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Abstract

In this paper, we study the sampling and the distributed compression of the data acquired by a camera sensor

network. The effective design of these sampling and compression schemes requires, however, the understanding

of the structure of the acquired data. To this end, we show that the a-priori knowledge of the configuration of

the camera sensor network can lead to an effective estimation of such structure and to the design of effective

distributed compression algorithms. For idealized scenarios, we derive the fundamental performance bounds of

a camera sensor network and clarify the connection between sampling and distributed compression. We then

present a distributed compression algorithm that takes advantage of the structure of the data and that outperforms

independent compression algorithms on real multi-view images.

I. INTRODUCTION

The advent of the sensor network technology is having a profound impact on the way in which we sense,

process and transport signals of interest. The usual one-to-one communication scenario where a single transmitter

encodes and transmit the acquired information to a unique receiver is today well understood, but cannot provide

satisfactory answers to the many-to-one or many-to-many scenarios that sensor networks bring on the table.

Phenomena of interests that are acquired by sensor networks are inherently multi-dimensional and may exhibit

very peculiar structures. For an effective design of a sensor network it is therefore fundamental to understand

The authors are with the Communications and Signal Processing Group, Imperial College London. E-mails: {Nicolas.Gehrig03,

P.Dragotti}@imperial.ac.uk. Address: Communications and Signal Processing Group, Electrical and Electronic Engineering, Imperial

College London, Exhibition Road, London SW7 2AZ, England; Tel: +44 (0)20 759-46192 ; Fax: +44 (0)20 759-46234.

The material in this paper was presented in part at the IEEE ICIP’04, ICIP’05, DCC’06 and ICIP’07. This work was supported in

part by DIF-DTC project number 12.6.2. and EOARD 043061.

November 3, 2008 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING : TIP-03718-2008.R2 2

such structure in order to devise the best sampling-compression-transmission strategy and to understand the

interplay between these stages.

A wireless sensor network consists of numbers of small self-powered devices that have embedded sensing,

processing and communication capabilities. The size, the limitation of power resources and the necessity

to maintain cheap prices are usually the main constraints with such systems. These constraints oblige to

consider several trade-offs that typically involves acquisition accuracy, computational power, capacity of memory,

transmission power, delay and battery life duration. In camera sensor networks (CSN), each sensor is equipped

with a digital camera and acquires images of a scene of interest from a certain viewing position. Thanks to

the recent technological advances in cameras and networked sensor platforms, the variety of available CSN

equipments is becoming wider and wider and constantly improves the opportunities for new applications and

set-ups. In [1], the latest technology trends in cameras and sensor platforms are presented.

In this paper, we focus on camera sensor networks and on the many-to-one communication scenario. Moreover,

we concentrate mostly on the interplay between sampling and compression, and assume that the underling multi-

access channel has a fixed, known capacity. We thus try to understand the fundamental trade-off between the

number of cameras and the compression rate.

Due to the spatial proximity of the different cameras, acquired images can be highly dependent. However,

since sensors cannot communicate amongst themselves, compression has to be performed locally at each sensor.

The problem of performing separate compression and joint reconstruction of correlated sources is known as

distributed source coding and has its theoretical foundation in two papers by Slepian and Wolf [2], and Wyner

and Ziv [3]. More recently, Pradhan and Ramchandran have proposed a first constructive distributed coding

scheme based on channel coding principles [4]. Practical designs based on advanced channel codes such as

Turbo codes [5], [6], [7], [8], [9], [10] and LDPC codes [11], [12], [13], [14], [15], [16], [17] have since

been proposed. Several researchers have recently used these approaches with correlated visual information to

develop distributed video coding algorithms [18], [19], [20], [21], [22] and distributed multi-view image coding

schemes [23], [24], [25], [26], [27], [28], [29], and for a nice recent overview of the topic we refer to [30].

However, while all these distributed coding schemes can closely approach the theoretical performance bounds

for different binary correlation models or Gaussian models, they are not necessarily the right codes to handle

the correlation structure of the visual information acquired by a multi-camera system. This is mainly due to the

fact that the real correlation in multi-view data is governed by the rules of perspective geometry and cannot be

well represented by the standard correlation models usually used in channel coding. The main novelty of this

paper is therefore to exploit the real multi-view correlation by means of a geometrical coding approach.

In this paper, we show that the correlation in the visual data, which is well modelled by the Plenoptic
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Function [31], can be estimated using some limited geometrical information about the scene and the position

of the cameras. This limited geometrical information can typically be the distance between the cameras and the

minimum and maximum depths (i.e. min and max distance between the cameras and any object of the scene).

We then propose a specific distributed coding strategy for simple synthetic scenes that can take advantage

of this estimated correlation to reduce the amount of data to be transmitted from the sensors to the receiver.

Interestingly, such a strategy that does not use conventional channel codes, can be shown to be optimal in some

particular cases and allows for a flexible allocation of the transmission bit-rates amongst the encoders. We also

prove that in idealized scenarios, such a strategy leads to an exact ‘bit conservation principle’ [32]. Namely, in

the high bit-rate regime, the overall reconstruction fidelity at the receiver does not depend on the number of

camera sensors deployed when this number is above the critical sampling (minimum number of node necessary

to perform perfect reconstruction in absence of compression). Instead, the overall reconstruction fidelity depends

only on the overall number of bits received. This is achieved by combining our distributed compression scheme

with some recent results on sampling signals with finite rate of innovation [33], [34], [35]. We finally depart from

the idealized cases and propose a practical distributed compression algorithm based on quadtree decomposition

for real multi-view images. This algorithm preserves the nice properties of the original scheme when applied

to idealized scenes, but is also effective on real multi-view images.

The paper is organized as follows: In the next section, we review the notion of the plenoptic function and

introduce the specific visual scenarios we will be studying. We also present a preliminary distributed scheme

which is at the foundation of all the subsequent results. Section III analyzes the interplay between sampling and

compression in camera sensor networks and provides an exact bit conservation result. We then move from theory

to practice and propose a quadtree-based distributed image compression algorithm that exploits the geometrical

structure of multi-view images in full. Section V provides simulation results to assess the effectiveness of such

a scheme. We finally conclude in Section VI.

II. PRELIMINARIES

In this section we recall the notion of plenoptic function and discuss some multi-camera configurations that

will be used in the rest of the paper, we will also present a set of preliminary compression results that will

be used to derive fundamental performance bounds in camera sensor networks and to devise a new distributed

image compression algorithm.

A. The Plenoptic Function and Problem Set-up

The plenoptic function was first introduced by Adelson and Bergen in 1991 [31]. It corresponds to the

function representing the intensity and chromaticity of the light observed from every position and direction in
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the 3-D space, and can therefore be parameterized as a 7-D function: IPF = P (θ, φ, ω, τ, Vx, Vy, Vz). The three

coordinates (Vx, Vy, Vz) correspond to the position of the camera, θ and φ give its orientation, τ is the time

and ω corresponds to the frequency considered. The measured parameter IPF is simply the intensity of the

light observed under these parameters. The high dimensionality of this function, however, makes it difficult to

handle.

If there is no restriction on the position of the cameras (i.e., ‘unstructured’ plenoptic function first introduced

in [36]), but we fix the time τ and the frequency ω (i.e., grayscale images or separate RGB channels), we

obtain a 5-D representation of the plenoptic function. Moreover, camera positions can be constrained to a plane,

a line or a point to further remove one, two or three dimensions respectively.

For example, the case when cameras are on a plane leads to the 4-D lumigraph or lightfield [37], [38]

parametrization. This parametrization is obtained by using two parallel planes: the focal plane (or camera

plane) and the retinal plane (or image plane). If we now assume that cameras are placed along a straight line,

we obtain the Epipolar Plane Image (EPI) [39] which is a 3-D plenoptic function. The EPI has a structure that

is similar to a video sequence, but the motion of the objects can be fully characterized by their positions in

the scene. A 2-D slice of EPI is shown in Figure 1. Notice that, in this set-up, points in the world scene are

converted into lines in the plenoptic domain. Alternative 3-D plenoptic function can be obtained, for example,

by placing cameras on a circle with cameras oriented toward the outside of the circle. In this case, however,

a point in the world scene is not converted into a straight line anymore. Notice that plenoptic functions for

circular and spherical configurations have been formulated in [40]. Finally, if we constrain the camera position

Fig. 1. 2-D plenoptic function of two points of a scene. The t-axis corresponds to the camera position and the v-axis corresponds to

the relative positions on the corresponding image. A point of the scene is therefore represented by a line whose slope is directly related

to the point’s depth (z-axis). The difference between the positions of a given point on two different images thus satisfies the relation

(v − v′) = f(t−t′)
z

, where z is the point’s depth and f is the focal length of the cameras.

to a single point, we have a 2-D function which is in fact a common still image.

A camera sensor network is able to acquire a finite number of different views of a scene at any given time and

can therefore be seen as a sampling device of the plenoptic function. In this paper, we consider the following
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multi-camera scenario: We assume that we have N cameras placed on a horizontal line and that they are all

pointing to the same direction (perpendicular to the line of cameras). We assume that the scene is static and

that is made of L Lambertian planar polygons that can be horizontally tilted and placed at different depth. Each

polygon has an intensity that varies like a polynomial of maximum degree Q. Let α be the distance between

two consecutive cameras and assume that the objects have a depth bounded between zmin and zmax as shown

in Figure 2, according to the epipolar geometry principles, which are directly related to the structure of the

plenoptic function (see Figure 1), we know that the difference between the positions of a specific point on the

images obtained from two consecutive cameras will be equal to ∆ = αf
z , where z is the depth of the object and

f is the focal length of the cameras. Given α, this disparity ∆ depends only on the distance z of the point from

the focal plane. If we know a-priori that there is a finite depth of field, that is z ∈ [zmin, zmax], then there is a

finite range of disparities to be encoded irrespective of how complicated the scene is. This fact will be used in

the following sections to develop new distributed compression algorithms. Also notice that ∆ is bounded also

when zmax = ∞.

Fig. 2. Our camera sensor network configuration.

It is of interest to point out that the assumption that there is a finite depth of field is not new and was previously

used by Chai et al. to develop new schemes for the sampling of the plenoptic function [41]. A similar property

is also implicitly used in many mono-video compression algorithms. In that context the assumption is that

objects in the sequence move with bounded speed v ∈ [vmin, vmax] with vmin ≥ 0 and vmax < ∞. This allows

to restrict the size of the window in which the motion search is performed.

Finally, we would also like to highlight the fact that cameras do not necessarily need to be on a straight

line. Alternatively they could be placed on a circle or a plane without changing the main fact that the disparity

∆ is bounded. Since these different configurations all share the same property that disparity is bounded and

given that this is the only key a-priori information that is used in our distributed compression schemes, we will

just consider the linear configuration for the sake of clarity, extension to other structured configurations being

straightforward.
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B. A Distributed Coding Scheme for Scenes made of Flat Polygons

To illustrate the potential advantage of exploiting any a-priori information about the camera network configu-

ration, we now present a simple lossless distributed compression algorithm for the set-up presented in Figure 2.

The proposed algorithm is optimal in some particular situations, namely when the set of disparities and the

discontinuity locations are uniformly distributed.

Let us assume that the scene is made of simple objects such as uniformly coloured polygons and that there

are only two cameras. Denote with X and Y the horizontal discrete positions (in unit pixel precision) of a

specific object or a feature point such as a corner point on the images obtained from the two cameras. Assume

that the images are square images with 22R pixels each (i.e., the width and height of an image is 2R pixels

long). Due to the epipolar geometry and the information we have about the scene, that is (α, f, zmin, zmax),

we know that Y ∈ [X + αf
zmax

, X + αf
zmin

] for a specific X . Encoding X and Y independently would require a

total of at least H(X)+H(Y ) bits, where H(·) is the entropy of a discrete source. However, by looking at the

following relation: H(X, Y ) = H(X|Y ) + H(Y |X) + I(X, Y ), we can see that the minimum information that

must be sent from the source X corresponds to the conditional entropy H(X|Y ). Similarly, the information

corresponding to H(Y |X) must be sent from the source Y . The remaining information required at the receiver

in order to recover the exact values of X and Y is related to the mutual information I(X, Y ) and is by definition

available at both sources. We know that the correlation structure between the two sources is such that Y belongs

to [X + αf
zmax

, X + αf
zmin

] for a given X . Let Ỹ be defined as Ỹ = Y − � αf
zmax

�. This implies that the difference

(Ỹ − X) is contained in {0, 1, . . . , δ}, where δ = �αf( 1
zmin

− 1
zmax

)�. Looking at the binary representations

of X and Ỹ , we realize that the difference between them can be computed using only their last Rmin bits

where Rmin = �log2(δ + 1)�. Let X1 and Ỹ1 correspond to the last Rmin bits of X and Ỹ respectively. Let

X2 = (X � Rmin) and Ỹ2 = (Ỹ � Rmin), where the “�” operator corresponds to a binary shift to the

right. We thus have that Ỹ2 = X2 if Ỹ1 ≥ X1 and that Ỹ2 = X2 + 1 if Ỹ1 < X1. As indicated in Figure 3,

our coding strategy consists in sending X1 and Ỹ1 from the sources X and Y respectively and then, sending

only complementary subsets of bits for X2 and Ỹ2. At the receiver, X1 and Ỹ1 are then compared to determine

Fig. 3. Binary representation of the two correlated sources. The last Rmin bits are sent from the two sources but only complementary

subsets of the first (R − Rmin) bits are necessary at the receiver for a perfect reconstruction of X and Y .

whether Ỹ2 = X2 or Ỹ2 = X2 + 1. Knowing this relation and their partial binary representations, the decoder

November 3, 2008 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING : TIP-03718-2008.R2 7

can now perfectly recover the values of X and Ỹ .

Assume that zmin and zmax are such that (δ + 1) is a power of 2. If the disparity (Ỹ − X) is uniformly

distributed, we have that H(Ỹ −X) = H(X|Y ) = H(Y |X) = Rmin. Let S(X2) be a subset of the R−Rmin

bits of X2 and let S̄(Ỹ2) corresponds to the complementary subset of Ỹ2. If we assume that X is uniformly

distributed in {0, 1, . . . , 2R − 1}, we have that H(S(X2)) + H(S̄(Ỹ2)) = H(S(X2), S̄(Ỹ2)) = I(X, Y ). The

total rate necessary for our scheme is I(X, Y ) + 2Rmin = H(X, Y ). In this case, therefore, this scheme is

optimal since the total rate is equal to H(X, Y ). Moreover, by changing the repartition of bits between X2

and Ỹ2, any point in the Slepian-Wolf rate region can be achieved. For example, the most asymmetric scenario

is when the entire X is transmitted from the first encoder and only Ỹ1 is transmitted by the second encoder.

Instead we have a symmetric repartition when X2 and Ỹ2 carry the same number of bits as depicted in Figure 3.

III. FUNDAMENTAL TRADE-OFFS IN CAMERA SENSOR NETWORKS

When dealing with sensor networks, one of the fundamental issue is to understand the interplay between

sampling and distributed compression. Namely, if we assume that sensors do not communicate among themselves

but are only allowed to communicate to the base station through a multi-access channel of fixed capacity, then

the fundamental issue is to understand whether it is better to have more sensors but less bandwidth per sensors

or vice-versa less sensors, but more bandwidth per sensor.

On the one hand, deploying too few sensors is equivalent to undersample the phenomenon in space and

would lead to highly aliased reconstructions. An excessive number of sensors, on the other hand, would use

the communication resources inefficiently by transmitting correlated measurements to the receiver and it is no

clear whether this inefficiency can always be addressed by means of distributed source coding techniques.

Indeed, preliminary works on the topic have presented pessimistic results regarding the scalability of sensor

networks [42], [43] More optimistic results were more recently proposed in [44], [45], [32]. In those papers,

it was shown that, for a given distortion, an upper-bound (independent of N ) on the total information rate can

be given. The approach in [32], however, requires some communication between neighbouring sensors.

We now aim to understand this fundamental trade-off for the specific case of camera sensor networks. We

consider the camera sensor network set-up proposed in Figure 2, and assume that zmax can be equal to infinity.

Since the world scene is made of L Lambertian planar polygons with polygonal intensity, the perspective

projection observed at each camera using the idealized pinhole camera model is therefore given by a 2-D

piecewise polynomial function. In practice, however, we only observe a blurred and sampled version of such

a projection. The blurring is due to the lenses of the cameras and is normally modelled as a space-invariant

filtering with a Gaussian or B-spline filter, the sampling is due to the CCD array. The difference between the

N views is that the pieces are shifted differently according to their depths. Moreover, pieces can be linearly
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contracted or dilated if they correspond to a tilted object. Since the cameras are placed on a horizontal line,

only the horizontal parallax has an effect on the correlation between the N different views. We can therefore

reduce the sampling and compression problems to the 1-D case without loss of generality.

The N cameras then have to communicate their acquired and processed data to a central station through a

multi-access channel with fixed capacity C = Rtot. We now want to address the two following question: a) Is

there a sampling result that guarantees that perfect reconstruction of this type of visual scene is possible from

a finite number of blurred and sampled projections? b) Since the observed projections have to be transmitted

through a channel with fixed capacity, is the number of cameras going to influence the reconstruction fidelity

at the decoder?

A. Distributed Acquisition of Scenes with Finite Rate of Innovation

The signals observed at the sensors are piecewise polynomial signals and can be classified as signals with

Finite Rate of Innovation (FRI). This is because such signals are completely specified by a finite number of

parameters (i.e., the discontinuities locations and the coefficients of each polynomial). Recently, new sampling

methods for these classes of non-bandlimited signals have been proposed [33], [34]. They allow for a perfect

reconstruction using only a finite number of samples. The sampling can be done using sinc or Gaussian kernels,

or any function that can reproduce polynomials such as B-splines. Extensions of these sampling approaches

to 2-D signals with FRI have been proposed recently [46], [35]. These sampling schemes operate as follows:

The acquisition of the signal is linear, namely, the continuous signal is filtered with one of the aforementioned

kernels and then sampled. The reconstruction is non-linear and is based on techniques developed in spectral

estimation. The fundamental point is that since the original signal is by hypothesis completely specified by a

finite number of parameters, exact reconstruction is possible because it is possible to retrieve these parameters

from the measured samples.

If we assume that the blurring due to lenses can be modelled as a filtering with one of the above kernels,

it is then possible to retrieve, at each sensor, the original piecewise polynomial projection from the observed

blurred and sampled version using the above mentioned sampling schemes.

Since each sensor is able to retrieve precisely its original perspective projection, we can show that a finite

number of sensors is sufficient to reconstruct exactly the original scene using back-projection techniques. The

goal of these techniques is to find all the disparity correspondences between the different views1. Once this

1The matching problem can be solved exactly using a finite number of images as shown in [47]. This is due to the fact that the

perspective projections in a pinhole camera model are equivalent to the Radon projections in a Radon transform set-up. When the scene

is made of polygons, the back-projection problem can be solved exactly using a finite number of projections. We refer to [47] and

references therein for further details.
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disparity matching problem is solved, the exact depth of any object can be retrieved and the original scene can

be reconstructed exactly. We consider here three scenarios leading to three different sampling results:

Scenario A: We first consider the case where the L planar objects are separated and visible from all the

N cameras without occlusion, and keep the same “left to right” ordering (that is, the kth piece on the ith view

corresponds to the kth piece on the jth view, for any k ∈ {1; L} and i, j ∈ {1; N}). With this hypothesis,

only two of the N views are necessary in order to reconstruct the original scene (the correspondence problem

between the two views is straightforward in this case).

Scenario B: We then consider the case where the L objects are separated and visible from all the N

cameras without occlusion, but where the “left to right” ordering is not guaranteed anymore. In order to solve

the disparity matching problem at the decoder, we need to have at least L + 1 views of the scene. We can then

back-project the L + 1 left extremities of the pieces and retrieve the L real locations of these extremities [47].

The same procedure is then repeated with the L + 1 right extremities. Notice that this approach only relies

on the discontinuity locations and not on the intensity of the pieces. This general sampling result is therefore

sufficient in any case (even if all the pieces have the same intensity), but is not always necessary (two views

are in theory sufficient if all the pieces have different intensities).

Scenario C: Each object can be occluded in at most Omax views. (For the sake of simplicity, we only

consider full occlusions here. Any object can only be either fully visible or fully occluded in any given view.)

In this case, the number of sensors needed in order to guarantee an exact reconstruction of the scene is given

by Nmin ≥ L + Omax + 1. (Note that in practice, we can expect Omax to scale linearly with the total number

of sensors N .)

For these three scenarios, the minimum number of cameras corresponds to the critical sampling. We now

show how each sensor can quantize its parameters and use a distributed compression approach to maintain a

constant global rate-distortion behaviour at the decoder, independent on the number of sensors involved in the

transmission of information to the receiver.

B. A Bit-Conservation Result

The distributed compression algorithm applied at each sensor can be summarized as follows: First, the

original projection is reconstructed from the observed sampled version using an FRI reconstruction method.

The retrieved parameters of the original view are then scalar quantized according to some target distortion

for each view. Finally, each quantized parameter is Sleplian-Wolf (S-W) encoded using the lossless distributed

compression algorithm of Section II-B. More precisely, each signal is represented by its set of discontinuities

(corresponding to the objects locations) and its set of polynomials (corresponding to the objects intensities).
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These polynomials are common to all the views (in the case of no occlusion) and need to be transmitted only

once. The discontinuities can be S-W encoded as proposed in II-B.

In the following, we first describe the rate-distortion behaviour of an encoder that compresses the piecewise

polynomial signals independently. Then, we analyze the performance of our distributed compression scheme

for the three scenarios highlighted before.

1) R-D behaviour of independent encoding: A 1-D view is modelled by a piecewise polynomial function

defined on [0; T ] with L independent pieces of maximum degree Q, bounded in amplitude in [0, A], and 2L

discontinuities. Assume that such a function is quantized using Rt and Rp bits to represent each discontinuity

and polynomial piece respectively (the parameters are quantized using uniform scalar quantizers). It is possible

to show that the distortion (MSE) of its reconstruction can be bounded by [48]:

D(Rp, Rt) ≤ 1
2
A2LT ((Q + 1)2 2−

2
Q+1

Rp + 2−Rt). (1)

For a total number of R = L(2Rt + Rp) bits, the optimal bit allocation is given by: Rp = Q+1
Q+5

R
L + G

and Rt = 2
Q+5

R
L − 1

2G, where G = 2Q+1
Q+5(log(Q + 1) + 2). This allocation leads to the following optimal

rate-distortion behaviour:

D(R) ≤ 1
2
A2LT ((Q + 1)2 2−

2
Q+1

G + 2
1
2
G)︸ ︷︷ ︸

c0

2
−2

L(Q+5)
R
. (2)

A more detailed derivation of this rate-distortion bound is available in Appendix VII-A.

Assume now that the N views that have to be transmitted to the receiver are encoded independently. In this

case, for an average distortion D over all the reconstructed views at the receiver, the total amount of data to

be transmitted is of the order Rtot = NR leading to the following global D(R) behaviour:

D(Rtot) ≤ c02
−2

NL(Q+5)
Rtot . (3)

2) R-D behaviour using our distributed coding approach: Assume f1(t) and f2(t) are two 1-D piecewise

polynomial views obtained from two different cameras that are at a distance α apart. The two signals are

defined for t ∈ [0; T ] and are bounded in amplitude in [0; A]. If there is no occlusion, the two views are exactly

represented by L polynomials of maximum degree Q, and 2L discontinuities (the signals are equal to zero

between the pieces). The shift of a discontinuity from one view to the other (its disparity) is given by the

epipolar geometry and can be defined as: ∆i = αf
zi

, where zi is the depth of the ith discontinuity (the depth of

the object at its extremity). The range of possible disparities for a scene is therefore given by: ∆ ∈ [0; αf
zmin

].

We assume Lambertian surfaces for all the planar objects that make up the scene (i.e., the intensity of any

point on the surface remains the same when observed from different viewing positions). A polynomial piece

corresponding to a tilted planar object can be linearly contracted or dilated in the different views. However, its
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representation using Legendre polynomials is the same for any view, because of the support normalization on

[−1; 1] that we use with this basis. The correlation between the two views is therefore such that, knowing all

the parameters of the first view, the only missing information necessary to reconstruct perfectly the parameters

of the second view is the set of disparities {∆i}2L
i=1.

Scenario A: In this first scenario, we know that the knowledge of the discontinuity locations and the

polynomial coefficients from only two cameras is sufficient to retrieve the original visual scene.

Assume that a total of R bits is used to encode the first signal such that each polynomial piece and each

discontinuity is represented using Rp and Rt bits respectively: R = L(Rp+2Rt). On receiving this information,

the decoder can reconstruct the first view with a distortion D. Assume now that the second encoder also uses

R bits to encode the other view at a similar distortion. Knowing that the encoded version of the first view is

already available at the decoder, the second encoder does not need to transmit all its encoded data.2 First of

all, since the polynomial coefficients are similar for the two views, they do not need to be re-transmitted from

the second encoder. Secondly, since the discontinuity locations are correlated, only partial information from

each discontinuity need to be transmitted as shown in Sec. II-B. The total number of bits required from the

second encoder therefore corresponds to 2LRtSW
= 2L(Rt − γs) bits, where γs = �log2(

T
∆max

)	 corresponds

to the number of most significant bits of each discontinuity location that does not need to be transmitted from

the second view, since the most significant bits can be retrieved from the first view as shown in II-B. Here,

∆max = αf
zmin

.

Thus, the total number of bits necessary to transmit the two views is given by Rtot = L(Rp +2Rt +2RtSW
).

Using this encoded data, the decoder can reconstruct the two views or any other view with a distortion of the

order of D.

Assume now that we want to transmit information of the scene from more than two encoders. The total

information necessary at the decoder to reconstruct all the different views with a distortion D can be divided

and partially obtained from any set of cameras as follows: We know that the information about the polynomials

can be arbitrarily obtained from any camera and that as long as the two most distant cameras transmit their

RtSW
least significant bits for each of their 2L discontinuities, the rest of the Rtot − 2LRtSW

bits are common

and can be obtained from any subset of the N encoders. In other words, once the two extreme sensors have

transmitted their RtSW
least significant bits of each of their 2L discontinuities, the remaining L(Rp + 2γs) bits

to be transmitted (which is the information that is common to all sensors) can be obtained from any subset of

2Notice that we assume a high bit-rate regime where the quantization errors are small compared to the amplitudes of the disparities

and the polynomials, such that the quantized view parameters still satisfy (or nearly satisfy) the correlation model.
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the N cameras.3

The number of sensors used for the transmission has therefore no influence on the reconstruction fidelity at

the decoder. Using an optimal bit allocation and transmitting the information using N sensors, the distortion

of any reconstructed view given the total bit budget Rtot can be shown to behave as (see Appendix VII-B):

DA(Rtot) ≤ c02
−2(2γs+G)

Q+9︸ ︷︷ ︸
c1

2
−2

L(Q+9)
Rtot . (4)

We can thus observe that Eq.(4) does not depend on the number of sensors N .

Scenario B: The distributed compression strategy in this case consists in sending the discontinuity locations

from L + 1 views and each polynomial piece from only one encoder. The total bit-rate necessary is therefore

given by: Rtot = L((L + 1)2Rt + Rp). If we now want to transmit information from more than this minimum

number of sensors Nmin = L+1, we can do it in a flexible manner: Each new sensor introduced in the system

takes the responsibility of transmitting partial information about the polynomial pieces (therefore reducing the

communication task of some other sensors) or replaces one of its two neighbours to transmit some subset of

the most significant bits of its discontinuity locations. The distortion of any reconstructed view given the total

bit budget Rtot can be shown to behave as (see Appendix VII-C):

DB(Rtot) ≤ c02
−2LG

4L+Q+5︸ ︷︷ ︸
c2

2
−2

L(4L+Q+5)
Rtot . (5)

Again, the distortion at the receiver only depends on the total number of bits transmitted Rtot and not on the

number of sensors used.

Scenario C: The distributed compression strategy for this scenario can be summarized as follows:

• Transmit the position of the discontinuities from L + Omax + 1 views.

• Transmit the polynomial pieces from Omax + 1 views.

The total bit-rate necessary is therefore given by: Rtot = L((L+Omax +1)2Rt +(Omax +1)Rp). The flexible

repartition of the transmission bit-rate used in the previous scenario still holds here and the distortion of any

reconstructed view given the total bit budget Rtot can be shown to behave as (see Appendix VII-D):

DC(Rtot) ≤ c02
−2OmaxG

4L+(Omax+1)(Q+5)︸ ︷︷ ︸
c3

2
−2

4L2+L(Q+5)(Omax+1)
Rtot . (6)

Table I summarizes the different R-D bounds derived in this section (see Appendix VII for more details).

3Notice that in order to perform a symmetric encoding over the N cameras, we need to guarantee a high bit-rate regime where
Rtot

N
≥ 2LRtSW .
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TABLE I

SUMMARY OF THE DIFFERENT R-D BOUNDS FOR THE ENCODING OF N VIEWS.

Encoding mode average R-D upper bounds

Indep. Encoding D(Rtot) ≤ c02
−2

NL(Q+5) Rtot

DSC - Scenario A DA(Rtot) ≤ c12
−2

L(Q+9) Rtot

DSC - Scenario B DB(Rtot) ≤ c22
−2

L(4L+Q+5) Rtot

DSC - Scenario C DC(Rtot) ≤ c32
−2

4L2+L(Q+5)(Omax+1)
Rtot

C. Simulation Results

In order to demonstrate the validity of the above R-D analysis, we propose a simple simulation where five

cameras are observing a synthetic scene made of three tilted polygons with linear intensities. The cameras

are placed on a horizontal line and observe blurred and undersampled views (32 × 32 pixels) of the original

scene as illustrated in Figure 4 (top). For each view, knowing that the original scene belongs to a certain class

of signals with finite rate of innovation, the sampling results of Section III-A can be used to retrieve the 33

original parameters of the view (i.e. twelve vertices having two parameters each, and three 2-D linear functions

having three parameters each). Using these retrieved parameters, high resolution version of the different views

can be reconstructed at each encoder (see Figure 4 (bottom)). Here, the rate-distortion behaviour can be shown

to satisfy the expression given in equation 4 as shown on Figure 4 (right) (Notice that in the 2D case, L

corresponds to the number of vertices divided by 2).
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Fig. 4. (Top) Observations at the sensors. Each sensor observes a blurred and undersampled version of the perspective projection of the

scene. (Bottom) High resolution version of the 5 views reconstructed at each encoder from these samples using the FRI reconstruction

method. (Right) Practical (solid line) vs. Theoretical (dotted line) rate-distortion behaviour.

The original views are represented with the following precision: 22 bits for each vertex (view of 2048×2048

pixels) and 9 bits for each polynomial coefficient. One view is therefore exactly represented using 12×22+9×
9 = 345 bits. The parameters α, f and zmin are such that RtSW

= 10 bits (the disparities between the first and

the fifth views can actually be larger than a quarter of the image width). As we have shown in Section III-B2,
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a total rate of Rtot = 345 + 12 × 10 = 465 bits is therefore sufficient to reconstruct all the high resolution

views at the receiver.

If the bit budget Rtot is smaller than 465, scalar quantization of the parameters has to be done prior to applying

distributed compression. Table II highlights our bit-conservation result for different bit budgets Rtot. Indeed, it

shows that our approach suffers no rate loss when we increase the number of sensors used for transmission.

Notice that the PSNR of a reconstruction is given as the average value of the PSNRs of all reconstructed views.

TABLE II

AN EXACT BIT-CONSERVATION RESULT: SIMULATION RESULTS WITH THE 5 VIEWS PRESENTED IN FIGURE 4.

R1 R2 R3 R4 R5 Rtot PSNR

(bits) (bits) (bits) (bits) (bits) (bits) (dB)

345 - - - 120 465 ∞
276 - - - 108 384 44

128 - 128 - 128 384 44

108 84 - 84 108 384 44

84 72 72 72 84 384 44

171 - - - 60 231 29

48 48 39 48 48 231 29

IV. TREE-STRUCTURED APPROACHES FOR COMPRESSION OF MULTI-VIEW IMAGES

Equipped with the results of the previous sections, we now aim to develop a practical distributed compression

scheme that, for the idealized scenarios, achieves the arbitrary partition of rate amongst encoders and the bit-

conservation results of the previous section, but that can also operate effectively on real multi-view images.

A. The prune-join decomposition algorithm

In [49], Shukla et al. presented new coding algorithms based on tree structured segmentation that achieve

the correct asymptotic rate-distortion (R-D) behaviour for piecewise polynomial signals. Their method is based

on a prune and join scheme that can be used for 1-D (using binary trees) or for 2-D (using quadtrees) signals.

The aim of this coding approach (in 1-D) is to approximate a given signal using a piecewise polynomial

representation. The first step of the algorithm consists in segmenting the input signal using a binary tree

decomposition. The signal is first split in two pieces of the same length, then each piece is split again in a

recursive manner until the whole signal is decomposed into 2Jmax pieces of length T2−Jmax where T is the

support of the original signal and Jmax is the maximum number of binary tree decomposition levels. The binary
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tree representing this full decomposition therefore consists of 2Jmax+1−1 nodes, each corresponding to a certain

region of the signal with a certain length. The second step of the algorithm consists in approximating each node

of the binary tree (i.e. a given region of the signal) with a polynomial function of maximum degree Q. The best

polynomial approximation is obtained using a pseudo-inverse approach and is therefore optimal in the mean

squared error sense. The algorithm then generates R-D curves for each node of the binary tree by quantizing

uniformly the polynomial coefficients of the approximations using a number of bits in the range [0; Rmax]. Then,

assuming that a global bit budget of R bits is available to encode the whole signal, optimal bit allocation between

the different nodes of the binary tree must be performed. The optimal bit allocation is obtained by choosing

a fixed operating slope λ to select the current rate on all R-D curves and performing the pruning of children

nodes when the following Lagrangian-cost-based criterion holds: (Dc1 + Dc2) + λ(Rc1 + Rc2) ≥ (Dp + λRp).

The indices c1, c2 and p correspond to the two children and the parent node respectively. The resulting pruned

tree gives the sequence of leaves that represent the optimal bit allocation according to the current operating

slope λ. In order to further improve the encoding performance, neighbouring leaves that do not have the

same parent node are joined and coded together when the following Lagrangian-cost-based criterion holds:

(Dn1 + λRn1) + (Dn2 + λRn2) ≥ (DnJoint
+ λRnJoint

). The resulting encoded version of the original signal

is therefore represented using the pruned tree, the joining information and the polynomial coefficients of each

approximated region (i.e. group of joined leaves). The pruned tree is represented using a number of bits

corresponding to its number of nodes (scanning the tree with a top-down, left-to-right approach, a 0 means that

the node has children, while a 1 indicates that the node is actually a leaf). The joining information requires a

number of bits corresponding to the number of leaves in the pruned tree (each leaf needs to indicate if it is

joined to the next one or not). If the total number of bits used to encode the signal does not correspond to the

global bit budget R, the operating slope λ must be updated and the pruning and joining procedure must be

repeated until it reaches the global target rate or distortion.

We give a sketch of this compression algorithm for 1-D signals in the table ‘Algorithm 1’ and encourage the

reader to refer to the original work [49] for more details.

1) A distributed coding strategy for 1-D piecewise polynomial functions: Let f1(t) and f2(t) be two 1-D

piecewise polynomial views obtained from two different cameras as defined in Section III-B2. Assume that these

two signals are independently encoded using Algorithm 1 for a given distortion target. The total information

necessary to describe each of them can be divided into three parts: RTree is the number of bits necessary to

code the pruned tree and is equal to the number of nodes in the tree. RLeafJointCoding is the number of bits

necessary to code the joining information and is equal to the number of leaves in the tree. Finally, RLeaves is

the total number of bits necessary to code the set of polynomial approximations.
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Algorithm 1 Prune-Join binary tree coding algorithm
1: Segmentation of the signal using a binary tree decomposition up to a tree depth Jmax.

2: Approximation of each node of the tree by a polynomial p(t) of degree ≤ Q.

3: Rate-Distortion curves generation for each node of the tree (scalar quantization of the Legendre polynomial

coefficients).

4: Optimal pruning of the tree for the given operating slope −λ according to the following Lagrangian cost

based criterion: Prune the two children of a node if (Dc1 + Dc2) + λ(Rc1 + Rc2) ≥ (Dp + λRp).

5: Joint coding of similar neighbouring leaves according to the following Lagrangian cost based criterion: Join

the two neighbours if (Dn1 + λRn1) + (Dn2 + λRn2) ≥ (DnJoint
+ λRnJoint

).

6: Search for the desired R-D operating slope (update λ and go back to point 4).

Figure 5 shows the prune-join tree decompositions of two piecewise constant signals having the same set

of amplitudes and having their sets of discontinuities satisfying our plenoptic constraints. Because of these

constraints, we can observe that the structure of the two pruned binary trees has some similarities. This

similarities are exploited in our distributed compression algorithm as follows (asymmetric encoding):

• Send the full description of signal 1 from encoder 1 using R1 bits. (R1 = RTree1 + RLeafJointCoding1 +

RLeaves1)

• Send only the subtrees of signal 2 having a root node at level J∆ along with the joining information

from encoder 2 using R2 bits. Here, J∆ = �log2(
T

∆max−∆min+1)�. Therefore, R2 = (RTree2 − R∆) +

RLeafJointCoding2 where R∆ corresponds to the number of nodes in the pruned tree with a depth smaller

than J∆.
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Fig. 5. Prune-Join binary tree decomposition of two piecewise constant signals satisfying our correlation model.

At the decoder, the original position of the subtrees received from encoder 2 can be recovered using the

plenoptic constraints (i.e. ∆ ∈ [ αf
zmax

; αf
zmin

]) and the side information provided by encoder 1. The full tree can

then be recovered and the second signal can thus be reconstructed using the set of amplitudes received from
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encoder 1.

This encoding strategy is asymmetric. In order to allow for an arbitrary bit-rate allocation between the two

encoders, one can devise the following alternative strategy:

• Send all the subtrees having a root node at level J∆ from both encoders, along with their joining

information.

• Send complementary parts of the two upper trees (depth < J∆).

• Send complementary subsets of the polynomial approximations.

Assume now that we want to transmit some information from more than two cameras. We have previously seen

that if we assume that there are no occlusions in different views, the knowledge of the discontinuity locations

from only two cameras is sufficient to reconstruct any view in between. It is easy to realize that, as long as the

subtrees (depth ≥ J∆) are transmitted from the two extreme cameras, the remaining information is common

to all cameras and can therefore be obtained from any set of cameras. Moreover, since the polynomial pieces

are similar for each view, they can be transmitted from any camera, all this without impairing reconstruction

quality. Numerical experiments in Section V-A will confirm that this strategy leads to a bit conservation result

for simple scenes.

B. Extension to 2-D using Quadtree Decompositions

The prune-join binary tree decomposition used in the 1-D case has an intuitive extension in 2-D. In this

case, the binary tree is replaced with a quadtree and the polynomial model is replaced with a 2-D geometrical

model4. Algorithm 2 provides a sketch of our implementation of the quadtree compression approach proposed

in [49]. Figure 6(b) shows the quadtree structure that we obtain for the encoding of cameraman at a bit-rate of

0.2 bpp. Notice that the reconstructed image (Figure 6(c)) has a higher PSNR (about 1dB) than the one obtained

using a Jpeg2000 encoder (we use the java implementation of the Jpeg2000, reference software available at:

http://jj2000.epfl.ch).

In much the same way as in the 1-D scenario, our distributed 2-D coding approach consists in decomposing

each view using the quadtree approach presented in Algorithm 2, and then transmitting only partial information

from each view. The total information necessary to describe each view can be divided into three parts: RTree is

the number of bits necessary to code the pruned quadtree and is equal to the number of nodes in the quadtree,

RLeafJointCoding is the number of bits necessary to code the joining information and is equal to the number

of leaves in the quadtree plus two bits of side information for each joined leave. Finally, RLeaves is the total

4The geometrical model used is sketched in Fig. 6(a). This model is optimal when contours in images satisfy some regularity constraints

(i.e., contours should be C2 functions [49]). In more realistic settings this model provides the best R-D performance at low rates.
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(b) Rate = 0.2 bpp

Prune−Join Quadtree Decomposition Reconstructed Image

(c) PSNR = 27.3 dB(a) Tile model

Fig. 6. Quadtree Decomposition. (a) Our geometrical model consists of two 2D linear regions separated by a 1D linear boundary. (b)

Prune-Join quadtree decomposition of cameraman with a target bit-rate of 0.2 bpp. (c) The PSNR of the reconstructed image is about

1dB better than what we obtain with a Jpeg2000 encoder.

Algorithm 2 Prune-Join quadtree encoding algorithm
1: Segmentation of the signal using a quadtree decomposition up to a maximum depth Jmax.

2: Approximation of each node of the quadtree by a geometrical model consisting of two 2D regions of linear

intensities separated by a 1D linear boundary (see Figure 6(a)). For both regions, the intensity along the

horizontal and vertical axis varies as a linear 2D polynomial.

3: Rate-Distortion curves generation for each node of the quadtree using scalar quantization and optimal bit

allocation on the 8 coefficients (2 coefficients for the 1D linear boundary and 3 coefficients for each 2D

linear piece). Two or three bits of side information per node are needed to indicate the model used (each

tile can be represented with one or two 2D polynomials that can be constant or linear).

4: Optimal pruning of the quadtree for the given operating slope −λ according to the following Lagrangian

cost based criterion: Prune the four children of a node if:
∑4

i=1(Dci
+ λRci

) ≥ (Dp + λRp).

5: Joint coding of similar neighbouring leaves (or groups of already joint leaves) according to the following

criterion: Join the two neighbours if: (Dn1 + λRn1) + (Dn2 + λRn2) ≥ (DnJoint
+ λRnJoint

). Two bits of

side information are needed to indicate the direction of the joint neighbour (up,down,left,right).

6: Search for the desired R-D operating slope (update λ and go back to 4).

number of bits necessary to code the geometrical information of the leaves (2-D polynomials, 1-D boundaries

and model side information).

The distributed compression strategy for two views can therefore be described as follows (asymmetric case):

• Send the full description of the first view from the first encoder.

• Send only the subtrees of the quadtree structure of the second view with a root node at level J∆ =
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�log2(
T

∆max−∆min+1)� along with the joining information and the coefficients representing the 1-D bound-

aries.

Note that a more flexible allocation of the bit-rates between the encoders can be easily obtained by letting each

of them send complementary subsets of their polynomials as described in the 1-D case. In order to give the

correct intuition about this coding approach, we propose a simple example in Section V-B, where the scene

consists of a simple rectangle of constant intensity.

C. Joint reconstruction at the decoder and the matching problem

At the decoder, the information obtained from all the encoders is used along with the known a-priori correla-

tion structure to retrieve all the shifts (disparities) and retrieve the missing information about the segmentation of

the signals. The missing polynomial coefficients are then simply copied from the view where they are available.

This matching of the different quadtree structures is straightforward in the case where the correlation between

the views satisfies our piecewise polynomial model exactly, but becomes more involved in the case of real

multi-view images. This is due to the fact that the quadtree decomposition can encode, in a particular view, a

discontinuity that does not appear in the other views. In certain cases, the decoder can then make errors when

matching the two quadtree structures, which would lead to a poor reconstruction. Moreover, if the scene does

not fully satisfy the lambertianity assumption, and because of the noise induced by the acquisition system,

the quadtree algorithm may, in many cases, not decompose the different views with the exact same set of

polynomials.

In order to fix this problem, we can transmit some extra (redundant) information to help the decoder perform

a correct matching of the discontinuities of the different views. The aim of the matching is to retrieve the most

reliable depth map of the scene such that the polynomial intensities of the different regions can be correctly used

to reconstruct the views where this information is not available. The coding strategy for distributed encoding of

real stereo pairs can therefore be modified as follows: First, both views transmit their full quadtree structures,

along with the joining information, the side information about the geometrical model used for each region, and

the set of 1-D boundaries. Then, the first encoder transmits its full set of polynomials, while the second one

only transmits the most significant bits of its constant coefficients. These most significant bits correspond to

the redundant information that has to be transmitted in order to help the decoder perform a correct matching of

the quadtree structures. The amount of most significant bits to be transmitted has been determined empirically

after running several simulations on various datasets.

During the reconstruction, each region of the quadtree of the second view is matched with its corresponding

region in the first view. This matching is done by scanning all the possible positions on the first view according

to the epipolar constraints and selecting the one that is closest to the characteristics obtained from the second
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view (i.e., similar position and orientation of discontinuity and equivalence in the most significant bits of the

constant coefficients). Once this best match is identified, the original region of the first image is warped and

copied to the corresponding region on the other view. Notice also that since the distributed encoding of disparity

here is slightly different from the one discussed before, the bit conservation results of the previous section does

not hold exactly in the case of real multi-view images.

The main difficulty with the proposed geometry compensation approach is that it tries to match two regions

without having access to all the pixels information. A simple distortion metric such as the mean square error

(MSE) can therefore not be used to evaluate the best match. For each area corresponding to a tile (or a group

of joint tiles) on the second view, the proposed approach first generates the set of all possible matching regions

on the first view by shifting the left and right extremities of the region by all the values between the minimum

and maximum disparities. Then, in order to select the best candidate, all these potential regions of the first

view are approximated using the geometrical model parameters provided by the second view. These constrained

approximations are then evaluated by computing their mean square errors with the original data of the first

view and the candidate presenting the minimum distortion is selected as the best match. Finally, the missing

polynomials for the considered area of the second view are simply estimated from this retrieved area of the

first view.

In Section V-C, we present some simulation results based on this modified algorithm on real multi-view

images.

V. SIMULATION RESULTS

A. Simulation results on 1-D Piecewise polynomial signals

We have applied our distributed compression approach to different sets of 1-D piecewise polynomial signals

in order to highlight the fact that also the proposed tree-strctured compression algorithm allows for an arbitrary

bit-rate allocation and as presented in Section IV-A1.

In Table III, we highlight the bit conservation result, by applying our compression approach to the three views

shown in Figure 7. We know that the two extreme views contain enough information to allow the reconstruction

of any view in between with a comparable fidelity. Applying our compression approach to these two extreme

views, a total of 235 bits is necessary to achieve a distortion (SNR) of about 26 dB for the three reconstructed

views (an independent encoder would need 438bits). A similar global rate-distortion behaviour holds when part

of the information is transmitted from the central view.5 This means that, if we assume that the sensors transmit

their compressed data to the central decoder using a multi-access channel, the fidelity of the reconstructed views

5The small variations in the SNR values are only due to different quantization errors.
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depends only on the global capacity of this channel and not on the number of sensors used. The last line of

Table III shows a result obtained with another assumption on zmin. Here, the new zmin is chosen such that the

maximum disparity is doubled and we observe that the algorithm only requires 4 more bits to reach the same

global distortion.

TABLE III

DISTRIBUTED COMPRESSION USING A 1-D PRUNE-JOIN ALGORITHM. SIMULATION RESULTS WITH THREE 1-D SIGNALS.

Coding R1 R2 R3 Rtot Dtot (SNR)

Strategy (bits) (bits) (bits) (bits) (dB)

Independent 157 124 157 438 26.13

SW - 2 views 117 0 118 235 25.68

SW - 3 views 82 71 82 235 26.13

SW - 3 views 86 67 86 239 26.13
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Fig. 7. Join-Prune tree decomposition of three piecewise polynomial signals for a given distortion target (26 dB).

B. A simple example in an ideal scenario

We consider here a simple example to highlight our quadtree based distributed coding technique. Figure 8

shows three views of a scene consisting of a single rectangle of constant intensity placed at a certain depth

(in front of a constant background) such that its displacement from one view to the next one is equal to four

pixels. The figure also shows the structure of the pruned quadtree (green dashed lines) along with the joining

information (red lines). Using our standard prune-join quadtree encoder, we can see that each of these views

can be losslessly encoded using a total of 114 bits. The pruned quadtree represented using its full first three

levels, therefore consists of 40 + 41 + 42 = 21 nodes and is represented with 21 bits. The joining information

requires one bit per leaf to indicate that the leaf is joined to the next one, and two more bits to indicate the

direction of the next leaf. The total number of bits necessary to encode the joining information is therefore

equal to 16 + 13× 2 = 42 bits. Finally, 51 bits are used to encode the geometrical representations (16 bits for

the 1-D boundaries, 32 bits for the polynomials and 3 bits for the model side information).
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We assume in this example that the minimum and maximum disparities are given by: {∆min; ∆max} = {1; 8}.

This means that J∆ = 2 and that the first two level of the quadtree structure (5 bits) need to be transmitted from

only one encoder. In Table IV, we show different bit allocation examples that lead to a perfect reconstruction

of the three views. These examples highlight the arbitrary bit allocation and the bit conservation principle of

our coding approach. For example, the last line of Table IV presents an example of bit allocation between the

three encoders, where encoder 1 and 3 transmits 77 bits. These are used to represent part of their quadtree

structures (starting at level J∆ = 2) (16 bits), their joining information (42 bits), their side information about

the geometrical models (3 bits) and their 1-D boundaries (16 bits). The encoder 2 transmits a total of 37 bits

corresponding to the first two level of the quadtree (5 bits) and the polynomial coefficients (32 bits). The last

column of Table IV shows the joint entropy of the source therefore proving that the approach achieves the

Slepian-Wolf bounds.
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Fig. 8. Three 32×32 views of a very simple synthetic scene consisting of one rectangle at a certain depth. The quadtree decomposition

uses a total of 114 bits to encode each view (21 bits for the pruned quadtree, 42 bits for the joining information and 51 bits for the

geometrical representations).

TABLE IV

NUMERICAL RESULTS FOR THE LOSSLESS ENCODING OF THE SIMPLE VIEWS SHOWN IN FIGURE 8

Coding R1 R2 R3 Rtot Hsource

Strategy (bits) (bits) (bits) (bits) (bits)

Independent 114 114 114 342 191

SW asym. - 2 views 114 - 77 191 191

SW sym.- 2 views 95 - 96 191 191

SW asym. - 3 views 77 37 77 191 191

C. Simulation results on real 2-D multi-view images

We now present simulation results obtained on the lobby multi-view sequence from Shum et al. [50]. Figure 9

shows the result of an asymmetric encoding of a stereo pair where the first view is encoded at 0.32 bpp,

whereas the second view is encoded at a significantly lower bit-rate and some information about its polynomial
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coefficients is discarded. After the matching, the missing coefficients can be retrieved from the first view, which

improves the quality of the reconstructed view.

Figures 10 and 14(a) show results obtained on a sequence of six consecutive views, where the first and

the sixth views are fully transmitted and only the quadtree structure is transmitted for the other four views.

Figure 14(a) shows that our approach outperforms an independent encoding of the six views for all the range

of considered bit-rates. In Figures 11, the difference in the reconstruction quality between the independent and

distributed approach is highlighted. The images correspond to the 5th view of the lobby sequence. The error

of the distributed quad-tree-based scheme is typically due to the noise, the non-lambertianity of the scene, or

the presence of non-flat surfaces.

Figures 12 and 13 show other simulation results obtained on different set of multi-view images. Again, the

distributed approach outperforms the independent compression algorithm as shown in Figure 14(b). In Figure 14,

we also show the results obtained with an independent JPEG2000 coder as well as an existing distributed video

coder named DISCOVER [22] which uses standard channel codes to perform distributed compression. In order

to use this video coder on our set of multi-view images in a comparable approach, we consider the 6 views as 6

video frames where the first and the last frames are intra-coded and the four intermediate frames are Wyner-Ziv

coded. The resulting R-D curves show that our approach performs clearly better than the DISCOVER approach

at low bit-rate despite the fact that DISCOVER uses a feedback channel to perform rate control. Such channel

does not exist in truly distributed coding scenarios and is not used in our scheme.

R econstructed Image 1

R  = 0.32 bpp - P snr = 34.1 dB

R econstructed Image 2
     (J oint decoding)

P snr = 28.3 dB

R econstructed Image 2 (Indep)

R  = 0.06 bpp - P snr = 27.3 dB

Fig. 9. Distributed stereo encoding of two views. View 1 (left) is encoded at 0.32 bpp and fully transmitted. View 2 (right) is encoded

at a much lower bit-rate and some of its polynomial coefficients are discarded. Joint decoding of view 2 (center) shows an improvement

of the reconstruction quality of about 1dB compared to an independent encoding.

VI. CONCLUSIONS

In this paper the problem of sampling and distributed compression of the data acquired by a camera sensor

network has been considered. First, the structure of the multi-view data has been analyzed and it was shown that

it is possible to devise distributed compression strategies that exploit any a-priori knowledge of the configuration

of the multi-camera system. Moreover, for idealized scenario, we demonstrated that the overall reconstruction
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view 1

R = 0.221 bpp - Psnr = 32.67 dB

view 6

R = 0.218 bpp - Psnr = 32.29 dB

view 2

R = 0.032 bpp - Psnr = 29.34 dB

view 3

R = 0.033 bpp - Psnr = 30.49 dB

view 4

R = 0.035 bpp - Psnr = 29.96 dB

view 5

R = 0.034 bpp - Psnr = 30.02 dB

Fig. 10. The six images correspond to a distributed encoding with an average bit-rate of 0.08 bpp. Images 1 and 6 are encoded

indepedently while images 2 to 5 are encoded using our distributed compression approach.

View 5 − Independent encoding (Quadtree)

P S NR  = 28.24 dB

View 5 − Distributed encoding

P S NR  = 30.02 dBP S NR  = 27.18 dB

View 5 − Independent encoding (J peg2000)

Fig. 11. Reconstruction of the 5th view. Independent encoding at 0.08 bpp with Jpeg2000 (left). Independent encoding at 0.08 bpp

with the prune-join quadtree coder (center). Our distributed encoding approach with an average of 0.08 bpp (right).

view 1

R ate = 0.22 bpp
P S NR  = 29.9 dB

view 6

R ate = 0.22 bpp
P S NR  = 29.9 dB

view 2

R ate = 0.04 bpp
P S NR  = 28.7 dB

view 3

R ate = 0.04 bpp
P S NR  = 28.7 dB

view 4

R ate = 0.04 bpp
P S NR  = 28.9 dB

view 5

R ate = 0.04 bpp
P S NR  = 29.0 dB

Fig. 12. Distributed encoding of the six views with an average bit-rate of 0.1 bpp. Images 1 and 6 are encoded independently while

images 2 to 5 are encoded using our distributed compression approach.
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View 5 − Independent encoding (Quadtree)

P S NR  = 27.5 dB

View 5 − Distributed encoding

P S NR  = 29.0 dBP S NR  = 26.3 dB

View 5 − Independent encoding (J peg2000)

Fig. 13. Reconstruction of the 5th view. Independent encoding at 0.1 bpp with Jpeg2000 (left). Independent encoding at 0.1 bpp with

the prune-join quadtree coder (center). Our distributed encoding approach with an average of 0.1 bpp (right).
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Fig. 14. Distributed vs. independent encoding of six views with our quadtree-based approach. Results obtained with an existing

distributed video coder (DISCOVER [22]) and a Jpeg2000 encoder are also shown. (a) Results for the scene shown in Figure 10. (b)

Results for the scene shown in Figure 12.

fidelity does not depend on the number of cameras involved but only on the total number of bits transmitted

to the receiver, this leads to an exact bit-conservation result.

We have then considered the problem of compressing real multi-view images and extended a quadtree-based

compression scheme to the case of distributed image compression. The algorithm takes advantage of the structure

of the visual data and of the configuration of the camera system and perform well on real multi-view images.

We also showed that the proposed scheme achieves the ideal performance when dealing with synthetic images.

In future research, we will consider different camera configurations and the case of multi-view video se-

quences.

VII. APPENDIX - COMPUTATION OF THE RATE-DISTORTION BOUNDS

In this Appendix, we provide a more detailed derivation of the different R-D bounds presented in Section III.

The piecewise polynomial model that we use corresponds to L separated polynomial pieces of maximum degree

Q. The ith piece is represented with the polynomial pi(t) and is defined over the support Ii = [t2i−1, t2i] of

width Si.
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A. Independent Encoding6

The error relative to each quantized discontinuity can be upper bounded by: e2
ti
≤ A2|ti − t̂i|, where t̂i is

the quantized version of ti using Rti
bits. The quantization error is at most one half of the quantization step,

which leads to the following upper bound for the distortion associated with the encoding of this discontinuity:

Dti
(Rti

) ≤ 1
2
A2T2−Rti . (7)

Notice that we consider a strict upper bound here (worst case scenario) and therefore do not use the fact that

the quantization error is uniformly distributed in [−T2−(Rti
+1); T2−(Rti

+1)]. The different polynomial pieces

are encoded using the Legendre expansion. We consider here the ith piece defined over Ii = [t2i−1, t2i]: (we

deliberately omit the i index for simplicity of notations in the following)

p(t) =
Q∑

n=0

pntn =
Q∑

n=0

2n + 1
S

lnLI(n; t) , (8)

where LI(n; t) is the Legendre polynomial of degree n over the support I , and {ln}Q
n=0 are the Q+1 Legendre

coefficients to be quantized. Notice that due to the properties of the Legendre expansion, we have: |ln| ≤ AS/2

for all n. We can thus express the squared error as:

e2 =
Q∑

n=0

(2n + 1
S

)2
∫ t2i

t2i−1

L2
I(n; t)dt = S−1

Q∑
n=0

(2n + 1)(ln − l̂n)2, (9)

where l̂n is the quantized version of ln using bn bits (the quantization step is of size AS2−bn , and
∑Q

n=0 bn =

Rp). The error can therefore be bounded as:

e2 =
1
4
A2S

Q∑
n=0

(2n + 1)2−2bn . (10)

For the sake of simplicity, we assume that the same number of bits (bn = Rp

Q+1 bits) is allocated to each

coefficient, and that the support is maximal (S = T ). This leads to the following upper bound for the distortion

associated with the encoding of this piece:

Dp(Rp) ≤ 1
4
A2T (Q + 1)2 2

−2
Q+1

Rp . (11)

The global distortion for the encoded signal can be upper bounded by:

D ≤
L∑

i=1

Dpi
(Rpi

) +
2L∑
i=1

Dti
(Rti

) . (12)

The optimal bit allocation for this piecewise polynomial function is impractical to derive because of the

dependencies on all the polynomial parameters across the whole function. We therefore derive a coarser but

6Notice that the derivation proposed in this section is mostly based on the work in [48].
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more general upper bound by assuming the following simplifications: a) All polynomial pieces are considered as

being of degree Q. b) The same number of bits Rp is assigned to each polynomial piece. c) All discontinuities

are encoded at the same rate Rt. The R-D bound becomes:

D(R) ≤ 1
2
A2TL(2−Rt + (Q + 1)2 2

−2
Q+1

Rp) , (13)

where the total rate R corresponds to: R = L(2Rt + Rp). The optimal bit allocation between Rp and Rt can

be obtained by computing the derivative of this R-D bound, and is given by:

Rp = Q+1
Q+5

R
L + G, Rt = 2

Q+5
R
L − 1

2G,

where G = 2(log(Q + 1) + 2)
(

Q+1
Q+5

)
. The global R-D bound is finally given by:

D(R) ≤ 1
2
A2LT ((Q + 1)2 2

−2G

Q+1 + 2
1
2
G)︸ ︷︷ ︸

c0

2
−2

(Q+5)L
R

. (14)

B. Distributed Encoding - Scenario A

In this scenario, the total number of bits that needs to be transmitted is given by: Rtot = L(Rp+2Rt+2RtSW
),

where RtSW
= Rt−γs, and γs = �log2(

T
∆max

)	. We know that distributed encoding using Rtot = L(Rp+4Rt−
2γs) would lead to an average distortion similar to an independent encoding of one signal using R = L(Rp+2Rt)

bits. Using the optimal bit allocation computed in the previous section, we obtain:

Rtot = Q+9
Q+5R − L(2γs + G) ⇒ R = (Rtot + L(2γs + G))Q+5

Q+9 .

The global average R-D bound is therefore given by:

DA(Rtot) ≤ c02
−2(2γs+G)

Q+9︸ ︷︷ ︸
c1

2
−2

L(Q+9)
Rtot . (15)

C. Distributed Encoding - Scenario B

The total number of bits that needs to be transmitted from the N ≥ L + 1 sensors in this scenario is given

by: Rtot = L(Rp + 2(L + 1)Rt). Using the optimal bit allocation, we obtain:

Rtot = 4L+Q+5
Q+5 R − L2G ⇒ R = (Rtot + L2G) Q+5

4L+Q+5 .

The global average R-D bound is therefore given by:

DB(Rtot) ≤ c02
−2LG

4L+Q+5︸ ︷︷ ︸
c2

2
−2

L(4L+Q+5)
Rtot . (16)

November 3, 2008 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING : TIP-03718-2008.R2 28

D. Distributed Encoding - Scenario C

In this scenario, the total number of bits is given by: Rtot = L((L+Omax +1)2Rt +(Omax +1)Rp), where

Omax is the maximum number of occluded views for any given object of the scene. Following the optimal bit

allocation, we obtain:

Rtot =
4L + (Omax + 1)(Q + 5)

Q + 5
R + LGOmax , (17)

⇒ R = (Rtot − LGOmax)
Q + 5

4L + (Omax + 1)(Q + 5)
. (18)

The global average R-D bound is therefore given by:

DC(Rtot) ≤ c02
−2OmaxG

4L+(Omax+1)(Q+5)︸ ︷︷ ︸
c3

2
−2

4L2+L(Q+5)(Omax+1)
Rtot . (19)
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