms can also be found. Thus, since (13) pro-
vides us with the exact continuous moments in the absence of
noise, it is possible in theory to register exactly low-resolution
images.

To measure the accuracy of the estimated transformation, the
average and maximum geometric registration errors and
are calculated as in [47]

and

(15)

where is the calculated estimation of the exact affine trans-
formation , and is the size of the considered images and

.
In Fig. 4(a) and (b), two high-resolution images of size

512 512 pixels are considered as the two different views
and of the same scene. The affine transformation be-

tween and consists of a rotation of angle , a
scaling factor of , a shear factor of

and a translation of pixels
and 7 pixels in X and Y direction, respectively. We have

with

and

These two views are sampled with a cubic B-spline to
generate two low-resolution images and of size 16 16
pixels (decimation factor of 32) as shown in Fig. 4(c) and (d).
Given these two low-resolution images, we apply the registra-
tion method with the continuous moments to estimate and .
The calculated affine transformation is

and

The average and maximum geometric registration errors are
pixels and pixels which are the same

errors obtained from the true moments of and . For com-
parison, the same simulation is run with the discrete moments

. As expected, they do not perform as well at this resolu-
tion. The retrieved transformation is in this case

and

with an average and maximum error of pixels and
pixels. The improvement of the average registra-

tion error is by a factor 280 in this simulation.
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Fig. 4. (a)–(b) The two original views � and � (512� 512 pixels each); (c)–(d) The two corresponding acquired low-resolution images � and � (16� 16
pixels each). Original image “Blue Marble” by NASA’s Earth Observatory.

Fig. 5. Step edge model. A straight step edge is described by 3 parameters: its
amplitude �, its orientation � and its offset � .

IV. IMAGE REGISTRATION WITH LOCAL FEATURES

A. Step Edge Extraction

In this section, the features considered are now local. When
working at low-resolution, features are usually more difficult to
findandlocateaccuratelyaseachsample integratesa largerpartof
the original scene. Thus, the properties of very localized features
such as corners can be lost when images are acquired at low reso-
lution.Wefocuson theextractionofstraight stepedges.Astraight
step edge is described by three parameters, namely its amplitude

, its orientation and its offset with respect to a given axis.
This model of step edge is presented in Fig. 5. We now demon-
strate how to retrieve the exact parameters from the samples.

Let be the vector normal to the edge
and the vector of any point in . Given

and , a step edge function can be expressed as

(16)

where is the unit step function whose value is 1 if and
0 if . We assume that the signal is sampled using a
2-D B-spline sampling kernel . Therefore, following (1),
the obtained samples are simply

The set of samples is filtered with a finite difference operator to
give which are referred to as the differentiated samples

(17)

It is shown in [10] that the samples are the samples
that would have been directly obtained by inner product of the
derivative of along and the modified kernel

. The differentiation of a discrete sampled signal is, thus,
related to the derivation of its continuous counterpart as follows:

where the kernel has been assumed to be separable. Compared
to , the new kernel can
also reproduce polynomials with one degree higher along the
direction and has a support increased by one unit on the axis.
When the sampling kernel is , the
modified kernel is a 2-D B-spline kernel of degree along

and along

Moreover, the first derivative of the unit step function is given
by which finally yields
the following relation:

We now compute the weighted sum of the differentiated sam-
ples affected by the edge in row with the coefficients
used for reproduction of polynomial with the modified kernel

(18)
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where is the set of column indices of the samples affected by
the edge along row . It can be shown that (see Appendix A)

(19)

where are the moments of the sampling kernel:
. Since is known, its moments

can be computed numerically once and stored. Besides,
because satisfies partition of unity. Also, for

symmetric functions like B-splines, the odd order moments are
equal to zero. In the case of B-spline, it turns out that the even
order moments can be calculated analytically. To simplify
notations, we now write the quantity .
For , formula (19) becomes

(20)

Solving directly this system of equations for and leads
to an ambiguity about the sign of the angle of the edge. To
overcome this and find the angle , we consider instead two
consecutive rows, i.e., and , and compute and .
It turns out that this approach gives a simple relation for

(21)

The complete solution for a single step edge is then given by

and

(22)

where it has been assumed that and . Thus, (22)
allows the calculation of the exact parameters of a step edge
from its sampled version using only two consecutive rows and
measurements up to order one.

Subpixel Edge Location

1: define
2: run a Canny-like edge detector on sampled image
3: compute the differentiated samples using (17)
4: for all position detected as an edge do
5: find the differentiated samples in the neighborhood

of
6: calculate and using (18)
7: calculate and using (22)
8: store as a candidate edge
9: end for

10: while there exists similar edges do
11: merge similar edges, i.e., average and

add together
12: end while
13: discard edges having a too small weight.

It is possible to extend this analysis to any number of par-
allel step edges. Such signal is specified by parameters,
namely for and the angle . It is ex-
pressed as

(23)

with . We prove in Appendix B that the angle
can be retrieved using the same formula as in (21). Moreover,

by defining the quantity as follows:

(24)

we can show that this quantity can be written in the form of a
powersum series

(25)

where and . The pairs
of unknowns can then be retrieved by applying the
annihilating filter method (a.k.a. Prony’s method) provided that

. For more details on the annihilating filter method,
we refer to [10], [41], [46].

To determine the correct set of samples affected by a given
edge, we first run a simple edge detector, e.g., a Canny edge
detector. We then retrieve the samples on the row surrounding
each position labeled as an edge. Since the kernel has a com-
pact support, the number of samples affected by an edge is fi-
nite. The samples are then used to compute the parameters of
potential step edges from (22). Edges having the same param-
eters are fused together by averaging the parameters together
and by increasing the weight of this edge by one. Thus, a step
edge that has been extracted times has in the end a weight
equal to . Finally, edges with a weight below a given threshold
are discarded in order to keep only edges with sufficiently large
weights. This procedure is described in the pseudo-code of Al-
gorithm 1. By considering only horizontal differentiations as in
(17), horizontal edges cannot be extracted. In practice, Algo-
rithm 1 is run on the sampled image and on the transposed image
in order to find all possible step edges, and both results are fused
again. The rational of this approach is to find the largest possible
region where a step edge occurs by discarding outliers so that
averaging of the parameters improves stability and robustness
to noise (see the Cramér–Rao bounds).

Fig. 6 shows how the edge extraction is performed with Algo-
rithm 1 on a synthetic image presenting different step edges with
various orientations, amplitudes and offsets. Fig. 6(a) shows the
original scene before acquisition (1024 1024 pixels). Fig. 6(b)
is the acquired image of size 64 64 pixels obtained with a
quadratic B-spline sampling kernel. Fig. 6(c) is the differenti-
ated samples . Fig. 6(d) shows the position of potential
step edges using the Canny Edge detector. The retrieved edges
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Fig. 6. (a) Original image (1024� 1024 pixels); (b) sampled image with a B-spline (64� 64 pixels); (c) horizontally differentiated samples; (d) Canny edge
detection; (e) retrieved edges with Algorithm 1; (f) retrieved edges plotted against the original image.

are presented in Fig. 6(e) and are also plotted against the orig-
inal scene in Fig. 6(f).

It is of interest to see how the estimation of the parameters
of the step edge degrades when noise is present on the sam-
ples. We therefore consider the Cramér–Rao lower bound which
provides on average the best estimation of a set of parameters
using any unbiased algorithm. In [24], Kakarala et al. have cal-
culated the Cramér–Rao bound for the problem of edge local-
ization. However, as opposed to our work, they do not take into
account the effect of sampling. Our proposed approach can pro-
vide exact results even for heavily downsampled signals and the
Cramér–Rao bound derived in this case provides a more realistic
bound than the one given in [24]. With no loss of generality, we
assume a zero mean white Gaussian noise with variance . The
Cramér–Rao lower bound is derived in the case of our step edge
detector in Appendix C. Fig. 7(a) and (b) shows the scatterplots
of the step edge parameters ( and ) compared
to the Cramér–Rao bounds for SNR levels from 0 to 50 dB for
a sampled image of size 8 8 pixels . Similarly, the
average standard deviations of these parameters are also plotted
versus the Cramér–Rao bound in Fig. 7(c) and (d). Simulations
show that the proposed algorithm behaves well down to noise
level of 13 dB.

B. Image Registration

We follow a similar registration approach to the one of Capel
and Zisserman used for super-resolution in [7]. In their work,
the features used are corners which are extracted with the Harris
corner detector. This detector can generally achieve sub-pixel
accuracy only up to 1/3 to 1/4 of a pixel by using quadratic fit-
ting in the neighborhood of the local maxima. However, it is still
possible to achieve a precise registration provided that a large
number of feature can be extracted (several hundreds). Thus, in
this case, the registration error due to the approximate location

of each corner tends to diminish as the number of extracted fea-
tures increases.

On images with low resolution, only a small number of fea-
tures, say between 10 to 20, can usually be extracted in each
image and matched. Thus, very accurate extraction of features
is essential to obtaining a precise image registration. For this
reason, the step edge extraction technique described in Algo-
rithm 1 is used to find possible contours in the low-resolution
images. Intersections of edges are then computed to locate pos-
sible corners in the image. A first putative transformation is cal-
culated from corresponding features obtained by using a corre-
lation-based matching algorithm. The estimated transformation
is then iteratively refined using a RANSAC procedure similarly
to [7].

To assess the accuracy of the proposed feature extraction
method in the context of image registration, we compare it
to the Harris corner detector in the following experiment. A
high-resolution image of a simple scene, favorable to both our
method and the Harris corner detector, is first acquired. The
scene contains steps edges, sharp corners, text and textures.
The acquired picture is then cropped at two different known
locations to create two pictures and with different fields
of view and size 512 512 pixels. The transformation (a single
translation) between each picture is known exactly and is given
by: . Each image is then artificially downsampled
with a quadratic B-spline of scale 8 giving two images of size
64 64 pixels each. Features are then extracted from and
using either the Harris corner detector or our step edge detector.
The functions used in this research for the subpixel Harris
corner detector, the correlation matching and the RANSAC
fitting are available from [26].

The features extracted with our approach are shown in
Fig. 8(a) and (b). Six corners in total have been successfully
located from the extracted edges and matched across the
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Fig. 7. Retrieval of a step edge with parameters (� � ��� and � � �) in an 8� 8 pixels image under noisy condition. (a)–(b) Scatterplots of angle and offset
versus Cramér–Rao bound. (c)–(d) Standard deviation (averages over 10000 realizations) versus Cramér–Rao bound.

Fig. 8. (a)–(b) Extracted edges and corners with our approach on two low-resolution images of size 64� 64 pixels each; (c)–(d) six corners are matched with
������	
��� 
 ������ methods plotted against the high-resolution images (512� 512 pixels).

two images using correlation and RANSAC techniques. The
matched features are plotted against and for a visual
appreciation of the subpixel accuracy [see 8(c) and (d)]. The
feature points returned by the Harris corner detector on each
image are presented in Fig. 9(a) and (b). Eighteen corners
have been matched successfully across images and are plotted
against and in Fig. 9(c) and (d).

Each set of features is independently used to estimate the
translation between the two images. The estimated translation
and registration errors with our approach are

and pixel

Similarly, the estimated translation and registration errors with
the Harris features are

and pixel

Thus, although only one third of the number of corner points
have been extracted with the proposed method in comparison to
the Harris corner detector, the registration accuracy is improved
by a factor 50 using the step edge extractor.

V. APPLICATION TO IMAGE SUPER-RESOLUTION

The goal of image super-resolution is to construct a single,
detailed, high-resolution image using a set of low-resolution im-
ages of the same scene. The problem of image super-resolution
can be conceptually divided into two sub-problems known as
image registration and image reconstruction. Image registration
aims at finding the disparity between the low-resolution images
whereas image reconstruction consists in fusing the set of reg-
istered images into a single image and removing any blur and
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Fig. 9. (a)–(b) Extracted corners using Harris method on two low-resolution images of size 64� 64 pixels each; (c)–(d) 18 corners are matched using ����������	

��
��� methods plotted against the high-resolution images (512� 512 pixels).

Fig. 10. Image super-resolution from translated images with registration based on moments; (a) Original high-resolution image (512� 512 pixels); (b) one of the
24 low-resolution images (64� 64 pixels) used in the super-resolution simulation; (c) super-resolved image obtained from the discrete moments and the Wiener
filter, 512� 512 pixels, ��
� � ���� dB; (d) super-resolved image obtained from the continuous moments and the Wiener filter, 512� 512 pixels, ��
� �

���� dB.

noise introduced during acquisition [11].1 We consider in this
work two restoration techniques: the Wiener deconvolution ap-
proach and the iterative Modified Residual Norm Steepest De-
scent (MRNSD) [31](a.k.a. EMLS [25]).2 The Matlab function
deconvwnr is used for the Wiener deconvolution taking the
known PSF as input parameter. The MRNSD technique is an
Expectation-Maximization iterative algorithm which forces the
solution to be nonnegative.

An overview and tutorial of super-resolution techniques can
be found in [14] and [32]. Most earlier works focused on the
restoration stage assuming that traditional registration methods
provided a sufficiently accurate solution. However, as also ob-
served in [36], the quality of the restoration in super-resolution
problems depends heavily on the accuracy of the registration.
It is therefore quite natural to test our registration algorithms in
the context of image super-resolution.

A. Image Super-Resolution: Simulations

1) Moment-Based Registration: The moment-based registra-
tion method is applied to the case of image super-resolution. The
first experiment is shown in Fig. 10. As in the registration exper-
iments, we use a single high-resolution image (Satellite image,

1Notice that it is correct to divide the super-resolution problem into the two
aforementioned sub-problems only when the motion is linear and the PSF is
spatially and rotationally invariant [12].

2Other methods based on Total Variation [9], [15] are not considered here.

512 512 pixels) shown in Fig. 10(a) to generate 24 other im-
ages related by translations. Each of these images is blurred
and downsampled with a cubic B-spline to give a low-resolu-
tion image of size 64 64 pixels [see, e.g., Fig. 10(b)]. This set
of low-resolution images is then used as input for super-reso-
lution. The translations are retrieved from the discrete and the
continuous moments of each image for comparison. In the case
of the discrete moments, the registration error averaged over the
24 frames is pixels with a maximum registration error
of pixels. In the case of the continuous moments,
the registration obtained is exact to machine precision. For a fair
comparison, the Wiener filter is used in both cases for restora-
tion as it is fast and does not involve iterations. The super-re-
solved images are shown in Fig. 10(c) and (d). The image in
Fig. 10(c) is obtained after registration with the discrete mo-
ments and the final PSNR is equal to 16.8 dB. The super-re-
solved image shown in Fig. 10(d) results from the utilization of
the continuous moments for registration. The image has a higher

dB. Thus, by considering more accurate features
like the continuous moments instead of the discrete moments,
the registration is improved and can lead to super-resolved im-
ages of higher quality.

2) Edge-Based Registration: In this second experiment, we
consider the registration based on the extraction of step edges.
As in the previous section, we generated 20 images of scene
[Fig. 11(a)] by cropping a high-resolution image at different
locations. The images are, thus, related by translations and
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Fig. 11. Image super-resolution from translated images with registration from the extracted edges and detected corners; (a) original high-resolution image
(512� 512 pixels); (b) one of the 20 low-resolution images (64� 64 pixels) used in the super-resolution simulation; (c) super-resolved image with the Harris
corner detector and Wiener filter, 512� 512 pixels, ���� � ���� dB; (d) super-resolved image with the proposed edge detector and Wiener filter, 512� 512
pixels, ���� � ���� dB.

each image is then blurred and downsampled with a quadratic
B-spline to generate 20 low-resolution images of size 64 64
pixels [Fig. 11(b)]. In this simulation, two feature extraction
methods are considered: the proposed step edge extractor and
the subpixel Harris corner detector. As previously, in order to
do a fair comparison, we do not use an iterative method but
consider the Wiener filter as restoration method in both cases.
The super-resolution algorithm based on the Harris features
is inspired by the work of Capel et al. in [7] where a similar
approach is considered. With Harris features, the average
registration error averaged over the 20 frames is
pixels and the maximum registration error observed in the
20 images is pixels. The number of matched
features varies between 13 and 21 corners. With our extracted
features, the average registration error averaged over the 20
frames is pixels and the maximum registration error
observed in the 20 images is pixels. Six features
are matched in any pair of images in the set and the registration
is improved on average by a factor 10. The super-resolution
results are similar to the previous case where global features
were used. Fig. 11(c) presents the super-resolved image ob-
tained with Harris features. This image shows more artefact
( dB) compared to the super-resolved image ob-
tained with the proposed registration technique which delivers
a better visual quality and a dB. This simulation,
thus, better highlights the fact that more accurate registration
leads to better super-resolution.

B. Image Super-Resolution: Real-Case Scenario

In this section, we consider the case of image super-resolu-
tion from real images acquired with a digital camera (Nikon
D70s). The following experiments, thus, naturally include the
natural noise that occurs on the samples during acquisition. The
registration approach considered here is based on the contin-
uous moments. Since it takes a sampling point of view, we do
not want our image samples to be modified by internal postpro-
cessing that is usually applied inside a digital camera right after
acquisition (e.g., edge sharpening or noise attenuation). For this
reason, the set of images is acquired in RAW format. In a first
experiment, pictures are taken in a classroom with a focal length
at 18 mm (35 mm equivalent: 27 mm) and other settings at F16,

1/60s and ISO 200. The slanted edge method is used to estimates
the PSF indirectly by measuring first the Edge Spread Function
(ESF)[6]. By differentiating along the edge’s normal direction,
the Line Spread Function (LSF) can be obtained and represents
a cross-section of the PSF. Only one LSF is necessary to charac-
terize a circularly symmetric and spatially invariant PSF. The es-
timation of the PSF is presented in Fig. 12. The acquired image
is shown in Fig. 12(a) and the target used for the PSF estima-
tion is shown in Fig. 12(b). The estimated LSF is the solid line
in Fig. 12(c). It can be observed that its support is approximately
8 pixels, ranging from to 4. The PSF is therefore modeled
by two different B-splines with support 8: a B-spline of degree
7, (dashed line), and a B-spline of degree 3 scaled by 2,

(dash-dot line).
The target used for PSF estimation is then replaced with

a Tiger plush and a newspaper [see Fig. 13(a)]. Keeping the
camera settings unchanged, 40 images are taken from random
positions by moving the camera horizontally and vertically
between each acquisition. It should be noted that the distance
between foreground objects (desks, chairs) and background
objects (blackboard) is large and traditional registration tech-
niques that considers the whole image would not achieve
good subpixel accuracy unless segmentation is first applied.
Since the proposed feature extraction techniques can be exact
on low-resolution image, we consider directly the regions of
interest for registration and, thus, estimate an accurate local
motion. The same region of interest of size 128 128 pixels is
selected in each image [Fig. 13(b)] and only this region is used
for registration and restoration.

The sampling kernel is first modeled by the B-spline of degree
7. We register the images using continuous moments and the
fused image is restored with the MRNSD method. The obtained
super-resolved image is shown in Fig. 13(c).
In the second case, the sampling kernel is modeled by a B-spline
of degree 3 scaled by two. Because of the scaled kernel, the de-
vice is oversampling by a factor two with respect to our model.
The sampling period is consequently reduced by a factor two
and the samples can be written as:

. Two consecutive samples are now distant
by instead of and even and odd samples must be treated
independently so that polynomial reproduction is satisfied. We,
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Fig. 12. Estimation of the PSF with the slanted edge method; (a) Image of a slanted white square with step edges for PSF estimation (acquired with a Nikon D70s
digital camera); (b) zoom on the target; (c) measured line spread function (solid line). Its support has length 8 ranging from �� to 4. The sampling kernel ����
can either be modeled by a B-spline of degree 7, � ��� (dashed line) or by a B-spline of degree 3 scaled by 2, � ����� (dash-dot line).

Fig. 13. Real image super-resolution from 40 images acquired with a Nikon D70s SLR camera; (a) one of the 40 images acquired by the camera; (b) region of
interest (128� 128 pixels) used for super-resolution; (c) super-resolved image of size 1024� 0124 pixels ��� ��	
�� 
 ��. The PSF in this case is modeled by
a B-spline of order 7 (scale 1); (d) super-resolved image of size 1024� 0124 pixels ��� ��	
�� 
 ��. The PSF in this case is modeled by a B-spline of order 3
(scale 2). Both images are restored with 60 iterations of the MRNSD method.

thus, decompose the observed samples into their four polyphase
components [10] (see the equation shown at the bottom of the
page). For each region of size 128 128 pixels [Fig. 13(b)],
four sub-images of size 64 64 pixels are considered sepa-
rately, each one corresponding to a polyphase component. The
continuous moments of each polyphase component are com-
puted and used for registration. For each image pairs, four es-
timations of the registration are obtained and then averaged.
The super-resolved image achieved after registration from the

polyphase components is shown in Fig. 13(d). As in the previous
case, we restored the image using 60 iterations of the MRNSD
algorithm. The super-resolved image presents a good level of
detail and is less saturated than the image obtained with B-spline
of level 7.

Another experiment is presented in Fig. 14. Sixty pictures
of the Moon are taken with a digital SLR camera and a lens
with a focal length at 38 mm (35 mm equivalent: 57 mm)
and settings: F16, 1/60s, ISO 200. The PSF in this case is not
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Fig. 14. Real super-resolution of the Moon from 60 images acquired with a Nikon D70s SLR camera and a lens (18–70 mm, F3.5–4.5) set at a focal length of
38 mm (35 mm equiv.: 57 mm). (a) The Moon as acquired by the camera (60� 60 px); (b) super-resolved image of the Moon (600� 600 px) with MRNSD
restoration method.

estimated as previously and is directly approximated with a
cubic B-spline at scale 1. The MRNSD algorithm is used as
restoration method. Fig. 14(a) shows the Moon as acquired by
the camera and Fig. 14(b) presents the obtained super-resolved
image where new details of the Moon can now be observed.

VI. CONCLUSION

We have presented in this paper two novel approaches for
feature extraction that take maximum advantage of the a priori
knowledge of the acquisition filter and that are based on the
basic principles behind the sampling of FRI signals. The first
proposed method allows the exact retrieval of the continuous
moments of an object from its sampled image. The second
method retrieves the exact location of local image features such
as step edges or parallel edges. These are then used to retrieve
the exact location of corner points which are utilized for the
exact registration of low-resolution images like in the context
of image super-resolution. Experimental results on artificially
sampled images and natural images show the efficiency of the
proposed feature extraction methods and the validity of the
proposed acquisition model.

Although the use of these new methods was demonstrated
only for registration, these techniques can also be used for pat-
tern recognition, camera calibration and photogrammetry. This
is part of our on-going research.

APPENDIX A

We now prove (19):

.
Proof: We first recall the following relation between the

moments of function and the moments of the trans-
lated function

(26)

Let be the support of the sampling kernel .
For simplicity, we assume

then applying (26), we obtain

,

where which finally yields
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APPENDIX B

Let be the differentiated samples of the signal
composed of parallel step edges . We

have with .
• We now prove that for parallel step edges, (12) is true:

.
Proof: From the previous Appendix, it is straightforward

to show that

(27)

where . We then have

which finally leads to the desired result.
• We now prove (25) with and

where

Proof: First, the case for is straightforward since by
definition, we have

For , we have

Moving the summation term to the left side of the expression
gives

After assimilating in the left summation and recalling the
definition of in (27), we obtain

Then by identifying each term of the summation on each side of
the expression above, we have

We can then conclude with the desired result

APPENDIX C
DERIVATION AND EVALUATION OF THE CRAMÉR–RAO BOUNDS

The signal we consider is made of step edges, each step
edge is determined by the three parameters . We form
a vector of the unknown parameters as follows:

We aim to retrieve from the measured samples

where is i.i.d. additive Gaussian noise with zero mean and
variance . For simplicity, we denote as follows:

The performance of any unbiased estimator is lower
bounded by the Cramér–Rao bound: ,
where is the Fisher Information Matrix (FIM) defined
as and is the log-likelihood
function.

First notice that ,
where
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Hence, using independency of the noise samples, we have

Next, we compute the partial derivative of the log-likelihood
with respect to the parameters . We obtain

We can now determine the Fisher information matrix

where follows from the linearity of the expectation and
from the fact that the noise is uncorrelated (independent). The
Cramér–Rao bound is, thus, given by

The evaluation of the FIM is not straightforward, however, if
we assume that the edges are sufficiently apart, then we can treat
each edge independently. Moreover, since our main interest is
the localization of the edge, we assume that the edge has fixed
known amplitude so that the parametric space is reduced
to . We assume that the signal is defined over
the domain with the sampling period .

The sampling kernel is , where
for . We, thus, obtain

and

for and
otherwise

and
for and
otherwise
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Given the above two equations, it is possible to evaluate (at least
numerically) the Fisher information matrix for specific values of

and . Disregarding the trivial cases and , an
interesting scenario is when and . In this case,
we have the equation shown at the bottom of the previous page.
This leads to the following Fisher information matrix:
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