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Noise and Signal Estimation in Magnitude MRI and
Rician Distributed Images: A LMMSE Approach
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Abstract—A new method for noise filtering in images that follow
a Rician model—with particular attention to magnetic resonance
imaging—is proposed. To that end, we have derived a (novel)
closed-form solution of the linear minimum mean square error
(LMMSE) estimator for this distribution. Additionally, a set of
methods that automatically estimate the noise power are devel-
oped. These methods use information of the sample distribution
of local statistics of the image, such as the local variance, the
local mean, and the local mean square value. Accordingly, the
dynamic estimation of noise leads to a recursive version of the
LMMSE, which shows a good performance in both noise cleaning
and feature preservation. This paper also includes the derivation
of the probability density function of several local sample statistics
for the Rayleigh and Rician model, upon which the estimators are
built.

Index Terms—Linear minimum mean square error (LMMSE)
estimator, MRI filtering, noise estimation, Rician noise.

1. INTRODUCTION

OISE in magnitude magnetic resonance (MR) images is
N usually modeled by means of a Rician distribution, due
to the existence of zero-mean uncorrelated Gaussian noise with
equal variance in both the real and imaginary parts of the complex
k-space data [1], [2]. This noise may affect the performance of
different postprocessing techniques applied to MR data, such as
segmentation, registration or tensor estimation in diffusion tensor
MRI (DT-MRI) [3]. Accordingly, a great amount of noise-re-
moval methods has been reported in the literature.

One of the first attempts proposed to estimate the magnitude
MR image from a noisy image is due to Henkelman [4] who in-
vestigated the effect of noise on MR magnitude images. The au-
thor showed that the noise influence leads to an overestimation
of the signal amplitude and proposed a correction scheme based
on image intensities. The so-called conventional approach (CA)
was proposed by McGibney et al. [5] utilizing the noise proper-
ties of the second-order moment. Sijbers et al. [6]—[8] estimate
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the Rician noise level and perform signal reconstruction using a
maximum likelihood (ML) approach. A similar method is used
by Jiang and Yang [9]. Expectation maximization (EM) formu-
lations with Rician noise assumptions have been used in SAR
imaging [10], [11]. Fillard et al. [12] recently proposed another
ML-based scheme that uses an anisotropic regularization term
to exploit the spatial correlation, and apply it to correct the bias
in tensor estimation in DT-MRI.

Other approaches use wavelet-based methods for noise re-
moval, as Nowak’s [13]—in which the authors assume an un-
derlying Rician model—or the one due to PiZurica et al. [14].
Lysaker et al. [15] proposed a method for noise removal in MRI
using fourth-order partial differential equations. McGraw et al.
[16] use a weighted total-variation-norm denoising scheme and
Ahn et al. [17] propose a template-based filtering procedure;
none of this approaches use a Rician noise model. Basu et al.
[3] use a Perona—Malik-like smoothing filter combined with a
local Rician data attachment term (effectively trying to remove
the intensity bias locally), assuming a known noise level for
the Rician noise model. Using local statistics as priors, Awate
and Whitaker [18] introduced a method to denoise a MR image
using nonparametric neighborhood statistics. Recently, Koay
and Basser in [19] developed a correction scheme that allows to
analytically estimate the signal, also assuming the Rician model,
and in [20] Martin-Fernandez et al. proposed a Wiener-filter ap-
proach with a correction for MRI data.

In this paper we propose a new method for noise filtering of
MRI data, and by extension, of images that follows a Rician
distribution, by using the linear minimum mean square error
(LMMSE) estimator for Rician noise.

As it is well-known, LMMSE estimators are a tradeoff be-
tween optimality and simplicity; we obtain a closed-form an-
alytical solution for our estimator which makes the filtering
process far simpler than other estimation techniques that find the
solution via an iterative optimization scheme. Results from our
method are satisfactory as the experiments in Section V show.
Additionally, the goodness of the filter will be intrinsically re-
lated to the accuracy of the estimation of the noise variance in
the images. In the paper we will present four novel techniques
to estimate this parameter; although three of them rely on the
assumption of a uniform background, none of the cases require
any sort of background segmentation.

The paper is organized as follows. Section Il is a background
section on Rician and Rayleigh distributions and their estima-
tors. In Section III, the LMMSE estimator for Rician noise is
presented. Then, Section IV describes the different procedures
to estimate the noise. Some experiments have been added in Sec-
tion V. A number of appendices have been included for read-
ability purposes.
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II. BACKGROUND

A. Rician Distributed Data

If both real and imaginary parts of a signal are corrupted with
zero-mean uncorrelated Gaussian noise with equal variance, the
envelope of the magnitude signal will follow a Rician distri-
bution. This kind of noise may be encountered in many prac-
tical situations, such as MR data, speckle [10], communication
fading problems [21], and many others. The magnitude signal
may be expressed

M = /(A +n1)? + n’ (D
being M the magnitude image, A the original signal level if
no noise is present, and n; and no uncorrelated Gaussian noise
variables with zero mean and equal variance o2 . The probability
density function (PDF) of such an image is, as indicated, a Ri-
cian distribution [1], [22]

pmu(M| A, o,) =

n

M M2’ (AM
Iy

o 202
o2 °
n

g) wM) (2
being Iy( -) the Oth-order modified Bessel function of the first
kind and u( - ) the Heaviside step function. Although, generally
speaking, the moments of this distribution are difficult to calcu-
late, the even-order (non central) moments are simple polyno-
mials as, for instance, the second-order moment

po = E{M?*} = A? + 202 (3)

In the image background, where the signal-to-noise ratio is zero
due to the lack of water-proton density in the air, the Rician PDF
simplifies to a Rayleigh distribution [22] with PDF

M2

Mo
pj\/[(M|0n) :p]\/[(M|A = 0./0'71) = 0—6 275 U(M) (4)

2

n

B. Parameter Estimation of the Rician Distribution

In this section, we review a number of methods to estimate
parameters in a Rician distribution. Although many approaches
have been reported in the literature (see, for instance, the papers
cited in the introduction) we will focus now only on those based
on a stochastic model. Most of the papers cited hereafter focus
on MRI processing, although some of them deal with other type
of images, such as SAR [10].

The conventional approach (CA) [5] accounts for the relation
between noise and signal of the second-order moment in a Ri-
cian distribution, see (3), so the signal can be estimated as

A= \/(M?) - 202 (5)

being (M?) the sample second-order moment. Other ap-
proaches use the maximum likelihood estimator (ML) [6]—[9]
where the signal is estimated by maximizing the likelihood
function. Koay and Basser in [19] propose an analytically exact
solution assuming a Rician noise model based on image statis-
tics and the noise level. In these three methods the variance of
noise U,ZL is an input value, so it must be known before hand,
or at least, it must be estimated. The expectation-maximization
(EM) method [10], [11] provides a recursive scheme that aims
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at estimating the noise variance and the signal simultaneously
through maximization of the expected log likelihood.

Note that the last three schemes (ML, EM, and Koay’s) are
originally designed to estimate the signal from multiple sam-
ples. When only one image is available, the statistics must be
calculated locally. In addition, in the three methods the solution
is found via an iterative optimization scheme.

The different methods reported to estimate o2 from the
magnitude data in Rician distributions may be roughly divided
into two vast groups, namely, those that use a single magnitude
image and those that use multiple images. In this paper we will
mainly deal with methods in the former group.

The estimation of noise in MRI using a single image is usually
done out of the background pixels, where the signal is assumed
to be zero. According to (3), in the areas where the signal is
zero A? = 0, and then E{M?} = 202. So a straightforward
estimator—based on the method of moments—will be [7], [13],
[23]

N
— 1

2= N Mm?

7n T 3N ; 'l ©

being N the number of points considered for the estimation.
Equation (6) is in fact, an unbiased estimator of 0,21 with variance
4
- g,
Var (ag) == %)
This estimator is also the maximum likelihood estimator of this
parameter for the Rayleigh distribution [7].
An alternative way to estimate o,, in nonsignal areas is ob-
tained by using the first-order moment of the Rayleigh PDF. An
unbiased estimator then will be [7]

21 &
ar=1/2=5"M,. 8
G ”N; 8)

In [9], the authors propose an estimator based on the method
of moments for a Rician distribution
- 1

02 = S((M?) = (2AM2)? — (MH)1/4),
Recently, Sijbers et al. [24], [25] proposed a new method to es-
timate o, from the image histogram. As in the background the
image distribution is Rayleigh, and since the mode of this distri-
bution equals the parameter ,,, then &,, = M,.x, being M.
the mode of the histogram of the image. Noise can also be es-
timated using multiple images taken under identical conditions
[23]. Finally, in [26] noise is estimated by using the information
of several images and how they match a model.

III. SIGNAL ESTIMATION: THE LMMSE ESTIMATOR

The method proposed in this paper to estimate the signal
from the magnitude image is based on the linear minimum
mean square error (LMMSE) estimator [27]. Our aim is to
find a closed-form estimator for a signal that follows a Ri-
cian distribution. This is in contrast to many other estimation
techniques—such as ML and EM—which find the solution
via an iterative optimization scheme. Closed-form solutions
make estimation methods computationally more efficient than
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optimization-based solutions. In addition, the estimator will
be based on local statistics, so one single (noisy) image—as
opposed to several perfectly aligned images—will suffice to
estimate the signal.

As previously stated, the moments of the Rician distribution
have a nontrivial integral expression but for even-order mo-
ments, which are simple polynomials. In order to achieve a
closed-form expression we will use A? instead of A. Conse-
quently, all the moments to be used hereafter will be even.

A. LMMSE Filter Derivation for the General Rician Model
The LMMSE estimator! of a parameter 6 is defined [27]

f = E{0} + CoxCry (x — E{x}) ©)

being x the vector of available samples, Cy, the covariance
matrix of x and Cyx the cross-covariance vector. Rewriting (9)
for a 2-D signal with a Rician distribution

A2 _ 2 2

Aij E {A } + CA M2 CM2 M2, (Mij - E{Mu}) (10)
where A;; is the unknown intensity value in pixel 75 and ML;; the
observation vector. If the estimator is simplified to be pointwise,
vectors and matrices become scalar values. Then

Chrz a2
2M2,

= p{(M3 - B (ML) (M3 - E{M2))")

= B{(M} - BE{M2})’} = B{M}} - B{M2}’
= Oz
Caz o
= B{(4} - B{4}}) (M} - B{ME})" )
= B{(4} - B{A};}) (M - E{Mj})}
= CA?.J\[Z?.

and making use of the model in (1)

Caz az = E{ A} } + 2B {A;} oy

- E{A}} E{M}.
Finally, the LMMSE estimator is
A% = B {a})
E{A}} +2E{A%} 02 - E{A%} E {M}}
E{M}} - E{M2}®
x (M3 - B{M2}).

Assuming local ergodicity, the expectation may be replaced by
its sample estimator ( - ), that can be defined

P2

PENi;

Y

(12)
|7hJ

IAs it is well known, this type of estimators model the parameter to be esti-
mated as a sample of a random variable, the parameters of which have a known
relation with the parameters of the observation [27].

1385

with 7;; a square neighborhood around the pixel ¢j. This esti-
mation may be also done using nonsquare weighted windows,
such as Gaussian functions. Using the relations from (1)

E{M}} = E{A}} + 207
E{M}} = E{A};} +802E {A};} + 80,

and (- ), the LMMSE estimator may finally be written as

A% = (MZ) =202 + Kiy (M3 — (M) (13)

WithKi]'
oy A0 — )
(M) — (M)

Note that the o2 value must be properly estimated. This task is
usually done from a selected region from the background pixels,
where the signal is assumed zero. In Section IV, some new au-
tomatic methods will be presented.

Since only pointwise dependence has been considered in the
filter, the extension to an arbitrary number of dimensions is
straightforward by changing the estimation neighborhood. For
example, for 3-D images

(14)

> I,

|"71]k| PENijk

Some experiments have been done in Section V-A to illustrate
the LMMSE filtering performance.

IV. ESTIMATION OF NOISE USING LOCAL STATISTICS

The performance of the estimator previously described, as
well as other methods in the literature, is directly related to the
quality of the estimate of the noise variance 2. Noise estima-
tion schemes described in Section II-B (but the one in [24]) have
some disadvantages: they need the background pixels of the
image to be manually selected and the estimation is done con-
sidering that the signal is always zero in the background pixels.
These two considerations make the estimate sensitive to errors
and artifacts. In this section, we will propose a new approach
based on local statistics. We will estimate the noise using the
distributions of some sample local statistics of the image, such
as the sample second-order moment, the sample mean and the
sample variance.

Using the second-order moment and the mean we will de-
velop two estimators that can be used only when the image has
a background where the distribution can be assumed Rayleigh
(i.e., a nonsignal background). This is the case of many MR
magnitude images. Then, we will define a variance-based es-
timator that can be used with any kind of image that follows a
Rician distribution.

A. Noise Estimator Based on the Local Second-Order Moment

Taking expectations in (1) for zero-mean and equal variance
noise components, we obtain

E{M}} = E{A}} + 202 (15)
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Fig. 2. Distribution of the local second-order moment. (a) Lena image without
noise (solid) and with Rician noise with ¢,, = 10 (dashed). (b) MR image
without noise (solid) and with noise (dashed), with ,, = 10. A 7 X 7 window
has been used.

being E{I %} the local second-order moment of an image I. It
may be estimated using a neighborhood 7;; cgriered around the
pixel under analysis giving rise to f12;; = E{I}} = (I7;). For
the sake of simplicity we will use a square neighborhood, as in
(12).

If we assume that o,, is constant throughout the image, the
effect of the noise over the local second-order moment distri-
bution will be a shift to higher values. In those regions where
Aij = 0, it holds

E{MZ} =202,

This fact has been used in the past to estimate the noise from
MRI by selecting areas in the background (see Section II-B).
In this new approach, we will not be working with selected re-
gions, but with the distribution of the local statistics of the whole
image.

As an effect of the noise, the shape of the local second-order
moment distribution remains fairly unchanged in the noisy
image with respect to that in the original image, but for a
right-shift of the whole distribution. See, for instance, the
distribution of this moment for the image in Fig. 1 when Rician
noise is present; this is depicted in Fig. 2(a).

However, in MR images—see, for instance, Fig. 3 taken from
the BrainWeb database [28]—due to the presence of an exten-
sive background in which the signal is virtually zero, the distri-
bution of the local second-order moment of the original image
will have a maximum in the origin, as shown in Fig. 2(b) solid
line. If the image is corrupted with Rician noise with o,, = 10,
the effect, according to (15), will be a shift of the maximum
from zero to 20,%. This effect can be seen in Fig. 2(b), dashed
line, where the distribution of the local second-order moment
shows a bell shape with its maximum in 200, with in fact is 207%
when o,, = 10.
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Fig. 3. Original magnitude MRI from the BrainWeb database (left) and noisy
one (right) with o,, = 10.

So, the position of this maximum may be used in order to
estimate o2

7% = 2 argmax{p())

being p(f12) the distribution of the sample (local) second-order
moment of the noisy image. This maximum may be calculated
as the mode of the distribution.

To analyze this assumption let us calculate the theoretical
value of the mode. In MR images, the pixels in the background
follow a Rayleigh distribution. So, let R;(0?),i = {1,..., N}
be a set of independent and identically distributed (IID)
Rayleigh random variables. Then [29]

N
S R (0?) ~ /(N 202)
=1

1 & 202
. 262 ~ v | N, 2=
5=y LR w< ,N)

i.e., the sample local second-order moment of a Rayleigh dis-
tribution follows a Gamma distribution with parameters o =
N and 3 = ((202)/N). The mode of this distribution is de-
fined as mode(S) = (a — 1)0, so, the mode of the sampling
second-order moment will be

N -1
202.

mOde(ﬁ;ij) = N n

If we redefine the estimator of the moment as

N
~_ 1 2/ 2
2 =5N_"7 Z;Ri (o) (16)
then
mode(fiz;;) = 202
and
o2 = §mode(ﬁ§ij). (17)

To verify this hypothesis, an experiment has been carried out
for 40 different variances of noise. The MR image in Fig. 3 has
been normalized between O and 1. Local moments are calculated
using 7 x 7 windows. For each 2, we would take the average
value of 100 simulations. In Fig. 4(a), the estimated variance
is depicted versus the original one. In Fig. 4(b), as a quality
measure, we show the ratio Q = 7,,/op,.
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Fig. 4. Estimation of variance of noise using the mode of the local second-order
moment. (a) o2 versus 62. (b) &, /7, versus o,,.
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Fig. 5. (Normalized) Local second-order moment distribution of the noisy
image with 0, = 10 using 3 X 3 window (dashed), 7 x 7 window (solid),
11 x 11 window (dash-dotted), and 21 x 21 window (dotted). (a) Normalizing
by N. (b) Normalizing by N — 1, as in (16).
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Fig. 6. (a) Sample local mean distribution of the image without noise (solid-
bold) and with noise (dashed), with o,, = 10. (b) Normalized distribution of

(2/77)/7}1.]. of the noisy image with o,, = 10. Window size: 3 x 3 (dashed),
7 x 7 (solid), 11 x 11 (dash-dotted), and 21 x 21 (dotted).

Let us now study how the window size affects the estimation.
According to (7), the variance of the estimator is inversely pro-
portional to the number of points used. So, as far as ergodicity is
maintained within the window, the estimation should be better
for larger window sizes. However, the influence of the window
size is not paramount in this new estimator, as only the max-
imum of the distribution is considered.

As an illustration, we have calculated the local second-order
moment distribution of the noisy image using square windows
of different sizes. The result is in Fig. 5. The effect of increasing
the size of the window is that the function goes narrower, as an
effect of the decrease in the variance. However, its maximum is
fixed to the same value.

B. Estimator Based on the Local Mean

Following a similar reasoning to the one done in the previous
section, we can define a local measure based on the estimator of
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(8). This estimator is also based on the assumption that the dis-
tribution in the background of an MR image follows a Rayleigh
distribution. Due to the influence of the pixels in this back-
ground, when the local mean distribution of a non-noisy MRI
is depicted, it presents a maximum around zero [see Fig. 6(a),
solid line]. When the image is corrupted with Rician noise, this
maximum is now shifted to a value related to o,, [see the dotted
line in Fig. 6(a)]. As the mean of a Rayleigh distribution is de-
fined as p; = opy/7/2, following a similar reasoning as the
one done in the previous section, we can define a new estimator

— 2 —
Tn = \/; arg max{p(f1) }

being p(j11) the distribution of the sample local mean. The max-
imum may be calculated as the mode of the distribution

—~_ ]2 —
On = ;mode(ulij).

To study this assumption, let us analyze the PDF of the sample
local mean. Let R;(0?),i = {1,..., N} be aset of IID random
variables with Rayleigh distribution and

N
S = ZR,(UZ)
i=1

(13)

The sum of Rayleigh variables is a classical-hard-to-find
problem in communications. Some approximations are usually
employed, as the one in [30]

2N-1,-2"/2bN

x
ps(r) = N-INNpN(N —1)! (19
2
b= %[(ZN — )N (20)

which can be approximated by b ~ o2%(2/e) (see Ap-
pendix A). The mode of the distribution is defined as
mode(S) = argmax,{ps(z)}, so

2(2N — 1)N

e

mode(S) = oy,

which can be approximated when N > 1 by mode(S)
0,(2N/+/e). Therefore, as the sample mean is defined 117 =
(1/N)S the noise estimator becomes

X

—

on ~ Temode(mzj). 1)

Note that in this approximation, the factor is (y/e/2) =
0.8244, and in (18) the factor is \/(2/7) = 0.7979. This small
difference is due to both the approximation in the PDF and to
the simplifications made to obtain the mode. In what follows
we will use the estimator in (18), as it experimentally shows a
better behavior.

To test this estimator, a new experiment has been carried out
for 40 different standard deviations of noise. The MR image has
been normalized between 0 and 1. Local moments are calculated
using 7 x 7 windows. For each o,,, we would take the average
value of 100 simulations. In Fig. 7(a), the estimated standard

Authorized licensed use limited to: The University of Utah. Downloaded on November 24, 2008 at 18:54 from IEEE Xplore. Restrictions apply.



1388

o, estimated
H
%
Q

o

0oz »o 08
of

K3

0 002 004 006 008 01 012 014 018 O 00 004 006 008 01 012 01 016

o,

@ (b)

Fig. 7. Estimation of standard deviation of noise using the mode of @;i].
(a) 7, versus ,,. (b) Q = 7, /0, versus o,,.

10000 [fit

Fig. 8. Sample local variance distribution. (a) MRI with Rician noise. (b) Lena
Image with Rician noise. Original image (solid), Rician noise with ¢, = 10
(dash-dotted), with o,, = 20 (dotted) and with o,, = 40 (dashed).

deviation is depicted versus the original one. In Fig. 7(b), as a
quality measure, we show the ratio 7, /0,,.

As in the previous case, the effect of changing the size for the
window used for estimation—see Fig. 6(b)—is a change in the
width of the distribution, but in any case, the maximum stays on
the same value.

C. Estimation Based on the Local Variance

The estimators previously introduced require a Rayleigh dis-
tributed area, i.e., an area in which A;; = 0. In this section,
we introduce a new estimator that can be used in signals with
general Rician noise. However, we will first study the case of
images with zero background.

The distribution of the local variance for most non-noisy im-
ages, is a decreasing function with its maximum in zero (see
Appendix B for details). When corrupted with noise, the dis-
tributions present a bell-shape distribution whose maximum is
located in a point that should be related to 2. An illustration
is depicted in Fig. 8. We will take advantage of this feature for
both estimators.

1) Local Variance in MR Data: In the background of MR
data, the variance reduces to the variance of a Rayleigh distri-
bution, which is defined

o2, = o2 (2 - g) . 22)
In the pixels belonging to the background then
-1
or=a(2-3) - (23)

If the background of the image is properly segmented, it can be
used to estimate the variance of noise using (23). However, the
segmentation is not necessary if we follow a philosophy as the

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 8, AUGUST 2008

one stated in the previous sections. If the variance is estimated
locally, say ‘712\/11 _, we can define the variance of noise as
J

~2 ! 2
o, = (2 - 5) mode (JM”_) .

Actually, the maximum values of the distributions in Fig. 8(b)
are located at in (2 — (7/2))02.

To give a theoretical justification to this solution, it would
be interesting to study the distribution of the sample variance
when the samples are Rayleigh random variables (if they are
Gaussian, the result is well known [29]). The distribution of
the sample local variance for Rayleigh random variables is (see

Appendix C for details)
(1+5)28 '
2/ 202

(25)

(24)

N-1
ey eN—2—k)
pv(w) = Cversr 2 BN =1 k)]

being
N 1 (2/e)N -1
Cv=153 2N-1"
202 (N —1)! (1 +2/e)

In order to find the maximum independently of the value of o,
we make the change ¢t = (zN/20?)
e 1k
t+3)1]
(145

We have numerically calculated the maximum of this func-
tion which is

L= 2N —2— k)

) =Cve™ ) N —1=)
k=0

(26)

tmax ~ 0.26 X (N — 1) =~ <1 — %) (N —1).
In Fig. 9, the function in (26) has been depicted for N = 25
(dash-dotted), N = 49 (dashed) and N = 81 (solid). To avoid
the dependence with N, the z axis has been normalized by N —
1. The maxima of the functions for the different values of IV are
all located on the same point, around 0.26. So, the mode of the
distribution, after the variable change, will be

-1, 4\ N-1 ,
~|(2— - .
- ( ) —1,

Note that the NV in the denominator is due to the fact that we have
used the biased variance. Similarly as in the case of the sample
mean, due to the approximation, the solution is not exactly what
it should be, as (2— (7/2)) =~ 0.42. Previously, in (21), we have
seen that \/e/2 was in fact an approximation of 1/2/7, due to
some approximation in the analysis. Note that the parameter we
are using for the variance analysis is now e¢/2 = 2(y/e/2)2. If
we use 2(1/2/m)? = 4/ instead, the numerical analysis sets
the maximum in

N
mode(V) = & pax = 0.52

tnax & 0.21(N — 1) ~ (1 - Z) (N —1)

being the mode

mode(V) a2 0.42

0" =

N-1, ( W)N—l 2
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Fig. 9. (Normalized) function of (26) for N = 25 (dash-dotted), N = 49
(dashed) and N = 81 (solid). The = axis has been normalized by N — 1.

o, estimated
8
)
Q

o
of

002} g0 2l
00

0 002 004 005 008 o0f
o,

(@) ®

01z 014 016 "0 002 004 006 008 01 012 014 016
o,

Fig. 10. Estimation of standard deviation of noise using the mode of the sample
variance. (a) &,, versus ¢,. (b) Q = &, /0, versus o,,.

Due to experimental results, we define the estimator as in (24).

To test this estimator, a new experiment has been carried out
for 40 different standard deviation of noise. The MR image has
been normalized between 0 and 1. Local moments are calculated
using 7 x 7 windows. For each o,,, we would take the average
value of 100 simulations. In Fig. 10(a), the estimated standard
deviation is depicted versus the original one. In Fig. 10(b), as a
quality measure, we show the ratio &,, /0,,.

2) Local Variance in Rician Images: Let us now focus on
those images with Rician noise in which the assumption of a
low SNR background does not hold. As a result, the variance of
noise cannot be estimated using the second-order moment, nor
the local mean, but it can be done using the variance.

Although most of the images we usually deal with are images
that do not have a uniform background, they do have a great
amount of uniform areas. By uniform area, we mean areas of
the image without borders and with soft transitions. This means
that, if no texture is present, the distribution of the local vari-
ances will have its maximum value in the vicinity of zero. To
illustrate this statement, see for instance the sample local distri-
butions of Lena and the MR (non-noisy) images in Fig. 8 (solid
line), where it can be seen that most values are nearly zero, as
expected. This exponentially decreasing histogram may be ob-
served in a wide range of images, from natural scenes to medical
images (see Appendix B). An exception to this is obviously the
case of pictures of complex textures, for which intensity vari-
ability is considered signal content. We must remark that this
assumption does not mean that the estimation is to be done in
one specific area assumed constant; the estimation will be done
using the whole variance histogram and it will not require any
previous selection of any area.
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Fig. 11. Normalized local variance distribution of the Lena image with Rician
Noise (0, = 15) using 5 x 5 (dashed), a 9 x 9 (solid), and 21 x 21 (dash-
dotted) windows. (N — 3)/(IN — 1) correction has been applied.

With this assumption in mind, we will first approximate the
variance of a Rician model, to afterwards study the sample vari-
ance. The mean of a Rician distribution is given by

oA
wm =E{M} =0, 5¢ 17
A? A2 A? A?
1+ —h|— —L|—])|. @7
<[+ 5) 0 (i) 5 () - @
In order to obtain an approximation of the behavior of the vari-

ance of the image, we will consider the asymptotic expansion
of the Bessel functions [31]

e’ 4n? —1
1- , Z— 00. 28
2Tz ( 8z ) (28)

It implies that A7; >> o7.. After some algebra

(29)

A natural image, like Lena, has a distribution of E{AZ;} as
the one in Fig. 8(a). This means that if we take local statistics
E{ A?j} > o2 for the great majority of the pixels, and even
E{A;} > o7. So, in those points, we can say that

Ohr, RO (30)
and, accordingly, if the variance of the signal is estimated lo-
cally, the variance of noise can be estimated as

72 = mode (a§[> . 31)
The maximum values of the distributions in Fig. 8(a) are located
at 0721.

What we have done here is similar to consider the rough ap-

proximation of the noise being Gaussian when the SNR is high.

This way, the sample variance has a gamma distribution [29]
with mode

N -3

de(o3;) = 02 ——.
mode(oy,) e v
In Fig. 11, the local variance distribution of a noisy image has
been calculated using square windows of different sizes: 5 x 5
(dashed), 9 x 9 (solid) and 21 x 21 (dash-dotted) applying the
(N = 3)/(N — 1) correction.
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Fig. 12. Estimation of variance of noise using the mode of the local sample
variance in the Lena image. (a) &,, versus 0. (b) @, /0, versus o,,.

To completely justify this result, we need to calculate the dis-
tribution of the sample variance for the Rician model. This is
not an easy task, though some approximations have been done
in Appendices D and E, where we show that the sample variance
PDF for this model may be written as

2N —1

4 2N-1
pv(t) ~ Cre™ > ( : )
m=0
X t"(1 4 N)™T(2N —1/2 — m)

with t = (zN)/(202). Numerically, it is easy to proof that
tmax = ((IV — 3)/2). So the mode of the variance distribution

will be
_N-32) N-3

2 N N

mode(V) o2.
Note that if the unbiased sample estimator is used, mode(V') =
(N = 3)/(N — 1)o2.

To verify this hypothesis an experiment has been carried out
for 40 different variances of noise. The Lena image has been
normalized between 0 and 1. Local variance is calculated using
7 x 7 windows. For each o,, we would take the average value of
100 simulations. In Fig. 12(a), the estimated variance is depicted
versus the original one. In Fig. 12(b), as a quality measure, we
show the ratio o, /o,.

D. Connection Between the Two Variance Models

Two models have been presented for signal estimation based
on the mode of the local sample variance. The first one is based
on the assumption that the image has a background where the
Rician model tends to be Rayleigh; the second one is for images
without such a background.

To study the behavior of the local variance in relation with the
background, an experiment has been done. A black background
has been added to the Lena image, having a MR-like image. Ri-
cian noise with ,, = 15 has been added (see Fig. 13). The distri-
bution of the local variance is shown in Fig. 14. We can see that
there is a maximum set around o,% , as the second model stated,
but in addition, a new maximum appears when the background
is added. This new maximum will be set on 02 (2 — (7/2)), the
value predicted by the first model. So, depending on the back-
ground, the local variance distribution will be a multimodal dis-
tribution, being the local maxima placed on o2 (2 — (7/2)) and
o2, respectively. The global maxima will be in the mode with
the highest coverage.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 8, AUGUST 2008

L2
Fig. 13. Noise image with o,, = 15 and different background size added.

Fig. 14. Normalized local variance distribution of the Lena image with Rician
noise. Without extra background (solid) with background (dashed) and with a
greater background (dash-dotted).

V. EXPERIMENTAL RESULTS

A. Synthetic Experiments

Some experiments are carried out to illustrate the LMMSE
filtering behavior. To be able to compare the results to a ground
truth, we work with synthetic images artificially corrupted with
noise. A magnitude MR image originally noise-free (from the
BrainWeb database [28]) with 256 gray levels, is corrupted with
Rician noise, see Fig. 15(a) and (b), following the model in (1).
The noisy image is processed using different techniques. Many
methods to restore a noisy MR image have been reported. For
our experiments we will select those related somehow with the
method proposed in this paper. First, those stochastic schemes
based on the Rician model:

1) the CA by McGibney et al. [5];

2) the ML estimator [6]-[9];
3) the EM method [10], [11];
4) the analytically exact solution, proposed by Koay and
Basser in [19].
In all the cases where the variance of noise is needed, it is man-
ually set to its optimal value. Note that the ML and EM estima-
tors, as well as the method by Koay and Basser, are designed to
work with several samples of the same image. As in the present
experiment we suppose only one sample is available, the statis-
tics are computed using local neighborhoods. In all cases, 5 X 5
neighborhoods have been used. To compare the filters with other
techniques, as follows.
5) Adaptive Wiener Filtering [32], using a 5 X 5 neighbor-
hood. In order to achieve the best performance of the filter,
o, is manually set to the actual value.
6) The wavelet domain noise filter for medical imaging
proposed by PiZurica et al. in [14]. The best results for this
experiment are achieved using K = 5 and 5 x 5 window
size.
And finally, the LMMSE based schemes, as follows.
7) The LMMSE Estimator, as proposed in (13), with o,
manually set to the actual value. 5 x 5 neighborhood.
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8) The LMMSE Estimator, as proposed in (13), with o,, au-
tomatically estimated using (18). 5 x 5 neighborhood both
for filtering and noise estimation.

9) The LMMSE Estimator, as proposed in (13), with over-
estimation of noise, manually setting the standard devia-
tion of noise to o, + 20.

10) Although once the image is filtered with the LMMSE
estimator the output model is no longer Rician, or at least
nothing assures it is, we can think in making the filter re-
cursive. As the noise is dynamically estimated in each iter-
ation, the filter should reach a steady state as the estimated
noise gets smaller and smaller. As aresult, if a proper noise
estimation is done, the filter should stop modifying the
input image once the noise is eliminated. We define then a
recursive LMMSE (RLMMSE). For the experiments, eight
and 50 iterations are considered, and a 5 X 5 neighborhood
has been used both for filtering and noise estimation.

To compare the restoration performance of the different
methods, two quality indexes are used: the Structural Simi-
larity (SSIM) index [33] and the Quality Index based on Local
Variance (QILV) [34]. Both give a measure of the structural
similarity between the ground truth and the estimated images.
However, the former is more sensitive to the level of noise in
the image and the latter to any possible blurring of the edges.
This way we are able to assess the noise cleaning and border
preserving capability of the different schemes. Both indexes are
bounded; the closer to one, the better the image. In addition,
the mean square error (MSE) is also calculated. To avoid any
bias due to background, these three quality measures are only
applied to those areas of the image inside the skull.

Table I shows the experimental results of the average of 100
experiments for two different values of o,,. The best value of
each column has been highlighted. Some graphical results for
oy = 10 are shown in Fig. 15.

When compared with other schemes considering a Rician
noise model with proper noise estimation, the LMMSE and the
RLMMSE show a better performance in terms of noise cleaning
(a larger SSIM) while the edges are preserved (the QILV value
gets better). However, when noise estimation is incorrectly done
[as in Fig. 15(h) for the case of noise overestimation], the noise
in the background is even amplified while the inner edges are
blurred.

The noise cleaning performance of the ML, EM and Koay
schemes are good, but, as the QILV index points out, they cause
image blurring. Consequently, image information is lost at the
border and the image edges. This performance is not due to
the schemes themselves, but to the fact that they are originally
designed to estimate the signal from multiple samples. When
only one image is available, the statistics must be calculated
locally. Consequently this local estimation produces some
edge smoothing, in some cases similar to the one produced by
a Gaussian filter. LMMSE, although it is also based on local
statistics does not show this edge-blurring behavior. This is one
of the arguments for using LMMSE when only one sample is
available.

It is interesting to study the performance of the Wiener fil-
tering; although it slightly blurs the image, it shows an overall
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Fig. 15. Experiment with synthetic noise. MRI from Brainweb (detail).
(a) Original Image. (b) Image with Rician noise with o,, = 10. (c¢) Con-
ventional approach. (d) ML estimator. (¢) EM method. (f) Koay’s method.
(g) Wavelet Domain Noise filter. (h) LMMSE estimator with noise overes-
timation (o, = 30). (i) LMMSE estimator with 0,, = 10 (manually set).
(j) LMMSE estimator automatic noise estimation. (k) Recursive LMMSE
(eight iterations). (1) Recursive LMMSE (50 iterations). The LMMSE filters
with correct noise estimation show the best performance, as confirmed by the
numerical results in Table I.

good performance. Its performance is worse than the LMMSE,
because the Wiener filter is based on a Gaussian noise model.
This mismatch between the Rician model and the Gaussian
model is not too large in structural MRI, but becomes more
important in other kind of images, like diffusion weighted
images (DWI).

On the other hand, the Wavelet based filter shows also a good
behavior, both in edge preservation and noise cleaning, though
the quantitative quality indices are a bit lower than those of the
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TABLE I
QUALITY MEASURES FOR THE SYNTHETIC EXPERIMENT: SSIM, QILV, AND MSE FOR THE MR IMAGE WITH RICIAN NOISE. TWO DIFFERENT ¢,, VALUES HAVE
BEEN CONSIDERED. IN BOLD FACE, THE BEST VALUE OF EACH COLUMN. LMMSE-BASED SCHEMES SHOW BETTER RESULTS IN TERMS OF NOISE REMOVAL
AND EDGE PRESERVATION

on =10 on =20
SSIM QILV MSE SSIM QILV MSE
Noisy 0.7904 0.9890 100.2940 | 0.5722 0.9251 395.0881
CA 0.8491 0.6430 192.1922 | 0.8236 0.6543 205.6214
EM 0.8685 0.6513 144.1177 | 0.8373 0.6342 168.0615
Koay 0.8424 0.6026 212.4360 | 0.8024 0.5259 290.9409
ML 0.8681 0.6516 144.2500 | 0.8370 0.6354 168.1712
Wiener 0.9092 0.9839 579197 | 0.8146 0.9076 161.8120
Wavelet 0.8723 0.9889 51.8368 | 0.7695 0.9441 132.4157
LMMSE (Overestimation) 0.8107 0.8206 229.0185 | 0.7465 0.7077 376.9618
LMMSE (Manual noise) 0.9168 0.9921 53.9731 0.8346 0.9613 130.5361
LMMSE (Automatic noise) | 0.9177 0.9921 53.6904 | 0.8389 0.9606 128.1376
RLMMSE (8 steps) 0.9270 0.9917 51.8197 | 0.8597 0.9502 122.5699
RLMMSE (50 steps) 0.9298 0.9915 51.8487 | 0.8540 0.9429 129.5132

Fig. 16. Original MRI image from [14].

proposed schemes. In addition, the filter has a parameter K that
has to be manually tuned to achieve the best results.

Finally, the RLMMSE results show a very good performance,
when compared with the other schemes. There is a good bal-
ance between noise cleaning (SSIM index) and edge and struc-
tural information preservation (see QILV values). In addition,
the filter shows great numerical stability: after 50 iterations the
results are similar to those after eight iterations, indicating that
the filter reaches a steady state.

One main advantage of the LMMSE filter (and to some ex-
tent for the RLMMSE filter) is that the solution can be com-
puted in one single step (or a few steps for the RLMMSE filter),
making it computationally efficient for large data sets as fre-
quently encountered in DWI. This is in contrast to the EM and
ML schemes, as well as to the approach by Koay and Basser,
where the solution is found by numerical optimization and, thus,
iteratively.

A further comparison has been done with the Wavelet based
filter. The brain image used in [14] has been used as ground
truth, see Fig. 16. The image is artificially corrupted with Rician
noise with different values of o,,; from 1 to 30. The noisy image
is filtered using the wavelet filter (with K = 2), the LMMSE
scheme and a RLMMSE with 5 iterations and noise estimation
using (18). In every case, a 5 X 5 window has been used. The
average of the quality measures of 100 experiments for each o,
value is depicted in Fig. 17. Results show a better performance
of both LMMSE schemes.

A next synthetic experiment is done using a 3-D ball, where
Rician noise has been included (see Fig. 18). The image is fil-
tered using a 3-D version of the filter and a 5 X 5 x 3 window.
As no zero background is available, the noise estimation is to
be done following the method in (31). After ten iterations, the
result is the image in Fig. 18 (right).
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Fig. 17. Comparition between LMMSE and Wavelet-based schemes. Different
values of o,, have been considered. (a) SSIM, (b) QILYV, and (c) MSE.

Fig. 18. One slice of a 3-D volume. Original image (left), image with Rician
noise (center) and filtered after ten iterations (right).
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Fig. 19. SSIM index (left) and QILV index (right) of the 3-D noisy ball. There
is a noise cleaning as well as the structural information is maintained.

SSIM and QILV have been used again as quality indices.
Nineteen iterations of the 3-D RLMMSE filter have been done,
with adaptive noise estimation; results are in Fig. 19. After four
or five iterations, the filter reaches the optimum value. If we keep
on filtering, the effect will be just a slight blurring of the image.

B. Estimation Using the Background

The methods for noise estimation in MRI described so far
have the advantage that they do not need a mask to be segmented
in order to estimate the noise. So, they can be easily used in
any automatic procedure. This is one of the advantages of these
methods over the traditional ones described before.
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@

Fig. 20. (a) Distribution of the local second-order moment (using 7 X 7 win-
dows) of the image without noise (solid) and with rice noise (¢, = 10): Back-
ground pixels isolated (dash-dotted) and whole image (dashed). (b) Distribution
of the local mean of the noisy image with o,, = 10 using 7 X 7 windows: Back-
ground pixels isolated (dash-dotted) and whole image (dashed).

(@) (b)

Fig. 21. Background masks used in the experiments.

If the background of the image may be isolated, the estima-
tion can be done only over these background pixels. However,
this is not a great advantage. In Fig. 20(a), the distribution of
the local second-order moment is depicted, both for the whole
noisy image and for the background of the image. Both distribu-
tions have almost the same shape, and, what is more important,
their maxima are located at the same point. Very similar is the
behavior of the local mean as shown in Fig. 20(b).

In order to understand the influence of a proper background
segmentation over the noise estimation, a new experiment has
been done. Local moments are calculated using 7 x 7 windows.
For the noisy image, o,, = 10, and 50 simulations have been
done. First, we have used the mask in Fig. 21(a) to segment the
background pixels. This mask totally separates the background
from the signal, and it has been manually built form the original
image. The second mask is in Fig. 21(b). It has been built from
noisy data using automatic thresholding. Some of the tissue has
been assigned to background. This is a common error in auto-
matic segmentation. We will compare four different estimators:

1) the classical unbiased estimator for o2 of (6);

2) the classical unbiased estimator for o,, of (8);
3) the new 03 estimator of (17), based on second-order mo-
ment distribution;
4) the new o, estimator of (18), based on local mean distri-
bution.
Results are in Fig. 22(a) for the first mask and in Fig. 22(b) for
the second one.

When the background pixels are perfectly identified, the per-
formance of the estimators is quite similar. All the estimations
are around &,, = 10. So, in this case, the new methods do not
present any advantage over the classical ones. However, in the
second experiment, when some of the pixels of the brain are
wrongly assigned to the background, the classical methods do
not estimate properly, but the new ones do.
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Fig. 22. Estimation of o,,. (a) First background mask has been used: The new
o2 estimator of (17) based on the local second-order moment (solid), new o, es-
timator of (17) based on the local mean (dashed), classical unbiased estimator of
(6) for o2 (dash-dotted) and classical unbiased estimator of (8) for o,, (dotted).
(a) Using first background mask. (b) Using second background mask.

o, estimated

Fig. 23. Estimation of o,, using the second background mask. Method based
on the mode of the histogram (solid), new &2 estimator of (17) based on the
local second-order moment (dashed), and new o,, estimator of (17) based on
the local mean (dash-dotted).

The noise estimation method based on the mode of the his-
togram proposed in [24] is also robust when a wrong segmenta-
tion of the background is done. However, as it is shown in Fig. 23
the estimator has a larger variance than the methods proposed
in this paper.

C. Filtering MRI

To further verify the hypotheses proposed in the previous sec-
tions, and to have a visual idea of the behavior of the filter and
noise estimators, a new experiment is carried out based on real
data. A coronal slice from a 3-D MRI volume? has been se-
lected.

This original image, see Fig. 24(a), exhibits noise. The image
is filtered using the LMMSE filter and for the noise estimation
the mode of the sample mean is used (18). Result is shown in
Fig. 24(f). Some other noise-removal techniques have been used
to compare with: EM estimation, the method proposed by Koay
and Basser, the wavelet domain filter and the Wiener filter, as the
latter showed a good performance in the former experiments. In
all the cases adaptive noise estimation is performed using (18)
witha 5 X 5 window. Results are given in Fig. 24. We have also
considered once more the possibility of making the filter recur-
sive. Results in Fig. 24(g) (eight iterations) shows the good be-
havior of this technique. Even after 100 iterations, Fig. 24(h),
due to a good noise estimation, the filter is not blurring the
edges. Again, as expected, the visual results are much better for
the LMMSE-based schemes, as well as the wavelet based filter,

2Scanned in a 1.5-Tesla GE Echospeed system. Scanning sequence: Max-
imum gradient amplitudes: 40 mT/M. Six images with four high (750 s/mm?),
and two with low (5 s/mm?) diffusion weighting. Rectangular FOV (field of
view) 220 X 165 mm. 128 X 96 scan matrix (256 X 192 image matrix). 4-mm
slice thickness, 1-mm interslice distance. Receiver bandwidth 6 kHz. TE (echo
time) 70 ms; TR (repetition time) 80 ms (effective TR 2500 ms). Scan time 60
s/slice.
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TABLE I
DIFFERENT ESTIMATORS OF 02 AND 0, FOR RICIAN NOISE PROPOSED IN THE PAPER

Use Estimator Local Statistics Black background | Eq.
MRI 02 = imode(/iz;;) B2 == 2 1 Needed (17)
PEN;;
MRI n = / Zmode(fi1 ;) iy =g 2 I Needed (18)
PEM;;
=~ \ 2
MRI of = gZymode(,)) | of,; =ty 2 (Io — i) Needed 24)
PEN;
. ~ 2
Any image 02 = mode(a?ij) o?ij = IT/”% > (Ip - /.uij) Not needed @31
PEN; 4

(€3] (h)

Fig. 24. Coronal slice from a 3-D acquisition. (a) Original image. (b) EM
method. (c¢) Koay’s method. (d) Wavelet domain filter. (e) 2-D Wiener filter.
(f) LMMSE estimator, adaptive noise estimation using the local mean and a
5 x 5 window. (g) RLMMSE estimator, adaptive noise estimation using the
local mean and a 5 X 5 window (8 iterations). (h) RLMMSE estimator, adaptive
noise estimation using the local mean and a 5 x 5 window (100 iterations).

though the latter still presents a slightly noisy pattern inside the
tissues. The behavior shown for the other schemes is consistent
with the synthetic experiments: noise is attenuated at the cost of
blurring the image.

VI. CONCLUSION

A new filtering method based on the LMMSE estimator for
Rician distributed images has been introduced, together with
several noise estimation methods for that model. The filtering
method has proved to be suitable for restoration in this kind of
images, as it keeps the structure of the original image unaltered
while suppresses most of the noise. Its performance is directly
related with the goodness of the noise estimation method em-
ployed. If a good dynamic estimator is chosen, the filter may
also be used recursively, showing a very good performance in
noise cleaning. In addition, unlike other existing schemes also
based on Rician models, the fact that a closed-form expression
for the LMMSE method has been derived makes the filtering
process computationally far more efficient and easier to imple-
ment.

We have also presented four different noise estimation
methods, all of them based on the mode of some local statistic.
A survey of these methods is in Table II. The use of the mode
of the sample distribution of some local statistics (second-order
moment, mean and variance) makes the estimator less depen-
dent of parameters such as the size of the estimation window,
the uniformity of the background, and outliers.

The experiments done with synthetic and real images show
that the combination of the LMMSE filter with the noise esti-
mation techniques here proposed may be a very useful tool for
future MRI restoration.

APPENDIX A
ABOUT (20)

Parameter b is defined b = (o2/N)[(2N — 1)!1]*/V, where
n!l = n(n — 2)!, for n > 2. We can write [31]

2 (4 5]
/7
_r2-Nren) Y

- [

[(2N — )N =

and using the Stirling’s approximation [31]

1 1
I'(z) ~ e_ZZZ_I/Z(QW)l/Z |:1 + % + ST 4. :|
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Fig.25. (a) Function [(2N —1)!!]'/N (solid) and its approximation with func-
tion 2V/e (dashed). (b) Error = [(2N — 1)I!]V/N —2N/e.
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Fig. 26. Images to be analyzed. MRI from Brainweb [28]. Radiography from
Hospital Rio Carridn, Palencia, Spain. Aerial picture from GOES Project Sci-
ence (http://goes.gsfc.nasa.gov).

for z — oo and | arg z| < w, we obtain

[(2N — 1)/~
NN @N) 22w 2 [1 4 gy -]
e=N(N)N-1/2(27)1/2 [1 4 ﬁ + - ]

1/N
1—

and as N > we can approximate [(2N — D)!'|'Y/N ~ (2N/e)
and b =~ ¢%(2/e). In Fig. 25 the function [(2N — 1)!!]Y/V is de-
picted together with its approximation 2N /e for N € [1,100].

APPENDIX B
LoCAL VARIANCE DISTRIBUTION IN NONTEXTURED IMAGES

One of the noise estimators proposed is based on the assump-
tion that the distribution of the local variances in a non-noisy
image follows a distribution whose maximum is set on zero.
To evaluate this assumption, the histogram of local variances
of different kind of images has been evaluated. The images are
shown in Fig. 26. Medical, meteorological and natural images
have been used. The sampling local variance is calculated using
5 x 5 windows. The results are shown in Fig. 27. Finally, the
mean of the distribution of 29 images from LIVE database [35]
is presented in Fig. 28. Two cases have been considered: first,
grayscale images and, second, RGB images where each color
component have been evaluated separately.
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Fig. 27. Normalized distribution of local variances of the images in Fig. 26,
displayed in the same order. A 5 X 5 window has been used.

Fig. 28. Mean of the normalized distribution of local variances of the images
from LIVE database [35]. A 5 X 5 window has been used. Grayscale images
(left) and RGB images (right). Each color component have been evaluated sep-
arately.

APPENDIX C
PDF OF THE SAMPLE LOCAL VARIANCE FOR RAYLEIGH
RANDOM VARIABLES

Let R;(02),i = {1,..., N} be aset of random variables with
Rayleigh distribution. The (biased) sample variance is defined
as

2

—

1 & 1 &
Var(R;) = > (Ri)? - v > R
=1 =1

We can define

2

N
IZ 2, 9 o
Sl:ﬁiﬁRi(a )NX2N<N>

being x2on a Chi-Square distribution, and

1 & )
S2= = 2 Ri(o?).
The sample variance can be defined as
V = Var(R;) = S1 — (5,)°.
The PDF of S, can be approximated [30] by

22N—1 NN —2°N/2b
2N-1pNT(N)

ps,(z) =
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According to the fundamental theorem [29] the PDF of (S5)? is

pN—1 N —aN/2b
P (7) = —5NGNT(Y

(52)* ~ xan <%) :

We can approximate (see Appendix A) b ~ %(2/e), so

2
2 0" 2
(S2) X2N<Ne)~

The distribution of the sample variance is then the distribu-
tion of the difference of two Chi-Square random variables. Ac-
cording to [22] this distribution, for z > 0 and the same (even)
number of degrees of freedom is

N
1 -5 of
pX(a:)—2U%e 1(N—l)' 01+0'%>
= (2N -2-Fk)!

X

]

N-1—-k k
02 X
o% + 0'% 20%

Making 0? = (02/N), 03 =

X

(62/N)(2/e), we can write

(EBE)

N-1
N N -2
pV(x) = CVB 4 — m

being

N-—1
oo N1

202 (N — 1)1 (1 + 2/e)2N-1"

APPENDIX D
DIFFERENCE OF NONCENTRAL CHI-SQUARE
RANDOM VARIABLES

Let X; and X5 be two random variables with noncentral Chi-
square distributions, such as

X1~ X, (mag; A1) Xo ~ xk, (waz; A)

with PDFs
_zait)
2

= filza; K, Ni) = ‘

% rog
i
being I,,(z) the modified Bessel function of the first kind, which
can be rewritten using ascending series [31] as

pi() 5

N L. _y (Vaaiki) ule)  (32)

1 ) n+2k

n+k+U
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Equation (32) can be accordingly rewritten as
—2 +2m )\m

o0 & m K;
e 5 ()7
‘ 2 m!T (

m=0

+m)

Let us define the variable V as V = X; —
can write

Xs. Forz > 0, we

pv(z) = /0 h pi(z +y)p2(y) dy

If using Newton’s generalized binomial theorem, the final PDF
can be written as

,mwnﬂz i ii <l>n+m+p+l AT AT

m=0n=0p=0
Ki/2—14m K>/2—14n

><<71—1+m> a3t )
Ki+K
p (g +ag) =7 -~

PS4 1 bmtn—)
m!n!T (%-I—m)F(%-I—n)

pv(z) =

1+m+n—p

(33)

APPENDIX E
SAMPLE VARIANCE IN RICIAN DISTRIBUTED DATA

Let R;, @ = {1,...,
Rician distribution and

1 1
:NZR? SZ:NZR,L-.
=1 =1

The sample variance can be defined as V' = S; — (S2)
PDF of S is [21]

N} be a set of random variables with

2 The

ps, (z) = Mya = e =N/20 |

( VaNA )
1 2

o
with M a constant, and A% = ", A?. The sum of Rician dis-
tribution is, as in the Rayleigh case, a classical problem in com-
munications. We can use the approximation in [21]. From here,
the PDF of (S2)? would be

N—1 e 2 vV Nb
psg(ﬂﬁ):szTe““c?Iz\r_l( ° )

C1C2

with M5 a constant, and c;, ¢z, and b parameters related with
N and the Signal to Noise ratio. Both PDF may be expressed as
noncentral Chi-Square distributions

N A? N b?
St~ v o S2 ~ .
1 X2N<02702> 2 X2N(c% c%)

The subtraction of two noncentral Chi-Square random variables
has been studied in Appendix D. Accordingly, the PDF of the
sample variance will be like the one in (33). However, this long
equation may have some problems when trying to numerically
determine its maximum, specially when the argument of the
Modified Bessel function is not small.
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Fig. 29. Rician distributed data. Theoretical PDF versus real data distribu-
tion. Left: Local Sample variance. Center: Local second-order moment. Right:
Square local mean. Solid line: data distribution. Dashed line: theoretical PDF.

Experimentally, a good approximation has been obtained,
without any dependence on the parameters cy, c2, A, and b

2N—1

. 2N -1
~ - 2
o= s ()
xt™(1+ N)"T'(2N —1/2 —m) (34)
with t = (zN/(202)).

To show the behavior of the approximation, some data has
been generated following a Rician model. A constant image
with value 20 has been corrupted with Rician noise with o,, = 6.
The distribution of some local statistics have been calculated
using 3 x 3, 5 x5 and 7 x 7 square windows. The results are
shown in Fig. 29. In the solid line, the actual data distribution is
depicted, and the theoretical distribution is in dashed line.

ACKNOWLEDGMENT

The authors would like to thank Dr. R. San José and Dr. M.
Niethammer for valuable comments.

REFERENCES

[1] D. Drumheller, “General expressions for Rician density and distribu-
tion functions,” IEEE Trans. Aerosp. Electron. Syst., vol. 29, no. 2, pp.
580-588, Apr. 1993.

[2] H. Gudbjartsson and S. Patz, “The Rician distribution of noisy MRI
data,” Magn. Reson. Med., vol. 34, pp. 910-914, Aug. 1995.

[3] S. Basu, T. Fletcher, and R. Whitaker, “Rician noise removal in diffu-
sion tensor MRL,” in Proc. MICCAI, 2006, vol. 1, pp. 117-125.

[4] R. Henkelrnan, “Measurement of signal intensities in the presence of
noise in MR images,” Med. Phys., vol. 12, no. 2, Mar. 1985.

[5] G. McGibney and M. Smith, “Un unbiased signal-to-noise ratio mea-
sure for magnetic resonance images,” Med. Phys., vol. 20, no. 4, pp.
1077-1078, Jul. 1993.

[6] J. Sijbers, A. J. den Dekker, P. Scheunders, and D. Van Dyck, “Max-
imum-likelihood estimation of Rician distribution parameters,” IEEE
Trans. Med. Imag., vol. 17, no. 3, pp. 357-361, Jun. 1998.

[7]

[8

—

[9

—

(10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

J. Sijbers, A.J. den Dekker, D. Van Dyck, and E. Raman, “Estimation of
signal and noise from Rician distributed dala,” in Proc. Int. Conf. Signal
Processing Communications, Las Palmas de Gran Canaria, Spain, Feb.
1998, pp. 140-142.

J. Sijbers and A. J. den Dekker, “Maximum likelihood estimation of
signal amplitude and noise variance form MR data,” Magn. Reson.
Imag., vol. 51, pp. 586-594, Feb. 2004.

L. Jiang and W. Yang, “Adaptive magnetic resonance image denoting
using mixture model and wavelet shrinkage,” presented at the 7th
Digital Image Computing: Techniques and Applications, Sydney,
Australia, Dec. 2003.

M. D. DeVore, A. D. Lanterman, and J. A. O’Sullivan, “ATR perfor-
mance of a Rician model for SAR images,” in Proc. SPIE, ISSV 4050,
Orlando, FL, Apr. 2000, pp. 34-37.

T. Marzetta, “EM algorithm for estimating the parameters of mul-
tivariate complex Rician density for polarimetric SAR,” in Proc.
ICASSP, May 1995, vol. 5, pp. 3651-3654.

P. Fillard, V. Arsigny, X. Pennec, and N. Ayache, “Clinical DT-MRI
estimation, smoothing and fiber tracking with log-euclidean metrics,”
in Proc. IEEE Int. Symp. Biomedical Imaging, Apr. 2006, pp. 786-789.
R. Nowak, “Wavelet-based Rician noise removal for magnetic res-
onance imaging,” IEEE Trans. Image Process., vol. 8, no. 10, pp.
1408-1419, Oct. 1999.

A. PiZurica, W. Philips, I. Lemahieu, and M. Acheroy, “A versatile
Wavelet domain noise filtration technique for medical imaging,” IEEE
Trans. Med. Imag., vol. 22, no. 3, pp. 323-331, Mar. 2003.

M. Lysaker, A. Lundervold, and X. Tai, “Noise removal using fourth
order partial differential equations with applications to medical
magnetic resonance imaging in space and time,” IEEE Trans. Image
Process., vol. 12, no. 12, pp. 1579-1590, Dec. 2003.

T. McGraw, B. C. Vemuri, Y. Chen, M. Rao, and T. Mareci, “DT-MRI
denoising and neuronal fiber tracking,” Med. Imag. Anal., vol. 8, pp.
95-111, Jun. 2004.

C. B. Ann, Y. C. Song, and D. J. Park, “Adaptive template filtering
for signal-to-noise ratio enhancement in magnetic resonance imaging,”
IEEE Trans. Med. Imag., vol. 18, no. 6, pp. 549-556, Jun. 1999.

S. Awate and R. W. RT, “Nonparametric neighborhood statistics for
MRI denoising,” in Proc. Int. Conf. Inf. Process. Med. Imaging, 2005,
vol. 3565, pp. 677-688.

C. G. Koay and P. J. Basser, “Analytically exact correction scheme for
signal extraction from noisy magnitude MR signals,” J. Magn. Reson.,
vol. 179, pp. 317-322, Apr. 2006.

M. Martin-Ferndndez, C. Alberola-Lépez, J. Ruiz-Alzola, and C.-F.
Westin, “Sequential anisotropic Wiener filtering applied to 3-D MRI
data,” Magn. Reson. Imag., vol. 25, pp. 278-292, Feb. 2007.

J. Hu and N. C. Beaulieu, “Accurate closed-form approximations to
Ricean sum distributions and densities,” IEEE Commun. Lett., vol. 9,
no. 2, pp. 133-135, Feb. 2005.

M. K. Simon, Probability Distributions Involving Gaussian Random
Variables. Norwell, MA: Kluwer, 2002.

J. Sijbers, A. J. den Dekker, J. Van Audekerke, M. Verhoye, and D.
Van Dyck, “Estimation of the noise in magnitude MR images,” Magn.
Reson. Imag., vol. 16, no. 1, pp. 87-90, Jan. 1998.

J. Sijbers, A. J. den Dekker, D. Poot, M. Verhoye, N. Van Camp, and A.
Van der Linden, “Robust estimation of the noise variance from back-
ground MR data,” presented at the SPIE Medical Imaging: Image Pro-
cessing, Mar. 2006.

J. Sijbers, D. Poot, A. J. den Dekker, and W. Pintjenst, “Automatic
estimation of the noise variance from the histogram of a magnetic res-
onance image,” Phys. Med. Biol., vol. 52, pp. 1335-1348, Feb. 2007.
R. Salvador, A. Peiia, D. K. Menon, T. Carpenter, J. Pickard, and E.
T. Bullmore, “Formal characterization and extension of the linearized
diffusion tensor model,” Human Brain Map., vol. 24, pp. 144—155, Feb.
2005.

S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Englewood Cliffs, NJ: Prentice-Hall, 1993.

D. Collins, A. Zijdenbos, V. Killokian, J. Sled, N. Kabani, C. Holmes,
and A. Evans, “Design and construction of a realistic digital brain
phantom,” IEEE Trans. Med. Imag., vol. 17, no. 3, pp. 463—-468, Mar.
1998.

A. Papoulis, Probability, Random Variables, and Stochastic Processes,
3rd ed. Boston, MA: McGraw-Hill, 1991.

N. C. Beaulieu, “An infinite series for the computation of the com-
plementary probability distribution function of a sum of independent
ramdom variables and its application to the sum of Rayleigh random
variables,” IEEE Trans. Commun., vol. 38, no. 9, pp. 1463-1474, Sep.
1990.

Authorized licensed use limited to: The University of Utah. Downloaded on November 24, 2008 at 18:54 from IEEE Xplore. Restrictions apply.



1398

[31] M. Abramowitz and 1. A. Stegun, Handbook of Mathematical Func-
tions with Formulas, Graphs, and Mathematical Tables, 9th ed. New
York: Dover, 1964.

[32] 1. S. Lim, Two Dimensional Signal and Image Processing. Engle-
wood Cliffs, NJ: Prentice-Hall, 1990.

[33] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.

[34] S. Aja-Fernandez, R. San-José-Estépar, C. Alberola-Lopez, and C.
Westin, “Image quality assesment based on local variance,” in Proc.
28th IEEE EMBS, New York, Sep. 2006, pp. 4815-4818.

[35] Live Database. Laboratory for Image and Video Engineering (LIVE)
[Online]. Available: http:/live.ece.utexas.edu/research/quality/subjec-
tive.htm The Univ. Texas, Austin

Santiago Aja-Fernandez received the Ingeniero de
Telecomunicacién and the Ph.D. degrees from the
University of Valladolid, Spain, in 1999 and 2003,
respectively.

He is an Assistant Professor with the E.T.S.I. Tele-
comunicacién, the University of Valladolid, where
he is also with the Laboratory of Image Processing
(LPI). His research interests include medical image
analysis and processing.

Dr. Aja-Ferndndez was awarded with a Fulbright
Scholarship for a one-year stay as a Research Fellow
with the LMI, Brigham and Women’s Hospital, Boston, MA.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 8, AUGUST 2008

o

Carlos Alberola-Lépez received the engineering
of Telecommunication degree and the Ph.D. degree
from the Politechnical University of Madrid, Madrid,
Spain, in 1992 and 1996, respectively.

He is a Professor at the ETSI Telecomunicacion,
University, Valladolid, Spain. In 1997, he held
a visiting scientist position at Thayer School of
Engineering, Dartmouth College, NH. His research
interests are statistical and fuzzy methods for signal
and image processing applications. He is the Head
of the Laboratory of Image Processing (LPI), Uni-

versity of Valladolid. He is a reviewer for several scientific journals and he is a
consultant of the Spanish Government for the evaluation of research proposals.

Carl-Fredrik Westin (M’99) received the M.Sc. de-
gree in applied physics and electrical engineering in
1988, the Lic.Techn. degree on the topic of feature
extraction from a tensor image description in 1991,
and the Ph.D. degree in computer vision in 1994 from
Link&ping University, Linkoping, Sweden.

He joined the Computer Vision Laboratory in the
Department of Electrical Engineering, Linkoping
University, the same year where he did research
on color, information representation, image flow,
frequency estimation, filtering of uncertain and

irregularly sampled data and tensor operators in image analysis. In 1996, he
joined Brigham and Women’s Hospital and Harvard Medical School, Boston,
MA, where he became the Director of the Laboratory of Mathematics in
Imaging (LMI) in the Department of Radiology in 2001, and a Research
Affiliate of the Artificial Intelligence Laboratory at the Massachusetts Institute
of Technology, Cambridge.

Dr. Westin was awarded the SAAB-SCANIA prize for his work in computer

vision in 1991.

Authorized licensed use limited to: The University of Utah. Downloaded on November 24, 2008 at 18:54 from IEEE Xplore. Restrictions apply.



