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On Color Texture Normalization for
Active Appearance Models

Mircea C. Ionita, Peter Corcoran, and Vasile Buzuloiu

Abstract—The extension of the standard grayscale active appearance
model (AAM) techniques to color images is investigated. Prior work in
this field has mainly focused on RGB color models which did not demon-
strate noticeable benefits over grayscale models from the point of view of
convergence accuracy. We improve on previous work by normalizing the
color texture vector separately for intensity and chromaticity components.
Where an appropriate color space is chosen, we demonstrate improve-
ments in convergence accuracy as well as image synthesization quality
for AAMs. Optimal results are achieved when a color space in which the
image channels are strongly decorrelated is chosen. Our best results are
achieved using the I11213 color space, originally proposed by Ohta.

Index Terms—Active appearance model (AAM), color spaces, PCA.

[. INTRODUCTION

The AAM techniques were first described by Edwards et al. [1].
They have been extensively used in applications such as face tracking
and analysis and interpretation of medical images.

Originally designed for grayscale images, AAMs have been later ex-
tended to color images. Edwards et al. [2] first proposed a color AAM
based on the RGB color space. This approach involves constructing a
color texture vector by merging the concatenated values of each color
channel. However, their results did not indicate that benefits in accu-
racy could be achieved from the additional chromaticity data which
were made available. Furthermore, the extra computation required to
process these data suggested that color-based AAMs did not justify
their use over conventional grayscale AAMs from the point of view of
fitting accuracy.

Stegmann et al. [3] proposed a value, hue, edge map (VHE) repre-
sentation of image structure. They used a transformation to HSV (hue,
saturation, and value) color space from where they retained only the
hue and value (intensity) components; they added to these an edge map
component, obtained using numeric differential operators. A color tex-
ture vector was created as in [2], using VHE components instead of the
RGB ones. In their experiments they compared the convergence accu-
racy of the VHE model with the grayscale and RGB implementations.
Here they obtained unexpected results indicating that the RGB model
(as proposed in [2]) was slightly less accurate than the grayscale model.
The VHE model outperformed both grayscale and RGB models but
only by a modest amount. Yet, some applicability of the VHE model
has been shown for the case of directional lighting changes.

We study in this correspondence the way in which a more appropriate
extension of AAM techniques to color images could be achieved. Our
work has focused on color spaces other than RGB because intensity
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and chromaticity information are strongly mixed in each of the RGB
channels. By employing color spaces where there is a better separation
of the chromaticity and intensity information, we are able to distinguish
between intensity-dependent and chromaticity-dependent aspects of a
color AAM. This allows for a new approach on normalizing color tex-
ture vectors by performing a set of independent normalization oper-
ations on the sub-vectors corresponding to each color channel. This
approach has further enabled us to train more accurate models.

In Section II, we briefly summarize the basic AAM algorithm for
grayscale images. We also present in more detail the grayscale texture
normalization method as well as its common extension to color data.
We further analyze in Section III, the possibility of generating color
texture vectors that retain more specific content by applying the tex-
ture normalization separately to each component of the color space.
‘We show that the 111213 color space, which decorrelates the color chan-
nels, is well suited for this purpose. In Section IV, we show the exper-
imental results and provide a detailed comparison between the stan-
dard grayscale model, the common RGB extension, and the proposed
models. We also demonstrate that the proposed method for color tex-
ture normalization is not suited to be used directly with the common
RGB color space. Finally, in Section V, we present the conclusions of
our work.

II. BACKGROUND

In what follows, we frequently use the term fexture, which, in AAM
terminology, refers to the set of pixel intensities across the modeled
object, possibly subsequent to a suitable normalization.

A. Overview of the Grayscale AAM

The image properties modeled by AAMs are shape and texture. The
parameters of the model are estimated from the initial scene giving the
parametric image. In order to build a statistical model of the appearance
of an object, principal components analysis (PCA) is used generate i)
a shape model, ii) a texture model, and iii) a combined model of ap-
pearance. A training data set contains image examples annotated with
a fixed set of landmark points.

The sets of 2-D coordinates of the landmark points define the shapes
inside the image frame. If NV is the number of training examples, each
shape is represented as a vector s = (&1, @2, .« .y L, Y1, Y2e - v s yL)T
of concatenated x and y coordinates, where L is the number of land-
mark points. The shapes are aligned using generalized Procrustes anal-
ysis [4], a technique used for normalizing the shapes by removing 2-D
translation, rotation and scale differences between them. PCA is then
applied to the set of aligned shape vectors and shape variability is lin-
early modeled as a base (mean) shape plus a linear combination of
shape eigenvectors

Sm =8+ @b, (1)

where s,, represents a modeled shape, § is the mean shape, &, =
(¢sy|Psy| -+ |0s,) is a matrix whose columns represent the first p
(p < N) eigenvectors; p is chosen such that a certain percentage of
the total variance is retained; finally, b, are the parameters of the shape
model.

For building the texture model, the set of texture vector examples
is acquired using a reference shape, e.g., the mean shape. A piecewise
affine warping based on a triangulated mesh of the reference shape is
commonly employed to map the image examples into a shape-normal-
ized representation, performing, thus, an image registration process.
The texture vectors are formed by scanning the pixel values across the
reference shape as tim = (timystims---»>timp )", Where P is the
number of texture samples. A photometric normalization is applied on
the texture vectors, as it will be detailed in Section II-B, in order to re-
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duce the effect of global illumination variations and to align them as
closely as possible to the normalized mean. PCA is again used to gen-
erate the texture model in (2)

t,, =t 4+ &by 2

where t.,, is a synthesized texture, t is the mean of the training data,
D¢ = (1| bra| -+ - |01, ) is the matrix of ¢ (¢ < N) column eigenvec-
tors, which retains a certain percentage of total texture variation; b; are
the texture parameters.

A vector c is further formed by concatenating the shape and texture

pa.ralnle&e};rts> that optimally describe each of the training examples, ¢ =
Wb . . . .
[ P ]; W, is a diagonal matrix of weights that compensates for
the differences in units between the shape and texture parameters.
A model for which the concatenated shape and texture parameters
c are directly used to describe the appearance variability is called an
independent model of appearance. A more compact model may be ob-
tained by taking into account the correlation between shape and texture.
Thus, a third PCA 1is applied on the set of vectors ¢, resulting in a com-
bined model of appearance

Cm = écbc (3)

where @ is the matrix of retained eigenvectors and b. represents the
set of parameters that provide combined control of shape and texture
variations.

During the optimization stage of an AAM, i.e., fitting the model to

a query image, the parameters to be found are p = [§° ], where g

are the shape 2 — D translation (¢.,t,), rotation (6 € C[O, 2m)) and
(isotropic) scaling (s > 0) parameters inside the image frame, and
b. are the combined model parameters. The statistical model is linear
in both shape and texture or appearance. Fitting the model to a new
image example represents though a nonlinear optimization problem.
The fitting algorithm is based on minimizing the error between the
query image and the model-synthesized image. The error is evaluated
in the coordinate frame of the model, i.e., in the normalized texture
reference frame, rather than in the coordinate frame of the image. This
choice allows for a fast approximation of a gradient descent optimiza-
tion algorithm to be used, which will be described as follows:

while ||r(p)||* gives the reconstruction error, with || - || marking the
Euclidean norm.
A first order Taylor extension of r(p) is given by

: or _
r(p +0p) = x(p) + 5 -6p. ®
p
5p should be chosen so that to minimize ||r(p + 8p)||*. It follows that
Jr
X s5p = —r(p).
op’P r(p) (©)

Normally, the gradient matrix (9r)/(9p) should be recomputed at each
iteration. Yet, as the error is estimated in a normalized texture frame,
this gradient matrix is considered fixed. This enables it to be precom-
puted from the training data set. Given a training image, each param-
eter in p is systematically displaced from its known optimal value pro-
ducing a set of normalized texture differences. The resulted matrices
are then averaged over several displacement amounts and over several
training images.
The update direction of the model parameters p is then given by

ép = —Rr(p) @)
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where R = ((dr)/(8p)** (8r)/(dp)*) " (0r)/(dp)*" is the
pseudo-inverse of the predetermined gradient matrix ((9r)/(dp))”.
The parameters p are updated iteratively until the error can no longer
be reduced and convergence is declared.

B. Texture Normalization Stage

As noted also by Batur et al. [5], and confirmed by our experiments,
this stage is critical during the optimization process, providing the best
chance for predicting the correct update direction of the parameter
vector.

Texture normalization is realized by applying a scaling «, and an
offset 3 to the texture vector t;,,

ti771 - /31
(e}

t= 8)
where 1 is a vector of ones. The values for «v and /3 are chosen so that
to best match the current vector to the mean vector of the normalized
data. In practice, the mean normalized texture vector is offset and scaled
to have zero-mean and unit-variance. If (1/IV) Zf\: | ti is the mean
vector of the normalized texture data, let fzm,uv be its zero-mean and
unit-variance correspondent. Then, the values for « and /3 required to
normalize a texture vector t;,,,, according to (8), are given by

o = t?;n{zwz,uv (9)
t/,1
5= timl, (10)

Obtaining the mean of the normalized data is, thus, a recursive process.
A stable solution can be found by using one texture vector as the first
estimate of the mean. Each texture vector is then aligned to zero mean
and unit variance mean vector as described in (8)—(10), re-estimating
the mean and iteratively repeating these steps until convergence is
achieved.

C. Color AAM Extensions. The Global Color Texture Normalization

Given the fact that the existing methods for extending the AAM tech-
niques to color images showed rather unsatisfactory results from the
point of view of convergence accuracy over the grayscale model, we
decided to have a more thorough look on how the color AAM exten-
sions could be realized. Before investigating this further, we present in
this section the main characteristics of the common AAM extension to
color images.

RGB is by far the most widely used color space in digital imagery
[6]. The extension proposed by Edwards et al. [2] is, thus, realized by
using an extended texture vector given by concatenated RGB compo-
nents as in (11)

RGB R R R
tim = (timlvtimga' "7timp
G € €
tiwn ’ tivnr_,w RN t‘i,m,pr
T
B B B
timlafimg','--vfimpc) (11)

where P. is the number of color texture samples. In order to reduce the
effects of global lighting variations, the same normalization method as
for the grayscale model, described in Section II-A, is applied on the
full color texture vectors. The main purpose of the texture normaliza-
tion stage is, similar with the grayscale model, to facilitate the use of a
fixed gradient matrix during the parameter optimization stage and, con-
sequently, to enable the application of the fast AAM fitting algorithm.

III. TEXTURE NORMALIZATION ON CHANNEL SUB-VECTORS

When a typical multichannel image is represented in a conventional
color space such as RGB, there are correlations between its channels.
Channel decorrelation refers to the reduction of the cross-correlation
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between the components of a color image in a certain color space rep-
resentation. In particular, the RGB color space presents very high inter-
channel correlations. For natural images, the cross-correlation coeffi-
cient between B and R channels is ~0.78, between R and G channels is
~0.98, and between G and B channels is ~0.94 [7]. This implies that,
in order to process the appearance of a set of pixels in a consistent way,
one must process the color channels as a whole and not independently.

This observation suggests an explanation as to why previous authors
[2] obtained rater unsatisfactory results when being compelled to treat
all three color components as a single entity. Indeed, if one attempts to
normalize individual image channels within a highly correlated color
space, such as RGB, the resulting model fails to improve on the model
on a model with global texture normalization, and, most probably, it
yields much poorer results. However, once we realize that each image
channel can be individually normalized once it is substantially decorre-
lated from the other image channels, then a more suitable color texture
normalization can be designed.

We remark that there are several color spaces which were specifically
designed to separate color information into intensity and chromaticity
components. However, such a separation still does not necessarily guar-
antee they have a good generality from the point of view of offering
strong image channel decorrelation. A color space which meets our re-
quirements has particularly been designed so that to meet exactly this
requirement as to offer a good interchannel decorrelation for a wide
range of natural images. This color space is described in the following
section.

A. Efficiently Decorrelated Color Space

An interesting color space is I11213, proposed by Ohta er al. [8],
which realizes an efficient minimization of the interchannel correla-
tions (decorrelation of the RGB components) for natural images. The
conversion from RGB to 111213 is given by the simple linear transfor-
mation in (12)

I, = M%B (12a)
n="2F (12b)
I = ZG_# (12¢)

I1 stands as the achromatic (intensity) component, while 12 and 13 are
the chromatic components. We remark that the simple numeric trans-
formation from RGB to I112I3 enables for an efficient transformation
of data sets between these two color spaces.

I112I3 was designed as an approximation for the Karhunen-Loe¢ve
transform (KLT) of the RGB data to be used for region segmentation
on color images. The KLT is optimal in terms of energy compaction
and mean squared error minimization for a truncated representation.
Note that KLT is very similar to PCA. In a geometric interpretation,
KLT can be viewed as a rotation of the coordinate system, while for
PCA the rotation of the coordinate system is preceded by a shift of
the origin to the mean point [9]. By applying KLT to a color image, it
creates image basis vectors which are orthogonal, and it, thus, achieves
complete decorrelation of the image channels. As the fixed transforma-
tion to I112I3 represents a good approximation of the KLT for a large
set of natural images, the resulting color channels present a statistically
best degree of decorrelation. The 111213 color space can, thus, become
useful for applying color image processing operations independently
to each image channel.

In the previous work of Ohta et al. [8], the discriminating power of
109 linear combinations of R, G, and B were tested on eight different
color scenes. The selected linear combinations were gathered such that
they could successfully be used for segmenting important (large area)
regions of an image, based on a histogram threshold. It was found that
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Fig. 1. Color texture example and its decomposition into I1, 12, and I3 repre-
sentation of Ohta space, respectively.

83 of the linear combinations had all positive weights, corresponding
mainly to an intensity component which is best approximated by I1;
another 22 showed opposite signs for the weights of R and B, repre-
senting the difference between the R and B components which is are
best approximated by 12; finally the remaining 4 linear combinations
could be approximated by 13. Thus, it was shown that the 11, 12, and
I3 components in (12) are performing the best when discriminating be-
tween different regions and that they are significant in this order [8].

B. 111213-Based Color AAM

The advantage of the 111213 representation is that the texture align-
ment method used for grayscale models can now be applied indepen-
dently on each channel. By considering the band sub-vectors individu-
ally, the alignment method described by (8)—(10) can be independently
applied to each sub-vector. A color texture example and its decompo-
sition in the 111213 color space are shown in Fig. 1.

The color texture vector is then rebuilt using the separately normal-
ized components into the full normalized texture vector. In this way, the
effect of global lighting variation is reduced due to the normalization
on the first channel which corresponds to an intensity component. Fur-
thermore, the effect of some global chromaticity variation is reduced
due to the normalization operations applied on the other two channels
corresponding to the chromatic components. Thus, the AAM search al-
gorithm becomes more robust to variations in lighting levels and color
distributions.

This also addresses a further aspect of AAMs which is their depen-
dency on initial training set. Although this effect can sometimes be
seen as a feature, it very much restricts its range of applicability to the
particular (naturally constrained) environment of the training data set.
Color AAMs are in particular much more sensitive to variations of the
image acquisition or environmental characteristics, e.g., color illumi-
nant or color balance. For example, if an annotated training set is pre-
pared using a digital camera with a color gamut with extra emphasis on
redness (some manufacturers do customize their cameras according to
market requirements), then the RGB-based AAM will perform poorly
on images captured with a camera which has a normal color balance. A
model, build using multichannel normalization will be noticeably more
tolerant to such variations in image color balance.

As remarked also in [3], the common linear normalization applied
on concatenated RGB components is less than optimal. The proposed
1112I3-based model uses a more powerful normalization method which
yields more accurate results, as will be shown in the next section.

Moreover, by employing the 111213 color space, a more efficient
compaction of the color texture data is achieved. As the texture sub-vec-
tors correspond to I1, 12, and I3 channels, which are significant in the
order of ~76%, ~20%, and ~4%, one can retain a significant amount
of the useful information just from the first two texture sub-vectors.
Thus, areduced 1112 model can be designed with the performance com-
parable to a full 111213 model in terms of final convergence accuracy.
It is, thus, expected that, combined with the proposed normalization
method for separate texture sub-vectors, a reduced 1112 model would
preserve much of the full 111213 model characteristics, yet reducing the
computational costs.
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i)

Fig. 2. Annotated image examples from CMU PIE, FERET, and IMM
databases, respectively.

IV. EXPERIMENTS

We analyze the performance of different texture representation/nor-
malization methods in the context of AAM for face modeling. The per-
formance is evaluated in terms of convergence accuracy of the models.
The point-to-curve (Pt-Crv) boundary error is measured between the
optimized shape points in the image frame and the boundary of the
ground-truth annotations; it is given by (1/L) Y7 min, ||s;—7;(t)]],
where the border is modeled as a linear spline r(t) = (r.(t),ry(t)).
The texture reconstruction error is measured between the query image
and modeled image after texture de-normalization. In order to have
a qualitative differentiation between the synthesized images which
should be in accordance with the human perception, this error is
evaluated as an Euclidean distance in CIELAB color space, giving,
thus, the perceptual texture error (PTE).

The following model implementations have been considered:
standard grayscale model—added for comparative reasons, RGB
with no normalization (RGB-none)—added so that to acknowledge
the importance the normalization process, RGB with global normal-
ization (RGB-G), RGB with normalization per channel sub-vectors
(RGB-Ch), I112I3 with normalization per channel sub-vectors
(I11213-Ch), and reduced I112 representation with separate channel
normalization (I112-Ch).

‘We mention that during our previous tests we have also considered
the CIELAB color space representation, yet the results have not been
eloquent. A limitation of the CIELAB representation has been observed
as it could not be efficiently used with texture normalization on separate
channel sub-vectors. Although results were improved over the common
RGB implementation for many tested databases, in particular for un-
seen databases, they lacked consistency.

Three standard face image databases have been considered, namely
the CMU PIE [10], color FERET [11], and the IMM [12]. We used for
our tests only face images with full frontal pose, no glasses, and diffuse
lighting. A total of 66 images have been chosen from the whole PIE
database, 78 images from FERET database and all 37 images of IMM
database. All images have been manually annotated using 65 landmark
points as shown in Fig. 2. For CMU PIE as well as for FERET sets,
the first 40 images have been used during training; for IMM database
the first 20 images have been used for training. The three training, or
seen data sets will also be referred to in the following as dbl, db2, and
db3, respectively. The remaining images corresponding to each data
set represent the unseen set.

To be sure that the measured difference between the different model
implementations can only be attributed to differences in texture nor-
malization/modeling, all models have been trained using all shape ex-
amples from the three training data sets; thus, the shape model is unique
across all model implementations.

All models are initialized using mean shape and mean texture and
setting an offset from the optimal pose of the ground-truth shape of
—20 and —10 pixels on the  and y coordinates, respectively. Conver-
gence is declared successful when Pt-Crv is less than ten pixels. We
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Fig. 3. Actual versus predicted dx displacements for RGB-G and I11213-Ch
model implementations on examples from the three databases considered.

note that, due to the characteristics of the face, a particular model can
successfully converge from larger displacements on the horizontal axis
than the vertical axis, as observed from previous experiments; hence,
the choice for our initial displacements.

To provide an indication on the convergence range differences be-
tween the models, we also studied convergence accuracy over a wider
range of initial displacements on the = coordinate. The tests have been
performed on a mixed data set containing images from all three consid-
ered databases for the RGB-G and I11213-Ch models. Fig. 3 shows dia-
grams of actual versus predicted displacements on a range of [—60, 60]
pixels from the optimum position. The predicted displacements are av-
eraged with respect to all images in the analyzed data set; the vertical
segments represent one unit of standard deviation of each predicted dis-
placement over the considered data set. We note that for these tests the
unsuccessful convergence results have also been considered in order
to determine which are the extreme dax values from which a partic-
ular model has still a high chance to convergence. It can be seen that
the convergence range, represented by the linear part of the diagram,
is rather similar for both model implementations for db1-trained and
db2-trained models; I11213-Ch implementation presents a more accu-
rate convergence range over the RGB-G counterpart for the db3-trained
models.

Four sets of experiments have been performed in order to analyze
1) the capacity of the models to memorize the set of learning examples,
ii) their capability of generalizing to new examples from the training
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TABLE I
CONVERGENCE RESULTS ON SEEN IMAGES

Model Success Pt-Crv ) PTE )

Rate [%] (Mean/Std/Median)  (Mean/Std/Median)
- - 15.00 6.75 15.00 -
dbI-Grayscale® 95.00 431 2.17 338 346 2.13 254
db1-RGB-none 97.50 2.85 096 2.69 389 1.59 3.33
db1-RGB-G 97.50 348 1.82 2.76 437 196 3.54
db1-RGB-Ch 92.50 4.11 2.05 3.70 490 2.00 4.21
db1-T11213-Ch 100 2.62 0.85 231 3.37 0.70 3.18
dbl-T112-Ch 100 2.88 1.06 2.52 5.60 1.18 5.41
db2-Grayscale™® 92.50 3.60 1.37 359 322 196 274
db2-RGB-none 97.50 285 1.32 231 323 1.58 2.82
db2-RGB-G 97.50 3.05 142 2.60 335 1.02 3.19
db2-RGB-Ch 77.50 350 1.39 3.13 6.11 7.60 3.44
db2-111213-Ch 92.50 2.69 1.07 2.43 336 1.83 2.85
db2-1112-Ch 92.50 323 146 2.89 4.67 1.35 4.30
db3-Grayscale® 100 292 1.52 2.30 2.56 0.80 2.23
db3-RGB-none 100 228 071 212 324 056 3.12
db3-RGB-G 100 245 098 2.13 327 0.75 3.10
db3-RGB-Ch 100 2.82 1.29 247 3.29 0.86 3.06
db3-111213-Ch 100 2.01 0.35 2.00 2.81 042 2.77
db3-1112-Ch 100 242 096 2.07 13.25 2.40 13.49

TABLE II

CONVERGENCE RESULTS ON UNSEEN IMAGES FROM THE SEEN DATABASE
Model Success Pt-Crv PTE

Rate [%] (Mean/Std/Median)  (Mean/Std/Median)
dbT-Grayscale* 100 375 1.45 328 323 1.10 3.01
db1-RGB-none 100 3.19 1.55 2.65 489 1.14 4.80
db1-RGB-G 96.15 291 0.85 2.79 5.05 1.27 4.90
db1-RGB-Ch 100 4.12 1.69 3.75 534 141 5.02
db1-111213-Ch 100 272 0.77 2.73 4.69 0.94 4.43
dbl-I112-Ch 100 2.57 0.78 2.37 5.85 1.19 5.97
db2-Grayscale* 89.47 3.56 1.21 3.14 336 0.89 3.37
db2-RGB-none 97.37 328 1.41 297 451 1.83 4.15
db2-RGB-G 97.37 3.13 0.96 2.89 438 0.78 4.26
db2-RGB-Ch 71.05 3.61 1.31 3.01 6.60 6.78 4.22
db2-T11213-Ch 97.37 2.70 0.66 2.77 3.99 0.63 3.97
db2-1112-Ch 97.37 2.87 0.85 2.81 477 0.84 4.69
db3-Grayscale*® 100 2.61 0.86 2.34 2.84 0.57 2.64
db3-RGB-none 100 2.66 0.85 2.61 506 1.16 498
db3-RGB-G 100 277 1.12 2.58 4.63 1.08 4.40
db3-RGB-Ch 100 276 1.00 2.67 394 0.76 3.70
db3-111213-Ch 100 2.64 0.92 2.60 427 0.87 4.22
db3-1112-Ch 100 2.64 0.99 2.55 12.88 2.93 12.27

database, as well as iii) their capability of generalizing to new, unseen
databases; finally, iv) we want to acknowledge the degree in which the
PCA texture modeling is actually responsible for the fitting accuracy
in a particular implementation—for this test, the entire texture varia-
tion has been removed. The full sets of results are summarized in Ta-
bles I-IV. Both Pt-Crv and PTE measures are shown in terms of their
mean, standard deviation (Std) and median values over the tested data
sets. We remark that the outliers, i.e., images that recorded unsuccessful
convergence, have this time been removed from the Pt-Crv and PTE
statistics.

The convergence tests for the seen data sets in Table I show that
the RGB model with no texture normalization performs actually better
than the RGB model with global normalization, which shows the inef-
ficiency of this type of normalization.

Consistent results have been obtained for 1112I3-Ch and I112-Ch
models, where the convergence accuracy is improved over the RGB-G
implementation for all studied data sets and experiments, both in
terms of Pt-Crv and PTE. It can also be noticed that the proposed
normalization cannot be successfully used with a RGB color space
representation.

The results for the case of retaining no texture variation, i.e., when
only the mean texture vector information is preserved, clearly favored
the proposed per-channel I112I3 texture normalization method. It
can be observed, by comparing the figures in Tables III and IV, that
the importance of the PCA-based texture modeling decreases with
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TABLE III
CONVERGENCE RESULTS ON UNSEEN DATABASES

Model Success Pt-Crv ) PTE )

Rate [%] (Mean/Std/Median)  (Mean/Std/Median)
db1-Grayscale*® 92.17 5.10 1.66 4.90 428 1.03 4.21
db1-RGB-none 99.13 494 137 432 10.09 1.58 9.93
db1-RGB-G 98.26 498 1.44 4.65 749 1.98 7.02
db1-RGB-Ch 87.83 532 1.65 5.08 6.33 1.40 5.95
dbl-T11213-Ch 99.13 3.60 1.32 3.32 5.10 1.01 4.85
dbl-1112-Ch 99.13 425 1.65 3.79 826 4.11 6.10
db2-Grayscale* 75.73 417 144 367 5.12 424 403
db2-RGB-none 84.47 402 1.40 3.69 12.43 3.43 12.41
db2-RGB-G 94.17 374 145 3.23 9.04 1.83 897
db2-RGB-Ch 62.14 4.01 1.60 3.46 7.70 426 6.06
db2-111213-Ch 88.35 331 1.26 2.98 6.16 2.28 5.73
db2-1112-Ch 87.38 3.60 1.55 3.04 10.00 3.41 8.94
db3-Grayscale*® 63.39 485 2.12 426 490 344 398
db3-RGB-none 7222 4441779 3.9 14.23 479 13.34
db3-RGB-G 65.28 4,55 2.03 4.01 9.68 2.81 9.27
db3-RGB-Ch 59.72 5.02 2.04 426 7.16 491 574
db3-111213-Ch 86.81 3.53 149 3.15 6.04 2.56 5.20
db3-1112-Ch 86.81 390 1.66 341 6.60 1.94 6.30

TABLE IV
CONVERGENCE RESULTS ON UNSEEN DATABASES
WITH NO TEXTURE VARIATION MODELING

Model Success Pt-Crv ) PTE )

Rate [%] (Mean/Std/Median)  (Mean/Std/Median)
dbT-Grayscale* 93.04 4.16 1.56 3.86 437 091 417
db1-RGB-none 7478 6.95 2.05 7.35 24.05 2.10 24.06
db1-RGB-G 99.13 4.00 1.50 3.58 792 333 6.25
db1-RGB-Ch 89.57 4.59 1.79 4.27 6.02 1.49 5.66
dbl-111213-Ch 99.13 3.37 1.26 3.10 536 1.03 5.10
dbl-1112-Ch 97.39 4.18 1.55 3.78 8.53 4.03 6.49
db2-Grayscale* 77.67 448 1.44 398 6.06 5.11 493
db2-RGB-none 38.83 440 1.76 3.92 19.77 7.26 22.09
db2-RGB-G 80.58 475 1.63 442 11.41 2.02 11.35
db2-RGB-Ch 65.05 4.44 1.67 3.5 8.39 5.54 6.57
db2-111213-Ch 92.23 336 1.13 2.98 6.68 2.04 6.20
db2-1112-Ch 89.32 3.84 1.43 3.38 10.64 3.50 9.45
db3-Grayscale*® 62.50 4,67 196 434 5.18 353 435
db3-RGB-none 42.36 501 239 421 18.98 7.73 20.96
db3-RGB-G 61.11 477 2.19 4.20 12.33 3.93 11.06
db3-RGB-Ch 59.03 473 2.16 421 7.63 6.87 5.59
db3-111213-Ch 86.81 3.74 1.64 3.30 6.19 244 5.63
db3-1112-Ch 84.03 4.16 1.71 3.82 7.10 2.22 6.66

the level of normalization performed onto the texture vectors. Thus,
texture modeling is an essential operation when no normalization is
performed, becoming least critical in the case of I11213-Ch or I112-Ch
implementations.

Itis known (see Section III-A) that a great amount of relevant data is
actually encapsulated in the I1 and 12 components of the I112I3 repre-
sentation. As expected, the difference between using an AAM derived
from a full 111213 color space representation and the one which re-
tains only the first two channels is not significant. Where the speed of
convergence is a priority, the reduced 1112 model may be favored to a
full 111213 model due to the lower dimensionality of the overall texture
vector and the reduced computational requirements of this two-channel
model.

Note that, although some noise amplification effect might be ex-
pected when the normalization on channel sub-vectors is employed,
we found that this effect is not present. This fact is also reflected in the
PTE values (see Tables I-IV), which actually decrease when using the
normalization on channel sub-vectors.

V. DISCUSSION AND CONCLUSIONS

Texture normalization was used in the grayscale AAM as an impor-
tant tool to compensate for global lighting variations between images,
as well as to allow and motivate the use of the constant gradient as-
sumption, which further permitted the development of a fast fitting al-
gorithm. When AAM techniques have been extended to color images,
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the same principle was used on the enlarged texture vector of concate-
nated RGB components; thus, a rather similar effect of compensating
for global intensity variations was obtained. Yet, when color texture
is being modeled, one is confronted with a much more complex task,
which involves not only intensity variations, but also chrominance vari-
ations. Chrominance can have a wide range of variability in digital im-
ages, even when considering one object class. It is, thus, much more
difficult to model a colored object and it can be easily influenced by ex-
ternal factors like data acquisition devices or changes of environment.
Typically, the area of applicability is restrained to a highly constrained
environmental setup, in which the intrinsic characteristics of the mod-
eled object can be reliably extracted and interpreted. In the case of face
modeling, the resulted model is applicable to images that share sim-
ilar characteristics, as it is usually the case of a standard database. To a
greater extent as for grayscale, the trained color model loses generality
when a new color database is considered due to inherent environmental
and image acquisition differences. Thus, texture normalization prior to
PCA modeling becomes an essential tool to make proper use of the
available color information and to increase the generality of a partic-
ular model.

We proposed a more powerful color texture normalization technique
where each texture sub-vector corresponding to an individual color
channel is normalized independently of the other channels. Although
this approach cannot be successfully used with the common RGB rep-
resentation due to the high interchannel correlations, it has been de-
duced that this is achievable by employing a color space where inten-
sity and chromaticity information are better separated. In particular, it
was found that the 11213 color space, which was specifically designed
to minimize the correlation coefficients between the color channels, is
the best practical choice for this purpose.

By employing the 111213 color space coupled with texture normal-
ization on separate channel sub-vectors, we are able to improve the
convergence accuracy and to achieve a more accurate reconstruction
of the color image. Note that, by using the proposed 111213 model with
texture normalization on separate channel subvectors, the optimization
algorithm, which is typically based on a gradient descent approxima-
tion, is less susceptible to errors caused by local error function minima.
Thus, the algorithm performance is also more robust.

The proposed 111213 color AAM was designed to filter out, by means
of a more powerful texture normalization, image content that is diffi-
cult or not desirable to be included in the PCA texture modeling. More
database-specific color content is filtered out using the normalization
performed per each individual channel, while intrinsic general facial
content is still retained and modeled within texture PCA. The proposed
normalization method reduces as well the importance of the texture
modeling stage from the point of view of successful convergence rates.
More accurate model convergence, both in terms of shape errors and
texture errors, has been demonstrated.
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