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Abstract— The application that motivates this paper is molec-
ular imaging at the atomic level. When discretized at sub-
atomic distances, the volume is inherently sparse. Noisale
measurements from an imaging technology can be modeled
by convolution of the image with the system point spread
function (psf). Such is the case with magnetic resonance foe
microscopy (MRFM), an emerging technology where imaging of
an individual tobacco mosaic virus was recently demonstratd
with nanometer resolution. We also consider additive white
Gaussian noise (AWGN) in the measurements. Many prior works
of sparse estimators have focused on the case whé&h has low
coherence; however, the system matri¥ in our application is
the convolution matrix for the system psf. A typical convoluion
matrix has high coherence. The paper therefore does not assie
a low coherenceH. A discrete-continuous form of the Laplacian
and atom at zero (LAZE) p.d.f. used by Johnstone and Silverma
is formulated, and two sparse estimators derived by maximing
the joint p.d.f. of the observation and image conditioned on
the hyperparameters. A thresholding rule that generalizesthe
hard and soft thresholding rule appears in the course of the
derivation. This so-called hybrid thresholding rule, when used
in the iterative thresholding framework, gives rise to the tybrid
estimator, a generalization of the lasso. Unbiased estimes of the
hyperparameters for the lasso and hybrid estimator are obtaned
via Stein’s unbiased risk estimate (SURE). A numerical stug
with a Gaussian psf and two sparse images shows that the hyldri
estimator outperforms the lasso.

|. INTRODUCTION

. ) . . th
The structures of biological molecules like proteins anlqi

a linear transformation of a sparse image corrupted by AWGN.
With only knowledge of the linear transformation and noise
variance, the goal is to reconstruct the unknown sparseemag

The system matrix H is the linear transformation that, in
the case of MRFM, represents convolution with the MRFM
psf. Several prior works are only applicable when the system
matrix has small pairwise correlation, i.e., low coherence
low collinearity [7]-[10]. Others assume that the columifis o
H come from a specific random distribution, e.g., the uniform
spherical ensemble (USE), or the uniform random projection
ensemble (URPE) [11]. These assumptions are inapplicable
when H represents convolution with the MRFM psf. In
general, a convolution matrix for a continuous psf would
not have low coherence. Such is the case with MRFM. The
coherence of the simulated MRFM psf used in the simulation
study section is at least 0.557.

The lasso, the estimator formed by maximizing the pe-
nalized likelihood criterion with &; penalty on the image
values [12], is known to promote sparsity in the estimate.
The Bayesian interpretation of the lasso is the maximum a
posteriori (MAP) estimate with an i.i.d. Laplacian p.d.f o
the image values [13]. Consider the following: givel
i.i.d. samples of a Laplacian distribution, the expectechber
of samples equal t0 is zero. The Laplacian p.d.f. is more
convincingly described as a heavy-tailed distributiorheat
an a sparse distribution. Indeed, when used in a suitable
erarchical model such as in sparse Bayesian learning [14]

viri are of interest to the medical community [1]. EXistingy, o saussian rv., not commonly considered as a sparse dis-

methods for imaging at the nanometer or even SUb'nanom?fﬂfution, results in a sparse estimator. While using a spar

scale include atomic force microscopy (AFM), electron ml;')rior is clearly not a necessary condition for formulating a

crobscopy.(EM),I and Xiraylcr.ystallogrﬁ\phy [2], [31' At the parse estimator, one wonders if a better sparse estimator ¢
sub-atomic scale, a molecule is naturally a sparse imag®. TR, tormed if a sparse prior is used instead.

is, the volume imaged consists of mostl_y space with a l‘ewIn [15], the mixture of a Dirac delta and a symmetric,
Iocat|ons_ OCCUP'e_d by atoms' The application in partICUI"E'Jrnimodal density with heavy tails is considered; a sparse
that m_otlvates this paper is MRFM _[4]’ a_technology thaaenoising estimator is then obtained via marginal maximum
potentially offers advantages not existent in currentlyedjsl-ke"hood (MML). The LAZE distribution is a specific mem-

arXiv:0809.4079v1 [physics.data-an] 24 Sep 2008

methods. In particular, MRFM is non-destructive and capal

of 3-d imaging. Recently, imaging of a biological samplehwit

er of the mixture family. Going through the same thought
experiment previously mentioned with the LAZE distribu-

nanometer resolution was demonstrated [5]. Given thatMRFMn one obtains an intuitive resulfi/w samples equal
and indeed even AFM [6] measures the convolution of trWherew is the weight placed on the Dirac delta. Unlike

image with a point spread function (psf), a deconvolutiorsmuthe Laplacian p.d.f., the LAZE p.d.f

is both heavy-tailed

be perform%d n r(])rdfer”to obtain ;lhe molecular |maget.)sTh‘1§1d sparse. Under certain conditions, the estimator aghiev
paper considers the following problem: suppose one obseryg, asymptotic minimax risk to within a constant factor [15,
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Thm. 1]. The lasso estimator can be implemented in an
iterative thresholding framework using the soft threshajd
rule [16], [17]. Use of a thresholding rule based on the LAZE

orprior in the iterative thresholding framework can potelitia

result in better performance.

This paper develops several methods to enable Bayes-
optimal nanoscale molecular imaging. In particular, adesn
are made in these three areas.
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1) First, we introduce a mixed discrete-continuous LAZE The paper is organized into the following sections. First,
prior for use in the MAP/maximum likelihood (ML) the sparse image deconvolution problem is formulated in
framework. Knowing only that the image is sparse, biectionIl. The algorithms are discussed in Secfigh Illre¢he
lacking any precise information on the sparsity level, sa&re three parts to this section. The two MAP/ML estimators
lection of the hyperparameters or regularization paramieased on the discrete-continuous LAZE prior are derived
ters has to be empirical or data-driven. The sparse imaige Section[IlI-A. This is followed by the introduction of
and hyperparameters are jointly estimated by maximithe hybrid estimator in Section I[[IB. Stein’s unbiasedkris
ing the joint p.d.f. of the observation and unknowmstimate is applied in Sectign IIT+C to derive lasso-SURE an
sparse image conditioned on the hyperparameters. TWeSURE. Sectiof IV contains a numerical study comparing the
sparse Bernoulli-Laplacian MAP/ML estimators basedroposed algorithms with several existing sparse recocstr
on the discrete-continuous LAZE p.d.f. are introducedion methods. A summary of the work and future directions

MAP1 and MAP2. in SectionY concludes the paper.
2) The second contribution of the paper is the introduction
of the hybrid estimator, which is formed by exclusively Il. PROBLEM FORMULATION

using thehybrid thresholding rule in the iterative thresh- Consider a 2-d or 3-d image, and denote its vector version
olding framework. The hybrid thresholding rule is 6 € RM_ In this paperd is :’;\ssumed to beparse, viz
generalization of the soft and hard thresholding rUIeS'Tﬁ/e_percen;cage of non-zgr@ is small. Suppose that the
order to apply this to the molecular imaging problem, iltneasuremergjz € RV is given by '
is necessary to estimate the hyperparameters in a data- =
driven fashion. y = HO + w, wherew ~ N(0,%I), (1)
3) Thirdly, SURE is applied to estimate the hyperparameter N _ )
of lasso and of the hybrid estimator proposed above. THR€reH € R is termed thesystem matrix, and w is

SURE-equipped versions of lasso and hybrid estimatfVEN- The problem considered can be stated as: gien
are referred to as lasso-SURE and H-SURE. Our lassg- @ndo > 0, estimatef knowing that it is sparse. Without

SURE result is a generalization of the results in [18]0SS Of generality, one can assume that the columrd bve

[19]. Alternative lasso hyperparameter selection methoH§it /2 norm. In the problem formulation, note that knowledge

exist, e.g., [20]. In [20], however, a prior is placed off! the sparseness 6f viz., ||, is not known a priori.
the support of the image values that discourages thelt should be noted that, while the sparsity consideredin (1)

selection of high correlated columns #f. Since the is in the natural basis @f, a wavelet basis has been considered

H we consider has columns that are highly correlatell Other works, e.g. [19]. It may be possible to re-formulate
this predisposes a certain amount of separation betwddh using some other basis so that the corresponding system
the support of the estimated image values , i.e., tfhgatrix has low coherence._ This qu_esnon is beyond the scope
sparse image estimate will be resolution limited. Af the paper. The emphasis here is bh (1) and on sparsity in
number of other general-purpose techniques exist %§ natural basis. IH had full column rank, an equivalent
well, e.g., cross validation (CV), generalized CV (GCV)probIem formulation is available. Sind#’'H) is invertible,

MML [21]. Some are, however, more tractable thaff) can be re-written as

otherfs. Fc_)r e_xample, a closed fqrm expression of.the 7§ =0+ 1w, wherew ~ N(0, 0>H'(HTY) @)
marginal likelihood cannot be obtained for the Laplacian -
prior: approximations have to be made [13]. wherej £ H'y; Hf £ (H'H) 'H’ is the pseudoinverse of

H; andw £ Hfw is colored Gaussian noise. Deconvolution

A simulation study is performed. In the first part, LS, oracwf § from y in AWGN is therefore equivalent to denoising
lar LS, SBL, stagewise orthogonal matching pursuit (StOMP)f ¢ in colored Gaussian noise. In the special case Hias
and the four proposed sparse estimators, are compared. Dahhonormalw is also AWGN.
image types (one binary-valued and another based on the
LAZE p.d.f.) are studied under two signal-to-noise ratidlg I1l. ALGORITHMS
conditions (low and high). MAP2 has the best performance
the two low SNR cases. In one of the high SNR cases, ] ) ) ) )
SURE has the best performance, while in the other, SBL is ar-1his seéction considers the case when the discrete-contnuo
guably the best performing method. When the hyperparameteld: LAZE prior is used forp(@|¢), with § and¢ simultane-
are estimated via SURE, H-SURE is sparser than lasso-SURES!Y estimated via MAP/ML. For the continuous distribatio
and achieves lowet, error forp = 0,1,2 as well as lower 0,¢ are ob_talned as the maximizers of the conditional density
detection erroiZ,. In the second part of the numerical study? (¥, ¢/<), Viz.,
the performance of the proposed sparse estimators is dtudie
across the range of SNRs between the low and high values
considered in the first part. A 3-d reconstruction example is .
given in the third part, where the LS and lasso-SURE estimat$ ¢ were constant¢ obtained from[(B) would be the MAP
are compared. This serves to demonstrate the applicabilityestimate. If¢ were constant, the resultirfgwould be the ML
lasso-SURE on a relatively large problem. estimate. Since these two principles are at work, it caneot b

E!_ Bernoulli-Laplacian MAP/ML sparse estimators

6.¢{= argTaxlogp(g, 01<) ®3)
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said that the estimates obtained i (3) are strictly MAP or 1) MAP1: Let \Ifmapl(é, I, () denote the function obtained

ML. by setting g(z) = ~(z;a). Step (4) of Algorithm[1L is
Recall that the LAZE p.d.f. is given by determined by the solution t6'¢ Wmap1 = 0. This is solved as
p(0;) = (1 —w)d(6;) + wy(0;;a), (4) i
a= {W andw:@. 9)

where y(z;a) = (1/2)ae~ ! is the Laplacian p.d.f. The
Dirac delta function is difficult to work with in the context
of maximizing the conditional p.d.f. if}3). Consider then & can be verified that the HeSSiﬁmgV?\Pmapl is negative
mixed discrete-continuous version of [@). Define the randomdefinite for alla > 0 and0 < w < 1. Given n samples
variablest; and/; such that); = 1,0;, 1 <i < M. The rv.s gz, ... z, drawn from a Laplacian p.d.fy(-;a), the ML

11]: M

0;, I; have the following density: estimate ofa is am. = (3}, |z:|)~*. The estimatei in
I 0 with probability (1 — w) 5 @ is therefore the ML estimate af where all of thed;s are
i=11  with probabilityw ) used.
- g(0;) Ii=0 The maximization in step (5) of Algorithid 1 can be obtained
p(0ill;) = { w;fa) L —1 (6) by applying the EM algorithm [16]. Recall that EM can be

applied usingz = ¢ + aw, as thecomplete data, where
whereg(-) is some p.d.f. that will be specified later on. Itis, . A(0,2I) anda < o/|H||>. Denote byé(")72(") the

assumed that;, I;) are i.i.d.I; assumes the role of the Diracestimates in theth EM iteration. The E-step is the Landweber
delta: its introduction necessitates use of the auxili@ysity jieration

g in [@). Instead of[(B), consider the optimality criterion

. ~ A(n) _ ~(n—1) g 2 T _ ~(n—1)
6,1,¢ = argmaxlog p(@. Ily. @) =0T (3) om0
0.1, T
e Define thehybrid thresholding rule as
LetZy £ {i: I, = 1} andZy £ 7, = {i : I = 0}. The .
maximization of [¥) is equivalent to the maximization of Thy(w;ty, t2) = (x — sgn(@)t2)I(Jz| > t1).,  (11)
HO — y|? i i -
mapé B [HY EH + (M — || I||o) log(1 — w) wheret; andt, are restricted to) < ¢, < t;. See Fig[lL. This

202 is a generalization of the soft and hard thresholding rules.

1 . _ ; by — .
+[Zllologw + > log (§a6_a|ei) © Y logg(B) The soft thresholding rul@, («; t) = Thy(x; ¢, t), and the hard

thresholding rulel}, (z;t) = zI(Jz| > t) = Thy(x;t,0). The

i€y i€y

(8)
Yy
We propose to maximizé&](8) in a block coordinate-wise fash- hybrid threshold
ion [22] via Algorithm[d. Note tha¥; = 6;1;. A superscript
“(n)" attached to a variable indicates its value in thth
iteration.

Algorithm 1 Block coordinate maximization of MAP criterion softthreshold
Ymap

Require: 4, i >0

1:n<+0

2
3 n<n+1
4

~(n) Z(n—1) 3n=1)
g - argmax Ymap (Q L ’Q) Fig. 1. Hybrid thresholding rule.
5 é(n)71(n) < argma ; Ymap (év I, é(n))
() a(n—1) - M-step of the EM algorithm is given b
o until [0 — 3" V) <. p 9 g y
o Thy(,éi(n);aa2 + k1o, w),a0?) 0 <w < % (12)
The p.d.f.g arises as an extra degree of freedom due to' Ts(ii(n);aa2) F<w<l1

the introduction of the indicator variables. Consider two

cases: first, ley(z) = v(x;a) in @). This will give rise to the where k1 (a, w) £ /2a2log((1 — w)/w). Recall thatt, =
algorithm MAP1. Second, lej(x) be an arbitrary p.d.f. such 0,1;. If w > 1/2, the soft-thresholding rule is applied in the
that: (1)|g(x)| < oo for all z € R; (2) sup g(x) is attained for @Q-step of the EM iterations of MAP1. These iterations produce
somer € R; and (3)g(x) is independent of a, w. By selecting the lasso estimate with hyperparameter 2aa?. However, if

g that satisfies these three properties, the algorithm MAP2(s< w < 1/2, a larger thresholding value is used that increases
thus obtained. the smallerw becomes.
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2) MAP2: From [8) and the assumptions a@n 6; # 0 B. Hybrid thresholding rule in the iterative framework

w.p. 1. Consequently, the set . . . .
P q 4 Define the hybrid estimator to be the estimator formed

Ti={i:L;=1}={i:0; #0} wp. 1 (13) by using the hybrid thresholding rulé_{11) in the iterative
framework [16, (24)], viz.,
This implies||Z|lo = ||8]lo w.p. 1. Apply [13) to the criterion
to maximize, viz.,[(B), and denote the resultByapA0, I, ¢). [
One gets Bl

(n+1) A(n) A(n)
= S, (0" + (aforH @y -1E").  (9)

1 , where S,,.c(z) = 3, Thy(zi;Q)e; and e, € RM i =
FHHQ—QH + (M — || L]|o) log(1 — w) 1,...,M are the standard unit vectors. Due to the hybrid
a ~ thresholding rule being a generalization of the soft thoébh
+ [l ]lo log w + ||€]|o log 5~ allllx + Z log g(6:). ing rule, the hybrid estimator potentially offers betterfpe
{i:1:=0} mance than lasso. The cost function of the hybrid estimator i
given in Prop[1L.
The maximization in step (i) is obtained by solving for

V¢Wmapz = 0, which produces Proposition 1 Consider the iterations (I9) when ||H|> < 1
12 ||9H and o = o. The iterations minimize the cost function
0 villo
andw = . (15)
161]: M Ve ny(0) = [IHY - y||2+ZJ1
T
As before, one can verify that the Hessian,V VU, is 4. () = I(jz] < & —CQ)[—(I_Sgn(I)Cl)Q+2<1<2]
negative definite for alt > 0 and0 < w < 1. Itis |nstruct|ve 5
to compare the hyperparameter estimates of MAP1 vs. MAP2, (2] = G = ) (2G| +¢) (20)
i.e., (9) vs.[[Ib). The main difference lies in the estimatid o o ]
a. Assuming that the estimatdsandé obey [I3), one can re- Proof. Th'SJ'S an ap2pl|cat|or;of I}hrEl 3in AF_’pe?dﬂtﬁ'- YVhen
write the MAP2 estimaté = |Z,[/ Y., |6:]. This is the ML G =G =, Ji(2) = 2Jz|+C%, which gives rise to the lasso

- estimator, as expectell

estimate using only thé,.i € 7;, i.e., the non-zero voxels.
On the other hand, the MAP1 estimatecotan be written as

0| + |Zo)| C. Using SURE to empirically estimate the hyperparameters

a= . —. 16
S ier |9~1-| +3, |9~1-| (16) In this section, SURE is applied to estimate the regulariza-
h 1o tion parameter of lasso and the hybrid estimator. Conslur t
As with MAP1, the maximization in step (5) of Algorithioh 17> risk measure

can be obtained by applying the EM algorithm with the )
cor_nple_te datzz = 0 + aw,. The E-step i_s given by[{(10), R(0,¢) = NEX||Q—Q|\§ (21)
which is the same as MAP1’s E-step. Define

\I}mapz = -

(14)

a=

. A g l—w for lasso. Sinced is not known, this risk cannot be com-
g" =supg(z) and r = a—/QT (17)  puted; however, one can computeunbiased estimate of the
* risk [23]. Denote the unbiased estimate ®B{(): ¢ can then be

The resultingd in the M-step is given by the following estimated aﬁ— argm'rkeQR( ¢), where( is the set of valid

thresholding rule values. WherH = I, an expression foR(¢) is derived in [18,
(11)]. WhenH # I, however, Stein’s unbiased estimate [23]

s(n), 2
g — ) Th(z (31) jaa® + rz(a,r),aa®) T =1 (18) cannot be applied to evalua{g]21). In [19], the alternative
Ts(2,"; aa?) 0<r<1 risk

where ky(a, 7) £ \/2a2logr, which is similar to the M- R(0,¢) = —EYHH(‘9 )3 (22)

step of MAPL. Indeed, the M-step of MAP1 can be obtained

by settingg* = a/2. Just like in MAP1, the EM iterations is proposed instead. Equati¢n22) was evaluated for a d&go

of MAP2 produce a larger threshold the sparser the hypergd-in [19].

rameterw is. As well, if a is smaller,r increases. Since the The first theorem in this section generalizes the result@ff [1

variance of the Laplacian(-;a) is 2/a?, a smallera implies by developingR(¢) for arbitrary full column rank. The sec-

a larger variance of the Laplacian. Use of a larger thresha@d theorem in this section derivés¥22) whieis the hybrid

is therefore appropriate. estimator. For this resultI is also an arbitrary full column
The tuning parameter* can be regarded as an extra degre®atrix. If the convolution matrix can be approximated by 2d

of freedom that arises due gobeing independent af, w. The or 3d circular convolution, the full column rank assumptisn

MAP2 M-step is a function ofy*, and a suitable value has toequivalent to the 2d or 3d DFT of the psf having no spectral

be selected. In contrast, MAP1 has no free tuning paransgtertulls. The proofs of the two theorems are given in Appehdix Il
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1) SURE for lasso:

Theorem 1 Assume that the columns of H are linearly in-
dependent, and @ is the lasso estimator. The unbiased risk
estimate (22) is

202 -
— ¢
180

R(Q) = 0 + o lell3 + (23)

where e = y — HJ§ is the reconstruction error.

Since the hyperparametér> 0, it can be estimated via

¢ = argmin.,, o R(¢) (24)

matrix (C; + Cy). If @ is sparse,(M — r) is small, and
the inversion would not be computationally demanding. The
optimum ¢ is the ¢ € {(¢1,¢2) : ¢ > 0,0 < ¢ < (1}
that minimizesR(() The correspondmgh (¢) would be the
output. This method will be referred to as Hybrid-SURE, or
for short, H-SURE.

IV. SIMULATION STUDY

In Section IV-B, the following classes of methods are com-
pared: (i) least-squares (LS) and oracular LS; (ii) the pszal
sparse reconstruction methods; and (iii) other existeatssp
methods, viz., SBL and StOMP.

where (¢) is given in [2B). LARS can be used to compute The LS solution is implemented via the Landweber algo-
(24). Note that LARS requires the linear independence of thighm [24]. It provides a “worst-case” bound for tfie error,
columns ofH. The estimatod, (¢) with ¢ obtained viall2#) i.e., ||¢|l». Since the LS estimate does not take into account the

will be referred to as lasso-SURE.
2) SURE for the hybrid estimator:
in order first.

Definition 1 Suppose that § € R has |8l = M — 7.
Denote the non-zero components of 0 by z;, 1 <i< M —r.
The permutation matrix P(4) € RM*M is said to order
the zero and non-zero components of ¢ if Pdiag(d)P’ =
diag(0,...,0,21,...,Zp—r).

Note thatP in the above definition is not unique. A3 is a
permutation matrix, it is orthogonal.

Definition 2 For amatrix A = (a;;) € R?7*", let ¢, beanon-
zero sequence of length at most g st. 1 < ¢,, < ¢q. Smilarly, let
d,, be non-zero sequence of length at most  st. 1 < d,, < r.
The submatrix Alc,,d,] = (as;) is such that o;; = ac, 4, .

Define A = ¢ — ¢ and
UE) - { diagrect53-), ..

., rect( A 5) Ac>0

25
0 Ac=0 (25)

where redtr) = 1,|z| < 1/2 and 0 otherwise. Recall that

0 < ¢ < (1 by assumption, sa\; > 0. Let G(H) £ HH

denote the Gram matrix dfl. For a givend, set
C,(0) 2 (PG( YP[r+1:M,r+1:M] and
Cy(0) £ ——(PU(@)P’)[T +1:M,r+1:M],

(26)
(27)

sparsity off, one would expect it to have worse performance

Several definitions are than estimates that do. In the oracular LS method, on the

other hand, one knows the support @f and regresses the
measuremeny on the corresponding columns @i [25].
The oracular LS estimate consequently provides a “best’cas
bound for thel, error; however, the oracular LS estimate is
unimplementable in reality, as it requires prior knowledde
the support of). The second class of methods includes the two
MAP/ML variants, MAP1 and MAP2; in addition, lasso-SURE
and H-SURE are also tested. Finally, in order to benchmazk th
proposed methods to other sparse methods, SBL and StOMP
are included in the simulation study. The Sparselab toolbox
is used to obtain the StOMP estimate. The CFAR and CFDR
approaches to threshold selection are applied [11]. FOrRCFA
selection, the per-iteration false alarm rate1gf0 is used.
For CFDR selection, the discovery rate is sefta Although
a multitude of other sparse reconstruction methods exisy; t
are not included in the simulation study due to a lack of space
Two sparse image8 are investigated in Sectidn TVB: a
binary-valued image, and an image based on the LAZE prior
(@). The binary-valued image has 12 pixels set to one, and the
rest are zero. The LAZE image, i.e., the image based on the
LAZE prior, can be regarded as a realization of the LAZE prior
with ¢ = 1 andw = 0.026. They are depicted in Fidl] 2a,b
respectively. The two images are of siz& x 32, as isy: so,
M = N = 1024. The matrixH, of size 1024 x 1024, is the
convolution matrix for the Gaussian blur point spread fiorct
(psf). In order to satisfy the requirements of THih. 1 Bhd &, th

where P is a matrix that orders the zero and non-zergPlumns ofH are linearly independent an@(H) does not

components of).

Theorem 2 Suppose that the columns of H are linearly
independent and that G(H) does not have an eigenvalue of
1/2. With 6 denoting the hybrid estimator, the unbiased risk
estimate (22) is

202

—Hel\z + S tr(C1[Cy + C2] )

}%(g):cr N

where ¢ = y — HY.

(28)

1>

To evaluate [(28) for a particulaﬁ, one would have to

construct the matri®; then, invert the(M — r) x (M — r)

have an eigenvalue df/2. The Gaussian blur is illustrated in
Fig.[dc.

The Gaussian blur convolution matrix has columns that are
highly correlated: the coherenpe= 0.86089. Let A(9) = {i :
0; # 0}. The stability and support results of lasso all require
that

plAQ)| < ¢

where ¢ = 1/2 or 1/4 in order that some statement of
recoverability holds [8]-[10], [25]. For a giveH, (29) places
an upper bound onA(8)| for which recoverability off is
assured in some fashion. With the Gaussian BufA(6)| <
¢/0.86089 < 1 for bothc = 1/4 and1/2. Since||d||o = 12,

(29)
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to the human observer, small non-zero values are not
discernible from zero values. In the study= 1072(|0||
is selected. This error criterion is effectively a 0-1 péypal
on the support of). Accurately determining the support
of a sparsd is more critical than its actual values [7],

[26].

« The number of non-zero values o ie., ||0]jo. One
would like [|8]lo = ||8]lo, which is small if§ is indeed

sparse.

2 4

0.07
0.06
0.05
0.04
0.03
0.02
0.01

(c) Gaussian blur psf

Fig. 2.
the Gaussian blur psf is shown.

lllustration of the two types of used in the simulations; as well,

B. Performance under low and high SNR

The performance of the estimators is given in Tdble | for
the binary-valuedd with the SNR equal to 1.76 dB (low
SNR) and 20 dB (high SNR). The number reported in Table |
is the mean over the simulation runs. For each performance
criterion, the best mean number is underlined. The oracular
LS estimate is excluded from this assessment, as it cannot be
implemented without prior knowledge. In terms |ff||o, the
best number is the value closest |@||,. Recall that for the
binary-valued imagé, ||6|[oc = 12. The best number for the
other performance criterion is the value closesf.to

TABLE |

the simulation study is outside of the coverage of existing
recoverability theorems.
In Section[1V=Q, the performance of the proposed sparse

PERFORMANCE OF THE RECONSTRUCTION METHODS FOR THE

BINARY-VALUED 6.

methods over a range of SNRs is investigated. The bina

valued image and Gaussian blur psf are considered in thi

section. In addition to the proposed sparse methods, the
estimate is included as a point of reference. Lastly, a

MRFM example of dimensioni28 x 128 x 32 is given in

Section[IV-D comparing the LS estimate and lasso-SURE!

This serves to illustrate the computational feasibilityladso-
SURE for a relatively large problem.

The proposed algorithms are implemented as previou
outlined. The tuning parametet of MAP2 is set tol /v/2 in
Section IV-B and TV-C. LARS is used to compute the lassq
SURE estimator. H-SURE is suboptimally implemented: th

minimizing ¢ = (¢, ¢2)" is obtained via two line searches. The

first, along the(1/v/2,1/+/2) direction in the((;, ¢2) plane,
is done using lasso-SURE. A subsequent line search in
(1,0) direction is performed, i.e¢, is kept constant and} is

increased. Define the SNR as SNR(N ~!||H¢||?)/s?, and

the SNR in dB as SN = 10log;, SNR.

A. Error criteria
Recall that the reconstruction erree= § — 6. Several error

criteria are considered in the performance assessment d
sparse estimator.

o |lell, forp=0,1,2.
o Thedetection error criterion defined by

M
Eq(0,0;6) £y [1(0; =0) = 1(|0:] <8)]  (30)
i=1

}:Q Error criterion

L'Method llello llellx llell2 Eq4(0,0) 119110
d SNR = 1.76 dB
Oracular LS| 12 0.880 0.309 0 12

ELS 1024 579 22.6 1.00x10% 1024
SBL 1024 13.8 2.35 58.7 1024
StOMPCFAR | 335 1.46x10* 1.50x10% 322 335

5| tOMFCFPR | 454 7.95x10*  7.17x10% 442 454

AP1 12 12 3.46 12 0

)-MAP2 155 2.72 0.912 3.68 15.3
(lasso-SURE | 60 7.83 1.51 44.2 60.6
H-SURE 39.3 7.25 1.51 27.0 39.3

SNR = 20 dB

yQracular LS| 12 0.112 0.0394 0 12
LS 1024 86.1 3.67 929 1024
SBL 1024  1.19 0.184 32.2 1024
StOMPEFAR | 377 4.33x103 457 361 377
StOMPCFDR | 459 1.36x10* 1.19x10% 446 459
MAP1 439 107 0.209 22.9 43.9
MAP2 230  3.82 0.380 114 230
lasso-SURE | 61.2  0.923 0.176 15.7 61.8
f FgSURE 22.0 0.584 0.152 7.5 22.0

In the low SNR case, MAP2 has the best performance.
MAP1 consistently produces thevial estimate of all zeros,
as evidenced by the mean value||éf|, being equal td). The
trivial all-zero estimate results ifel|, = ||8]|, for p = 0,1, 2.
For a sparsd, a small|le||o therefore is not necessarily an
indicator of good performance. A second comment regarding
Values off; such thatld;| < & are considered equivalent||d], is that it does not always give an accurate assessment
to 0. This is used to handle the effect of finite-precisionf the perceived sparsity of the reconstruction. In Tatlk |,
computing. More importantly, it addresses the fact tha§BL never produces a strictly sparse estimate, as the mean
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TABLE Il

||Q||O equals the maximal value of 1024. However' ConSIdeEERFORMANCEOF THE RECONSTRUCTION METHODS FOR THEAZE 6.

Fig.[3a, where the SBL estimate for one noise realization at
an SNR of 1.76 dB is depicted. The looks sparser than

Id b ted b N 1094. This is b Error criterion
would be suggested bydljo = 1024. This is because many| o leo_Tleli __llele___ Ba@d) @l
of the non-zero pixel values have a small magnitude, and are
. co P : SNR = 1.76 dB
visually indistinguishable from zero. The SBL estimate has
. . . . . Oracular LS 27 5.71 1.55 0.56 27
many spurious non-zero pixels, in addition to blurring ar@u
. . . LS 1024 807 31.6 977 1024
several non-zero pixel locations. Negative values areepites|
in the reconstruction, although the binatys non-negative SBL 1024 281 399 726 1024
' = ' StOMP-FAR 264  4.37x10% 558 244 257
StOMPFPR 409  1.62x10* 1.65x10° 386 405
. MAP1 27 21.2 5.21 27 0
os MAP2 309 175 3.98 25.1 9.77
os 100 LASSO-SURE| 92.6  20.3 3.15 69.3 81.9
o o H-SURE 67.2 191 3.14 51.1 54.7
02 100 SNR = 20 dB
o Oracular LS | 27 0.686 0.190 0.6 27
o2 LS 1024 122 5.34 856 1024
(a) SBL (b) STOMP (CFAR) SBL 1024 4.32 0.814 33.7 1024
StOMPFAR 336 1.00x10* 110 305 330
I I StOMPFPR | 438 2.67x10* 250 408 435
MAP1 69.7 6.53 1.34 31.9 _63.8
MAP2 216 108 1.44 86.6 212
LASSO-SURE| 119  6.63 1.32 311 116
H-SURE 84.4  6.73 1.35 33.0 78.7
0 0
-0.2 -0.2

B case of the binary-value@d. The high SNR case has mixed
(¢) MAP2 (g* = 1/+/2) (d) lasso-SURE results. While SBL has the best medn||; and |e||2, the
Fig. 3. Reconstructed images for the binary-valdeander an SNR of 1.76 best result for the other three criteria each occur at areiffe
dB for SBL, StOMP (CFAR), MAP2¢* = 1/1/2), and lasso-SURE. method. The fact that MAP1 and MAP2 did not produce

) superior performance over the other methods in the case
_ The StOMP™R, MAP2, and lasso-SURE estimate argyf the LAZE image is unintuitive. As the SNR increases,
illustrated in Figs[Bb—d respectively. The StOMF 0 has however, the hyperparameter estimates become biased [27].
large positive and negative values. It does not seem likeTfe other unintuitive result is that, (0, §; §) for the oracular
sufficient number of stages have been taken. While blurrigg estimate is not zero. This arises because of the choice of
around several non-zero voxels are evident in the MARZ gjnces — 10-2(|0]|c, the values ofi; that are smaller than

estimate,f closely resembled, cf. Fig.[2a. None of the 5 in apsolute value are thresholded to zero. This results in a
estimators considered here take into account positivilyF  non-zeroE, in some cases.

Fig. [3b, however, one sees that the MAP2 estimate has no
negative values. Qualitatively, the lasso-SURE estima&d .
better than SBL, but worse than MAP2. This is reflected ifr- Performance vs. SNR of the proposed reconstruction meth-
the quantitative performance criteria in TaBle I. oas
In the high SNR case, H-SURE has the best performanceThe performance of the proposed reconstruction methods
The mean values of all the performance criteria decreasevesen applied to the binary-valugdis examined with respect
compared to lasso-SURE. The greatest decreases drglgn to SNR. The intent in this subsection is to study the behavior
Eq4, and ||8]lo. They indicate that the H-SURE estimator iof the proposed methods at SNR values in between the low
properly zeroing out spurious non-zero values and produciand high values ol.76 dB and20 dB respectively. As with
a sparser estimate than lasso-SURE. However, this comeshat previous section, the MAP2 estimator is used with=
a price of higher computational complexity. 1/+/2. For each estimator, the mean is plotted along with error
Examine next the performance of the reconstruction methars of one standard deviation. The error plots are given in
ods with the LAZE image. One expects MAP1 and MAPEig.[4. Note that in Figll4e, the MAP1 curve is missing the
to have better performance than the other methods, as finst several SNR values becau§#|, = 0 and the y-axis is
image 0 is generated using the LAZE prior. The numberm a log scale.
for the performance criteria are given in Table Il. Againge th  First, consider thde||o, |le]|1, and||e||» error criteria. MAP1
reconstruction method with the best number for each coiteriis unable to distinguish the location of the non-zero pixels
is underlined. For the LAZB, ||0|lo = 27. low SNR. Under high SNR conditions, it has performance
In the low SNR case, MAP2 has the advantage. MARhat is comparable to lasso-SURE and H-SURE in terms of
produces the trivial estimate of all zeros, just as in thée |e||; and |e||2 errors. The value ofje||o increases with
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lasso-SURE's.

——LS
—=—MAP1

— APz " D. MRFM reconstruction example
—6—lasso-SURE /

T euRe A three dimensional example using the hydrogen atom

3 10"

— locations of the DNA molecule (PDB ID: 103D) [28] &
><f£ and the 3d MRFM psf is carried out in this subsection. Both
N 6 and y have dimensioni28 x 128 x 32, and the SNR is
SWRs Eo. 4.77 dB. Each hydrogen location # is set to 1, and the
(@) llello () Jlell1 rest of the locations set to 0. The resulting imagdas a
helical structure: see Fifl] 5a. The image representefilBy
. is illustrated in Fig[bb. The LS and lasso-SURE estimates

10

10

5 10 15 20 5 10 15 20
SNR [dB] SNR [dB]

© llell2 (d) Eq

(a) Imaged (b) ImageH§

Fig. 5. Imaged and noiseless projecticH@ used in the MRFM reconstruc-
tion example.

E izz i pa / are given in Fig[lb an@l7 respectively. The 3d figures plot

5 10 15 20
SNR [dB]

(e) HQHO

Fig. 4. Performance vs. SNR for Landweber iterations, MARAP2, lasso-
SURE, and H-SURE when applied to the binary-valded

respect to increasing SNR for MAP1. Taken together with
the |le/|; and |le||o curves, the trend is indicative of small 120 _
non-zero coefficients appearing énthat are spurious. MAP2 100
also has the same behavior with respect|dth,; however, a
performance gap under high SNR exists in|jtg; and ||¢||2
curves as compared to MAP1, lasso-SURE, and H-SURE. The
lasso-SURE and H-SURE estimates have curves that decreas -
as the SNR increases. H-SURE’s error curve is lower thlgn
lasso-SURE'’s fof|e||p and|le]|1, and it is almost identical for

120
6. The LS estimate of the MRFM example under a SNR of 4B7 d

llell2- contours for several values. The white volume in Fig. 6 does
Consider next thetZ; and [|6]o error criterion. The lasso- not indicated; = 0; rather, thed; are at a value smaller

SURE curve for||f||o is relatively flat, and itsE; curve than the lowest color bar value. On the other hand, the white

decreases for high SNR. :I'his indicates that, while the numhglume of the lasso-SURE estimate is mosily= 0. The

of non-zero coefficients i remains the same, the amplitudehistogram ofd; for the LS and lasso-SURE estimator given in

at the spurious locations are decreasing. With MAP1 amig.[8a,b respectively illustrate this point. The sharpkpat)

MAP2, the opposite trend is true. For low SNR, the number ¢f the lasso-SURE histogram suggests that the lasso estimat

non-zero coefficients uﬂ is small, but increases with higherincorporates a thresholding rule, which it does. 'Elgevalues

SNR. A similar increase can be seen in thg curves. One are separated into two distinct sets: the sparse imagereente

can conclude that the number of spurious non-zero locatioaw®und0.95 and the background around 0. In contrast, the

is increasing. This phenomenon is due to the bias of th&togram of); for Landweber is not separated in this fashion,

hyperparameter estimates [27]. With H-SURE, both ffie nor does it have a sharp peak at 0.

and||d||, curves decrease as the SNR increases. This behavior

is intuitive, as higher SNR should result in better perfonue V. SUMMARY AND FUTURE DIRECTIONS

We note that H-SURE’4/; curve is lower than lasso-SURE’s; Use of a mixed discrete-continuous LAZE prior and jointly

) (0, ¢) as the maximizer of(y, 0|¢) gives rise to the
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1.6

14

12

0.8

120

Fig. 7. The lasso-SURE estimate of the MRFM example under B 8N
4.77 dB.
10" 10"
10/ 10°
10’
10°
10°
10
10
10} 1
1—020L.5 -1 -0.5 0 0.5 1 15 2 193.2 0 0.2 0.4 0.6 0.8 1 12
(@) LS (b) lasso-SURE
Fig. 8. Histogram o, for the LS and lasso-SURE estimator.

Bernoulli-Laplacian sparse estimators MAP1 and MAP2. The
hybrid thresholding rule is observed in both of these spar

estimators. When used in the iterative thresholding fraomkw
the resulting penalty or® is quadratic around the origin,

the sparse estimators considered in the paper are all eanlin
in y. Another issue that should be looked in future work is how
to improve MAP1/2 to rectify the deteriorating performarate
higher SNR. The estimatés«w generally become more biased
as the SNR increases [27]. This has been noted in [30]. With
MAP2, the degree of bias is affected by the selectioof

Implementation considerations were not discussed, ajtmou
they are critical in the implementation of a deconvolution
algorithm. The interested reader is referred to [27]. Imiter
of increasing complexity, the estimators can be approaiyat
ordered as: StOMP, LS/oracular LS, MAP1 and MAP2, lasso-
SURE, H-SURE, and SBL. Thanks to LARS, evaluating a
goodness-of-fit criterion for lasso whether it be a SUREeerit
rion, a GCV criterion, etc. has low computational comphexit
Although LARS requires the selection of individual columns
of H, this is not an issue wheH represents a convolution
operator. The selection can be efficiently implementedgisin
the fast Fourier transform (FFT). Solving for the H-SURE
hyperparameters has higher computational complexityesinc
efficient implementation of the H-SURE estimator is curkgnt
lacking. In this paper, the iterative thresholding framewis
used for part of the solution; however, a LARS-like method
would be a welcomed improvement.
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APPENDIX |
PROOFS OFSECTION IV

SUBMISSION TO THE IEEE TRANS. IMAGE PROCESSING

Proposition 2 The function

3
Ji(z) £ 2T (2)z — 2% — 2/0 T(q) qu_TT( : (33)

is continuous for = € R.

Proof. SinceT(z) is continuous iR \ {0}, the only place
that should be checked is= 0. The second term if(B3) is
continuous, so it remains to check the first and third ternys. B
definition of a threshold functiorT(0*) =t andT7(0~) =
—t.

Considere > 0. SinceT () is right continuous ab*, there
existsd; > 0 s.t.x € (0,4,) implies that|TT(z) — ¢| < 0.1¢.
Likewise, sinceT(-) is left continuous al~, there exists
82 > 0 s.t.x € (—02,0) implies that|T"(z) + ¢| < 0.1¢. Set

1 . €
§= 5 min(dy, 02, m)
so that|z| < § = |27 ()| < e.

Consider the third term. Defind(¢) £ f(f T(q)dq: since
T'(-) is continuous, so is\(-). Moreover, for|z| < t, A(z) =
0. Fore > 0, there existss > ¢ S.t. [{] < k = |A(§)] < e.
Since T'f(-) is right continuous ab*, there existsy; > 0
stz € (0,01) = |TT(x) —t| < k — t. In a similar fashion,
sinceT'(-) is left continuous ab—, there exist$, > 0 s.t.z €
(—02,0) = |TT(z) + t| < k —t. Setd = min(dy,d2). From
|z| < &, one getdTT(x)| < k whence|A(TT(z))| < e. B

Proposition 3 The minimizer of p(z) = 22 — 2cx + J1(x) is
z="T(c).

Proof. Let ¢ (z) £ 2% — 2cx: ¢)(z) = 2(x — ¢), and is
lower bounded. Similarly, considéf (z): for 2 # 0, J; (z) =
2(Tt(x) — x). Since0 < T(z) < z forall x > 0 andz <
T(x) <0 forall x <0,

)= {

J1(z) is also lower bounded. Applying Prdg. 2 resultsgfr)

>0 x>0
<0 <0

being a continuous, lower bounded fuction. Consider now two

cases.

Case 1ic| > t, where recall that is the threshold of(-).
Forz # 0, ¢'(z) = 2z — 2¢ + J{(z) = 2[T"(x)) — c]. So
¢'(x) = 0 iff TT(x) = ¢, which occurs uniquely af =

A more general result is derived here. Consider the itematid’(c) > 0. Consider

é(nJrl

68" = 50 (87 + (0forE (-1, @Y

where T'(z;¢) = >, T(z;()e; is a thresholding rule [15,

Sec. 2.3] with the following condition. Suppose thag-; ¢)

@' (T(c) +6) = 2[T"(T(c) +6) - ]

Since we assume thdi(-) is strictly increasing ofR \ (—t, t),
T'(x) is also strictly increasing for # 0. For sufficiently
small§ > 0, ¢'(T(c) +9) > 0 and ¢'(T(c) — ) < 0.

(34)

has threshold ¢ > 0; then, T'(-; () is strictly increasing on gy 7 — T(c) is a local minimum. At this value ofr,

R\ (—t,t). Note thatT~'(z;¢) is only defined forz # 0.
Extend the definition at = 0 to get

TT(=T§£) = { T_l?l';<) v

220 (32)

p(x) = —2A(c) < 0. To verify thatz is the global minimum,
it is necessary to compute(0) = 0. So indeedx = T'(c)
minimizesy(x).

Case 2:|c| < t. Suppose that the minimizer # 0. Then,
the analysis in Case 1 applies, resulting:ia- T'(¢). But since

T (x;¢) is continuous on € R\ {0}. For the remainder of |¢| < ¢ by assumption, one geis= 0. This is a contradiction:

this section, the dependency f 7!, and7'f on ¢ will be
omitted for the sake of brevity.

it must therefore be the case that= 0. &
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Theorem 3 Supposethat |H||2 < 1 and a = o. Consider the
iteration (31), where T'(+) is a thresholding rule with threshold
t>0,and T(-) is strictly increasing in R\ (—¢, ). Then, the
iterations (3I) converge to a stationary point of ¥(6), where

v() = |IH9—y|I§ +J(0)

2009

where: J(0 (35)
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wheree = y — Hf. If 0 is obtained via a minimizatiofi =
argmin,\IIC( ), (@2) can be evaluated as [32, (2)]

A 2
R(g) = 02+% — %tr(H(D@\Ifg)ingg\Ifg) Q:Q, (43)
whereD,, ,(-) £ 9%(-)/Oudv’.

Let W¢,(0) = [|HE - yll3+¢1|0]|1 denote the cost function
of lasso. Sincel ;(6) is not twice differentiable ok, @3)
cannot be directly applied. Consider

Proof. Use the following definitions, which appear in [17]:

Z(0;a) 2 C|8 — a3 — |HI —
D3UR(9;a) £ D(0) + =(0; a),

Hal|2 (36)

37)

whereC' is chosen to ensure thatd; ) is strictly positive and
convex inf for any choice ofa. By assumption||H||» < 1,
and so select = 1 [17]. The function®SUR(¢; a) is the
surrogate function that is minimized in place®{d). Consider
the minimization of®SUR(g; a), which can be simplified as

©5R(0:0) = [|6]|* — 2(a + H'(y — Ha))'0+
J(O) + [yl + llal® - [Hal* (38)
Since J(8) = >, J1(6;), the minimization of ®SUR(9;a)

can be decomposed intd/ subproblems, where eadh is

separately minimized. Indeed, eaghshould minimize

wheres £ a + H'(y — Ha). Apply Prop.[3 to get the
minimizing 0;,1.e.,0; =T(s;).

Let 0 denote the sequence generated by
Q = argmin@SUR(Q;é ™ ) (40)
0
where é(o) is the initial estimate. Thenﬁ(n) is generated

by (31), where recall thatv/oc = 1. Any limit point of the
iterations [(3]) is a stationary point ¢f (35) [3M.

APPENDIXII
PROOFS OFSECTION V

A. Proof of Thm.[Q

Recall thatG(H) = H'H is the Gram matrix oH. In order
to simplify notation, forA € RM>*M denote byA;; = A[l :
rlor], Ala=A[l:rr+1: M], Aoy = Alr+1: M,1:7],
andAgs = A[r+1: M,r+1: M]. The following proposition
is needed. Its proof is omitted due to a lack of space.

Proposition 4 If H has linearly independent columns,
det((PG (H)P')2) # 0. (41)

where P is aAmatrix that orders the zero and non-zero
components of 6.

For 6, an unbiased estimate of therisk (Z2) is [23], [32]

N
”Q”% den,

8

(42)

Vei(lsa) = HH9 —yll3

2C1 Z {6 arctar( - gln (1

which is twice differentiable orRM. It can be shown that
limg—0 Ve i(@;a) = Pey(8) pointwise. The minimizer of
We(0; a) therefore equals the minimizer of ¢, (¢) in the

limit as a — 0. Denote byf%l(g; a) the unbiased estimate of
(22) whend is obtained by minimizing¢ ; (0; a). As the RHS
of (42) is solely a function ob (recall t_hatg, H, ando? are
known), lim, o (s a) = Ri(¢) pointwise.

92
+5)) (44)

Applying (43) ,
R(C:a) = o2 @ E 1, a1
Ri(Gia) = 0 + 152 + S U(G(H)[G(H) + 5Z(0)] )
(45)
where
A 2G a
Z.,(0) = diaq 2+92,..., a2+9?\4). (46)

Consider the {r) expression in[(45). A® is orthogonal and
matrix multiplication is commutative under the trace opera

tr(G(H) lG(H + Z“Q(Q) 1 ) =
~ —1
tr(PG(H)P’ PG(H)P’+M )

Without loss of generality, suppose thag (6 ) is ordered so
thatd, = ... = 0, = 0, wherer = M — ||0]|o andé,,, # 0 for
m>r. LetK 2 PG(H)P'. Then, [K +Z.(0)/2)"" equals

( )

WhereK11 = K11 —+ Z (9)11, KQQ = KQQ —+ Z (9)22, F11 =
K — K12K22 Ky, andFyy = Koy — K21K11 K. Ky
is invertible for sufficiently smalk. Likewise, for sufficiently
small a, K2 is invertible by Prop[4.

Asa — 0, K;}' = 0 andKs, — G(H)a. In addition,

Fl_ll — 0 and Fo — Koz, SO

_ﬁf11K12F521
-1
F22

F
—Fp KoK}

~ —1
Z,(0) 0 KK,
K [k 2@ ] (g @7)
asa — 0. Consequently,
lim () = 0+ el + 2 Bl = (). (48)
al—)InO i1\s;a) =0 NQQ N—O_ lg'
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B. Proof of Thm.[2

Earlier notation from this appendix will be retained. The
proof of the following proposition is omitted due to a lack of
space.

Proposition 5 Suppose that H has linearly independent
columns. If det(P[G(H) — ;U(6)]P’) = 0, then G(H) has
an eigenvalue of 1/2.

The proof of Thm[R parallels the proof of Thil}. 1. Ag ny(0)
is not twice differentiable olR*, consider instead

Ve ny(03a) = Ue(b;a)
M
+ ) [Gi(0m — Agia) — Gi(0m + Ag;a)] (49)
m=1

where
2 2 _
Gi(w:a) 2 (a® + x*) arctan(z/a) — ax n 1172 (50)
2w 4
Ueny(f;a) is  twice differentiable  in RM  and
limg—o e py(B5a) = U¢ny(f) pointwise. Result [(43)

can be applied to get

o (o) — o2 o el
Rpy(¢ia) = o* + N
+ %tr(G(H)[G(H) + %Za(é) - %Ua(é)]*) (51)

with
U, (0) £ diag(G1 (0 —Ac¢; a)=G1(0n+Ac; a))h_) (52)

Notice that similarity betwee ;(8;a) and ¥ ¢ hy(8; a); the
same applies td?;(¢; a) and Rny((; a). The steps of Thnf]1
can be carried out to evaluate thé Yrexpression in[{31) as
a — 0. One arrives at

lim tr (K22 [Kzg - %(PUa(é))22]_l) . (53)

a—0

Now lim,_,¢ Ua(é) = U(#). By assumptionG(H) does not
have an eigenvalue df/2. Therefore, application of Propl 5
implies that the inverse il _(b3) exists.
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