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Local Hull-Based Surface Construction

of Volumetric Data from Silhouettes

Dongjoe ShinStudent Member, IEEBNd Tardi TjahjadiSenior Member, IEEE

Abstract

The Marching Cube (MC) is a general method which can constsurface of an object from its volumetric data generated
using a shape from silhouette method. Although MC is efficiamd straightforward to implement, a MC surface may have
discontinuity even though the volumetric data is contiraidthis is because surface construction is more sensitiimage noise
than the construction of volumetric data. To address thiblpm, we propose a surface construction algorithm whidregmntes
local surfaces constructed by the 3D convex hull algoritfitius, the proposed method initially classifies local coitiex from
imperfect MC vertices based on sliced volumetric data. Erpental results show that continuous surfaces are olutairmm
imperfect silhouette images of both convex and non-comgzots.

Index Terms

Shape from Silhouettes, Marching Cube, Delaunay triatigmiaSurface extraction

I. INTRODUCTION

HE 3-dimensional (3D) visual hull is generated by the irgetion of multiple 3D cones that are created by backprajacti
T of 2D silhouettes of different views of an object onto 3D gpt]. Approaches to object reconstruction involving 3D
hull are collectively called Shape from Silhouette (Sf@hteiques [2] and an octree is the most widely used represamta
describe a visual hull. The construction of an octree ineslprojecting an initial bounding cube (which encloses geaihin
3D space) onto multiple images of the object taken at diffexéews, and splitting the cube into eight smaller cubesedal
octants if the projection intersects a silhouette [3]. Ehestants are then classified as one of three cases: outssitgg iand
intersection. Thus, object reconstruction is achieved dwing out octants classified as outside, and surfaces aracted
from the resulting octree for an effective visualisation.

The Marching Cube (MC) is the most successful method forasericonstruction from an octree [4]. It estimates surface
triangles from intersection octants, and the location efttiangles are determined by the configuration of insid¢ices of an
intersection octant. However, the MC generated surface coayain unexpected holes or discontinuities that are nesert
in its octree. One reason for surface discontinuity is duéhoconnectivity of octants as was first reported by Mercrat a
Meneveaux [5] who also proposed a process which thickensthesection octants to ensure 6-connectivity, and chauage
inside octant to an intersection octant. But the proces®istmaightforward to implement for the following reasossice it
checks whether two adjacent inside and outside octantsateeisame hierarchy level of the octree, the octree hieyarech
repeatedly referred to when creating a surface; and theequbst image pixel based refining method has to verify whethe
two adjacent surface lines remain connected.
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Another possible reason for discontinuity is due to the togical ambiguity of the MC algorithm. For example, when a
face of an octant has an intersection point with a surfacaah ef its four edges, the topologically correct connectarong
the intersection points becomes ambiguous and this reisulfgpe A hole problem [6], [7], and Chen et al. reported seven

ambiguous configurations that create holes and incorrautexdivity [8].

A more practical reason for surface holes is due to erroneauntera calibration and imperfect silhouettes, which chang
the position of the projection of an octant or the value at hgection position. Therefore, traditional octree constion
methods take special care of these processes. Szeliskiadsgdive thresholding followed by a local shrinking opieratfor
silhouette detection, and a hexagonal calibration paiteattached to the turntable for a precise camera calibraticevery
rotation [9]. Mercier and Meneveaux used over-exposed @saand a seed-fill algorithm to generate silhouette imagds an
attach an LED on the rotational axis of the turntable for aataicalibration [5]. However, measurement error is irabli in
calibration and there are no image preprocessing algositinait can deal with all effects of imaging conditions. Foamaple,

a seed-fill algorithm can reduce noise on silhouette imagesibthe expense of losing concave surface details.

On the other hand, octree construction is robust againgiemaise because an octant is not removed when nonzeradvalue
pixels are found within the projection of the octant. Thusspite some unpredictable error on silhouette images ethdting
octree can be similar to the octree created from error-filbeisette images if the size of an octant is not too small. The
octree construction only changes the status of an octant inside to intersection. Therefore, to retain non-convafase
details in silhouette images, simple thresholding is pedfle for its octree construction. However, in this case MC surface

is significantly degraded.

Thus, we propose a surface construction method for an iragefC result. The method exploits the connectivity infotiom
of an octree, which is referred when building a new face fromperfect MC vertices. We premise a general non-convex bbjec
as a piecewise convex set, and an object surface is corestrfrcim an aggregate of its local convex surfaces. The lnitia
MC vertices are grouped into different slices and classifead connections are made with appropriate vertices incadfa
slices in order to determine local convex regions. The Bayksis used for classifying and connecting the MC vertiddse
conditional probability density functions (pdfs) used I Bayes rule are estimated from octree vertices that agrded as

sampled points on the true 3D object.

A similar method which uses data slices for surface germraias also been proposed in [10]. However, the cylindrical
mapping of this method focuses on merging 3D range datar@atdiom different views and only a simple object is consder
The principal axis of such an object must pass through thectbaind a normal of the principal axis must pass through only
one point on the object, i.e., the object is convex. An altéme mapping procedure is also proposed for a more complex
object, e.g., an object with a single cavity like a cup. N#weless, the algorithm has not been designed for a gengesdtob

Thus, if there are multiple clusters in a slice then the atgor will have difficulty in aligning the slices.

The paper is organised as follows. Section Il presents sodstirg) surface construction algorithms, such as MC and its
variants, 3D convex hull method and the Delaunay triangaafThe possible problems with these methods are also iexpla
An overview of the proposed method is detailed in Section Skkction IV presents the proposed local hull-based surface

construction method. Finally, Section V and VI present thpegimental results and conclusion.



Il. SURFACE FROM SILHOUETTES

A. Obtaining an octree from silhouettes

A major process of octree construction is the projectionrobatant and an intersection test to determine if the prigject
intersects a silhouette. However it is cumbersome to estire@ery projection matrix at a particular position from tmo
camera motion such as pure rotation, pure translation eraplmotion which consists of both rotation and translatiorhie
plane. For these motions, projection matrices are norntahwved from the projection matrix at the reference positio

A projection matrix can be decomposed into two matrices whelements are related to the internal and external camera

parameters [11]. For example, for a point in 3D space reptedeby a vectolrsy, its projectionzsy is
Tog = K[R #]i54, (1)

where K is a matrix related to the internal camera parametBrandi are rotation and translation in 3D space, respectively,
and are determined by the external camera parameters. Heecprojection matrix is? = K[R  ].

If the same camera is used for grabbing all images withouhging its internal parameters, thédn is the same for all
projection matrices. Also, if the camera motion is assunteflé a circular motion consisting of pure rotation on the same

plane, e.g., as in a turntable image sequence, the prajettadrix in (1) is parmeterised by a rotation angle, i.e.,

cosf sinf 0 t,
P)=K |-sinf cosf 0 t,|, (2)
0 0 1 0
where# is a rotational angle from the reference position, an@ndt, respectively represent the and y translation when
6 = 0. In most casesP () in (2) is acceptable bud is not always accurately measured and the rotational axiobbly at
times. These errors propagate to the surface construction.

A silhouette is generated by thresholding an image duringnsgrsection test. Any error in the resulting silhouette is
insignificant as far as constructing an octree is concerpeduse the intersection test only determines an octaninérsection
status and not the position of the internal vertices. Howebe resulting error in surface construction is significsince the
locations of inside vertices are crucial in defining the sswface of an octant. For example, when the backprojecticamo
octant results in one vertex within a silhouette, i.e., cas¢he octant is classified as intersection and the insidewés
easily identified. However, it is ambiguous to identify aside vertex when only part of the edge of an octant is within a
silhouette (case b) or the silhouette is entirely within ataot (case c), although the projection of the octant issdiasl as
intersection. Case b and c are frequently found when impesithouette images and projection matrices are used onwhe

the octree resolution is not small enough.

B. Marching cube and its variants

MC [4] was originally developed for 3D visualisation of medi images, e.g., computed tomography or magnetic resenanc
images but its simplicity makes it evolves to other appiaat [12], [13]. MC cannot predict the implicit surface ditly from
a surface octant, but it assumes that intersection octaatsintlude an actual surface which crosses an edge joiniog tw
vertices of a surface octant with opposite status, i.eidénand outside. Thus, when MC constructs surface patdhesninects
the middle of the edges having different status. Howeves,déacision on an inside vertex is affected by various fadiors

practice, e.g., the precision of the projection matrix amel moise in a silhouette image.



Consider a 3D vertex points,; with a cost function

1 if P(@i)fgd cS;
; )

ci(0i, T34) =
0 otherwise
where S; is an object silhouette if-th image and; is i-th rotational angle from the reference. The point is cfasias

outside when
H ¢i(0;,23q4) =0, (4)
1=0

wheren is the total number of silhouette images. Therefore, if amjgztion of a 3D vertex is erroneously classified as outside
a silhouette, it supersedes other statuses previouslyedefinother silhouettes. This erroneous classificationnoftecurs if
there is noise in the silhouette and no inside vertices areda@ven though the octant is classified as intersection, asgn
case b and c. Thus, the MC surface loses surface patchesthdtt in holes and unattached object segments. To avoid this
situation, the Voting MC (VMC) counts the number of casessified as outside and identifies an outside vertex if the vote

is greater than a threshold,, [14]. Thus, the decision function (4) is revised as

¢i(0i,T3a) —ven <0, 0 <oy <n. (5)

n
=0
The problem with VMC is that its result varies with the threkhlevel even for a convex object, and it is difficult to cheos

an appropriate threshold.

C. Delaunay triangulation and convex hull

An alternative approach, the 3D Delaunay Triangulation XI[PI5], constructs a surface by defining tetrahedrons from
arbitrarily distributed 3D points. The 3D DT characterisash tetrahedron by not allowing any point within its ciraphere.
If there is such a point then DT subdivides the tetrahedraauit changing the shape of a super tetrahedron [16]. The
Constrained Delaunay Triangulation (CDT) [17] has beervexdbin order to include a predescribed boundary. In 3D harev
CDT cannot tetrahedralise some special ployhedron withauadditional point or surface modification, e.g., a twigheidm,
and the problem in determining whether a given polyhedranbmtetrahedralised is NP-complete [18].

Although other variations of the DT algorithms, e.g., caniing constrained DT [19] and the conforming DT [20], have
been proposed to solve the problem, they assume that ibitimhdary information is given. Besides, the result of DT i 3
is not triangles but tetrahedrons, i.e., three additioaaé$ are redundantly created in order to make one surfaceyliei

DT is topologically related to a convex hull. If for a set ofipis I in the n-dimensional space, a set of the poiitsare
fitted to a hyper quadric in+1 dimension, e.g.z% + y? + 2% = d? for n = 2, then the projection of the convex hull &f onto
the lower dimension is equivalent to the DT resultlof21]. Algorithmically, the convex hull algorithm is simpléhan DT
and results in fewer number of triangular patches becausdytstores surface triangles, i.e., there are no interimidles as
normally found with DT. However, both algorithms are desigrio construct convex shapes. Therefore, we propose aajener
surface construction algorithm which copes with concawityilst preserving the advantages of the 3D hull algorithrhisT
is achieved by classifying local convexities from an impetfMC surface and estimating each local hull using the 3D hul
algorithm. Finally, locally constructed surfaces are carad to complete the surface construction. Thus, the proloesurface

construction becomes two separate problems, i.e., howassify a local convexity and how to construct a local surface
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Fig. 1. The overall surface construction process.

Ill. OVERVIEW OF THE PROPOSED METHOD

The overall surface construction process is illustrate#ign 1 where the proposed method involves the processeesantl
in two grey-shaded processing boxes, i.e., the local conlassification and 3D hull based surface generation. Thggion
matrix estimation determines the projection matrix at gierence position and uses it to estimate other projectiatnices in
the circular motion. In our experiment the rotational angjis set to 6 degree. Images of an object are thresholded toajene
silhouette images, and sixty projection matrices, one &mheof the sixty image planes are fed to the initial data pijzm
process.

An octree data is first constructed in the initial data prapan process and it is used to estimate the initial MC vestic
that are normally obtained from the best VMC. In our octreastaiction a 2D intersection test is used, i.e., an octant is
backprojected onto every silhouette image, and if it irgets a silhouette the octant is classified as intersectidrsplit into
8 suboctants. For robust octree construction, the backgim) of an octant is approximated as a rectangle, and ifeti@amgle
has no intersections then the corresponding octant isifideisas background and is removed. There are numerous tlignsri
that facilitate the intersection test in 2D image planeliSki proposed an almost real-time algorithm which usesali h
distance transform [9]. Potmesil approximated the pra@eacas a rectangle [22]. Chien and Aggarwal used a quad tr&e [2
Ahuja and Veenstra reduced the number of silhouette imagemly using orthographic views [24]. A few 3D intersection
test algorithms have also been proposed in [25], [26]. Hanesince the speed of creating the volumetric data is nossuei
in our research, the fundamental octree construction rdetias been developed for our surface construction process.

The proposed local-hull based surface estimation congptise sequential processing blocks: local convex classifica
and 3D hull based surface construction. The first block datezs local convex regions from the initial MC surface veaa$.
Data slicing and classification are required to define theswex regions. For the classification of initial verticeljster
conditional pdfs are estimated from every octree slice. Assalt of the first block, a tree table storing information the
cluster connection and local convex vertices table aregoasthe next block.

The 3D hull-based surface construction block creates gpjate local surfaces using the convex hull algorithm. lloca
convexity with multiple connections, e.g., 1:n or n:1 coctiens are divided into: 1:1 local convexities before it is used to

create a local hull. As a result of the second block, all Ieszafaces are aggregated to complete the surface estimation



IV. LOCAL HULL-BASED SURFACE CONSTRUCTION

Two properties of a 3D object are premised. The first is cotiviBcwhich assumes the surface of an object should cover
an object tightly without any unattached object segmera. firface is obtained without violating the first properpcle edge
of the surface should be traversed twice to make two condgmches. Otherwise there is a hole in the surface and the edg
is called a dangling edge.

The second property due to the assumption of piecewise giywvaf a 3D object is the continuity of an object. It allows
a shape with local convexity to be similar to its adjacentvenity if they are connected [27]. To make this property more
robust, an object needs to be sliced infinitesimally. Howesach slice cannot be smaller than the size of the smal¢sho
The second property enables the data distribution betweerottree slices to be approximated. It considers a localedty

to be continuously connected to other local convexitiesdja@ent slices.

A. Volumetric data slicing

The proposed algorithm uses the best VMC vertices since dheyloser to the actual surface than vertices of intemecti
octants, and the number of vertices are considerably reld@e the other hand, the octree vertices are used to defineah lo
convexity from MC vertices and their connections. In orderdpresent an object as a piecewise convex set, the dateed sl
along thez axis and the slicing interval is defined by the height of thelast octant. Even though a MC surface has twice
finer resolution, the same slicing level is used to keep tleespondence between an octree and a MC slice. The sliceltsres
are stored in planes called MC slic8*“. The corresponding octree vertices also need to be sliceédhenresults are stored
in octree slicesS?c.

For a 3D delta function

1 fz=y=2=0

oz,y,2) = , (6)
0 otherwise

the i-th sliced data of an octree (i.65°° = U;52¢(m, n)) is
Sfc(m,n) = 0(I,y,2>5 (x—mT,l/—nT,z—zT), (7)

wherei, m andn are integer-valued indices afitlis the slicing interval. The functioa(-) indicates whether an octant contains
a 3D point(z,y, 2), i.e.,o(x,y, z) is 1 if it is and O otherwise.
An interesting observation of a sliced octree data is thatyefour points in a slices?“ are from the same octant. To treat

these points equally, the index of the octig® needs to be quantised to give th¢h quantised octree slice

S, v] = f[ S2¢(u+ j,v + k). (8)
j,k=0
Hence,S7“/[u, v] can be visualised on a binary image plane where a nonzero gggresents an octant.
On the other hand, to represent MC data by the same slice iedax though its sampling period is half 6f a binary
image planeS;"“/[u,v] is only set to 1 when a MC vertex is found withifl’ < z < (u+ 1)T, vT <y < (v+1)T and

iT < z < (i + 1)T. Thus, whilst the volume of nonzero points #§°? is T, the volume of nonzero points &t,v] in the

guantised MC slice is bounded by
©)



where f(-) is a function which estimates the volume of nonzero pointthan quantised MC slice. The actual volume of an

objectv.y; is smaller than the volume of MC slices, and which is smaltentthe volume of the octree slices, i.e.,

Vobj < Y { (ST, v]) + T2 (57 u, v]

1,U,V (10)
— SN, v] S u, v]) } < Z {87, v]T?} .

In practice, however, the volume of MC slices often violdat8)(because the erroneous classification of octree verfailego
correctly locate MC vertices.

Another observation from a sliced octree data is that eaeimtiged octree slice of a non-convex object can have mailtipl
clusters that are linked 8-neighbouring points on the ¢eadtoctree slice. These multiple clusters need to be coedhdo
other clusters in adjacent slices to define a local convekig clustering in a quantised octree slice is trivial beeapoints
belonging to the same cluster are conglomerated in accoedaith the presence of internal octants. Thus, identifgrduster
in S/’ is simply a search for connected nonzero points among 8 beigk. However, clustering i§™<¢ is not similarly
straightforward. A decision on the clustering and conmerbf clusters inS;"“? is based on the Bayesian decision making
rule [28] and a priori information of the decision is obtaineom S;“.

An octree of a dummy is illustrated in Fig. 2(a). The octreeoiained from 7 levels of octree construction from a
40[cm]x40[cm]x40[cm] initial octant, i.e., the smallestes of octant is 0.625[cm] and a total of 29 quantised octlieesand
60 clusters are found. Some slices of the oct®&}?, are illustrated in Fig. 2(b) and each nonzero pixel in aesliwicates
an octant, and octants belonging to the same cluster id=tiifn (ID) have identical grey value. For example, theeslid is

for z = 6.875[cm], which is at shoulder height of the dummy.

B. Identifying a local convexity

A local convexity is identified by two processes: clusteramgS™<? and connecting clusters between slices. Given a cluster
conditional pdfp(t|c;) which gives the probability of a test databelonging to a class;, the problem of clustering is solved
by searching for the maximum probability.

A probability mass function of-th cluster ini-th quantised octree slicB(c;) is defined by the number gfth cluster data
n; and the total number of nonzero pointsg, i.e.,

Thus, the sum of cluster probabilities in a slice, igjzo Pi(cj), is 1. From this a priori knowledge a cluster ID is predicted
when a nonzero point is found ifi;"“?. For example, if two clusters are found §§“? and their probability are’;(co) = 0.7
and P;(c1) = 0.3 then a nonzero point it$;"“? is classified as cluster.

If points in j-th cluster are known to be more likely to be in a certain pdralice, then the first a priori knowledge
is enhanced by combining it with a second a priori knowledgtained from the distribution of cluster data.flt= [u  v]"
represents the 2D position of a clustered datatimslice, a joint pdf of two random variablé'andcj that are not independent
is

—

pit.c;) = pi(tle;) Pi(c;) = pile;|) Pi(t). (12)

The a priori knowledge in (12) is converted to a test data itamehl pdf of a clustelpi(cjﬁ) called a posteriori pdf,

pi(tle;)Pi(c)) (13)

pileilt) = >, piltle;)Pi(e;)
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Fig. 2. (a) 3D octree of a dummy from [27], which is sliced adling to its z value. (b) Examples of slices where each slice is quantise28a28 grid

and a nonzero value on a slice represents an octant.

Therefore, in order to cluster MC vertices based on the Bayemle,pi(ﬂcj) in (13) needs to be estimated.
Without any assumption opi(ﬂcj), a cluster conditional pdf of a test dafa= [u v] is estimated using the Parzen non-
parametric density estimator [28] fro8{“?. If the density function is known, the probabilify that j-th cluster data is found

in a square with area,, centred af(z,y) is

ytw, /2  ztw,/2

P = Z Z pi(tle;)- (14)

V=Y— Wy /2 U=T— Wy /2
In practice, the only information available is thaj data are classified asth cluster inS;“?. Thus, the probability that
data fall within the square i® ~ k/n;, and the ratidt/n; converges to the tru® as the number of samples is increased.

The Parzen estimator increases the number of samples inaaeshjy interpolating between samples in a window, i.e.,

i

pilfle) = — 3 w(E - 1), (15)

s
7 i=0



wherew(-) is the Gaussian window with an area equalsitp Since the size of a Gaussian window confines the range of the
Gaussian function, the degree of smoothness of the pdf &xrdeted byw,,.
Each S7“ is used to estimate cluster conditional pdfs and those inséimee slice are stored in a pdf cube. Therefore, a

cluster decision functiod(¢) which determines a cluster ID of a test date [z v|T in the i-th quantised MC slice is

d(t) = max {pi(tle;)Pi(cj)}, (16)

wherej represents a cluster ID in theth slice. Fig. 3(a) illustrates the construction of a pdbewsing (15) from the slice
8 shown in Fig. 2(b) where 5 clusters are shown in differeeyghades.

Note that the cluster conditional pdf's of connected clisstere similar because the second property assumes that the
connected clusters have a similar shape. Thus, a decismida for connecting a cluster,; on the current slicé needs to

refer to the pdf cube in the next slice, i.e.,

e(cia; 1) = max{ > pia(fle;)Pisa ()} (17)

t€cia

The connection between clusters is summarised in a tree, tallere a node of the tree represents a cluster and it stores
information of bidirectional connection, i.e., a connektail ID and head cluster ID (see Fig. 3(b)). A part of the ttable
of the octree in Fig. 2(a) is shown in Fig. 3(b). Each row of tifee table shows a cluster ID (CID), the slice number (SNO),
head and tail cluster ID (HID, TID). ‘X’ indicates that theaee no connections, e.g., if HID is ‘x’ then a new local corityex
starts from the current slice. On the other hand, a local eitywterminates the connection if a TID is ‘X’. Since it issasned
that there are no unattached clusters in an object, a clsstarid not have ‘x’ as both of its head and tail ID. A slice with
multiple clusters indicates that the object has non-comr@pe and the resulting tree table has multiple HID's or 3100
show similarity of connected clusters, a Cr column is addethe table. It is defined by the modulus of the approximated

correlation coefficient between CID and TID’s. For examples Cr of two clusters,,, andc, in adjacent slices is estimated
by

(X pj(Eilem)pjsa (Filen))?
Zipiﬂ(ﬁlcn)zip?(ﬁlcm) ’

wherec,, is them-th cluster in the current slice angl is then-th cluster, which is found as the TID ef,, in the next slice.

g(cm, Cn) = (18)

When a current cluster has multiple tails then an averageatievis used.

C. Local surface construction

A local convexity is defined by two connected clusters inetéht slices. If the data is sliced reasonably small andyever
slice has a single cluster, the 3D hull algorithm will constra good surface of a local convexity because the connected
clusters are regarded as convex. However, if an object iscomtex, a local convexity can have multiple connectiong (se
Fig. 4). This means that the local convexity does not coordgo a convex shape since a convex shape is only possiliie wit
1:1 cluster connection. Thus, the 3D hull algorithm will sstto some details of the object.

Fig. 4 shows an example of multiple connections. A clusiein slice S; is connected to three clustets, ¢z andc, in
slice S(;11), and this make a &: branching connection. An opposite case ia:& merging connection which is found when
n clusters are merged to a cluster in the next slice (see CIDFgn3(b)). These multiple connections are normally found
in the octree contruction of a non-convex object. If a clugtebranching to several clusters in an arbitrary distarditfom,

unexpected connections created by the 3D hull algorithnameaghe surface construction. For example, the applicatfdhe
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3 11 8 14 0.9872 25 21 30 0.8645
12 9 15 0.6700 26 22 31 0.9621
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Fig. 3. (a) A 3D pdf cube contains every cluster conditiondd found in a quantised MC slice. A cluster conditional pdfeipolates 170x170 pixels and
the size of the Gaussian window is 5. (b) Part of the tree tabla the slice 4 to 7 shown in Fig. 2(b).

algorithm to the multiple connections in Fig. 4 results inoadl surface connecting A, B, D, E, G, H, | and K. This causes
black areas to be added and they smooth some details of thetobj

However, if the multiple connections are simply treated astiple 1:1 cases, then connections betweemndc2, between
c1 andcs, and betweemr; andc, unnecessarily duplicate the surface in the grey area esttlog K, C, J, F and | in Fig. 4.
To address this problem the proposed method divides mailtiphnections inta 1:1 connections with an appropriate division
so as to minimise possible duplication of surface patchethéncommon area. For examplg, in Fig. 4 is divided into 3
subclusters to make three 1:1 connections.

The division is performed along the best representativeovex the multiple clusters which is estimated by an eigealysis.
If £;; = [u v]" represents-th point in clusterj, m data points in the:-th branched cluster ar& = |7}, o --- fmn}
and the covariance matric' of the data isC' = 3,3, (fi; — 1) (£ — m)T, where i is the mean ofX. If there are

orthonormal column vectors;, the projection of the matriX’ onto the orthonormal vectors is

L LM 0
0[6162] = [6162] 5 (19)
0 Ao

where )\; is the eigen value of the eigen vec@rof C. X is also represented by a weighted sum of the eigen vecters, i.
X = [é163] ([e}e}]TX) = [é163]X’. These eigen vectors are used as orthonormal basis to eﬁ;);eaﬂd the eigen vector
corresponding to the maximum eigen value(ofis the best vector which represemts e.g., if A1y > Aq theneé is the best

vector.



11

Fig. 4. 1n branching case. If the 3D hull algorithm is simply appliedaltiple connections, some object details will be smootfiedavoid the smoothing,

the clusterc; is divided into 3 subregionsie, Rs and R4 on the projection of the eigen vectdf’ and n 1:1 connections are made.

Once the best eigen vector of the multiple clusters is fowadth column vector o is projected onta; to find the
distribution of clusters on the eigen vector, i.e., a lawatof t:-j on the eigen vecto#, is l;; = tj}eﬁ. Thus, the minimum
and maximum locations of-th cluster,(lmin, lmax);, indicate the distribution oj-th cluster. To divide a cluster into multiple
subclusters, the data distributions are normalised. Kirthle cluster to be divided is projected orip and divided according
to the normalised cluster distributions. In Fig. 4, the eigector of the three clusters are represented as ¥(int 1). The

projection of V ontoS(i), V', is used to divide the three clusters and the dividinggesiare denoted bi,, R; and Ry.

V. EXPERIMENTAL RESULTS

The proposed algorithm has been evaluated on four objetissiiapes of different complexities as shown in the first row
of Fig. 5. The oil burner (Fig. 5(a)) has four non-convex dsta its sides. The dragon (Fig. 5(b)) has a more compleysha
than Fig. 5(a) with numerous merged or branching clustensiglices. The bust (Fig. 5(c)) has only one cluster in estine
but it is not convex. Finally, the vase has the simplest shape

Each image of an object is captured as a 640x480 colour imadjéram the 60 images of each test object, an 8-level octree
was constructed (see second row of Fig. 5). For an appremiitouette detection, thresholding is performed aftenss&n
smoothing and contrast enhancement. A seed-fill operafibis[then applied to minimise silhouette detection errdhen
an object has non-convex details as shown in Fig. 5(a) andafly) remaining errors are manually removed after the sded-fi
operation. A projection matrix at the reference positiomstimated by a linear SVD method from a 3D calibration righwit
2.45438|pixel] re-projection error.

The MC surfaces of the four test objects are shown in the @astaf Fig. 5. Since the MC results are obtained from small
silhouette and projection error, MC triangles are corgectinstructed from most intersection octants. However,esshrarp
details, e.g., tail of the dragon, are partly removed bezaighe resolution of the octant, i.e., the tail of the dragomoo
sharp when compared to the current octree resolution,tieglih case b or c intersection.

To simulate images affected by erroneous silhouettes alitstatton error, salt and pepper noise is added to the sétteu
images. The added noise ratio is defined as the ratio of thdeunf contaminated pixels to the total number of pixels, and
the positions of the noise are selected by a uniform randeinildition. Fig. 6(a)-(d) show examples of silhouette iemgith
10% noise added. Since MC is sensitive to noise, i.e., as dfse matio increases it fails to construct surface triasigiem
more octants. Fig. 7(a) shows the lost octants ratio forimgrpoise ratios, where the lost octants ratio is defined agdtio

of the number of lost octants that do not result in a surfacehéototal number of octants. When there is no noise the lost
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M

Fig. 5. 8-level octrees and MC surfaces of four test objgets(d) Images of objects at the reference position; (g)Fre corresponding octrees respectively
with 362320, 75504, 267072 and 378448 octants; (i)-(I) M@azes from (e)-(h).

0 ® )

Fig. 6. (a)-(d) Silhouette images with 10% noise added(fleMC surfaces estimated from silhouette images with 5%s@added; (i)-(I) the best VMC
results from silhouette images with 10% noise added.
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Fig. 7. (a) Lost octants ratios using MC for varying noiseosat (b) Lost octants ratios using VMC for varying votingebkholds.

octants ratio is almost nil. However, when a small amount@$e is added to the silhouette images, a significant number o
octants do not result in a surface. Examples of MC surfacenvli¥ noise is added are shown in Fig. 6(e)-(h).

VMC can address the noise sensitivity of MC. It can reducentii@ber of lost octants with an appropriate voting threshold
Fig. 7(b) shows the lost octants ratio of two data sets coimgithe four test objects. The first set is corrupted with I8ise
and the VMC results are denoted by solid lines. The seconid seirrupted with 15% noise and the VMC results are denoted
by dashed lines. The voting threshold which gives the bedbpeance is referred to as the best voting threshold. Tis be
voting threshold for the first set is about 90%, but when mansenis added a smaller voting threshold becomes apprepriat
to minimise the lost octants ratio. However, too small angtthreshold increases the lost octants ratio. This is lsecas
the voting threshold becomes smaller it is possible to havmi@rsection octant with 8 inside corners. This particekese is
regarded as an inside octant by MC and no surface is construct

The best VMC results from images with 10% noise added are shiowig. 6(i)-(1). As illustrated, VMC can minimise the
lost octants but the results are degraded when comparee toeal MC results, e.g., the surfaces are not continuouss,Th
the best VMC result may include sufficient surface verticesthe surface connection is not always correct.

When a simple convex hull (CH) algorithm is applied to thetb&dC result, many shape details are lost (see Fig. 8(a)-(d))
whilst the results of applying the proposed method shownign &(e)-(g) preserve them. However, when the object idlyota
convex (Fig. 8(d)), CH is the best in terms of processing tfimemory usage and approximation efficiency. To show the
approximation efficiency for varying noise ratios, the tatamber of surface triangles on the reconstructed burnegus
methods are summarised in Table 1, where LDT and LCH reptrésead DT and local CH, respectively. LDT which uses DT
algorithm for constructing local convex hull is developedshow the efficiency of the proposed method, LCH.

Since DT, CH, LDT and LCH construct the surface from the begtC/result, they have the same noise robustness as the
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(e)

Fig. 8. Surface reconstruction from the best VMC result:((8)using the convex hull algorithm; (e)-(h): using the pwsed method.

TABLE |

NUMBER OF SURFACE TRIANGLES ON RECONSTRUCTED BURNER FOR VARYG NOISE RATIOS

0% 5% 10% 15% 20%
MC 14271 5640 296 124 24
VMC? | 14271 43069 44489 44622 45520
DT 160048 541476 575812 58540 601980
CH 410 434 388 430 410
LDT 245112 850428 915312 918676 949672
LCH 3662 4380 4566 4538 4426

4obtained from the best VMC with voting threshold from 100%38@%6

best VMC. Thus, the number of surface triangles construbiethese methods does not change significantly even aftse noi
addition. CH approximates shape with the smallest numbériarigles but the quality of the visual appearance of theltes
depends on the shape of objects. DT constructs similarcsfi CH but the number of triangles are significantly inseea
because DT forms tetrahedrons from every four 3D pointsréifbee, LDT results in the largest number of triangles beeau
it performs DT between every two slices. On the other hand;l li€the second most efficient method, but unlike CH it is

able to construct non-convex details.

The performance of the proposed method (LCH) in terms of #ygired CPU time and peak memory usage is compared
with 5 surface construction algorithms: MC, VMC, CH, DT anBT. Qhull code is used for the implementation of CH and
DT [29], and LCH and LDT also incorporate Qhull code. A looktaple for the 256 possible cases of surface construction [4]
is provided for MC to avoid rotational and complementary syetry checking, which is known to be the most time consuming
process in MC. In general, CH requires the shortest timéof@d by DT, LCH, LDT, VMC and MC (see Fig. 9(a)). In the
case where DT constructs a large number of tetrahedronsdovase, DT is slower than LCH.

However, the proposed method uses more memory to storelitats $ree tables and pdf infomation. Thus, the peak memory
usage of LDT and LCH is 3 to 6 times higher than general CH and$2€ Fig. 9(b)). The order of complexity of DT used
in the test is reported to b@(nlnwv) [29] and MC isO(n), wheren is the number of input points andis the number of

output vertices. However, the order of the proposed meth6{in x k), wherem is the number of slices aridis the number
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Fig. 9. (a) CPU time and (b) peak memory usage required by d@itigns to construct 4 objects.

of clusters. The proposed method also needs to incorpdrat®hull algorithm with complexity)(n Inv) [21].

The last experiment is performed on a dummy which can movénilss and makes arbitrary non-convex shapes. Some
examples of 60 input images are shown in Fig. 10(a)-(c). Wordg a simple thresholding process is applied, the silheuet
images include detection errors as illustrated in Fig. }0d For examples, the right leg in Fig. 10(d) has shrunkl &me
left arm in Fig. 10(e) has unexpected noise because of shadfiect. Furthermore, although the images of the right aomsd
not have significant noise, the contour of the arm are altéredll its silhouette images, and as a result most parts of the
right arm vanish in its MC surface. Nonetheless, a 7-levéleecwith 30[cm] as the initial octant size (Fig. 10(g)) sun
an acceptable 3D reconstruction. But the results using M 3% VMC have many unattached segments and holes (see

Fig. 10(h) and (i)). LCH produces the best continuous serf&ég. 10()).

VI. CONCLUSION

A surface constructed from 3D volumetric data facilitates tendering of the object. In this paper we explore a method
which constructs triangular patches from an octree, andastaconstruction is achieved by assuming two properties 3D
object. The connectivity property presumes a surface soaitrarea of an object tightly without unattached objectnseqts.
The continuity property assumes an object as piecewiseezoand a local convexity is similar in shape to the adjacent
convexity if they are connected.

The proposed local hull-based surface construction (LGtates a surface from local convexities. The best VMCltésu
used as its initial surface vertices, and slices are predaoen them. The sliced data is clustered based on a clustelittanal

pdf which is estimated from its octree, and the clusters itheslice are connected to its neighbouring clusters in adjac
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(& (h) () 0]

Fig. 10. (a)-(c) A dummy with different poses. (d)-(f) Therasponding silhouette images using simple thresholdigp7-level octree. (h) MC surface.
(i) 90% VMC surface. (j) LCH surface.

slices by the Bayesian decision making rule in order to ddtinal convexities. Finally, a convex hull algorithm cresatecal
surfaces which are combined to complete the surface catistnu

The experimental results show that LCH produces qualitfases with good performance. Its approximation efficierey i
better than those produced by other algorithms, e.g., MCCYHMT and LDT, requiring a reasonable CPU time. However, its
peak memory usage is higher than CH and DT because the me#ieals o store local connection data. Also, any concavity
in the xzy plane may disappear in LCH, i.e., the concavity of a clustea islice is regarded as a 2D convex. This problem
can be alleviated by dividing a 2D non-convex cluster intovax regions - it is like a 2D version of LCH. Another issue of
the proposed method is the quality of the triangular patcihes elongated or thin patches are caused by using a slicaligs

level and the convex hull algorithm. However, it can be inyai by inserting refining points on the side of the thin trigsg
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