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Robust Face Tracking via Collaboration
of Generic and Specific Models
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Abstract—Significant appearance changes of objects under
different orientations could cause loss of tracking, ‘“drifting.”
In this paper, we present a collaborative tracking framework to
robustly track faces under large pose and expression changes
and to learn their appearance models online. The collaborative
tracking framework probabilistically combines measurements
from an offline-trained generic face model with measurements
from online-learned specific face appearance models in a dnamic
Bayesian nework. In this framework, generic face models provide
the knowledge of the whole face class, while specific face models
provide information on individual faces being tracked. Their com-
bination, therefore, provides robust measurements for multiview
face tracking. We introduce a mixture of probabilistic principal
component analysis (MPPCA) model to represent the appearance
of a specific face under multiple views, and we also present an
online EM algorithm to incrementally update the MPPCA model
using tracking results. Experimental results demonstrate that the
collaborative tracking and online learning methods can handle
large pose changes and are robust to distractions from the back-
ground.

Index Terms—Collaborative tracking, generic face model, mix-
ture of probabilistic principal component analysis (MPPCA), mul-
tiview face tracking, online learning.

I. INTRODUCTION

ULTIVIEW face tracking aims to continuously detect
faces that could undergo pose changes, based on their
temporal coherence in videos. In real-world environments, the
face undergoes view and expression changes, in additional to
position and scale changes. Thus, a problem with multiview face
tracking is that an imperfect measurement model could fail the
tracking. Under a state-space model, a robust multiview face
model is desirable to handle face appearance variations under
different poses. However, such a model generally is not avail-
able prior to tracking, because there is no prior information
about the specific face to be tracked. Without a robust multi-
view face model, the background distraction will cause inaccu-
rate measurements, and the error accumulated over frames will
eventually lead to the loss of tracking, i.e., “drifting.”
In this paper, a probabilistic framework is developed to
robustly track multiview faces by combining multiple mea-
surements, and to learn face appearance models online. Since
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two categories of face models—specific and generic face
models—will be intensively used in the later discussion, they
are explained before presenting details of the algorithm. A spe-
cific face model is an appearance model of the individual face
being tracked. For example, in a template-matching tracking
method, a face template is a simple specific model to represent
an individual face. A robust multiview appearance model of a
specific face is desirable for multiview face tracking to handle
face appearance variations. To construct such a model offline
before tracking needs human intervention, which is not realistic
in some applications, so our work focuses on learning specific
face appearance models online. Another type of face model,
generic face model, represents the whole face class including
many persons’ faces, not just a single person’s face. The generic
face model can be trained offline with faces of different people,
and non-faces, as well. Recently developed probabilistic face
detectors, such as in [1] and [2], can be directly applied as a
generic face model. We believe that such a generic face model
contains rich information of the face class and can be helpful to
specific multiview face tracking and learning.

This paper presents a “collaborative tracking” algorithm,
which probabilistically combines measurements from an of-
fline trained generic face model with measurements from
specific face models for robust multiview face tracking. In the
collaborative tracking, the offline-trained generic face model
collaborates with a specific multiview face model, which will
be updated online using tracking results. For the online learning
of specific face model, a mixture of probabilistic principal
component analysis (MPPCA) model is used to represent the
specific multiview face appearance. Furthermore, an online EM
learning method is developed to automatically update specific
face models using probabilistic tracking results.

Compared to the previous work [3]-[6], the novelty and
contribution of our presented methods are twofold. First, we
present a probabilistic framework to combine two types of
measurements that are acquired from an offline learned generic
face model and from an on-line learned specific face model,
whereas currently existing methods mainly combine measure-
ments from the online observations. Since the generic model
used in our method contains rich information of the whole
face class, it can improve the tracking robustness by discrim-
inating faces of different poses and eliminating distractions
from background. Second, we present an online EM algorithm,
which utilizes probabilistic tracking results, to adapt the face
appearance model to the specific faces being tracked. The two
aspects are naturally integrated in a principled probabilistic
framework, i.e., the proposed “collaborative tracking.”

The rest of this paper is organized as follows. Related work
is reviewed in Section II. Section III presents our collaborative
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multiview face tracking framework. Section IV introduces an
online EM algorithm for learning specific appearance models
from tracking results. Experimental results are shown in Sec-
tion V. Section VI concludes this paper.

II. RELATED WORK

In this section, some work related to multiview face tracing
is reviewed. Most visual tracking algorithms can be unified
in a “state-space” model [7], [8], on which our method is
solidly based. In this model, the visual tracking is to infer
unknown states of objects from visual observations. There
are three fundamental elements in the state-space model: the
“state,” the “measurement model,” and the “inference strategy.”
The “state” in the state-space model describes the status of
an object. The states can be position, scale, shape, kinetic
motion or any other properties concerning an object [7]-[9].
The state undergoes dynamic change, which is described by a
“transition model” (or named “system model”). Some tracking
methods, such as Kalman filtering [10], generally assume linear
transition of states with Gaussian noise, while sampling-based
methods can handle nonlinear dynamic systems [11], [12].
In tracking, the measurement model relates unknown states
to visible observations or features, such as image intensity,
color histogram, object shape and subspace representation [7]
and [13]-[15]. Given the measurement model and the system
model, states are estimated from observations, based on some
inference strategies. One of the strategies, temporal Bayesian
estimation, provides a powerful formalization of inference with
sequential data. Monte Carlo sampling methods realize the
Bayesian estimation by sampling from a density function. An
example of sampling based visual tracking methods is “particle
filtering” [12] (called CONDENSATION in [8]).

A. Robust Measurements in Visual Tracking

Among all the elements in the “state-space” model, the mea-
surement model has the largest impact on tracking performance
as it directly relates states to observation. It is also a key to
solve the “drifting” problem. Much work has already been
done to obtain measurement models that can handle object
appearance changes, and are robust to background distraction.
Roughly speaking, current efforts fall into three directions:
building measurement models from exemplars, fusing multiple
measurements, and online updating appearance models.

A robust appearance model can be constructed from
offline-collected exemplars. Toyama et al. present an ex-
emplar-based probabilistic tracking algorithm in [16]. The
measurement model of an object is represented by a parametric
mixture model whose centers and weights are learned from
exemplars. In the Eigentracking by Black and Jepson [14],
objects are represented by their projections in the subspace,
which is learned offline from training samples. Under the
assumption of “subspace consistency,” an object is tracked
by minimizing matching errors in eigenspace. Although such
methods can handle small appearance changes, the multiview
face appearance usually has a large variation, which are diffi-
cult to be effectively represented in a single PCA subspace or
parametric models.
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The fusion of multiple measurements is claimed to be more
robust to “drifting” than a single measurement [3], [S], [17].
Leichter et al. combines multiple tracking algorithms with a
probabilistic framework [3], in which tracking algorithms using
different features and the same state space are directly com-
bined together by a probabilistic factorization. In Wu’s work
[17], color and shape cues act as two modalities in a tracking
algorithm, and provide priors for each other in sequential im-
portance sampling (SIS). Such “co-inference” reduces clutters
caused by each modality; therefore, it improves tracking perfor-
mance. The above methods only use measurements from spe-
cific object models, and have not utilized offline trained generic
models.

Some other methods, such as [4], [6],[13], [15], and [18], up-
date measurement models during tracking so that tracking algo-
rithms quickly adapt to both object and environmental changes.
To overcome the limitations of static templates, a template up-
dating strategy with drift correction has been proposed in [13].
This method updates a template only when current tracking re-
sult is consistent with an initial template. Jepson et al. use a
mixture of Gaussian to model object appearance, and update
model parameters online [15]. The mixture model has three
components for long-term stable appearance, 2-frame change
and outliers, respectively. Some methods have been developed
to update the appearance subspace online in order to represent
tracking objects [4], [6], [18]. In [4] and [18], algorithms are
presented to incrementally update subspace online. The method
used by Lee ef al. can incrementally update both the bases and
means of subspace [6]. All of the above methods update the
specific models without using generic models; however, online
learned object models are usually susceptible to tracking errors,
and could cause the tracker to drift over time.

B. Multiview Face Modeling in Tracking

A characteristic of multiview face tracking is that the face
undergos view changes as well as position and scale changes.
Since it is difficult to handle all the views with a single face
model, multiview face tracking usually needs multiview face
models and the corresponding pose state in the “state-space”
model. Sherrah et al. track the 3-D pose and position simulta-
neously by modeling the combination of the pose and position
states using the CONDENSATION algorithm [19]. The method
does not consider the scale change due to the limitation of state
dimension. To simplify the state-space model, a switch mecha-
nism has been applied to track multiview faces with multiple
view templates [20]. In this method, the switching algorithm
selects the best template out of all view templates from cur-
rent tracking results for tracking at next frame. However, this
method needs to build multiview face templates for each view
before tracking, which is not realistic in real world applications.

There are also efforts to utilize generic face detector in face
tracking. A simple way is to use face detection results as ini-
tialization for tracking [21]. More elegantly, the output of face
detector can be integrated as one of measurements in tracking
[5], [22]. In [22], probabilistic outputs from two face detectors,
one for frontal faces and another one for profile faces, are used
as measurements in particle filtering. Their method only uses
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generic face model. Wang et al. factorize the posterior proba-
bility of face tracking into two parts corresponding to generic
and specific face tracking, respectively, and further assume that
generic face tracking and specific face tracking are independent,
so that the two posterior probabilities can be multiplied for mul-
tiview face tracking [5]. However, the independence assumption
is not always valid. In their method, a specific face model is used
for all the views and is simply updated using the average of pre-
vious tracking results.

Lee et al. present an online learning algorithm to update ap-
pearance manifolds for face tracking and recognition [6]. In
their method, each pose of a face is assumed to be a single
Gaussian distribution in a subspace. To track multiview face,
each specific face begins with a generic face subspace, which
is learned offline from training samples. During tracking, the
means and bases of the pose subspace are incrementally up-
dated. They synthesize faces from the tracked faces and offline
collected sample faces to update specific face models. However,
their method only uses some offline collected training samples
instead of an offline trained generic face model, and, moreover,
the generic face model learned offline ceases to exist during on-
line learning.

In this paper, we present a novel solution, which is signifi-
cantly different from [6] in the following aspects: it presents
a probabilistic framework to combine measurements from a
generic face model and measurements from a specific face
model; the generic model directly utilizes existing probabilistic
face detectors, without making any parametric assumption as
in [6] the generic face model continuously works as a modality
during tracking; the specific face models of multiple views are
simultaneously updated with the use of probabilistic tracking
results.

III. COLLABORATIVE TRACKING

This section presents a collaborative tracking algorithm. The
key of collaborative tracking is the combination of two types
of measurement models: specific and generic face models. For
this purpose, a probabilistic formalization based on dynamic
Bayesian networks (DBN) is introduced for multiview face
tracking. By factorizing the measurement model in the DBN,
we incorporate both generic and specific face models in the
tracking. We will introduce the generic face model used in the
tracking, and leave the discussion of online learning specific
face models at Section IV.

Notations are explained before presenting algorithmic details.
The observed data is denoted as Z, and Z; is the observation at
the time-step ¢ while Z;.; is the observation history from the
beginning to the time-step ¢. X is the unknown state. Since a
specific model is built for each person’s face, we use X" to rep-
resent the state of the sth person’s face.

A. Probabilistic Framework for Multiview Face Tracking

The state-space model is a commonly used formalization
for probabilistic visual tracking algorithms. The model can
be concisely represented by a DBN, which naturally handles
probabilistic inferences using sequential data [23]. In DBN,
two Markov property assumptions are made for tracking, i.e.,
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Fig. 1. Mean faces of different poses. From left to right is the pose of full left,
half left, frontal, half right, and full right.

P(X¢|X1:-1) = P(X¢|Xe_1) and P(Z,|X1.) = P(Ze|Xy).
With these assumptions, the posterior probabilities of unknown
states can be estimated from a measurement model P(Z;|X;)
and a propagated prior P(X;|Z1..—1) based on Bayes’ rule.
Thus, the scheme to track a specific face with label ¢ is shown
in (1)

P(X“th)
1 . .
= EP (Zt|XtZ)P(Xt1|Z1t—l)

< P (ZX0) D0 P (XGIXio)
Xt

t—1

X P (X{_1|Z1.1-1) ey

where C is the normalization constant. P(X}|X;_,) is the state
transition model.

The states in tracking usually include position, size, velocity
and any other properties concerning faces. For multiview face
tracking, the face pose is a very important factor. In this paper,
a face pose is defined as a set of out-of-plane rotation angles,
as shown in Fig. 1. Since faces under different poses show sig-
nificantly different appearances, multimodal face appearance
models are desirable to effectively handle appearance changes
caused by face poses. For this purpose, a pose state 3 is intro-
duced in the multiview face tracking. The states X* used for
specific multiview face tracking are factorized into two subsets,
ie, X' = {af, 3}. The state set o’ represents position, size
and/or velocity of ith face. 3 is the pose state, which takes a
discrete value. 3° = m indicates the existence of the pose m
(m = 1,...,5 in our method).

A basic assumption of our method is that the two sets of states
are independent to each other, i.e., P('|a?) = P(/3"). This
assumption is reasonable since different poses can appear at any
position and size. The total state transition is the product of two
transitions, i.e., P(X}| X} ;) = P(at|at | )P(BiB: ), sothe
dimensionality of the transition matrix is reduced. The graphical
model for the multiview tracking is shown in Fig. 2, and the
tracking scheme for this model is simplified as (2)

P(a;ﬂ”th)
x Y Pailai_y) P (818 1)
Hi

i
t—177t—1

X P (vy_y, Bi_1|Zra—1) - 2)

[e%

In the following paragraphs, the superscript ¢ in (2) is dropped
for simplicity. The superscript will be used only when it is nec-
essary to discriminate different face trackers in tracking multiple
faces.
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Fig. 2. Dynamic Bayesian network for multiview face tracking with decoupled
states v and 3.

B. Collaborative Tracking

One difficulty of directly applying (2) to multiview face
tracking is that it requires the measurement model P(Z;|at, 3)
for a specific person. Such a model is rarely available before
tracking because usually there is no prior information about
an unknown face under different poses. Some methods use the
face detected at the first frame as the face model in tracking
[21], but cannot handle later face appearance variations due
to pose changes. Another solution is to update the face model
P(Z|at, B) online using tracking results [6]. However, it
remains a difficult task to select an appropriate pose model
for updating without the help of generic face models, because
initial specific face models cannot discriminate well among
different poses. Also, the initial face models are usually rough,
so itis very likely that the tracking can fail before all the models
are learned.

Our solution to this problem is the presented “collaborative
tracking” framework, which utilizes both a generic face model
that is trained offline with collected face samples, and a spe-
cific appearance model that is updated online for the face being
tracked. The key of the collaborative tracking is the factoriza-
tion of the measurement model P(Z;|a:, B¢), as in (3), under
the previous assumption P(fS;|a;) = P(0:)

ﬂt|Zt7at>P<Zt|at)
P(5)

where P(0:|Z;, o) is the posterior probability of pose 3, given
observation Z; and state «;. In our method, the posterior is
obtained from a probabilistic multiview face classifier, i.e., a
“generic” face model; the input to the generic model is the ob-
servation Z; and the state set a;. Generally, the generic face
model normalizes the current observation into an image patch
using given position and size «;. The output of the generic face
model is the probability of the input image patch being a face at
a pose J; (see Section III-C for more details).

Another component in (3) is P(Z|a:), which is a specific
face model. In fact, P(Z;|;) and P(Z;|c, B;) have an inherent
relationship, as indicated in (4), when assuming P((:|a:) =

P(Br)

P(Zt|04t~ﬂt) = P< 3)

P(Zi|ay) = ZP(Zt|at7ﬂt)P(ﬁt) “4)
Bt

Both P(Z;|a:) and P(Z¢|, B:) are called specific appearance
models because they aim to model a specific person’s face. For
clarity, we call P(Z|a, B¢) a specific single-view face model
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for a pose O, and call P(Z;|a:) a specific multiview face model
because P(Z;|a;) integrates all the view models together; thus,
it does not discriminate different poses.

Without online learning, (3) and (4) are mathematically
equivalent; therefore, neither can solve the difficulty of mul-
tiview face tracking. To address this problem, specific face
models are incrementally updated during tracking (see Sec-
tion IV for detail). The specific face models P(Z;|x;) in (3)
and P(Zi|ay, Bt) in (4) are the models learned from previous
frames, so the collaborative tracking can be rewritten as

P™(Zi|ow) = ZP_(Zt|Oét-ﬂt)P(ﬂt) (5)
Bt

P(Zolw, ) = LBulZ0 2P (Zifaw)

P(Bt)

where P~ (Z;|ay) and P~ (Z;|ay, B¢) denote the specific face
models that are learned before frame ¢.

In summary, the collaborative multiview face tracking con-
sists of two steps. In the first step shown in (5), a specific
multiview face model P~ (Z;|a;) is constructed from specific
single-view face models P~ (Z:|ay, 3;) that are learned from
previous frames. In the second step, the constructed specific
multiview face model P~ (Z;|c;) is combined with the offline
learned generic model P((:|Z;, ), as (6), to produce the
likelihood measurement P(Z;|ay, 8;), which is then used in
(2) to compute P(a, 8t|Z71.+). Compared to directly updating
P(Z|a, Bt) without applying generic face models, the benefit
of the two-step tracking algorithm is that we can depend on
the generic face model P(f;|Z;, ;) for tracking before the
specific face models P(Z;|ay, 3;) are learned online. Unlike
the existing methods that tend to update all the face models
online, we believe it is important to keep the generic model
intact so that it will not be “polluted” by the errors in the image
data used for online updating. Hence, even after the specific
face models are learned online, the generic face models can
still be applied in its original form in collaborative tracking to
improve the tracking robustness.

In a DBN model, the prior P((3;) at time ¢ can be assumed to
be the prior probability obtained from previous time steps, i.e.,
P(B; =1) = P(B: = | Z1.t—1), so (5) can be rewritten as

P~ (Zi|ar) = ZP*(Zﬂat?ﬁt =0D)P(Be =11 Z1.4-1)
l
O

where P((¢|Z1.4—1) = Em P(a, Bt|Z1:4-1). Following the
similar principle, P(f;) in (6) is also replaced by P(03:|Z1.1—1)-
The superscript “-” in (5)—(7) will be dropped in the following
paragraphs for simplicity, but please note that the specific mul-
tiview face model used for current tracking is constructed from
previously learned specific single-view face models.

The collaborative tracking scheme significantly differs
from pervious work on measurement fusion. It not only uses
image observations on a specific face, but also utilizes the
prior knowledge of the whole face class, which is contained
in the offline-trained generic face model. The offline-trained
generic face model can handle face appearance variations, and
eliminate the single Gaussian assumption made in [6]. Also,

(6)
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Fig. 3. Generic face model for tracking.

the training samples for the generic face model include both
faces and non-face data, so it can distinguish the background
and faces, thus reducing the distraction from the background.
Furthermore, the training samples of the generic model include
faces of different poses, so it is able to discriminate different
poses. None of the above benefits can be achieved by currently
existing tracking methods. The collaborative tracking algorithm
presented in this paper also differs from the work in [5] in that
this method directly factorizes the measurement model instead
of the posterior probability; thus, it can be directly incorporated
in a sampling-based tracking algorithm.

C. Generic Face Model for Tracking

In collaborative tracking, the generic multiview face model
is trained offline, and outputs probabilistic scores for each pose
given the image observation Z; and the state oy, as shown
in Fig. 3. Our method uses a probabilistic face classifier as a
generic face model. To achieve good accuracy and reasonable
speed, the real AdaBoost algorithm [24] is used to train the
generic multiview face model [2]. More details on the AdaBoost
algorithms can be found in [25] and [24], and the AdaBoost
based face classifiers are discussed in other sources [1], [2],
[26]. To train a generic multiview face model, exemplar faces
of various poses are collected, and non-faces are collected from
thousands of background images. The training details are ex-
plained in Section V. Please note that the accuracy requirement
of the generic face model for tracking is not as high as in the
face detection. Based on our experiments, a misclassification
error rate of 10% is acceptable for the generic face models used
in tracking.

In real AdaBoost, the final classifier is a combination of many
weak classifiers. Assuming Z< is the observation Z associ-
ated with the state «, the classification result of AdaBoost is
hg(Z*) =3, hpr(Z%), where hg , is the kth weak classifier
for pose 3. It has been shown in [24], that the posterior proba-
bility can be approximated by (8)

oha(Z%)

e—hg(Za) + ehg(Zo‘) )

P(BlZ,a) = ®
In our method, all multiview faces are roughly divided into five
poses. They are full left, half left, frontal, half right, and full
right, as shown in Fig. 1. Five independent face classifiers are
trained for the five poses. The probabilistic scores from these
pose models are then normalized to provide a posterior proba-
bility of face pose, for the used in the collaborative tracking.

D. Algorithm Summary

Here, we summarize the collaborative tracking algorithm to
help readers understand the whole algorithm. The flowchart of
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Fig. 4. Tllustration of the proposed multiview face tracking, online face appear-
ance model learning, and pose estimation.

our method is illustrated in Fig. 4. A face tracker is initial-
ized when a face is detected from images. At the beginning of
tracking, each specific single-view face model P(Z;|ay, ;) for
a pose (3; begins with an initial model, from which a specific
multiview model P(Z;|c;) is built, as (7). Then the specific
face model collaborates with a generic face model for multi-
view face tracking, as (6) and (2). From the posterior probability
obtained during collaborative tracking, face location and pose
are estimated, as explained in Section V-B. During tracking,
P(Z|a, Bt) is updated using probabilistic tracking results via
the online learning algorithm, which is described in Section IV.

IV. ONLINE SPECIFIC FACE MODEL LEARNING

In this section, an online learning algorithm is presented to
update specific face models during the collaborative tracking.
Our method first applies the probabilistic principal component
analysis (PPCA) [27] to model the face appearance at each
single view. Thus, according to (7), a specific multiview face
model can be represented as a mixture of PPCA models, with
each specific single-view face model as a component in the
mixture model. The advantage of using the mixture of Gaussian
model is that the well-studied online EM learning algorithms
can be directly applied to update model parameters [28]. In
our method, only specific models are updated, and the generic
model continuously contributes to face tracking.

A. Subspace Feature and Mixture of PPCA Model

In our method, the image intensity is used to represent the face
appearance. However, it is difficult to directly use the image in-
tensity in a Gaussian model due to its high dimensionality. For
example, for a face normalized to the size of 20 x 20, the di-
mension of the intensity feature vector will be 400, which means
that the covariance matrix has 400 x 400 elements. Even con-
sidering the symmetry of the covariance matrix, it is still a chal-
lenging task to learn so many parameters using a limited amount
of data. An assumption to simplify the high-dimensional model
is that all the pixels in a face image are independent, and they
have identical variance, so the Gaussian model is simplified as
N(Ziu,0) = (1)/(v2r0) exp{(~I1Z — ull?)/(20)}. This
assumption dramatically reduces the number of parameters to
be estimated, but also causes loss of information for face mod-
eling.

The probabilistic principal component analysis (PPCA) has
been proposed to provide a flexible and probabilistic formal-
ization for the feature dimension reduction without making ex-
treme assumptions [27]. In PPCA, a d-dimensional vector Z is
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assumed to be related with a g-dimensional latent variable s,
based on the linear model as (9)

Z=Ws+pu+e 9

Usually, ¢ < d, and W is a d by ¢ matrix where p is the mean,
and e represents a random noise. Conventionally, it is assumed
that s ~ N(0,I), and ¢ ~ N(0,V), where ¥ is a diagonal
matrix, and I is the identity matrix. The factor analysis in (9)
is found to be related with PCA when assuming ¥ = o2].
Under such an assumption, the columns of W are the principal
eigenvectors of the sample covariance matrix in PCA with an
arbitrary rotation [27]. The probabilistic distribution in PPCA
is derived as follows:

1 1
P(Z)s) = a7 P {—ﬁnz —Ws— u||2} . (10)

With a Gaussian prior over the latent variable s, i.e., P(s) =
(1)/((27)9/?) exp{—(1)/(2)sT s}, we obtain the distribution of
Z in the following form:

P(Z)= / P(Z]s)P(s)ds
B
CRIET

X exp {—%(Z — w07 - u)} (11)

where C' = 021 + WWT. Similarly, we can obtain P(s|Z) =
N(s; M=*WT(Z — p),0?M~1) where M = WITW + o?1I.
Since W is only a d by ¢ matrix, and ¢ < d, the number of
parameters to be estimated is largely reduced. Such parameters
of a PPCA model can be estimated using a batch EM method
[27].

We assume that each view can be represented with a PPCA
model, i.e., P(Zi|lay, By = i) = Pi(Z) = N(Z§; i, Cr),
where Z;" is the observation Z; associated with «;. Thus, the
specific multiview face model P(Z;|«;) is a mixture of PPCA
(MPPCA), according to (7). P(Z;|ay) is denoted as P(Z) for
convenience, as in (12)

P(Z) =Y mPi(Z8) =Y mN(Zm,C)  (12)

where m; is the weight of ith component P;(Z}").

An EM algorithm has been proposed to learn MPPCA param-
eters in a batch mode [29]. The EM algorithm updates weights,
means, and sample covariance matrices of MPPCA in a way
similar with those of mixture of Gaussian models. One dif-
ference between traditional mixture of Gaussian models and
MPPCA is the way in which the covariance matrix C; is up-
dated. In the traditional mixture of Gaussian model, the obser-
vation covariance matrix Cj; is the same as the data sample co-
variance matrix S; = E{(Z— ;)T (Z —p;)}, while in MPPCA,
due to linear latent variable model, C; has a constrained form as
C; = (o2 + W;W1I). Using MPPCA to model face appear-
ance can reduce feature dimension; therefore, the specific face
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models can be efficiently learned within limited video length.
The PPCA model also provides a probabilistic framework to in-
terpret traditional PCA such that it can be used as one of the
measurements in the collaborative tracking.

B. Online EM Learning of Specific Face Models

Our method begins with an initial MPPCA face model, which
is learned offline from collected face samples, and then update
the face model online from tracking results. The online updating
strategy aims at progressively updating the specific appearance
models P(Z;|cy, B;) using collaborative tracking results. Our
method is based on the online EM algorithm, which has a con-
cise form to incrementally update parameters of a mixture of
Gaussian models [28]. The online EM algorithm for mixture of
Gaussian distributions can be easily generalized to update pa-
rameters in MPPCA with some minor modifications.

As in the standard EM algorithm, our online EM algorithm
for MPPCA also includes two steps, i.e., E-step and M-step. In
the E-step of the EM algorithm, the expectation is calculated for
each component in the mixture model. By comparing (12) with
(7),itshows that v} = P(3;—1 = 4| Z1.t—1). Our method applies
the posterior probability P(f; 1 = i|Z1.; 1) from collabora-
tive tracking as the initial weights 7! in the mixture model, and
then uses the tracked faces and associated posterior probabilities
to update model parameters. The benefit of using probabilistic
tracking results is that we do not deterministically specify only
a single-view face model to update, but provide probabilities of
each single-view face model; hence, all the specific single-view
face models can be automatically and simultaneously updated
with tracked faces. In the M-step of the online EM algorithm,
the weights 7;, means y; and sample covariance matrices S; are
incrementally updated. In MPPCA, an additional step is needed
to update C; based on the updated sample covariance matrix .S;.
Thus, the online algorithm for MPPCA includes the standard
online EM algorithm, followed by an additional step updating
W;, M;, o;, and C; of MPPCA, as in (15).

The online EM algorithm is summarized as follows.

E-Step

= P(Bi—1 = i|Z1.4-1)
TN (Zt;uﬁ,Cf)

i+l — ) (13)
L SN (Zasdcl)
M-Step
t+1 _ ot P§+1 ot
Wy =+ pal O
t+1 _ gt P?l A_tTA_t_t
S’i _Si + i " Zt 1 Zt 1 Sz
T
1
mtt =at+ o [ - i (14)

t
and

Wil — St+1W,( 27 ) —1 AT qtirrt)
i =5 i (o? T+ (M) (W) S I/Vz)

2 1 -1 T
(o11)* = Jtr (S0 — st () ™ () )

3

M = (o) T4 (W) T Wi (15)
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where Z, is the image intensity of tracked face, i.e., the image
observation associated with estimated face location ¢v;. The de-
tails of estimating &; are presented in Section V-B. At each
time step, the parameters of specific single-view face models
P(Z4| v, B;) are updated using tracking result Z,, and the up-
dated specific single-view models will be further used to con-
struct the specific multiview face model P(Z;|a;) for collabo-
rative tracking at the next frame.

An underlying difference between our online learning algo-
rithm and traditional EM is the introduction of the pose tracking
result P(3;—1|Z1.t—1). In the traditional online EM, the param-
eter learning depends on the percentage of input faces from dif-
ferent poses, and their orders in learning, while our method is ac-
tually a “semi-supervised” learning algorithm, since the generic
face model, which provides pose information, is obtained from
supervised learning. Such a generic model can guide the se-
lection of appropriate pose model for learning, thus improving
learning and tracking robustness.

V. EXPERIMENTS

This section first explains implementation details of our
method, and then present experiments to demonstrate the
advantages of our collaborative tracking and online learning
algorithms.

A. Implementation

Implementing the collaborative tracking and online learning
algorithms involves three parts: training the generic face model,
implementing the state-space model for tracking, and imple-
menting online EM learning. The first step is to train a prob-
abilistic multiview face classifier offline as a generic model in
tracking. The generic face model is obtained based on the same
principle that is used to train a probabilistic face detector (the
details of training generic face models are explained in [2]). At
a each face view, positive training samples include the faces
at the corresponding view, and negative training samples in-
clude both background images and faces at other views; there-
fore, the trained generic face model can separate faces from the
background, and can also discriminate different face poses. The
probabilistic outputs of face detectors at multiple views are the
normalized to provide measurements as a generic face model.
Compared to face detection in static images, the accuracy re-
quirements of the generic face model in tracking are modest, so
it does not need as many layers in the cascade structure as in a
face detector.

The Monte Carlo sampling method is implemented to realize
the state-space model for tracking. For the ith face, the parti-
cles are denoted as {ai(k),Bi(k), wi(k)}. wi(k) is the like-
lihood score associated with the state {ai(k),3i(k)}. In the
state-space model, the transition probabilities of o are assumed
to be a Gaussian distribution P(ai|ai_;) = N(ai;ai_;,30).
The pose transition probability is represented with a transition
matrix, i.e., P(8; = m|Bi_; = n) = Py, .. The parameters ¥
and P, ,, are set empirically.

Each specific single-view face model P(Z;|a:,3:) begins
with an initial PPCA model, which is trained offline with col-
lected faces at corresponding pose ; in a batch mode [29]. The
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dimension of the latent variable is set as ¢ = 5 for each PPCA.
During tracking, the tracked face is cropped from a frame, pre-
processed, and then used to incrementally update specific ap-
pearance models via online EM. To prevent the online learned
model from being polluted by low-quality face images, such as
occluded or turn-away faces, numeric outputs from the generic
face model are used to preselect faces before using them for
learning. Outputs from an AdaBoost-based face detector are
large for faces of good quality, and small for occluded or out-of-
view faces, as well as non-faces [2]. A detected face is used
for online learning only when its output from the generic face
model is above a preset threshold. Also, since the initial spe-
cific face models may not accurately model the appearance of
a specific face, only the generic face model is used to detect
faces at the first several frames to avoid tracking failures caused
by inaccurate specific face model. After a certain number of
faces (e.g., a typical number is set as 10 in this method) have
been acquired to update the specific face models online, we then
incorporate specific face models in the collaborative tracking.
Furthermore, when more tracked faces are acquired for model
learning, the learning rate 1/¢ in (14) tends to zero; therefore, the
online model learning will slow down. In our implementation,
we set the learning rate no smaller than a constant, e.g., 0.1, to
allow for continuous modeling updating, and to incrementally
correct potential learning errors during the entire tracking. To
further tune the relative strengths of offline and online models,
an additional measurement is needed to automatically validate
the online-learned specific face models. Such work is, however,
beyond the scope of this paper, but it will be our future research.

The most time-consuming part of our algorithm is the generic
face model, since it performs face detection of multiple views.
However, its computation is less expensive compared to face de-
tection because of the modest accuracy requirements. The on-
line EM learning is efficient except for the calculation of covari-
ance matrix norms in the MPPCA model. To solve this problem,
the covariance matrix norms are only updated once for every
several frames. The speed of the whole algorithm is about seven
frames per second using a Pentium IV 2.6 G machine.

B. Face Location and Pose Tracking

Face location and pose can be estimated from the pos-
terior probabilities P(a:,3:|Z1.+). The face position and
size &; can be estimated as &; = Zat arPlag|Z1.4) =
Zat Zﬁt arP(at, Bt|Z1.4). We can also estimate face pose
from P (at, Bt Z1.+). The posterior probability of pose [, i.e.,
P(B¢|Z1.1) is estimated as

P(Bi|Z1.4) = > P, il Z14)- (16)

Then the pose with maximum posterior probability is selected
as the current pose (3, as in (17)
B, = argg, max P(3:]Z1.1). (17)

Face angle can be roughly estimated from different pose models.
Assuming that kth pose is associated with a typical pose angle
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Fig. 6. Multiview face tracking and learning results of two specific faces. (a),
(b) Ateach graph, the first row shows tracking results, and the second row shows
the learned mean faces and first four transformation vectors of MPPCA for each
of the five poses.

Or, k = 1,..., M, the pose angle can be estimated from the
interpolation of multiview face tracking results, as in (18)

Or = El0] = 6xP(Br = k| Z14). (18)
k

An experiment of collaborative tracking and pose estimation
is illustrated in Fig. 5. In the experiment, the pose angles as-
sociated with different poses are —90°, —45°,0°,45°,90°, re-
spectively. The rectangle, half arrow and full arrow represent
frontal, half profile and full profile faces, respectively. As shown
in Fig. 5, the face begins from the frontal pose, and changes
gradually to different views. The curve at Fig. 5(f) shows esti-
mated face angles, and clearly indicates the pose motion.

C. Online Face Learning During Tracking

The method is applied to several representative sequences
to demonstrate how the collaborative tracking method handles
dynamic face appearances and improves tracking robustness.
In the first experiment, multiview faces of two persons are
tracked, and their specific face models are learned online, as
shown in Fig. 6. In each graph of this figure, the first row
shows the tracking results. The columns of the second row
show the learned mean faces, and the first four column vectors
in the transformation matrix W; for each of five poses. All
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Fig. 7. Tracking dynamic pose changes. (a)-(h) Tracking results at some
frames. At each graph, the first row shows tracking result, and the second row
shows the learned mean faces and first four transformation vectors of MPPCA
for each of the five poses.

the specific single-view face models are initialized with face
appearance models that are learned offline in a batch mode
using collected samples. Such initial specific face models
contain large variance caused by interpersonal differences,
and do not accurately model each individual’s faces. During
collaborative tracking, tracked faces are used to update specific
face models through EM learning algorithms. The specific face
models gradually converge to individual persons’ faces. The
experiment demonstrates that the collaborative tracking method
can simultaneously track a face, estimate its pose, and update
specific face models.

To validate the capability of the collaborative tracking in
learning specific face models under difficult conditions, the
method is also tested on a sequence in which faces undergo
large face location and pose variations, as well as illumination
changes, as shown in Fig. 7. All the environmental conditions
and face dynamics contribute to the difficulties of face tracking.
Our collaborative tracking method can successfully track mul-
tiview faces, and simultaneously learn specific face appearance
models. It is worth emphasizing that without the generic face
model, the online face learning is vulnerable to tracking errors,
especially during initial stages of tracking, because the initial-
ized specific face models do not have discriminative capability
of separating faces of different poses from the background. As
shown in Fig. 7, at the first several frames, the principal com-
ponents in MPPCA are all blurred as they are initialized with
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Fig. 8. Comparing tracking results of different methods under perturbation.
The horizontal axis is the index of frame. The vertical axis is the pixel distance
of tracked face to ground truth. The solid line: o, = 0.02 L. The doted line:
o, = 0.04 L. L is the actual size of face.

models learned from samples of different faces. During collab-
orative tracking, the online model learning at the early stage in
tracking is regularized by the generic model, which can select
appropriate views for model updating. Also, since the generic
face models are trained using both the faces and non-faces, it
is able to prevent tracking from drifting before the appropriate
specific face models are established. The learned specific face
models in turn contribute to the collaborative tracking. In sum-
mary, the collaborative tracking strategy optimally utilizes both
the offline-collected information of the generic face and the
online-obtained information of the specific faces being tracked,
and it, hence, improves the tracking robustness.

We further evaluate the robustness of the collaborative
tracking by comparing it with a 2-frame template matching
method, and also with a generic face tracking method. In
the 2-frame template matching method, we search the face
scale and position through template matching [30]. During
tracking, the face template is updated with previously tracked
faces, and this method is only based on appearance of spe-
cific faces. The generic face tracking method, on the other
hand, has the same formalization as the collaborative tracking,
except that the specific face models in generic face tracking
are ignored by assuming that their outputs are uniform, i.e.,
P(Zi|Bt,c0) o< P(B|Z,an); therefore, the generic face
tracking is based only on the offline-learned generic face
model. The comparison is performed under simulated perturba-
tion. To simulate the environmental distraction and inaccurate
measurements, a random Gaussian noise N (0, 0;,) is imposed
on locations and sizes of tracked face. In the 2-frame template
matching method, the position and size of tracked faces are
perturbed at each frame. In generic face tracking and collab-
orative tracking, the same noise is added to the state of each
particle. o, is set to be proportional to the actual face size L
at each frame, and will be changed to simulate different levels
of perturbation. The pixel distance between tracked faces and
the ground truth of different methods is measured, as shown in
Fig. 8, where the sequence of Fig. 6(a) is used. It shows that
template matching method loses tracking very easily under
perturbation, as expected. The generic face tracking method
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Fig. 9. Tracking results of different measurement models: (a) collaborative
tracking results at some frames; (b) 2-frames’ template matching tracking re-
sults at corresponding frames; (c) generic face tracking results at corresponding
frames.

shows more robustness than the template matching method for
small perturbation, but it also fails under a larger perturbation.
Collaborative tracking, which combines multiple measure-
ments, is more robust against large perturbations.

Besides the simulation experiment, we also validate the ro-
bustness of collaborative tracking under real world conditions.
Fig. 9 shows actual tracking results of a sequence using different
tracking algorithms. The faces in this sequence undergo large
scale changes, along with significant illumination and pose
changes. With collaborative tracking, faces are successfully
tracked, whereas the template matching and generic tracking
methods fail at certain frames. Fig. 9(b) shows that only using
appearance templates, tracking easily fails when there is an
inaccurate measurement of face scale and position. Although
offline face model can handle some degrees of environmental
and face pose variation, it can still fail in certain situations
where false detections are introduced by the background, as
shown in Fig. 9(c). Collaborative method combines two types
of measurements, therefore being able to yield more robust
tracking results.

Our method can also be applied to tracking multiple faces.
Our method first applies face detection to search faces in the
video. Once a new face is detected, a collaborative face tracker
is created to track the face. For the sth face being tracked, a spe-
cific appearance model P(Z;|a, 8¢) is built only for this indi-
vidual, while multiple face trackers share the same generic face
model P((3:|Z;, a:). Please note that the superscript ¢ refers to
a face tracker, not a state variable in a tracker. The collaborative
tracking scheme is then applied to each individual face indepen-
dently, following (1), (5), and (6). Fig. 10 shows tracking results
for a sequence containing two persons’ faces. Without using
specific face models, the generic face tracking method is af-
fected by the background and finally loses tracking, as shown in
the third column in Fig. 10(b), while the collaborative tracking
results show robustness against both environmental distraction
and pose variation. This experiment, along with the experiments
shown in Figs. 8 and 9, demonstrate the advantages of collabo-
rative tracking.

Occlusion between multiple faces is a practical issue that
could fail our face tracking. When two faces come close to-
gether and occlude, their respective measurements will affect
each other, therefore polluting each face’s tracking. Although
this paper does not particularly address the occlusion problem,
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Fig. 10. Multipeople multiview face tracking: (a) the first row shows collaborative tracking results; (b) the second row shows tracking results using only generic

face models.

our framework can combine existing methods to handle occlu-
sions by including the face identity in tracking. Since specific
face models will be retained for each individual face, the face
identity can be included as a state variable, in addition to the face
location and pose states, in the collaborative tracking frame-
work. When faces are close to each other, one face could be
partially or entirely occluded. Such occlusion can be handled
via a template switching scheme [20], which selects an appro-
priate face appearance model based on occlusions of faces. The
switching scheme in [20] is also based on DBNs and can be nat-
urally incorporated into our collaborative tracking framework.
Extending our method for a comprehensive solution to the oc-
clusion problem will be our future research.

VI. CONCLUSION

In this paper, a probabilistic framework is presented to
track multiview faces and learn their appearance model online.
Without knowing the prior information for a specific face, our
method can robustly track the face under pose and environ-
mental changes and automatically build appearance models
for the specific face under multiple poses during tracking. A
collaborative tracking method is developed to combine the
information obtained from both an offline trained generic face
model and an online learned specific face models, thus handling
large face pose and environmental changes. The probabilistic
tracking results are also used to update specific face appearance
models by applying an online EM algorithm to the MPPCA
models. With collaborative tracking and online learning, our
proposed method can robustly track oblique pose changes, and
simultaneously estimate pose. Our future work will be the ap-
plication of online learned face models for the face recognition
in videos. We are also interested in applying this method to
track other types of objects under large pose changes.
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