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Customizing Kernel Functions for SVM-Based
Hyperspectral Image Classification

Baofeng Guo, Steve R. Gunn, R. I. Damper, Senior Member, IEEE, and James D. B. Nelson

Abstract—Previous research applying kernel methods such as
support vector machines (SVMs) to hyperspectral image classifica-
tion has achieved performance competitive with the best available
algorithms. However, few efforts have been made to extend SVMs
to cover the specific requirements of hyperspectral image classifi-
cation, for example, by building tailor-made kernels. Observation
of real-life spectral imagery from the AVIRIS hyperspectral sensor
shows that the useful information for classification is not equally
distributed across bands, which provides potential to enhance the
SVM’s performance through exploring different kernel functions.
Spectrally weighted kernels are, therefore, proposed, and a set of
particular weights is chosen by either optimizing an estimate of
generalization error or evaluating each band’s utility level. To as-
sess the effectiveness of the proposed method, experiments are car-
ried out on the publicly available 92AV3C dataset collected from
the 220-dimensional AVIRIS hyperspectral sensor. Results indi-
cate that the method is generally effective in improving perfor-
mance: spectral weighting based on learning weights by gradient
descent is found to be slightly better than an alternative method
based on estimating “relevance” between band information and
ground truth.

Index Terms—Hyperspectral image processing, mutual informa-
tion (MI), remote sensing, support vector machines (SVMs).

I. INTRODUCTION

HYPERSPECTRAL sensors simultaneously capture hun-
dreds of narrow and contiguous spectral images from a

wide range of the electromagnetic spectrum. For instance, the
AVIRIS hyperspectral sensor [1] has 224 spectral bands (or im-
ages) ranging from visible light to mid-infrared areas (0.4 to
2.5 m). Such a large number of bands or images implies high-
dimensionality data, presenting several significant challenges to
image classification [2]–[6]. It is well known that the dimen-
sionality of input space strongly affects performance of many
classification methods (e.g., the Hughes phenomenon [7]). This
requires the careful design of new algorithms that are able to
handle hundreds of such spectral images at the same time min-
imizing the effects from the “curse of dimensionality.” Kernel
methods, such as support vector machines (SVMs) [8]–[10], are
less sensitive to the data’s dimensionality [11] and have already
shown superior performance in many machine learning appli-
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cations. Recently, SVMs have attracted increasing attention in
remote-sensed multi/hyperspectral communities [11]–[19]. Pre-
vious literature applying SVMs to hyperspectral image classifi-
cation [12], [14], [16], [17] has shown competitive performance
with the best available classification algorithms. However, the
full potential of SVMs—such as developing customized ker-
nels to integrate a priori domain knowledge—has not been fully
explored.

In this paper, spectrally weighted (SW) kernels are proposed
to take better advantage of SVM techniques for hyperspectral
image classification. We first illustrate a well-known phenom-
enon in hyperspectral imagery, i.e., the nonuniform distribution
of discriminatory information across different spectral bands.
Based on the AVIRIS 92AV3C dataset, some examples re-
garding this application-dependent distribution are given in
Fig. 1. To address the characteristic that certain parts of the
spectrum will provide a much richer descriptor for classification
than other parts, some approaches such as a straightforward
feature selection [20], [21] or a block-based approximation
to the covariance matrix can be applied. Here, we propose a
modification to the kernel functions that can take into account
the difference of the relative utility of each spectral band by
imposing a series of spectral weights. We subsequently show
that the spectral weights of the SW kernels can be chosen
by a gradient-descent-based automatic tuning that optimizes
the SVMs’ generalization error. By analyzing the relationship
between the automatic tuning and the “relevance” evaluation of
each band (the “relevance” can be seen as an index of impor-
tance or utility of a band to classification), we further reveal that
the spectral weights can actually be more effectively derived
from the mutual information between the spectral bands and
the ground-truth reference map. This finding can improve the
approach by reducing computational cost and saving training
time.

The remainder of this paper is organized as follows. After a
brief introduction to the AVIRIS 92AV3C dataset in Section II,
we discuss the nonuniform information distribution across spec-
tral bands in Section III. In Section IV, we propose spectrally
weighted kernels for hyperspectral image classification, and in
Section V, we investigate how to use a bound of the generaliza-
tion error and mutual information to decide the spectral weights.
Experiments are carried out to assess the performance of the
proposed method, which are presented in Section VI. Finally,
we end this paper with conclusions and a proposal for future
work.

II. AVIRIS 92AV3C DATASET

The public AVIRIS 92AV3C hyperspectral dataset has been
researched extensively. The dataset is illustrative of the problem
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Fig. 1. Nonuniform information distribution. (a) 100 samples of spectral re-
sponses for two classes of vegetation in AVIRIS 92AV3C dataset: corn (red
in the online version; dark in the print version) and wheat (green in the on-
line version; light in the print version); the statistical features of spectral re-
flectance values in each spectral band: (b) the means, (c) the standard deviations,
and (d) the Bhattacharyya distances between the two classes.

of hyperspectral image analysis to determine land use. It can
be downloaded from ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/.
Although the AVIRIS sensor collects nominally 224 bands (or
images) of data, four of these contain only zeros and so are dis-
carded, leaving 220 bands in the 92AV3C dataset. At certain
frequencies, the spectral images are known to be adversely af-
fected by atmospheric water absorption. This affects some 20
bands. Each image is of size 145 145 pixels. The data-cube
was collected over a test site called Indian Pine in north-western
Indiana [3], [12].

The database is accompanied by a reference map, indicating
partial ground truth, whereby pixels are labeled as belonging to
one of 16 classes of vegetation or other land types (see examples
in Table I). Not all pixels are so labeled (e.g., highway, rail track,
etc.), presumably because they correspond to uninteresting re-
gions or were too difficult to label.

III. NONUNIFORM INFORMATION DISTRIBUTION

Hyperspectral sensors capture signals in a wide spectrum, and
it can be expected that different parts of the spectrum will have
differing representative capabilities for distinguishing the ob-
jects of interest. The intrinsic spectral-distinctness of different

TABLE I
NUMBER OF TRAINING AND TESTING PIXELS IN EACH CLASS

objects might not necessarily coincide in the same wavelengths
or bands. In some parts of the spectrum, materials may have a
much more distinctive spectral reflectance than in other parts of
the spectrum. Moreover, complex transmission conditions in the
atmosphere, such as water and CO absorption, also play a role
in this phenomenon.

Fig. 1(a) shows 100 samples (pixels) of spectral reflectance of
corn and wheat, extracted from the AVIRIS 92AV3C hyperspec-
tral imagery. The -axis shows the number of spectral bands
(1–220), and the -axis depicts the pixel value measured in the
different bands. It is seen that substantial overlap between the
two classes occurs in some bands due to the natural similarity
and the variability of spectral reflectance. To separate them, we
have to consider their statistical features, such as the means
[see Fig. 1(b)] and standard deviations [see Fig. 1(c)] for each
spectral band. If we ignore the second- or higher-order statis-
tics [i.e., only using the difference between the two classes’s
means, see the dashed line in Fig. 1(b)], the two classes ap-
pear to be more separable in the bands 15–35, 80–100, and
120–140 than other heavily overlapped bands such as bands
40–80. Only considering the means of course implies a loss of
information, so a better measurement of statistical separability
is given by the Bhattacharyya distance, which takes account of
the second-order statistic, i.e., variance. The Bhattacharyya dis-
tances between the two classes in each spectral band are pre-
sented in Fig. 1(d), where the bands 110–150, 165–215 are re-
vised as the higher-value ones due to their lower variances. In
the following discussion of customized kernels, it is not nec-
essary to evaluate the separability of a group of bands, so the
covariances among bands are not calculated.

Fig. 1 clearly shows that irrespective of using the simplest
statistics [see Fig. 1(b) for the mean and Fig. 1(c) for the
standard deviation] or the Bhattacharyya separability measure
[see Fig. 1(d)], their values vary across bands. This indicates
that in hyperspectral imagery the discriminatory information is
nonuniformly distributed across the spectrum. Among the set of
spectral bands, some may contain more useful information for
classification than others, and have larger separability indexes
accordingly. Considering that the separability measure gives
an estimate of the probability of correct classification, it would
be expected that classification performance can benefit from
placing greater emphasis on the more informative bands.

Hence, two different strategies may be considered:
• to select effective spectral bands with spectral manage-

ment algorithms, such as feature selection by a filtering
approach;
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• to customize directly the classifier by integrating this
a priori knowledge (i.e., feature selection by an “embed-
ding” approach).

The first strategy has been discussed in [20] and [21]; how-
ever, in this research, we focus on the second one. In the SVM-
based classification framework, a straightforward approach is
to modify the kernel functions by assigning different weights
to different bands, adaptively embedding the amount of useful
classification-information contained within that band. To this
end, we propose the use of spectrally weighted kernels to ex-
ploit better this specific characteristic of hyperspectral imagery.

IV. SPECTRALLY WEIGHTED KERNELS

To present the proposed spectrally weighted kernels, we first
introduce several relevant SVM formulas. A full introduction to
SVMs can be found in [9] and [10].

Let (and ) be an -dimensional hyperspectral data vector
(in this research, this vector can be seen as a pixel with 220
components) with subscript denoting the example number. The
SVM classifier can be represented as

(1)

The are the classification targets (la-
bels); are Lagrange multipliers; is the
number of examples; and is a threshold. Furthermore,

is an appropriate kernel function
which has a corresponding inner product expansion, . Com-
monly used functions are polynomials and Gaussian radial
basis functions (RBFs), as follows:

(2)

(3)

where is the order of polynomials and is a width parameter
characterizing the RBFs.

For a hyperspectral data vector , the
component corresponds to the reflectance value of example

in the specific spectral band . Generic kernels,
e.g., (2) and (3), regard each component with equal emphasis
in their projection into feature space. However, Section III has
argued that it is advantageous to moderate the spectral informa-
tion according to the richness of the descriptor. For example if
the component is a reflectance value in the spectrum or bands
where two classes can be clearly separated (such as the regions
with the higher Bhattacharyya distance in Fig. 1), weighting this
feature to have a larger effect in feature space could improve
classification and, similarly, reducing it when it adds little to the
description.

To modify the kernel function so as to reflect the above con-
sideration, a weight vector corresponding
to each spectral band is used to scale each feature in the hy-
perspectral data vector before mapping it into feature space. To
simplify notation, we introduce a diagonal matrix .

Given this weighting, the SW kernels for a polynomial and an
RBF can be written as

(4)

(5)

where . In this scheme, the weights
have been designed to correspond to each feature component
and a simple diagonal matrix can achieve this goal.

The necessary and sufficient condition for deciding whether
a function is a kernel is given by Mercer’s theorem. It is easy
to prove that the SW kernels still satisfy Mercer’s condition,
since they can be also interpreted as a scaling procedure in input
space, and will not change the kernels’ Mercer condition. Sub-
stituting the SW kernels into (1) gives the corresponding spec-
trally weighted SVMs.

Using the proposed SW kernels, a priori knowledge (e.g., the
nonuniform information distribution) can be incorporated into
the SVM learning procedure. As the weights can be considered
as the part of the SVMs’ model parameters, through tuning to
maximize the estimate of generalization error, it should be pos-
sible to achieve better performance. SW kernels can also be seen
as a form of data preprocessing, akin to feature selection. As the
approach can de-emphasize less important features, it implic-
itly conducts feature selection. When the weights are zero, the
corresponding features will be cut off equivalently [see the dis-
tance calculation in Gaussian (5) and polynomial kernels (4)].
The above procedure changes the measurement complexity of
the classifiers; then, according to [7] (i.e., the Hughes phenom-
enon), it may affect classification accuracy for over-dimensional
data, given that the number of training samples is finite (as in the
case of remote-sensing applications).

V. ESTIMATION OF SPECTRAL WEIGHTS

For SW kernels, a key problem is to choose the spectral
weights . On the one hand, SW kernels are motivated by
the nonuniform information distribution across bands, so the
spectral weights are expected to reflect the relative influence
(namely the relevance to classification) of each band to the
the kernel values; on the other hand, the change of the kernel
value by imposing such weights should improve classification
accuracy, i.e., minimizing the error on future
examples. It is known that the latter goal can be achieved by
optimizing a bound of generalization error .
One of the well-known upper bounds of is the ratio of radius
to margin, , where is the radius of a sphere en-
closing mapped training examples ,
and is the margin between the hyperplane and the closest

[22], [23]. This bound may be intuitively understood as
follows: the radius indicates the compactness of data, and
the margin implies the distance of two classes. It is similar to
the Bhattacharyya separability measure, which is calculated by
means (akin to the distance of two classes) and variances (akin
to the compactness of data). This theorem also justifies the
idea of maximizing the SVM margin , or equivalently
minimizing . The factor regarding the radius may
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be implicitly implemented by the choice of kernels and their
parameters.

A. Scheme Based on Gradient Descent Algorithm

Based on the above discussion, if the spectral weights can
be chosen to increase the SVM margin, i.e., to lower the ra-
dius-margin bound, it becomes possible to improve the classifi-
cation accuracy. Thus, the first scheme for choosing the spectral
weights is proposed as follows [22]–[25].

According to SVM theory, the margin can be derived as

(6)

where is the -dimensional vector perpendicular to the sepa-
rating hyperplane, given by

(7)

From (6), maximizing can be achieved by minimizing
, or

(8)

From (8), it is seen that given fixed , the derivative of
is

(9)

where is a spectral weight corresponding to the th compo-
nent of a hyperspectral data vector (i.e., the th spectral image).

Thus, the choice of spectral weights can be implemented by
using a gradient descent algorithm as follows:

(10)

where controls the searching speed, and is the iteration step.
In this scheme, weights are updated step-by-step, and a (local)
minimum of will be found after a number of iterations.

B. Scheme Based on Relevance Evaluation

The weighting scheme shown in Section V-A is based on the
gradient descent algorithm, which needs a time-consuming iter-
ative updating [see (10)], and usually it will not find the global
optimal solution. On the other hand, we know that the spectral
weights also reflect the relevance of each spectral band to the
classification. Thus, an alternative weighting approach can be
conceived as follows. First, the kernel in (5) can be rewritten as

(11)

where and denote the number of training examples, and
is the band number. The derivative of

is

(12)

It can be shown that the value of (12) for different bands
is decided by the term , given the same initialization
weights .

Combining (9) and (12), we get

(13)

where ,
including all coefficients except and .

When the examples belong to the same class, i.e., and
will change little because

. When the examples belong to different classes, i.e.,
and , we get

(14)

The expectation of variable is

(15)

According to the Bhattacharyya distance, given the same dif-
ference of means, the bands with the smaller variances will tend
to have higher separability values (i.e., they are “good” bands,
probably with lower classification errors). This assumption can
be evidenced by observing the following 1-D Bhattacharyya
coefficient:

(16)

So, roughly speaking, given a certain assumption (e.g., the
same difference of means), the “good” bands should have lower
variances, i.e., the smaller and . Thus, we
have

(17)

where is a measure of the level of “relevance” or “goodness”
of a band to classification. Combining (14) and (17), we get

(18)
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Equation (18) shows that in each step of automatic tuning,
the change of the spectral weight is related to the level of its
relevance to classification, i.e., . Therefore, to obtain a lower
bound of generalization error, the spectral weights can also be
found through the evaluation of relevance , as an alternative
to the gradient descent approach discussed in Section V-A.
Considering that gradient descent is usually time-consuming, a
weighting scheme based on relevance evaluation is attractive.
Among many possible relevance measures, we propose the use
of mutual information (MI) to estimate each band’s level of rel-
evance. The advantages of employing MI are its close relation
to Bayes classification errors [26] and effective implementation
[27], [28].

Given two random variables and with marginal proba-
bility distributions and , and joint probability distribu-
tion , the mutual information between

and is defined as

(19)

According to Shannon’s information theory, entropy mea-
sures information content in terms of uncertainty, and is defined
by

(20)

From (19) and (20), it is not difficult to find that mutual in-
formation is related to entropies by the following equations:

(21)

where and are the entropies of and
is their joint entropy; and and are the condi-
tional entropies of given and of given , respectively.
The joint and conditional entropies can be written as

(22)

(23)

Treating the spectral images and the corresponding reference
map as random variables, MI can be used to estimate the de-
pendency or relevance between them. In detail, we can treat
each spectral band’s pixels as samples of the random variable

with possible continuous reflectance values , and its
class category as variable with discrete vegetation labels

. Thus, MI between and can be evaluated
as follows:

Fig. 2. Comparison of the spectral weights obtained by the two schemes:
(a) the weights found by the gradient-descent tuning; (b) the weights decided
by mutual information; (c) the derivatives of kwk in one of the iterations.

Since the reference map implicitly defines the required classi-
fication result, MI measures the relevance of each spectral band
to the classification objective. Using (21), the mutual informa-
tion between each of the 220 spectral images (or bands) and
the corresponding reference map accompanying the 92AV3C
dataset was calculated as shown in Fig. 2(b).

By comparing this MI curve to the examples of AVIRIS im-
ages, we may verify the agreement between the relevance level
and the MI values. It has been found [21] that the bands most
similar to the reference map (i.e., with higher relevance) are
those having higher values of MI. The MI curve also reveals
clearly the effect of atmospheric water absorption, giving the
lowest MI values in bands 104–108 and 150–163 at precisely
those frequencies where absorption occurs [21]. In this partic-
ular example, it is seen that the MI of a spectral band with
respect to the reference map is consistent with visual impres-
sions regarding the relevance or relative importance of each
spectral band to classification. Moreover, it can be seen that the
overall shapes of the MI curve and the Bhattacharyya distance
[Fig. 1(d)] are very similar, indicating an agreement of MI with
another commonly used (but more computationally expensive)
separability measure.

Fig. 2 further compares the spectral weights obtained by the
above two schemes; Fig. 2(a) shows the weights calculated
by the gradient-descent tuning, and Fig. 2(b) is the result
based on mutual information estimation. It is seen that the
two sets of weights have very similar overall shape across
different bands, suggesting the comparable effect of the two
schemes in band-utility evaluation. Moreover, it is found that
the derivatives of are inversely proportional to the MIs,
in general. Fig. 2(c) shows an example of a group of derivatives
obtained in one of the iterations of (10). Recall our previous
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discussion in (11)–(18): In the gradient descent algorithm, the
weights are usually set up as the same coefficients over the
whole bands in the initialization step, and will be gradually
updated by subtracting the derivatives. Given the relation
between the derivatives and the mutual information (i.e., the
inverse proportion), the weights will finally converge to a result
similar to the mutual information. Thus, Fig. 2 suggests that
MI can effectively encode the relevance of spectral bands to
classification and be employed as a spectral weight.

VI. EXPERIMENTS

Following the two weighting schemes discussed in Sec-
tion V, SVMs based on SW kernels are implemented to test the
proposed method. The performance of the proposed method is
compared with a standard SVM with no spectral weighting of
the kernel as adopted in [12], [15], [17], etc., on the AVIRIS
92AV3C dataset.

In the AVIRIS 92AV3C dataset, the seven most numerous
classes are chosen as the testing objects, accounting for 80.64%
of all 16-class pixels. The class labels from the reference map
accompanying the dataset were utilized for supervised training.
Among the labeled pixels, 20% of them from each class were
randomly chosen as the training set, with the remaining 80%
forming the test set on which performance was assessed (see
Table I). This was repeated five times to allow an estimate of the
error in this sampling process. The performance measurement
adopted assessed the classification error of the proposed method
on a held-out set.

In the experiments, the seven classes are named as to ,
respectively (see Table I). Since SVMs are inherently binary
(two-class) classifiers, it is more straightforward to evaluate
performance based on each class pair. Thus, clas-
sifiers were constructed based on each class-pair, named as

, respectively. Moreover, it is more
effective to learn the weights by using the two-class SVMs
since the different class-pairs may have different spectral char-
acteristics. So, in this case, the pixels from other classes will
not affect the classification associated with the classifier that
was not trained from those examples. The kernel function used
here is the Gaussian RBF [see (5)]. The kernel parameter and
the penalty parameter were tested between and by
a validation procedure using the training data and 0.4 and 60,
respectively, were chosen as suitable values.

Fig. 3 shows the variation of classification accuracy as
a function of iteration step in the weight-learning scheme
discussed in Section V-A. It is seen that with each round of
weight updating, the classification error changes accordingly,
because of the gradual optimization of the generalization error
bound. Using customized kernels, the classifier tuning or data
preprocessing (e.g., scaling) required for high-dimension-
ality data is incorporated into the SVM learning procedure.
Thus, by this embedding approach, the weights can not only
de-emphasize features, but also work as the part of the SVMs’
model parameters. By tuning these model parameters to max-
imize the estimate of the generalization error, it becomes
possible to achieve a better performance. The results from
four 92AV3C-based binary trials in Fig. 3 show the reduced
classification errors, providing empirical evidence to support

Fig. 3. Classification accuracy as a function of iteration number in the gra-
dient descent learning; for classifiers (a) C (Corn-notill versus Corn-min),
(b)C (Corn-notill versus Grass/Trees), (c) C (Corn-notill versus Soy-
beans-notill), and (d) C (Corn-notill versus Soybeans-min), respectively.

the above argument. In practical applications, the accuracy
verification illustrated in Fig. 3 is not necessary, and lower
classification errors can be obtained by adjusting the threshold
in the gradient descent algorithm.

Results using the two weighting schemes are shown in
Table II. From Table II, it can be seen that the methods based
on SW kernels outperformed the unweighted method in the
majority of the 21 classifiers. The improvement is especially
significant when the two classes are difficult to differentiate
(i.e., their classification errors are relatively higher). For ex-
ample, the vegetation classes Corn-notill , Corn-min ,
Soybeans-notill , Soybeans-min , and Soybean-clean

are the most similar classes in the scene, and their classifi-
cation errors are usually larger than 10% (see the numbers listed
in the rows , and of Table II). From
the point of view of “spectral signature,” it can be expected
that these confusable vegetation classes will show considerable
similarity in their spectral reflectances at a global level. Cor-
respondingly, the spectral difference between them will only
appear in some particular wavelengths, and the bands therein
will dominate the overall discriminatory capability. Apparently,
in this case the effect caused by the nonuniform information
distribution is quite substantial and the SW kernels, tailor-made
for this scenario, become successful.

Table II also shows that there are several exceptions, e.g.,
the classifiers , and , where the weighting
schemes did not successfully reduce the classification errors.
Almost all of these exceptions belong to the scenario where
two classes are relatively easier to separate. For example,

, and correspond to classification of the
vegetation pairs Corn-notill versus Grass/Trees, Soybean-clean
versus Grass/Trees, and Grass/Trees versus Woods, respec-
tively. Compared to the similar crops mentioned previously,
these vegetation classes are very distinct. Therefore, it can be
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TABLE II
COMPARISON OF CLASSIFICATION ERROR (%) � SAMPLING ERROR (STD); RBF KERNEL, � = 0:4; C = 60

expected that significant spectral differences will appear across
a wide range of the spectrum, overshadowing the necessity to
emphasize a particular subset of bands as the SW kernels are
designed to do. As a result, the proposed scheme may lose its
efficacy, but also carries the risk of over-fitting incurred by
introducing extra parameters. Although no improvement has
been made in these small number of exceptions, the overall
effectiveness of this method in the majority of classes is still
encouraging.

Comparing the two weighting schemes, the gradient-based
approach appears to be slightly better than that based on mu-
tual information. This is understandable because the former uses
different sets of weights for different classifiers, which are indi-
vidually optimized in each SVM’s learning procedure. On the
contrary, the latter scheme uses a single set of weights, i.e., the
MI values, for all 21 classifiers. However, the MI-based scheme
is still a useful alternative as the calculation of MI is much faster
than using gradient descent.

VII. CONCLUSION

In this paper, we have proposed an extension to the
SVM-based method for hyperspectral image classification
using spectrally weighted (SW) kernels. This extension is
motivated by the observation that the useful information for
classification is not evenly distributed among each spectral
band. Within the SVM framework, SW kernels can be conve-
niently constructed by highlighting the informative bands in the
kernel mapping. We have shown that it is possible to improve
the upper bound of classification error through learning the
spectral weights in the customized kernels. Further research
revealed that the mutual information between a spectral band
and the ground truth can also be used to design spectral
weights, resulting in a significant saving of computational cost.
Experimental results showed that, at least for the limited binary
trials based on the AVIRIS 92AV3C dataset, the classification

performance can be improved to some extent by a spectral
customization of the kernels using either a gradient-descent
tuning or a mutual information criterion. Further work could
explore the possibility of avoiding the over-fitting incurred by
the multiple adjustable parameters and testing the algorithms
on other labeled multiclass datasets.
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