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Local Hull-Based Surface Construction

of Volumetric Data from Silhouettes
Dongjoe Shin,Student Member, IEEEand Tardi Tjahjadi,Senior Member, IEEE

Abstract

The Marching Cube (MC) is a general method which can construct a surface of an object from its volumetric data generated

using a shape from silhouette method. Although MC is efficient and straightforward to implement, a MC surface may have

discontinuity even though the volumetric data is continuous. This is because surface construction is more sensitive toimage noise

than the construction of volumetric data. To address this problem, we propose a surface construction algorithm which aggregates

local surfaces constructed by the 3D convex hull algorithm.Thus, the proposed method initially classifies local convexities from

imperfect MC vertices based on sliced volumetric data. Experimental results show that continuous surfaces are obtained from

imperfect silhouette images of both convex and non-convex objects.

Index Terms

Shape from Silhouettes, Marching Cube, Delaunay triangulation, Surface extraction

I. I NTRODUCTION

THE 3-dimensional (3D) visual hull is generated by the intersection of multiple 3D cones that are created by backprojection

of 2D silhouettes of different views of an object onto 3D space [1]. Approaches to object reconstruction involving 3D

hull are collectively called Shape from Silhouette (SfS) techniques [2] and an octree is the most widely used representation to

describe a visual hull. The construction of an octree involves projecting an initial bounding cube (which encloses an object in

3D space) onto multiple images of the object taken at different views, and splitting the cube into eight smaller cubes called

octants if the projection intersects a silhouette [3]. These octants are then classified as one of three cases: outside, inside and

intersection. Thus, object reconstruction is achieved by carving out octants classified as outside, and surfaces are extracted

from the resulting octree for an effective visualisation.

The Marching Cube (MC) is the most successful method for surface construction from an octree [4]. It estimates surface

triangles from intersection octants, and the location of the triangles are determined by the configuration of inside vertices of an

intersection octant. However, the MC generated surface maycontain unexpected holes or discontinuities that are not present

in its octree. One reason for surface discontinuity is due tothe connectivity of octants as was first reported by Mercier and

Meneveaux [5] who also proposed a process which thickens theintersection octants to ensure 6-connectivity, and changes an

inside octant to an intersection octant. But the process is not straightforward to implement for the following reasons:since it

checks whether two adjacent inside and outside octants are in the same hierarchy level of the octree, the octree hierarchy is

repeatedly referred to when creating a surface; and the subsequent image pixel based refining method has to verify whether

two adjacent surface lines remain connected.
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Another possible reason for discontinuity is due to the topological ambiguity of the MC algorithm. For example, when a

face of an octant has an intersection point with a surface in each of its four edges, the topologically correct connectionamong

the intersection points becomes ambiguous and this resultsin Type A hole problem [6], [7], and Chen et al. reported seven

ambiguous configurations that create holes and incorrect connectivity [8].

A more practical reason for surface holes is due to erroneouscamera calibration and imperfect silhouettes, which change

the position of the projection of an octant or the value at theprojection position. Therefore, traditional octree construction

methods take special care of these processes. Szeliski usedadaptive thresholding followed by a local shrinking operation for

silhouette detection, and a hexagonal calibration patternis attached to the turntable for a precise camera calibration at every

rotation [9]. Mercier and Meneveaux used over-exposed images and a seed-fill algorithm to generate silhouette images and

attach an LED on the rotational axis of the turntable for accurate calibration [5]. However, measurement error is inevitable in

calibration and there are no image preprocessing algorithms that can deal with all effects of imaging conditions. For example,

a seed-fill algorithm can reduce noise on silhouette images but at the expense of losing concave surface details.

On the other hand, octree construction is robust against image noise because an octant is not removed when nonzero-valued

pixels are found within the projection of the octant. Thus, despite some unpredictable error on silhouette images, the resulting

octree can be similar to the octree created from error-free silhouette images if the size of an octant is not too small. The

octree construction only changes the status of an octant from inside to intersection. Therefore, to retain non-convex surface

details in silhouette images, simple thresholding is preferable for its octree construction. However, in this case, its MC surface

is significantly degraded.

Thus, we propose a surface construction method for an imperfect MC result. The method exploits the connectivity information

of an octree, which is referred when building a new face from imperfect MC vertices. We premise a general non-convex object

as a piecewise convex set, and an object surface is constructed from an aggregate of its local convex surfaces. The initial

MC vertices are grouped into different slices and classified, and connections are made with appropriate vertices in adjacent

slices in order to determine local convex regions. The Bayesrule is used for classifying and connecting the MC vertices.The

conditional probability density functions (pdfs) used by the Bayes rule are estimated from octree vertices that are regarded as

sampled points on the true 3D object.

A similar method which uses data slices for surface generation has also been proposed in [10]. However, the cylindrical

mapping of this method focuses on merging 3D range data obtained from different views and only a simple object is considered.

The principal axis of such an object must pass through the object, and a normal of the principal axis must pass through only

one point on the object, i.e., the object is convex. An alternative mapping procedure is also proposed for a more complex

object, e.g., an object with a single cavity like a cup. Nevertheless, the algorithm has not been designed for a general object.

Thus, if there are multiple clusters in a slice then the algorithm will have difficulty in aligning the slices.

The paper is organised as follows. Section II presents some existing surface construction algorithms, such as MC and its

variants, 3D convex hull method and the Delaunay triangulation. The possible problems with these methods are also explained.

An overview of the proposed method is detailed in Section III. Section IV presents the proposed local hull-based surface

construction method. Finally, Section V and VI present the experimental results and conclusion.
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II. SURFACE FROM SILHOUETTES

A. Obtaining an octree from silhouettes

A major process of octree construction is the projection of an octant and an intersection test to determine if the projection

intersects a silhouette. However it is cumbersome to estimate every projection matrix at a particular position from known

camera motion such as pure rotation, pure translation or planar motion which consists of both rotation and translation in the

plane. For these motions, projection matrices are normallyderived from the projection matrix at the reference position.

A projection matrix can be decomposed into two matrices whose elements are related to the internal and external camera

parameters [11]. For example, for a point in 3D space represented by a vector~x3d, its projection~x2d is

~x2d = K[R ~t]~x3d, (1)

whereK is a matrix related to the internal camera parameters.R and~t are rotation and translation in 3D space, respectively,

and are determined by the external camera parameters. Hence, the projection matrix isP = K[R ~t].

If the same camera is used for grabbing all images without changing its internal parameters, thenK is the same for all

projection matrices. Also, if the camera motion is assumed to be a circular motion consisting of pure rotation on the same

plane, e.g., as in a turntable image sequence, the projection matrix in (1) is parmeterised by a rotation angle, i.e.,

P (θ) = K











cos θ sin θ 0 tx

− sin θ cos θ 0 ty

0 0 1 0











, (2)

whereθ is a rotational angle from the reference position, andtx and ty respectively represent thex and y translation when

θ = 0. In most cases,P (θ) in (2) is acceptable butθ is not always accurately measured and the rotational axis iswobbly at

times. These errors propagate to the surface construction.

A silhouette is generated by thresholding an image during anintersection test. Any error in the resulting silhouette is

insignificant as far as constructing an octree is concerned because the intersection test only determines an octant withintersection

status and not the position of the internal vertices. However, the resulting error in surface construction is significant since the

locations of inside vertices are crucial in defining the iso-surface of an octant. For example, when the backprojection of an

octant results in one vertex within a silhouette, i.e., casea, the octant is classified as intersection and the inside vertex is

easily identified. However, it is ambiguous to identify an inside vertex when only part of the edge of an octant is within a

silhouette (case b) or the silhouette is entirely within an octant (case c), although the projection of the octant is classified as

intersection. Case b and c are frequently found when imperfect silhouette images and projection matrices are used or when

the octree resolution is not small enough.

B. Marching cube and its variants

MC [4] was originally developed for 3D visualisation of medical images, e.g., computed tomography or magnetic resonance

images but its simplicity makes it evolves to other applications [12], [13]. MC cannot predict the implicit surface directly from

a surface octant, but it assumes that intersection octants may include an actual surface which crosses an edge joining two

vertices of a surface octant with opposite status, i.e., inside and outside. Thus, when MC constructs surface patches, it connects

the middle of the edges having different status. However, the decision on an inside vertex is affected by various factorsin

practice, e.g., the precision of the projection matrix and the noise in a silhouette image.
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Consider a 3D vertex point~x3d with a cost function

ci(θi, ~x3d) =











1 if P (θi)~x3d ∈ Si

0 otherwise
, (3)

whereSi is an object silhouette ini-th image andθi is i-th rotational angle from the reference. The point is classified as

outside when
n

∏

i=0

ci(θi, ~x3d) = 0, (4)

wheren is the total number of silhouette images. Therefore, if any projection of a 3D vertex is erroneously classified as outside

a silhouette, it supersedes other statuses previously defined in other silhouettes. This erroneous classification often occurs if

there is noise in the silhouette and no inside vertices are found even though the octant is classified as intersection, e.g., as in

case b and c. Thus, the MC surface loses surface patches that result in holes and unattached object segments. To avoid this

situation, the Voting MC (VMC) counts the number of cases classified as outside and identifies an outside vertex if the vote

is greater than a thresholdvth [14]. Thus, the decision function (4) is revised as

n
∑

i=0

ci(θi, ~x3d) − vth ≤ 0, 0 ≤ vth < n. (5)

The problem with VMC is that its result varies with the threshold level even for a convex object, and it is difficult to choose

an appropriate threshold.

C. Delaunay triangulation and convex hull

An alternative approach, the 3D Delaunay Triangulation (DT) [15], constructs a surface by defining tetrahedrons from

arbitrarily distributed 3D points. The 3D DT characteriseseach tetrahedron by not allowing any point within its circumsphere.

If there is such a point then DT subdivides the tetrahedron without changing the shape of a super tetrahedron [16]. The

Constrained Delaunay Triangulation (CDT) [17] has been evolved in order to include a predescribed boundary. In 3D however,

CDT cannot tetrahedralise some special ployhedron withoutan additional point or surface modification, e.g., a twistedprism,

and the problem in determining whether a given polyhedron can be tetrahedralised is NP-complete [18].

Although other variations of the DT algorithms, e.g., conforming constrained DT [19] and the conforming DT [20], have

been proposed to solve the problem, they assume that initialboundary information is given. Besides, the result of DT in 3D

is not triangles but tetrahedrons, i.e., three additional faces are redundantly created in order to make one surface triangle.

DT is topologically related to a convex hull. If for a set of points I in the n-dimensional space, a set of the pointsI ′ are

fitted to a hyper quadric inn+1 dimension, e.g.,x2 + y2 + z2 = d2 for n = 2, then the projection of the convex hull ofI ′ onto

the lower dimension is equivalent to the DT result ofI [21]. Algorithmically, the convex hull algorithm is simpler than DT

and results in fewer number of triangular patches because itonly stores surface triangles, i.e., there are no internal triangles as

normally found with DT. However, both algorithms are designed to construct convex shapes. Therefore, we propose a general

surface construction algorithm which copes with concavitywhilst preserving the advantages of the 3D hull algorithm. This

is achieved by classifying local convexities from an imperfect MC surface and estimating each local hull using the 3D hull

algorithm. Finally, locally constructed surfaces are combined to complete the surface construction. Thus, the problem of surface

construction becomes two separate problems, i.e., how to classify a local convexity and how to construct a local surface.
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< L o c a l c o n v e x c l a s s i f i c a t i o n >R e c o n s t r u c t i o ni m a g e s
I n i t i a lM C s u r f a c e O c t r e ec o n s t r u c t i o nC l u s t e r i n g o ne a c h s l i c eC a l i b r a t i o n a tr e f e r e n c e p o s i t i o no t h e r p r o j e c t i o nm a t r i c e s e s t i m a t i o nB i n a r y i m a g e sT e x t u r e m a p a n dm a p p i n g p o s i t i o n L o c a l c o n v e xv e r t i c e s t a b l ei s i t 1 : n o r n : 1

C a l i b r a t i o n i m a g e p d f c u b e se s t i m a t i o n
3 D C o n v e x H u l l D i v i d e a c l u s t e ra n d m a k e n 1 : 1A c c u m u l a t i o n l o c a ls u r f a c e < 3 D H u l l b a s e d s u r f a c e g e n e r a t i o n >n o y e s

T r e e t a b l eg e n e r a t i o n
< I n i t i a l d a t a p r e p a r a t i o n >

Fig. 1. The overall surface construction process.

III. OVERVIEW OF THE PROPOSED METHOD

The overall surface construction process is illustrated inFig. 1 where the proposed method involves the processes enclosed

in two grey-shaded processing boxes, i.e., the local convexclassification and 3D hull based surface generation. The projection

matrix estimation determines the projection matrix at the reference position and uses it to estimate other projection matrices in

the circular motion. In our experiment the rotational angleθ is set to 6 degree. Images of an object are thresholded to generate

silhouette images, and sixty projection matrices, one for each of the sixty image planes are fed to the initial data preparation

process.

An octree data is first constructed in the initial data preparation process and it is used to estimate the initial MC vertices

that are normally obtained from the best VMC. In our octree construction a 2D intersection test is used, i.e., an octant is

backprojected onto every silhouette image, and if it intersects a silhouette the octant is classified as intersection and split into

8 suboctants. For robust octree construction, the backprojecion of an octant is approximated as a rectangle, and if the rectangle

has no intersections then the corresponding octant is classified as background and is removed. There are numerous algorithms

that facilitate the intersection test in 2D image planes. Szeliski proposed an almost real-time algorithm which uses a half

distance transform [9]. Potmesil approximated the projection as a rectangle [22]. Chien and Aggarwal used a quad tree [23].

Ahuja and Veenstra reduced the number of silhouette images by only using orthographic views [24]. A few 3D intersection

test algorithms have also been proposed in [25], [26]. However, since the speed of creating the volumetric data is not an issue

in our research, the fundamental octree construction method has been developed for our surface construction process.

The proposed local-hull based surface estimation comprises two sequential processing blocks: local convex classification

and 3D hull based surface construction. The first block determines local convex regions from the initial MC surface vertices.

Data slicing and classification are required to define these convex regions. For the classification of initial vertices, cluster

conditional pdfs are estimated from every octree slice. As aresult of the first block, a tree table storing information onthe

cluster connection and local convex vertices table are passed to the next block.

The 3D hull-based surface construction block creates appropriate local surfaces using the convex hull algorithm. Local

convexity with multiple connections, e.g., 1:n or n:1 connections are divided inton 1:1 local convexities before it is used to

create a local hull. As a result of the second block, all localsurfaces are aggregated to complete the surface estimation.
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IV. L OCAL HULL -BASED SURFACE CONSTRUCTION

Two properties of a 3D object are premised. The first is connectivity which assumes the surface of an object should cover

an object tightly without any unattached object segment. Ifa surface is obtained without violating the first property, each edge

of the surface should be traversed twice to make two connected patches. Otherwise there is a hole in the surface and the edge

is called a dangling edge.

The second property due to the assumption of piecewise convexity of a 3D object is the continuity of an object. It allows

a shape with local convexity to be similar to its adjacent convexity if they are connected [27]. To make this property more

robust, an object needs to be sliced infinitesimally. However, each slice cannot be smaller than the size of the smallest octant.

The second property enables the data distribution between two octree slices to be approximated. It considers a local convexity

to be continuously connected to other local convexities in adjacent slices.

A. Volumetric data slicing

The proposed algorithm uses the best VMC vertices since theyare closer to the actual surface than vertices of intersection

octants, and the number of vertices are considerably reduced. On the other hand, the octree vertices are used to define a local

convexity from MC vertices and their connections. In order to represent an object as a piecewise convex set, the data is sliced

along thez axis and the slicing interval is defined by the height of the smallest octant. Even though a MC surface has twice

finer resolution, the same slicing level is used to keep the correspondence between an octree and a MC slice. The sliced results

are stored in planes called MC slicesSmc. The corresponding octree vertices also need to be sliced and the results are stored

in octree slicesSoc.

For a 3D delta function

δ(x, y, z) =











1 if x = y = z = 0

0 otherwise
, (6)

the i-th sliced data of an octree (i.e.,Soc = ∪iS
oc
i (m, n)) is

Soc
i (m, n) = o(x, y, z)δ (x − mT, y − nT, z − iT ), (7)

wherei, m andn are integer-valued indices andT is the slicing interval. The functiono(·) indicates whether an octant contains

a 3D point(x, y, z), i.e., o(x, y, z) is 1 if it is and 0 otherwise.

An interesting observation of a sliced octree data is that every four points in a sliceSoc
i are from the same octant. To treat

these points equally, the index of the octreeSoc needs to be quantised to give thei-th quantised octree slice

Socq
i [u, v] =

1
∏

j,k=0

Soc
i (u + j, v + k). (8)

Hence,Socq
i [u, v] can be visualised on a binary image plane where a nonzero point represents an octant.

On the other hand, to represent MC data by the same slice indexeven though its sampling period is half ofT , a binary

image planeSmcq
i [u, v] is only set to 1 when a MC vertex is found withinuT ≤ x < (u + 1)T , vT ≤ y < (v + 1)T and

iT ≤ z < (i + 1)T . Thus, whilst the volume of nonzero points inSocq
i is T 3, the volume of nonzero points at[u, v] in the

quantised MC slice is bounded by
T 3

8
≤ f(Smcq

i [u, v]) ≤
7T 3

8
, (9)
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wheref(·) is a function which estimates the volume of nonzero points inthe quantised MC slice. The actual volume of an

objectvobj is smaller than the volume of MC slices, and which is smaller than the volume of the octree slices, i.e.,

vobj <
∑

i,u,v

{

f(Smcq
i [u, v]) + T 3 (Socq

i [u, v]

− Smcq
i [u, v]Socq

i [u, v])} <
∑

i,u,v

{

Socq
i [u, v]T 3

}

.
(10)

In practice, however, the volume of MC slices often violate (10) because the erroneous classification of octree verticesfails to

correctly locate MC vertices.

Another observation from a sliced octree data is that each quantised octree slice of a non-convex object can have multiple

clusters that are linked 8-neighbouring points on the quantised octree slice. These multiple clusters need to be connected to

other clusters in adjacent slices to define a local convexity. The clustering in a quantised octree slice is trivial because points

belonging to the same cluster are conglomerated in accordance with the presence of internal octants. Thus, identifyinga cluster

in Socq
i is simply a search for connected nonzero points among 8 neighbours. However, clustering inSmcq is not similarly

straightforward. A decision on the clustering and connecting of clusters inSmcq
i is based on the Bayesian decision making

rule [28] and a priori information of the decision is obtained from Socq
i .

An octree of a dummy is illustrated in Fig. 2(a). The octree isobtained from 7 levels of octree construction from a

40[cm]x40[cm]x40[cm] initial octant, i.e., the smallest size of octant is 0.625[cm] and a total of 29 quantised octree slices and

60 clusters are found. Some slices of the octree,Smcq
i , are illustrated in Fig. 2(b) and each nonzero pixel in a slice indicates

an octant, and octants belonging to the same cluster identification (ID) have identical grey value. For example, the slice 11 is

for z = 6.875[cm], which is at shoulder height of the dummy.

B. Identifying a local convexity

A local convexity is identified by two processes: clusteringon Smcq and connecting clusters between slices. Given a cluster

conditional pdfp(~t|ci) which gives the probability of a test data~t belonging to a classci, the problem of clustering is solved

by searching for the maximum probability.

A probability mass function ofj-th cluster ini-th quantised octree slicePi(cj) is defined by the number ofj-th cluster data

nj and the total number of nonzero pointsnk, i.e.,

Pi(cj) =
nj

∑

k=0 nk
. (11)

Thus, the sum of cluster probabilities in a slice, i.e.,
∑

j=0 Pi(cj), is 1. From this a priori knowledge a cluster ID is predicted

when a nonzero point is found inSmcq
i . For example, if two clusters are found inSocq

i and their probability arePi(c0) = 0.7

andPi(c1) = 0.3 then a nonzero point inSmcq
i is classified as clusterc0.

If points in j-th cluster are known to be more likely to be in a certain part of a slice, then the first a priori knowledge

is enhanced by combining it with a second a priori knowledge obtained from the distribution of cluster data. If~t = [u v]T

represents the 2D position of a clustered data ini-th slice, a joint pdf of two random variables~t andcj that are not independent

is

pi(~t, cj) = pi(~t|cj)Pi(cj) = pi(cj |~t)Pi(~t). (12)

The a priori knowledge in (12) is converted to a test data conditional pdf of a clusterpi(cj |~t) called a posteriori pdf,

pi(cj |~t) =
pi(~t|cj)Pi(cj)

∑

j pi(~t|cj)Pi(cj)
. (13)
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( a )

( b )
Fig. 2. (a) 3D octree of a dummy from [27], which is sliced according to its z value. (b) Examples of slices where each slice is quantised as 28x28 grid

and a nonzero value on a slice represents an octant.

Therefore, in order to cluster MC vertices based on the Bayesian rule,pi(~t|cj) in (13) needs to be estimated.

Without any assumption onpi(~t|cj), a cluster conditional pdf of a test data~t = [u v] is estimated using the Parzen non-

parametric density estimator [28] fromSocq
i . If the density function is known, the probabilityP that j-th cluster data is found

in a square with areawn centred at(x, y) is

P =

y+wn/2
∑

v=y−wn/2

x+wn/2
∑

u=x−wn/2

pi(~t|cj). (14)

In practice, the only information available is thatnj data are classified asj-th cluster inSocq
i . Thus, the probability thatk

data fall within the square isP ≃ k/nj, and the ratiok/nj converges to the trueP as the number of samples is increased.

The Parzen estimator increases the number of samples in a square by interpolating between samples in a window, i.e.,

pi(~t|cj) =
1

nj

nj
∑

i=0

w(~t − ~ti), (15)
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wherew(·) is the Gaussian window with an area equals town. Since the size of a Gaussian window confines the range of the

Gaussian function, the degree of smoothness of the pdf is determined bywn.

EachSocq
i is used to estimate cluster conditional pdfs and those in thesame slice are stored in a pdf cube. Therefore, a

cluster decision functiond(~t) which determines a cluster ID of a test data~t = [u v]T in the i-th quantised MC slice is

d(~t) = max
j

{

pi(~t|cj)Pi(cj)
}

, (16)

wherej represents a cluster ID in thei-th slice. Fig. 3(a) illustrates the construction of a pdf cube using (15) from the slice

8 shown in Fig. 2(b) where 5 clusters are shown in different grey shades.

Note that the cluster conditional pdf’s of connected clusters are similar because the second property assumes that the

connected clusters have a similar shape. Thus, a decision function for connecting a clustercid on the current slicei needs to

refer to the pdf cube in the next slice, i.e.,

e(cid, i) = max
j

{
∑

~t∈cid

pi+1(~t|cj)Pi+1(cj)}. (17)

The connection between clusters is summarised in a tree table, where a node of the tree represents a cluster and it stores

information of bidirectional connection, i.e., a connected tail ID and head cluster ID (see Fig. 3(b)). A part of the treetable

of the octree in Fig. 2(a) is shown in Fig. 3(b). Each row of thetree table shows a cluster ID (CID), the slice number (SNO),

head and tail cluster ID (HID, TID). ‘x’ indicates that thereare no connections, e.g., if HID is ‘x’ then a new local convexity

starts from the current slice. On the other hand, a local convexity terminates the connection if a TID is ‘x’. Since it is assumed

that there are no unattached clusters in an object, a clustershould not have ‘x’ as both of its head and tail ID. A slice with

multiple clusters indicates that the object has non-convexshape and the resulting tree table has multiple HID’s or TID’s. To

show similarity of connected clusters, a Cr column is added in the table. It is defined by the modulus of the approximated

correlation coefficient between CID and TID’s. For example,the Cr of two clusterscm andcn in adjacent slices is estimated

by

g(cm, cn) =

∣

∣

∣

∣

∣

(
∑

i pj(~ti|cm)pj+1(~ti|cn))2
∑

i p2
j+1(~ti|cn)

∑

i p2
j(~ti|cm)

∣

∣

∣

∣

∣

, (18)

wherecm is them-th cluster in the current slice andcn is then-th cluster, which is found as the TID ofcm in the next slice.

When a current cluster has multiple tails then an average Cr value is used.

C. Local surface construction

A local convexity is defined by two connected clusters in different slices. If the data is sliced reasonably small and every

slice has a single cluster, the 3D hull algorithm will construct a good surface of a local convexity because the connected

clusters are regarded as convex. However, if an object is notconvex, a local convexity can have multiple connections (see

Fig. 4). This means that the local convexity does not correspond to a convex shape since a convex shape is only possible with

1:1 cluster connection. Thus, the 3D hull algorithm will smooth some details of the object.

Fig. 4 shows an example of multiple connections. A clusterc1 in slice Si is connected to three clustersc2, c3 and c4 in

slice S(i+1), and this make a 1:n branching connection. An opposite case is an:1 merging connection which is found when

n clusters are merged to a cluster in the next slice (see CID 8 inFig. 3(b)). These multiple connections are normally found

in the octree contruction of a non-convex object. If a cluster is branching to several clusters in an arbitrary distant position,

unexpected connections created by the 3D hull algorithm expand the surface construction. For example, the applicationof the
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S N O C I D H I D T I D C r4 1 4 1 1 1 7 0 . 7 3 2 31 5 1 2 1 8 0 . 9 4 6 51 6 1 3 1 9 0 . 8 6 2 95 1 7 1 4 2 2 , 2 0 0 . 2 8 7 01 8 1 5 2 1 0 . 9 8 3 01 9 1 6 2 3 0 . 9 2 7 86 2 0 1 7 2 4 0 . 9 5 1 02 1 1 8 2 5 0 . 9 2 1 22 2 1 7 2 6 0 . 9 6 3 42 3 1 9 2 7 0 . 9 1 8 97 2 4 2 0 2 8 , 2 9 0 . 4 6 2 22 5 2 1 3 0 0 . 8 6 4 52 6 2 2 3 1 0 . 9 6 2 12 7 2 3 3 2 0 . 9 8 0 5

S N O C I D H I D T I D C r0 0 x 6 0 . 9 6 1 51 x 5 0 . 6 9 8 92 x 7 0 . 9 0 8 81 3 x 8 0 . 0 3 0 44 x 8 0 . 0 2 7 65 1 8 0 . 7 8 8 26 0 9 0 . 9 7 1 67 2 1 0 0 . 9 3 5 72 8 5 , 3 , 4 1 1 0 . 9 7 6 29 6 1 2 0 . 6 8 5 81 0 7 1 3 0 . 5 9 6 33 1 1 8 1 4 0 . 9 8 7 21 2 9 1 5 0 . 6 7 0 01 3 1 0 1 6 0 . 7 8 6 9
Fig. 3. (a) A 3D pdf cube contains every cluster conditional pdf found in a quantised MC slice. A cluster conditional pdf interpolates 170x170 pixels and

the size of the Gaussian window is 5. (b) Part of the tree tablefrom the slice 4 to 7 shown in Fig. 2(b).

algorithm to the multiple connections in Fig. 4 results in a local surface connecting A, B, D, E, G, H, I and K. This causes

black areas to be added and they smooth some details of the object.

However, if the multiple connections are simply treated as multiple 1:1 cases, then connections betweenc1 andc2, between

c1 andc3, and betweenc1 andc4 unnecessarily duplicate the surface in the grey area enclosed by K, C, J, F and I in Fig. 4.

To address this problem the proposed method divides multiple connections inton 1:1 connections with an appropriate division

so as to minimise possible duplication of surface patches inthe common area. For example,c1 in Fig. 4 is divided into 3

subclusters to make three 1:1 connections.

The division is performed along the best representative vector of the multiple clusters which is estimated by an eigen analysis.

If ~tij = [u v]T representsi-th point in clusterj, m data points in then-th branched cluster areX =
[

~t11 ~t21 · · · ~tmn

]

and the covariance matrixC of the data isC =
∑

j

∑

i

(

~tij − ~m
) (

~tij − ~m
)T

, where ~m is the mean ofX . If there are

orthonormal column vectors~ei, the projection of the matrixC onto the orthonormal vectors is

C[~e1~e2] = [~e1~e2]





λ1 0

0 λ2



 , (19)

whereλi is the eigen value of the eigen vector~ei of C. X is also represented by a weighted sum of the eigen vectors, i.e.,

X = [~e1 ~e2]
(

[~e1 ~e2]
TX

)

= [~e1 ~e2]X
′. These eigen vectors are used as orthonormal basis to express~tij , and the eigen vector

corresponding to the maximum eigen value ofC is the best vector which representsX , e.g., if λ1 > λ2 then~e1 is the best

vector.
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Fig. 4. 1:n branching case. If the 3D hull algorithm is simply applied tomultiple connections, some object details will be smoothed. To avoid the smoothing,

the clusterc1 is divided into 3 subregions,R2, R3 andR4 on the projection of the eigen vectorV
′ and n 1:1 connections are made.

Once the best eigen vector of the multiple clusters is found,each column vector ofX is projected onto~e1 to find the

distribution of clusters on the eigen vector, i.e., a location of ~tij on the eigen vector~e1 is lij = ~t T
ij~e1. Thus, the minimum

and maximum locations ofj-th cluster,(lmin, lmax)j , indicate the distribution ofj-th cluster. To divide a cluster into multiple

subclusters, the data distributions are normalised. Finally, the cluster to be divided is projected onto~e1 and divided according

to the normalised cluster distributions. In Fig. 4, the eigen vector of the three clusters are represented as V inS(i + 1). The

projection of V ontoS(i), V’, is used to divide the three clusters and the dividing ranges are denoted byR2, R3 andR4.

V. EXPERIMENTAL RESULTS

The proposed algorithm has been evaluated on four objects with shapes of different complexities as shown in the first row

of Fig. 5. The oil burner (Fig. 5(a)) has four non-convex details in its sides. The dragon (Fig. 5(b)) has a more complex shape

than Fig. 5(a) with numerous merged or branching clusters inits slices. The bust (Fig. 5(c)) has only one cluster in everyslice

but it is not convex. Finally, the vase has the simplest shape.

Each image of an object is captured as a 640x480 colour image and from the 60 images of each test object, an 8-level octree

was constructed (see second row of Fig. 5). For an appropriate silhouette detection, thresholding is performed after Gaussian

smoothing and contrast enhancement. A seed-fill operation [5] is then applied to minimise silhouette detection errors.When

an object has non-convex details as shown in Fig. 5(a) and (b), any remaining errors are manually removed after the seed-fill

operation. A projection matrix at the reference position isestimated by a linear SVD method from a 3D calibration rig with

2.45438[pixel] re-projection error.

The MC surfaces of the four test objects are shown in the last row of Fig. 5. Since the MC results are obtained from small

silhouette and projection error, MC triangles are correctly constructed from most intersection octants. However, some sharp

details, e.g., tail of the dragon, are partly removed because of the resolution of the octant, i.e., the tail of the dragonis too

sharp when compared to the current octree resolution, resulting in case b or c intersection.

To simulate images affected by erroneous silhouettes and calibration error, salt and pepper noise is added to the silhouette

images. The added noise ratio is defined as the ratio of the number of contaminated pixels to the total number of pixels, and

the positions of the noise are selected by a uniform random distribution. Fig. 6(a)-(d) show examples of silhouette images with

10% noise added. Since MC is sensitive to noise, i.e., as the noise ratio increases it fails to construct surface triangles from

more octants. Fig. 7(a) shows the lost octants ratio for varying noise ratios, where the lost octants ratio is defined as the ratio

of the number of lost octants that do not result in a surface tothe total number of octants. When there is no noise the lost
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( a ) ( b ) ( c ) ( d )
( e ) ( f ) ( g ) ( h )

( i ) ( j ) ( k ) ( l )
Fig. 5. 8-level octrees and MC surfaces of four test objects:(a)-(d) Images of objects at the reference position; (e)-(h) The corresponding octrees respectively

with 362320, 75504, 267072 and 378448 octants; (i)-(l) MC surfaces from (e)-(h).

( a ) ( b ) ( c ) ( d )
( e ) ( f ) ( g ) ( h )

( i ) ( j ) ( k ) ( l )
Fig. 6. (a)-(d) Silhouette images with 10% noise added; (e)-(f) MC surfaces estimated from silhouette images with 5% noise added; (i)-(l) the best VMC

results from silhouette images with 10% noise added.
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Fig. 7. (a) Lost octants ratios using MC for varying noise ratios. (b) Lost octants ratios using VMC for varying voting thresholds.

octants ratio is almost nil. However, when a small amount of noise is added to the silhouette images, a significant number of

octants do not result in a surface. Examples of MC surfaces when 5% noise is added are shown in Fig. 6(e)-(h).

VMC can address the noise sensitivity of MC. It can reduce thenumber of lost octants with an appropriate voting threshold.

Fig. 7(b) shows the lost octants ratio of two data sets containing the four test objects. The first set is corrupted with 10%noise

and the VMC results are denoted by solid lines. The second setis corrupted with 15% noise and the VMC results are denoted

by dashed lines. The voting threshold which gives the best performance is referred to as the best voting threshold. The best

voting threshold for the first set is about 90%, but when more noise is added a smaller voting threshold becomes appropriate

to minimise the lost octants ratio. However, too small a voting threshold increases the lost octants ratio. This is because as

the voting threshold becomes smaller it is possible to have an intersection octant with 8 inside corners. This particular case is

regarded as an inside octant by MC and no surface is constructed.

The best VMC results from images with 10% noise added are shown in Fig. 6(i)-(l). As illustrated, VMC can minimise the

lost octants but the results are degraded when compared to the ideal MC results, e.g., the surfaces are not continuous. Thus,

the best VMC result may include sufficient surface vertices but the surface connection is not always correct.

When a simple convex hull (CH) algorithm is applied to the best VMC result, many shape details are lost (see Fig. 8(a)-(d))

whilst the results of applying the proposed method shown in Fig. 8(e)-(g) preserve them. However, when the object is totally

convex (Fig. 8(d)), CH is the best in terms of processing time, memory usage and approximation efficiency. To show the

approximation efficiency for varying noise ratios, the total number of surface triangles on the reconstructed burner using 6

methods are summarised in Table 1, where LDT and LCH represent local DT and local CH, respectively. LDT which uses DT

algorithm for constructing local convex hull is developed to show the efficiency of the proposed method, LCH.

Since DT, CH, LDT and LCH construct the surface from the best VMC result, they have the same noise robustness as the
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( a ) ( b ) ( c ) ( d )
( e ) ( f ) ( g ) ( h )

Fig. 8. Surface reconstruction from the best VMC result: (a)-(d) using the convex hull algorithm; (e)-(h): using the proposed method.

TABLE I

NUMBER OF SURFACE TRIANGLES ON RECONSTRUCTED BURNER FOR VARYING NOISE RATIOS.

0% 5% 10% 15% 20%

MC 14271 5640 296 124 24

VMCa 14271 43069 44489 44622 45520

DT 160048 541476 575812 58540 601980

CH 410 434 388 430 410

LDT 245112 850428 915312 918676 949672

LCH 3662 4380 4566 4538 4426

aobtained from the best VMC with voting threshold from 100% to80%

best VMC. Thus, the number of surface triangles constructedby these methods does not change significantly even after noise

addition. CH approximates shape with the smallest number oftriangles but the quality of the visual appearance of the result

depends on the shape of objects. DT constructs similar surfaces to CH but the number of triangles are significantly increased

because DT forms tetrahedrons from every four 3D points. Therefore, LDT results in the largest number of triangles because

it performs DT between every two slices. On the other hand, LCH is the second most efficient method, but unlike CH it is

able to construct non-convex details.

The performance of the proposed method (LCH) in terms of the required CPU time and peak memory usage is compared

with 5 surface construction algorithms: MC, VMC, CH, DT and LDT. Qhull code is used for the implementation of CH and

DT [29], and LCH and LDT also incorporate Qhull code. A look uptable for the 256 possible cases of surface construction [4]

is provided for MC to avoid rotational and complementary symmetry checking, which is known to be the most time consuming

process in MC. In general, CH requires the shortest time, followed by DT, LCH, LDT, VMC and MC (see Fig. 9(a)). In the

case where DT constructs a large number of tetrahedrons for the vase, DT is slower than LCH.

However, the proposed method uses more memory to store data slices, tree tables and pdf infomation. Thus, the peak memory

usage of LDT and LCH is 3 to 6 times higher than general CH and DT(see Fig. 9(b)). The order of complexity of DT used

in the test is reported to beO(n ln v) [29] and MC isO(n), wheren is the number of input points andv is the number of

output vertices. However, the order of the proposed method is O(m×k), wherem is the number of slices andk is the number



15

b u r n e r d r a g o n b u s t v a s e051 01 52 02 5
cputi me[ sec] M CV M CL D TL C HD TC H

b u r n e r d r a g o n b u s t v a s e00 . 10 . 20 . 30 . 40 . 50 . 60 . 7
peak mem .[MB]

M CV M CL D TL C HD TC H
( a )

( b )
Fig. 9. (a) CPU time and (b) peak memory usage required by 6 algorithms to construct 4 objects.

of clusters. The proposed method also needs to incorporate the Qhull algorithm with complexityO(n ln v) [21].

The last experiment is performed on a dummy which can move itslimbs and makes arbitrary non-convex shapes. Some

examples of 60 input images are shown in Fig. 10(a)-(c). Whenonly a simple thresholding process is applied, the silhouette

images include detection errors as illustrated in Fig. 10(d)-(f). For examples, the right leg in Fig. 10(d) has shrunk and the

left arm in Fig. 10(e) has unexpected noise because of shading effect. Furthermore, although the images of the right arm does

not have significant noise, the contour of the arm are alteredin all its silhouette images, and as a result most parts of the

right arm vanish in its MC surface. Nonetheless, a 7-level octree with 30[cm] as the initial octant size (Fig. 10(g)) results in

an acceptable 3D reconstruction. But the results using MC and 90% VMC have many unattached segments and holes (see

Fig. 10(h) and (i)). LCH produces the best continuous surface (Fig. 10(j)).

VI. CONCLUSION

A surface constructed from 3D volumetric data facilitates the rendering of the object. In this paper we explore a method

which constructs triangular patches from an octree, and a robust construction is achieved by assuming two properties ofa 3D

object. The connectivity property presumes a surface covers all area of an object tightly without unattached object segments.

The continuity property assumes an object as piecewise convex and a local convexity is similar in shape to the adjacent

convexity if they are connected.

The proposed local hull-based surface construction (LCH) estimates a surface from local convexities. The best VMC result is

used as its initial surface vertices, and slices are prepared from them. The sliced data is clustered based on a cluster conditional

pdf which is estimated from its octree, and the clusters in each slice are connected to its neighbouring clusters in adjacent
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( a ) ( b ) ( c )
( d ) ( e ) ( f )

( g ) ( h ) ( i ) ( j )
Fig. 10. (a)-(c) A dummy with different poses. (d)-(f) The corresponding silhouette images using simple thresholding.(g) 7-level octree. (h) MC surface.

(i) 90% VMC surface. (j) LCH surface.

slices by the Bayesian decision making rule in order to definelocal convexities. Finally, a convex hull algorithm creates local

surfaces which are combined to complete the surface construction.

The experimental results show that LCH produces quality surfaces with good performance. Its approximation efficiency is

better than those produced by other algorithms, e.g., MC, VMC, DT and LDT, requiring a reasonable CPU time. However, its

peak memory usage is higher than CH and DT because the method needs to store local connection data. Also, any concavity

in the xy plane may disappear in LCH, i.e., the concavity of a cluster in a slice is regarded as a 2D convex. This problem

can be alleviated by dividing a 2D non-convex cluster into convex regions - it is like a 2D version of LCH. Another issue of

the proposed method is the quality of the triangular patches, i.e., elongated or thin patches are caused by using a small slicing

level and the convex hull algorithm. However, it can be improved by inserting refining points on the side of the thin triangles.
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