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Segmentation by Fusion of Histogram-Based
K-Means Clusters in Different Color Spaces

Max Mignotte

Abstract—This paper presents a new, simple, and efficient seg-
mentation approach, based on a fusion procedure which aims at
combining several segmentation maps associated to simpler par-
tition models in order to finally get a more reliable and accurate
segmentation result. The different label fields to be fused in our
application are given by the same and simple ( -means based)
clustering technique on an input image expressed in different color
spaces. Our fusion strategy aims at combining these segmentation
maps with a final clustering procedure using as input features, the
local histogram of the class labels, previously estimated and asso-
ciated to each site and for all these initial partitions. This fusion
framework remains simple to implement, fast, general enough to
be applied to various computer vision applications (e.g., motion de-
tection and segmentation), and has been successfully applied on
the Berkeley image database. The experiments herein reported in
this paper illustrate the potential of this approach compared to
the state-of-the-art segmentation methods recently proposed in the
literature.

Index Terms—Berkeley image database, color spaces, fusion of
segmentations, -means clustering, textured image segmentation.

I. INTRODUCTION

IMAGE segmentation is a classic inverse problem which con-
sists of achieving a compact region-based description of the

image scene by decomposing it into meaningful or spatially co-
herent regions sharing similar attributes. This low-level vision
task is often the preliminary (and also crucial) step in many
video and computer vision applications, such as object localiza-
tion or recognition, data compression, tracking, image retrieval,
or understanding.

Because of its simplicity and efficiency, clustering ap-
proaches were one of the first techniques used for the
segmentation of (textured) natural images [1]. After the selec-
tion and the extraction of the image features [usually based on
color and/or texture and computed on (possibly) overlapping
small windows centered around the pixel to be classified],
the feature samples, handled as vectors, are grouped together
in compact but well-separated clusters corresponding to each
class of the image. The set of connected pixels belonging to
each estimated class thus defined the different regions of the
scene. The method known as -means (or Lloyd’s algorithm)
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[2] (and its fuzzy version called fuzzy -means) are some of
the most commonly used techniques in the clustering-based
segmentation field, and more generally, “by far, the most
popular clustering algorithm used in industrial applications
and machine learning” [3].

Many other methods have been proposed and studied in the
last decades to solve the textured image segmentation problem.
Contrary to clustering algorithms, spatial-based segmentation
methods exploit the connectivity information between neigh-
boring pixels and have led to Markov random field (MRF)-based
statistical models [4], mean-shift-based techniques [5], graph-
based [6], [7] or finally region-based split and merge procedures,
sometimes directly expressed by a global energy function to be
optimized [8].

Years of research in segmentation have demonstrated that sig-
nificant improvements on the final segmentation results may
be achieved by using notably more sophisticated feature se-
lection procedures, more elaborate clustering techniques (in-
volving sometimes a mixture of different or non Gaussian dis-
tributions for the multidimensional texture features [9], [10]),
taking into account prior distribution on the labels, region pro-
cesses, or the number of classes [8], [11], [12], finally, involving
(in the case of energy-based segmentation models) more costly
optimization techniques.

The segmentation approach, proposed in this paper, is con-
ceptually different and explores a new strategy; in fact, instead
of considering an elaborate and better designed segmentation
model of textured natural image, our technique rather explores
the possible alternative of fusing (i.e., efficiently combining)
several segmentation maps associated to simpler segmentation
models in order to get a final reliable and accurate segmenta-
tion result. More precisely, this work proposes a fusion frame-
work which aims at fusing several -means clustering results
(herein using as simple cues the values of the requantized color
histogram estimated around the pixel to be classified) applied on
an input image expressed by different color spaces. These dif-
ferent label fields are fused together by a simple -means clus-
tering techniques using as input features, the local histogram of
the class labels, previously estimated and associated to each ini-
tial clustering result.

This paper demonstrates that the proposed fusion method,
while being simple and fast performs competitively and often
better (in terms of visual evaluations and quantitative perfor-
mance measures) than the best existing state-of-the-art recent
segmentation methods on the Berkeley natural image database
(containing also, for quantitative evaluations, ground truth seg-
mentations obtained from human subjects).
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II. INITIAL SEGMENTATIONS TO BE FUSED

The initial segmentation maps which will then be fused to-
gether by our fusion framework (see Section III) are simply
given, in our application, by a -means [2] clustering tech-
nique, applied on an input image expressed by different color
spaces, and using as simple cues (i.e., as input multidimen-
sional feature descriptor) the set of values of the re-quantized
color histogram (with equidistant binning) estimated around the
pixel to be classified. In our application, this local histogram is
equally re-quantized (for each of the three color channels) in a

bins descriptor, computed on an over-
lapping squared fixed-size neighborhood centered
around the pixel to be classified. This estimation can be quickly
computed by using a more coarsely requantized color space and
then computing the bin index that represents each re-quantized
color (see Fig. 1 and Algorithm 1).

Mathematically, let denote the
bin index associated with the color vector at pixel
location (lying on a pixel grid) and be the set of
pixel locations within the squared neighborhood region
(of fixed-size ) centered at pixel location (in
which local color information will be gathered). An estimate

of 125 bins descriptor, charac-
terizing the color distribution for each pixel to be classified, is
given by the following standard bin counting procedure:

(1)

where is the Kronecker delta function and is a
normalization constant ensuring (see Fig. 1
and Algorithm 1).

Algorithm I. Estimation, for each pixel , of the bins
descriptor.

Estimation of the bins descriptor.

Set of pixel locations within the neighborhood
region centered at .

Bins descriptor: Array of floats
.

Integer part of.

For each pixel with color value , ,

do

• .

• .

In this simpler model, a texton (i.e., the repetitive character
or element of a textured image, also called a texture primitive)
is herein characterized by a mixture of colors or more precisely
by the values of the re-quantized (local) color histogram. This
model is simple to compute, allows significant data reduction
while being robust to noise and local image transformations and

Fig. 1. Estimation, for each pixel x, of theN = q bins descriptor (q = 5) in
the RGB color space. The RGB color cube is first divided intoN = q equal-
sized smaller boxes (or bins). Each R ,G , B color value associated to each
pixel contained in a (squared) neighborhood region (of sizeN �N ) centered
at x, increments (+1) a particular bin. The set of bin values represents the (non-
normalized) bin descriptor. We then divide all values of thisN bins descriptor
by (N �N ) in order to ensure that the sum of these values integrates to one.

has already demonstrated all its efficiency for tracking applica-
tions [13].

Finally, these (125-bin) descriptors are grouped together
into different clusters (corresponding to each class of the
image) by the classical -means algorithm [2] with the clas-
sical Euclidean distance. This simple segmentation strategy
of the input image into classes is repeated for different
color spaces which can be viewed as different image channels
provided by various sensors or captors (or as a multichannel
filtering where the channels are represented by the different
color spaces). In our application, we use segmenta-
tions provided by the color spaces, namely the

color spaces [1],
[14]–[16]. Of course, these initial segmentations to be fused
can result of the same initial and simple model used on an input
image filtered by another filter bank (e.g., a bank of Gabor
filters [11], [17] or any other 2-D decomposition of the frequen-
tial space) or can also be provided by different segmentation
models or different segmentation results provided by different
seeds of the same stochastic segmentation model.

Each color space has an interesting property, which can effi-
ciently be taken into account in order to make more reliable the
final fusion procedure. For example, RGB is an additive color
system based on tri-chromatic theory and nonlinear with visual
perception. This space color seems to be the optimal one for
tracking applications [18]. The HSV is interesting in order to
decouple chromatic information from shading effect [13]. The
YIQ color channels have the property to code the luminance
and chrominance information which are useful in compression
applications (both digital and analogue). Besides, this system
is intended to take advantage of human color characteristics.
XYZ has the advantage of being more psycho-visually linear,
although they are nonlinear in term of linear component color
mixing. The LAB color system approximates human vision, and
its component closely matches human perception of lightness
[1]. The LUV components provide an Euclidean color space
yielding a perceptually uniform spacing of color approximating
a Riemannian space [17]. Each of these properties will be effi-
ciently combined by our fusion technique.



782 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 5, MAY 2008

Fig. 2. Examples of fusion results (FCR ). From top to bottom and left to right: (top left) input natural image from the Berkeley image
database. Six segmentation results (intoK = 6 classes) associated to clustering model described in Section II on the top left input image expressed in the RGB,
HSV, YIQ, XYZ, LAB, and LUV color spaces and final segmentation map (intoK = 6 classes) resulting of the fusion of these six clusterings (bottom right) (see
Table I for an objective and quantitative comparison).

III. FUSION OF SEGMENTATION MAPS

The key idea of the proposed fusion procedure simply con-
sists of considering, for each site (or pixel to be classified), the
local histogram of the class (or texton) labels of each segmenta-
tion to be fused, computed on a squared fixed-size neigh-
borhood centered around the pixel, as input feature vector of a
final clustering procedure. For a fusion of segmentation with

classes into a segmentation with classes, the preliminary
feature extraction step of this fusion procedure thus yields to
( -bin) histograms which are then gathered together in order
to form, a -dimensional feature vector or a final

-bin histogram which is then normalized to sum to one, so
that it is also a probability distribution function. The proposed

fusion procedure is then herein simply considered as a problem
of clustering local histograms of (preliminary estimated) class
labels computed around and associated to each site. To this end,
we use, once again, a -means clustering procedure exploiting,
for this fusion step, an histogram-based similarity measure de-
rived from the Bhattacharya similarity coefficient. Given a nor-
malized histogram (at pixel lo-
cation ) and a reference histogram (repre-
senting one of the cluster centers of each class of a -means
procedure), the Bhattacharya distance between these two his-
tograms is defined as

(2)
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and a -means algorithm based on this distance converges in
all tested examples.

The preestimated label fields to be fused (see Section II),
along with the fusion procedure can be viewed (and qualitatively
explained) as a two-step hierarchical segmentation procedure in
which, first, a texton segmentation map (in each color space)
is estimated and, second, a final clustering, taking into account
this mixture of textons (expressed in the set of color space ),
is then used for a final clustering. We recall that a texton, in our
framework, is defined by a nonparametric mixture of colors (see
Section II).

Consequently, in this final clustering (the fusion procedure),
two sites for which the local-class-label histogram (i.e., the mix-
ture of textons in the different color spaces given by the
bins histogram) are not too far away from each other will be
in the same class in the resulting fused segmentation. Inversely,
two sites associated to different local-class-label histograms will
likely belong to different classes in the final segmentation.

Fig. 2 shows an example of the clustering segmentation model
presented in Section II (into classes) of an input image
expressed in the RGB, HSV, YIQ, XYZ, LAB, and LUV color
spaces and the final segmentation map (into classes)
which results of the fusion of these clusterings. We can no-
tice that none of them can be considered as reliable except the
final segmentation result (at bottom right) which visually iden-
tify quite faithfully the different objects of the scene.

A final merging step is necessary and is used to avoid over-
segmentation for some images. It consists of fusing each region
(i.e., set of connected pixels belonging to the same class) of
the resulting segmentation map with one of its neighboring re-
gion if the distance is below a given threshold
(or if its size is below 50 pixels with the closest region in the

distance sense)

(3)

In (3), the first summation is done on the six used color spaces,
and designates the normalized nonparametric histogram
of the set of pixels belonging to the region to be merged and

is the normalized histogram, computed on a squared
fixed-size windows (at pixel location and totally in-
cluded in the region). For this merging procedure, the two his-
tograms are equally re-quantized (for each of the three color
channels) with 4 4 4 bins (see Fig. 3 where this merging
strategy is, for this example, intensively used).

IV. EXPERIMENTAL RESULTS

A. Set Up

In all the experiments, we have considered our fusion
methods on initial segmentations obtained with the following
parameters: the size of the squared window, used to compute
the local histogram for the initial segmentations or the fusion
procedure is set to . The number of bins for each
local re-quantized histogram is set to . We
use segmentations provided by the following color

Fig. 3. Example of final merging step using the Bhattacharya distance on dif-
ferent color spaces as merging criterion on a fused segmented image of the
Berkeley database.

spaces RGB, HSV, YIQ, XYZ, LAB, and LUV. Several quan-
titative performance measures will be given for several values
(comprised between 6 and 13) of and , respectively,
the number of classes of the segmentation to be fused and the
resulting number of classes of the final fused segmentation
map. The optimal value of seems to be comprised between
0.10 and 0.15.

We have used the Matlab source code, proposed by A. Y.
Yang in order to estimate the quantitative performance measures
(i.e., the four image segmentation indices) presented in Sec-
tion IV-B. This code is kindly available on-line at address http://
www.eecs.berkeley.edu/~yang/software/ lossy_segmentation/.

B. Comparison With State-of-the-Art Methods

We have replicated the scenario used in the evaluation of
state-of-the-art segmentation methods described in [23] and
[25] . In these experiments, we have to test our segmentation al-
gorithm on the Berkeley segmentation database [21] consisting
of 300 color images of size 481 321. For each color image,
a set of benchmark segmentation results, provided by human
observers (between 4 and 7), is available and will be used to
quantify the reliability of the proposed segmentation algorithm.
As proposed in [23]–[25], we have compared our segmentation
algorithm (called FCR for fusion of clustering results) against
four unsupervised algorithms, available publicly. For each
of these algorithms, their internal parameters are set to their
optimal value (see [23]) and/or corresponds to the internal
values suggested by the authors. These algorithms are namely
the mean-shift [5] (with , ), Ncuts [6] (with a
number of segments , agreeing with the average number
of regions found in the segmentation maps given by the human
observers [25]), and FH [22] (with a smoothing parameter

, a threshold value and a minimal region size
equals to 200 pixels), and, finally, the CTM algorithm proposed
in [23] and [24] (with and ).
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As in [23] and [25], all color images are normalized to have
the longest side equals to 320 pixels (in this paper, this operation
was done by the Linux command convert which is a member of
the ImageMagick suite of tools). The comparison is based on the
following performance measures, namely a probabilistic mea-
sure called PRI (higher probability is better) and three metrics
VoI, GCE, and BDE (lower distance is better). The qualitative
meaning of these performance measures are recalled as follows.

1) The Rand index [19] counts the fraction of pairs of pixels
whose labellings are consistent between the computed seg-
mentation and the ground truth. This quantitative measure
is easily extended to the probabilistic Rand index (PRI)
[26] by averaging the result across all human segmenta-
tions of a given image.

2) Contrary to the PRI, based on pairwise relationships, the
variation of information (VoI) metric [20] is based on rela-
tionship between a point and its cluster. It uses mutual in-
formation metric and entropy to approximate the distance
between two clusterings across the lattice of possible clus-
terings. More precisely, it measures the amount of informa-
tion that is lost or gained in changing from one clustering
to another (and, thus, can be viewed as representing the
amount of randomness in one segmentation which cannot
be explained by the other).

3) The global consistency measure (GCE) [21] measures the
extent to which one segmentation map can be viewed as
a refinement of another segmentation. For a perfect match
(in this metric sense), every region in one of the segmenta-
tions must be identical to, or a refinement (i.e., a subset) of,
a region in the other segmentation. Segmentation which are
related in this manner are considered to be consistent, since
they could represent the same natural image segmented
at different levels of detail (as the segmented images pro-
duced by several human observers for which a finer level
of detail will merge in such a way that they yield the larger
regions proposed by a different observer at a coarser level).

4) The boundary displacement error (BDE) [22] measures the
average displacement error of one boundary pixels and the
closest boundary pixels in the other segmentation.

As noticed in [23], PRI seems to be more highly correlated
with human hand segmentations. Let us also mention that a in-
herent problem with the GCE measure is that it does not penalize
oversegmentation at all (the highest score is given by assigning
each pixel to an individual region). Some of these interesting
performance measures thus have degenerate cases (i.e., unreal-
istic bad segmentations give abnormally high score), these com-
plementary measures have thus to be considered all together
in order to quantify the performance of a given segmentation
method.

Table I shows the obtained results for the images presented
in Fig. 2. Table II shows the obtained results for different values
of and and . Fig. 4 shows the distribution of the dif-
ferent performance measure over the 300 images of the Berkeley
image database for , , . We can no-
tice that the discussed fusion strategy allows to give very com-
petitive results among these four different quantitative perfor-
mance measures with a relative low variance over the set of
images of the Berkeley image database. Fig. 6 displays some

TABLE I
PERFORMANCE MEASURES FOR, RESPECTIVELY, THE CLUSTERING RESULT

EXPRESSED IN EACH COLOR SPACE AND THE FUSION RESULT GIVEN BY OUR

ALGORITHM (HIGHER IS BETTER FOR PRI AND LOWER IS BETTER FOR VoI,
GCE, AND BDE) ON THE TWO IMAGES PRESENTED IN FIG. 2

TABLE II
AVERAGE PERFORMANCE OF OUR ALGORITHM FOR SEVERAL VALUES OF ITS

INTERNAL PARAMETERS (PARAMETER VECTOR [K jK j�] INDICATED FOR

EACH EXPERIMENT) AND FOR DIFFERENT PERFORMANCE MEASURES (HIGHER

IS BETTER FOR PRI AND LOWER IS BETTER FOR VOI, GCE AND BDE) ON

THE BERKELEY IMAGE DATABASE (http://www.eecs.berkeley.edu/Research/
Projects/CS/vision/grouping/segbench/)

examples of segmentations obtained by our algorithm. The re-
sults for the entire database are available online at http://www.
iro.umontreal.ca/~mignotte/ResearchMaterial. In short, the pro-
posed algorithm outperforms for several different internal pa-
rameters, all the well-known segmentation algorithms presented
in Table II in terms of PRI and BDE indices. In term of the VoI
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Fig. 4. Distribution of the difference performance measures, respectively from
top to bottom; PRI, VoI, GCE, BDE over the 300 images of the Berkeley data-
base for FCR .

TABLE III
INFLUENCE OF THE DISTANCE CHOICE USED IN THE FINAL FUSION PROCEDURE

(AVERAGE PERFORMANCE ON THE BERKELEY IMAGE DATABASE)

indices, only the CTM algorithm performs equivalently or better
and for the GCE measure, our algorithm gives, on average, sim-
ilar results than the others and outperforms them all for a set
of parameters (in which is high, leading to a classical over
segmentation).

C. Sensitivity to Parameters

allows to refine the final segmentation map and allows, to
a certain extent, to avoid some over-segmented partition maps
results (especially when is high). With (i.e., without
the final fusion step and the other parameters being set to

and ), we obtain (to be compared to
when ; see Table II).

In order now to quantify the influence of the distance choice,
used in the final clustering used as fusion procedure, we have
compared the performance measures obtained with our method
( , and ) using a Bhattacharya distance
and several other metrics [27] (see Table III). We can notice that
several distances are as efficient as the Bhattacharya distance,
for example, the Manhattan distance ( norm) or the histogram
intersection-based distance. For the same parameters given in
Table II , these two metrics allow to obtain similar per-
formance measures comparatively to the Bhattacharya distance.

TABLE IV
INFLUENCE OF THE SIZE OF THE WINDOW N USED TO ESTIMATE THE LOCAL

HISTOGRAMS (AVERAGE PERFORMANCE ON THE BERKELEY IMAGE DATABASE)

Fig. 5. Evolution of the PRI, VoI, GCE, and BDE measures as a function of the
number of segmentations (N ) to be fused for the FCR
algorithm. For N = 1, i.e., without fusion, the segmentation model is the one
described in Section II with K = K = 4.

We have also quantified in Table IV the influence of the size of
the window (used to estimate the local color histogram). These
tests show that the performance measures are not too much sen-
sitive to this internal parameter.

We can also notice (see Fig. 5) that all the performance mea-
sures are all the more better than (number of segmentation
to be fused) is high. This experiment shows the validity of our
fusion procedure and also the performance measures obtained
by the simple segmentation model presented in Section II.

D. Discussion

Tests have shown that a higher value for
will induce a lower (consequently better) GCE and BDE perfor-
mance measure but also a higher (consequently less good) VoI
measure. The PRI measure is quite influenced by the value of
whose optimal value seems to be comprised between 0.10 and
0.15. The fusion method is not too much sensitive to the value of

(size of the window used to estimate the local histograms),
and, finally, the performance measures are all the more better
than (number of segmentations to be fused) is high.

The segmentation procedure takes less than one minute for an
AMD Athlon 64 Processor 3500+, 2.2 GHz, 4435.67 bogomips
and running on Linux. The source code (in C++ language) of
our algorithm is available at the following address http://www.
iro.umontreal.ca/~mignotte/ResearchMaterial.
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Fig. 6. Example of segmentations obtained by our algorithm FCR on 24 images of the Berkeley image database (see also Table II and
Fig. 4 for quantitative performance measures and http://www.iro.umontreal.ca/~mignotte/ResearchMaterial for the segmentation results on the entire database).

V. CONCLUSION

In this paper, we have presented a new segmentation strategy
based on a fusion procedure whose goal is to combine several
segmentation maps in order to finally get a more reliable and ac-
curate segmentation result. The initial segmentations to be fused
can be the output result of the same initial and simple model
used on an input image filtered by a given filter bank, or it can
also be provided by different segmentation models or different
segmentation results provided by different seeds (or different

variation of parameters) of the same stochastic segmentation
model. This fusion framework remains simple, fast, easily par-
allelizable, general enough to be applied to various computer
vision applications, and performs competitively among the re-
cently reported state-of-the-art segmentation methods.
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