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Abstract—In the field of image segmentation, most level-set-
based active-contour approaches take advantage of a discrete
representation of the associated implicit function. We present in
this paper a different formulation where the implicit function
is modeled as a continuous parametric function expressed on a
B-spline basis. Starting from the active-contour energy functional,
we show that this formulation allows us to compute the solution as
a restriction of the variational problem on the space spanned by
the B-splines. As a consequence, the minimization of the functional
is directly obtained in terms of the B-spline coefficients. We also
show that each step of this minimization may be expressed through
a convolution operation. Because the B-spline functions are sep-
arable, this convolution may in turn be performed as a sequence
of simple 1-D convolutions, which yields an efficient algorithm. As
a further consequence, each step of the level-set evolution may be
interpreted as a filtering operation with a B-spline kernel. Such
filtering induces an intrinsic smoothing in the algorithm, which
can be controlled explicitly via the degree and the scale of the
chosen B-spline kernel. We illustrate the behavior of this approach
on simulated as well as experimental images from various fields.

Index Terms—Active contours, B-spline, level-sets, segmenta-
tion, variational method.

I. INTRODUCTION

L EVEL-set-based formulations have become a well-estab-
lished tool in the field of image processing [1]–[3]. In

image segmentation, level-set-based methods correspond to a
class of deformable models where the shape to be recovered
is captured by propagating an interface represented by the
zero level-set of a smooth function which is usually called the
level-set function. The evolution of the interface is generally
derived through a variational formulation: the segmentation
problem is expressed as the minimization of an energy func-
tional that reflects the properties of the objects to be recovered.
Formally, the minimization of this functional provides the
evolution of the level-set function as a time-dependent par-
tial differential equation (PDE) that is usually solved using
finite-difference methods. These numerical schemes have been
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developed to obtain an accurate and unique solution; they in-
volve upwind differencing, essentially nonoscillatory schemes
borrowed from the numerical solutions of conservation laws
and Hamilton–Jacobi equations [2].

As an alternative to this now well-known discrete scheme, we
present in this paper a continuous approach where the level-set
function is expressed as a continuous parametric function using
B-splines. Let us note that B-splines have already been used in
the context of variational active contours. In [4], the active con-
tour is modelled as quadratic B-spline curves in order to intro-
duce statistical shape knowledge into the Mumford–Shah seg-
mentation functional. The philosophy of representing the active
contour by a few control points has been pushed to the limit in
[5], where a polygon is used to model the evolving curve and a
polygon regularizer is introduced in order to avoid degeneracy in
the course of the propagation. In another context [6], B-splines
are used for shape gradient-based level-set evolution in order to
constrain the domain transformations to a linear combination of
a set of predefined transformations.

The idea of using a continuous representation of the level-set
has recently been proposed in [7] and [8], where the continuous
representation is based on radial-basis functions (RBFs), which
are then used to solve the level-set PDE. In contrast with these
approaches, we start from the initial level-set energy functional
and show that our formulation allows us to compute the solution
as a restriction of the variational problem onto the space spanned
by the B-splines—in other words, as a projection onto the space
of B-splines. As a consequence, the minimization of the func-
tional is directly obtained in terms of the B-spline coefficients.

By representing the level-set as a linear combination of
continuous basis functions, we benefit from several interesting
properties. This representation provides an overall control of
the level-set (i.e., over the whole computational domain of
the level-set), in contrast to the narrow-band implementation
usually associated to the finite-difference scheme. Moreover,
the re-initialization step of the level-set used in most imple-
mentations may be avoided by constraining the propagation of
the interface, via constraints on the coefficients of the linear
expansion.

The use of B-splines as a basis for the level-set representa-
tion provides specific additional benefits. As shown in the se-
quel, the minimization of the level-set functional with respect
to the B-spline coefficients may be expressed as a discrete con-
volution operation. Moreover, since the B-spline basis func-
tions are separable, this convolution may be performed as a
sequence of simple 1-D convolutions. This leads to a very ef-
ficient implementation and also yields clues for the following
interesting interpretation of the optimization process: Each step
of the level-set evolution can be seen as a filtering operation with
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a B-spline kernel. Such filtering induces an intrinsic smoothing
in the algorithm, which can be controlled explicitly via the de-
gree and the scale of the chosen B-spline kernel. Given that the
level-set implementation of active contours are sensitive to noise
[9], [10], this provides an efficient way to deal with noisy fea-
ture images and yields a more robust segmentation.

The noise sensitivity of the level-set method has been ad-
dressed in several recent works using two different types of ap-
proaches. The first type of approaches modify the data term of
the functional: a region approach is used to describe image in-
formation through an a priori statistical model, such as the ex-
ponential family of distribution [11]–[13] or the Generalized
Gaussian [14], [15]. The second kind of approaches works on
the energy functional and the associated PDE. By solving the
weak form of the level-set PDE Liu [10] proposed to perform
smoothing of the level-set function and associated flow through
local integration of the level-set function and external image
forces. Very recent studies [9], [16] allow tackling this issue by
observing that the definition of the energy functional gradient
directly depends on the choice of an inner product structure.
This inner product is most often chosen as the canonical
inner product, which does not favour smooth evolution flows.
These studies have generalized the approach by showing that
using other inner products, such as Sobolev-type inner prod-
ucts, allows obtaining smooth gradient flow. Our approach dif-
fers from the above mentioned studies in that we start from a
level set formulation and obtain a smooth solution as the result
of constraining the solution to be a projection the space spanned
by the B-splines.

Finally, let us note that the above mentioned set of charac-
teristics yields also interesting properties in terms of compu-
tational speed. As noted in the very recent paper by Shi et al.
[17], the speed of the usual finite difference narrow band imple-
mentations of the level set PDE is mainly linked to numerical
stability, which implies small time steps [18], [19] and period-
ical re-initialization of the level-set function. Moreover, many
applications require the calculation of level-set curvature which
is costly. By contrast, due to the smooth, continuous B-spline
representation of the level-set, we may use large steps (thus
need fewer iterations to reach convergence), re-initialization is
replaced by an efficient re-normalization of the B-spline coeffi-
cients and the computation of curvature term may be skipped in
most cases. These aspects yield a fast algorithm, as illustrated
in the experimental section.

The paper is structured as follows. In Section II, we recall
the general form of the level-set energy functional, describe the
B-spline formulation of the problem, and derive the minimiza-
tion of the functional in terms of the B-spline coefficients. In
particular, we show how the gradient of the functional—hence,
the evolution of the level-set—may be expressed as a convo-
lution. In Section III, we discuss the implementation issues of
our method. We show in particular how the re-initialization of
the level-set may be avoided by normalizing the B-spline coef-
ficients. In Section IV, we evaluate the behavior of the method
using simulated images as well as biological (fluorescence) and
medical (CT) images. We give the main conclusions and per-
spectives of this work in Section V.

II. PROBLEM FORMULATION

A. Energy Criterion

Let be a bounded open subset of and let
be a given -dimensional image. In the level-set formalism, the
evolving interface is represented as the zero level-set
of a Lipschitz-continuous function of dimension that
satisfies

where is a region in bounded by . The region
is defined as .

We now consider the classical problem of segmenting one ob-
ject (possibly having several nonconnected components) from
the background.1 This problem is typically handled by the evo-
lution of one level-set; its steady state partitions the image into
two regions that delimit the boundaries of the object to be seg-
mented. In this framework, a general expression of the energy
functional that drives the level-set can be formulated as [20]

(4)

where the first and second terms (often referred to as region
terms) are energy criteria attached to the inside and outside re-
gions delimited by the interface , respectively. The last term is
an energy criterion attached to the interface (often referred to
as the contour term). The functions and describe
the object region and the background region [20], [21], and
is a function describing the contour [22]. The symbols and

correspond to the Heaviside and Dirac univariate functions,
respectively. The variables , , and are some positive
hyper-parameters.

B. B-Spline Level-Set Model

The model is obtained by expressing the level-set function
as the linear combination of B-spline basis functions [23]

(5)

In this expression, is the uniform symmetric -di-
mensional B-spline of degree . This function is sepa-
rable and is built as the product of 1-D B-splines, so that

. The knots of the B-splines are located
on a grid spanning , with a regular spacing given by . The
coefficients of the B-spline representation are gathered in .

1The interested reader will find in [3] approaches that extend this method to
several regions.
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C. Functional Minimization

In the classical variational settings, the energy criterion is
minimized with respect to the level-set function using either
Euler-Lagrange equations [24] or the Fréchet/Gâteaux deriva-
tives [20], [25]. In contrast with these approaches, we use the
B-spline formulation (5) and perform the minimization with
respect to the B-spline coefficients . Such minimization
implies computing the derivatives of (4) with respect to each
B-spline coefficient . We show in Appendix A that these
derivatives may be expressed as

(6)

where

(7)

Here, reflects the features of the object to be segmented
and will be called the feature function in the sequel. It is worth
noting that whenever the region and contour terms ,

, and do not depend on the level set function, the
derivatives of these functions with respect to in (7) vanish
and simplifies to

(8)

The minimization of the energy criterion (4) with respect to the
B-spline coefficients generally does not lead to a closed-form
solution. In order to obtain a local minimum, we then perform
a gradient-descent method which yields

(9)

where is the iteration step and corresponds to the gradient
of the energy relative to the B-spline coefficients, the compo-
nents of which being given by (6) and (7).

Equation (6) yields an interesting interpretation of the mini-
mization process. Let us define , which is the
B-spline of degree upscaled by a factor . The expression of
the energy gradient is then given by

(10)

This last equation shows that the computation of the gradient
of with respect to a set of B-spline coefficients may be inter-
preted as convolving the feature function with the B-spline

, and sampling the result with a period .

D. Discretization: Gradient Calculation as a Discrete
Separable Convolution

Since the image information is available only on a discrete
grid, the practical computation of the level-set evolution implies
the discretization of the gradient given in (10), i.e., the
discretization of the feature function and the B-spline basis.

1) Discretization of the Feature Function : Discretization
of as given in (7) or (8) implies the approximation of the Heav-
iside function and the 1-D Dirac. We follow here a now classical
framework [24]–[26], by considering and , i.e., any ap-
proximations and regularizations of the Heaviside function
and Delta function , as and with . The de-
tailed expressions of and chosen for our implementation
are given in the Experiments Section IV-A.2 As noted in [27],
this is equivalent to consider a regularized version of the func-
tional , i.e.,

(11)

The associated feature function is then simply obtained
from (7) and (8) by replacing the Heaviside and the Dirac by
their regularized counterparts and . Let us call the
corresponding discrete feature function, with .

2) Gradient Calculation: being defined above, we im-
mediately obtain the discrete version of the gradient (10) by ap-
plying the discrete B-spline formulation of [28]. The centered

-dimensional discrete B-spline of degree is noted ; it
is obtained by sampling its continuous version at integer
values. Similar to its continuous counterpart, the sequence
is separable and is built as the product of 1-D B-splines, so
that . By using an integer spacing of the
knots (i.e., ), we may define the discrete B-spline
of degree scaled by a factor as .

The discrete version of the formulation is then obtained from
(10) as

(12)

The energy gradient, thus, corresponds to the convolution of the
feature image and the B-spline, down-sampled by a factor ; put
differently

(13)

This last expression provides an efficient way of calculating the
gradient and, thus, the evolution of the level-set through (9).
Since the B-spline kernel is separable, the gradient may

2Note that shape gradient-based approaches [20], [27] allow expressing the
level-set evolution directly as a function of the level-set gradient, avoiding
thereby such regularization.
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indeed be computed as a simple series of convolutions of the
feature image with a 1-D B-spline kernel.

In effect, each step of the level-set evolution corresponds to
filtering the feature image with a B-spline kernel—that is, per-
forming a low-pass filtering operation. This induces an intrinsic
smoothing in the algorithm. For a fixed B-spline degree , the
amount of smoothing can be controlled by choosing the scale
of the filter (i.e., by choosing the knot spacing ). This
provides a way to efficiently deal with noisy images.

III. IMPLEMENTATION ISSUES

A. Bounded Level-Set

In the course of propagation, the level-set function may de-
velop steep or flat gradients, which, in turn, yield inaccuracies
in the numerical approximation [3]. This is usually taken into
account in classical implementations by reshaping the level-set
through periodical re-initialization of the level-set function as
the distance function to the zero level. This scheme has two main
drawbacks:

• it increases the computational cost of the method;
• as noted in [3], it reduces the topological flexibility of the

method since it prevents the level-set from creating new
contours (i.e., new zero-level components) far away from
the initial interface.

As shown below, bounding the level-set function allows
preventing steep gradients and avoids the re-initialization step.
Moreover, due to the linearity of the expansion, bounding the
level-set may be easily performed through a simple re-normal-
ization of the expansion coefficients. This feature was used in
[8] in the case of Radial Basis Function (RBF) by using the

-norm of the expansion coefficients. Here, we propose instead
to take advantage of the B-spline formulation and re-normalize
the level-set by constraining the -norm of the expansion.
Such a procedure has the following advantages:

• it has a modest computational cost;
• it does not prevent the creation of new zero level com-

ponents, thus making the solution topologically more
flexible.

First, let us note that the multiplication of an implicit function
by a non-null coefficient does not change its associated inter-
face. Since is represented through the set c[k] of the B-spline
expansion, multiplying by a coefficient simply corresponds
to multiplying by . Furthermore, Appendix B shows
that the -norm, , of the B-spline coefficients provides
us with a bound on the level-set function as

(14)

Hence, we can re-normalize the level-set function to the range
[ 1, 1] by the following simple modification of the initial algo-
rithm provided by (9)

(15)

In Appendix C, we show that re-normalization also imposes a
bound on the gradient norm of the level-set. This bound is

(16)

where . may easily computed for
any degree . For B-splines of degrees 1, 2, and 3, we have

, and .

B. Gradient-Descent Algorithm

We minimize the energy given in (4) thanks to a gradient-de-
scent algorithm with feedback step adjustment [29]. At each step

, we use (9), (15), and the current estimate to compute a
candidate update and its associated energy. If this update
decreases , then the step is considered successful, the corre-
sponding B-spline coefficients are accepted, and the step
size is multiplied by a factor . Else, we perform a more
conservative update by dividing the step size by , and we
repeat the test.

As described in Section III-A, the range of is controlled
during minimization thanks to the normalization procedure,
which is applied every time the updated is accepted.
This strategy makes the traditional level-set re-initialization
unnecessary.

Let us note here that other strategies than gradient descents
have been proposed in order to obtain level set evolution. The
very recent contribution of Grady [30] describes an approach
based on combinatorial optimization instead of gradient descent
in order to minimize the influence of undesirable local minima
and obtain overall control of the level set evolution through non-
local movement.

C. Computational Cost

The complexity of our algorithm depends on the support of
the discrete B-spline ; more specifically, it essentially de-
pends on its chosen degree . The support of a 1-D discrete
B-spline of degree expanded by a factor is given by .
Calling the number of dimensions and the number of
pixels of the image, the number of spline knots is then .
The cost of computing one update (9) of the B-spline coeffi-
cients is dominated by the convolution (13). Because of
separability, the downsampling can be applied on-the-fly, and
the overall cost for updating all coefficients in (9) is

. For a sufficiently large ,
it thus corresponds to about operations for
a pool of coefficients. Note that the total cost does
depend on , but only weakly so; at worst, it can reach

for .
Since the gradient-descent algorithm described above re-

quires the computation of the energy through the sampled
version of (4), it requires the evaluation of the level-set itself.
By a similar analysis, the total cost of evaluating the level-set
function expressed in (5) corresponds again to op-
erations. Note that the computational cost of the energy terms
involved in the computation of the feature image and
of the energy is application-dependent because of the terms

, , and ; it is, therefore,
not expressed here.

IV. EXPERIMENTS

In this section, we evaluate the proposed approach using a
series of simulated images and biomedical images. The inter-
ested reader will find numerous other examples and may test the
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segmentation algorithm in real time at the following website
address: http://www.bigwww.epfl.ch/demo/levelset-spline/.
The method has been developped using a Java platform.

A. Segmentation Functional

Our segmentation experiments are based on the Chan–Vese
functional [24], which aims at partitioning the image into re-
gions with piecewise-constant intensity. This approach corre-
sponds to a particular case of the Mumford–Shah functional
[31], known as the minimal-partitioning problem. The corre-
sponding functional is given as

(17)

where are the two parameters of the energy function,
and where is a hyper-parameter that balances the influence of
the regions terms (first and second integrals) and of the contour
term (third integral). The functions and are reg-
ularized versions of the Heaviside and of the Dirac functions,3
respectively. The corresponding expression is

(18)

where is a real positive constant that controls the scale of the
regularized Dirac.

From Appendix A, the derivation of this criterion leads to the
feature function

(19)

From (18) and (19), the evolution of the level-set is given by (9).
In our implementation, the 1-D convolution filter was applied
using mirror boundary conditions.

We estimate the parameters and thanks to a conven-
tional Expectation Maximization (EM) technique which keeps

(i.e., ) fixed and minimizes the energy criterion with re-
spect to and . These parameters are then given as

(20)

3The interest of relies on its infinite support. As noted in [24], this makes
the evolution term (13) act on all level curves at once, which reduces the sensi-
tivity of the algorithm to the initialization.

B. Segmentation Parameters

The following settings are applied to all experiments.
• All images have an eight-bit dynamics and their dimension

is , where is the number of dimensions.
• We use a cubic B-spline function as basis for the level-set

representation. This function provides a good tradeoff be-
tween smoothing properties and computational cost. The
length of the support of this function is equal to .

• The scale of the regularized Dirac defined in (18) has to
be large enough, so that the evolution equation acts on all
level curves and yields a global minimizer [24]. Because
the level-set is bounded in the interval [ 1, 1], we simply
set .

• The parameters that adjust the steps of the gradient-descent
are fixed as and .

• Unless otherwise mentioned, we initialize the level-set
with the implicit function .

In the experiments, we shall focus on the influence of the
two main parameters of the method: the regularization factor ,
which weights the curvature term in the functional [see (19)],
and the scale , which controls the smoothing linked to the
B-spline formulation [see (13)]. Moreover, we give for each
experiment the cpu time of the computation, performed on a
1.4-GHz Intel with 1 GB of RAM.

C. Segmentation Results

We show in Fig. 1 the segmentation results obtained on an
image containing a textured spiral, borrowed from [24], and cor-
responding to an art picture from the Los Angeles Times by
Brian Forrest. From the initial solution, the zero-level interface
propagates into the spiral and converges to the final curve after
46 iterations. In this case, we have applied the B-spline repre-
sentation at full scale , which corresponds to a knot
placed at every pixel of the image of size . In this example,
we have set the curvature regularization as .
Thanks to the separable nature of the convolution formulation
of the level-set evolution, we obtain the final result in only 20 s
cpu time.

We illustrate in Fig. 2(a)–(d) the influence of the scale of
the level-set B-spline representation. The computations are per-
formed for increasing scale and without curvature regularization
[i.e., in (19)]. The results demonstrate a corresponding
increase in the degree of smoothness of the segmentation. Com-
paring these results to the previous ones [see Figs. 1(d) and 2(c)],
it appears that the scale of the B-splines or the curvature term
have a similar influence on the smoothness of the final shape. It
is, however, interesting to note that it is much faster to segment
without curvature regularization: The cpu time is equal to either
2 or 3 s for scales , whereas the cpu time is 20 s
for the result shown in Fig. 1(d). This difference is due to the
fact that we spare the computation of the term corresponding to
the curvature in the feature image [see (19)]. Moreover, relaxing
the curvature term makes the active contour less rigid; thus, the
algorithm reaches the solution within fewer iterations.

We illustrate in Fig. 3 the behavior of the approach in the pres-
ence of various amounts of additive Gaussian noise and show the
respective influence of the scale and curvature regularization. In
Fig. 3(d)–(f) (i.e., second row), we show the results obtained at
full scale using only the curvature term. Because this
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Fig. 1. Segmentation of a textured spiral image. Full-scale model with curvature weight . (a) Initialization; (b) level-set after 11
iterations; (c) segmentation result obtained after 46 iterations, .

Fig. 2. Segmentation of a textured spiral image with different scales and no curvature constraint . (a) Segmentation result for ; (b) segmentation
result for ; (c) segmentation result for ; (d) segmentation result for . (a) Final result at scale 1 (50 iterations, ); (b) final result at
scale 2 (eight iterations, ); (c) final result at scale 4 (six iterations, ); (d) final result at scale 8 (11 iterations, ).

term corresponds to a purely geometric smoothing, it cannot
provide satisfying segmentation when the amount of noise is
important. Indeed, increasing the constraint (i.e., increasing )
beyond the values corresponding to those of Fig. 3(d)–(f) cannot
improve the results, since doing this would yield a quasi-rigid
active contour which would not evolve from the initial solution
anymore.

By contrast, Fig. 3(g)–(l) (third and bottom row) hint that
an increase of the scale of the B-spline is more successful at
coping with an increase in the amount of noise. This illustrates
the double influence of the scale parameter of the B-spline level-
set.

• A scale increase y that have a larger support. Thus, this is
comparable to the geometric smoothing provided by the
curvature regularization mentioned above.

• The evolution of the B-spline level-set is formally equiva-
lent to smoothing the feature image with a B-spline
kernel, as shown in (13). Consequently, increasing the
scale (i.e., the support of the kernel) leads to stronger
smoothing, which in turn reduces the effect of the noise.
Such a smoothing cannot be provided by the curvature
term.

As previously noted, the results of Fig. 3 show that the segmen-
tation performed without the curvature term [see Fig. 3(d)–(f)]
results in a faster computation.

These above observations are quantitatively evaluated by
comparing the obtained segmentation and the reference shape
using the popular Dice coefficient [17], [32]. Noting and
the segmented and the reference regions, the Dice coefficient

is given as

(21)

The Dice coefficient varies from 0 to 1: it is 1 when the two
regions are identical and 0 when they are completely different.
The corresponding results are given in Fig. 4, where we have
plotted the Dice coefficient, for various amounts of additive
Gaussian noise as a function of the scale parameter . Each Dice
coefficient has been estimated by averaging 20 segmentation re-
sults obtained on different noise realizations. From Fig. 4 the
following can be observed. When the noise level is very low
(30 dB), only weak smoothing is needed and low values for
provide the best results. Increasing yields oversmoothing of
the shape and, thus, a decrease of the Dice coefficient. At higher
noise levels, the amount of smoothing has to be increased, thus
the best results corresponds to higher values of (i.e., 2 for
25 dB, 4 for 20 dB, and 8 for 15 dB). Increasing beyond
these values yields again oversmoothing. Note also that even
for these “ideal” values the Dice coefficient decreases with the
noise level: this is consistent with the fact that the details of the
object cannot be recovered at such noise levels.

We next illustrate the interest of bounding the level-set using
the normalization procedure described in Section III-A. We
show in Fig. 5(d)–(f) the segmentation results obtained on a
shape having multiple components using different initializa-
tions [see Fig. 5(a)–(c)]. By bounding the level-set, we avoid
the periodic re-initialization of the implicit function and make
the level-set topologically, new zero-level components and
provides the proper segmentation of the object. In Fig. 5(g)–(i),
we show the segmentation results obtained using a classical
level-set algorithm [33] where the implicit function is repre-
sented through a signed distance function defined on a narrow
band around the zero level. At each iteration, an optimized
re-initialization strategy is used to keep the signed-distance
properties over time. The results clearly show that such algo-
rithms have difficulties to develop new components and, thus,
strongly depend on the initialization.
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Fig. 3. Segmentation of images with different SNR values. Each column corresponds to a given noise level (left: 25 dB, middle: 20 dB, right: 15 dB); each row
corresponds to a given scale. Top row: original images. Second row: full scale with curvature term. Third row: , no curvature term. Bottom row:

, no curvature term. (a) Image at 25 dB; (b) image at 20 dB; (c) image at 15 dB; (d) , , cpu 14 s; (e) , ,
cpu 18 s; (f) , , cpu 24 s; (g) , , cpu 3 s; (h) , , cpu 3 s; (i) , , cpu 3 s; (j) , , cpu 4 s;
(k) , , cpu 3 s; (l) , , cpu 3 s.

Fig. 4. Dice coefficient in function of the scale parameter for segmentation of
images having various amounts of additive Gaussian noise. Each dice value has
been estimated on 20 realizations.

We give in Fig. 6 an example of applying our approach on a
fluorescence micrograph that contains labeled yeast cells. As the
shapes to be detected are smooth, we set the scale of the B-spline
level-set to , and we do not use the curvature term by set-
ting . We show the final segmentation in Fig. 6(c), where
multiple components are detected thanks to the topological flex-
ibility of the level-set.

We consider in Fig. 7 a satellite image of European night
lights. Its proper segmentation is a challenging problem because
we would like to retain the small details of the shape of the
coast borders, while the regions corresponding to solid ground
are inhomogeneous. In this case, we have segmented the image
by using a moderate scale , with the assistance of a
nonvanishing curvature term. We have shown the evolution of
the zero level in Fig. 7(a)–(c), and we have given the associated
inside and outside regions in Fig. 7(d) and (f).
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Fig. 5. Segmentation of an image at 30 dB with different initializations. Each column corresponds to a given initialization. Top row: original images with the
level-set initialization. Second row: segmentation results using the proposed approach. Bottom row: segmentation results using a classical level-set method [33].
(a) First initialization; (b) second initialization; (c) third initialization; (d) proposed method: final result, , ; (e) proposed method: final
result, , ; (f) proposed method: final result, , ; (g) classical level-set method: final result, ;
(h) classical level-set method: final result, ; (i) classical level-set method: final result, .

Fig. 6. Segmentation of a fluorescence micrograph of yeast cells. The scale of the level-set model is , without any regularization . (a) Initialization;
(b) level-set after three iterations; (c) segmentation result obtained after 29 iterations. The cpu time is 5 s.

As shown in Fig. 8, we have also applied the proposed seg-
mentation approach to a 3-D image of a calcaneus bone, ac-
quired on a micro-CT with a voxel size of 80 . The seg-
mentation was obtained at full scale without curvature term to
preserve the details structure of the calcaneus bone structure.
We provide in Fig. 8 a 3-D visualization of the resulting seg-
mentation, as well as three image slices. These results show the
ability of the model to handle complex topology.

D. Computation Cost Results

The interest of the proposed approach in terms of computa-
tional cost relies on the following.

• Because we use a continuous, smooth representation of the
level-set through B-splines, we may use large steps and,

thus, need much less iterations (on the order of several ten
at worst), as compared to finite difference implementation
which demands very small time steps to maintain numer-
ical stability, yielding a large number of iterations (gener-
ally on the order of several hundred).

• As detailed in Section III-A, we do not re-initialize the
level-set, but use re-normalization of the coefficients.

• The smoothness of the solution is implicitly enforced,
through the intrinsic smoothness of the B-spline represen-
tation, which may be adjusted through parameter . As a
consequence, the use of the costly curvature term may be
avoided in most cases.

We propose to further quantify the above observations by
comparing our method with the speed-optimized fast two-cycle
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Fig. 7. European night lights. Level-set model at scale with a curvature term . (a) and (d) initialization; (b) and (e) level-set after
3 iterations; (c) and (f) segmentation result obtained after 15 iterations. The cpu time is 7 s. (a) Initialization; (b) three iterations; (c) final result, 15 iterations;
(d) inside and outside regions delimited by at initialization; (e) inside and outside regions delimited by at iteration 2; (f) inside and outside regions delimited
by at iteration 10.

Fig. 8. Segmentation of 3-D micro-CT images of a calcaneus bone. Level-set model at full-scale , without any curvature term . (a)–(c) Three slices
through the original data volume, along with the obtained contours; (d) 3-D rendering of the resulting segmentation. The cpu time is 540 s.

(FTC) algorithm recently described in [17]. This algorithm is
composed of a data-dependent term and a curve smoothness
regularization term. The level-set evolution process is separated
into two different cycles: one cycle for the data-dependent term
and a second cycle for the smoothness regularization. The speed
of the FTC algorithm then results from two main features: it
uses a discrete approximation of narrow band level-set which
yields evolution without the need of solving partial differential
equations (PDEs) and the smoothing curvature term is approx-
imated by a Gaussian filtering process. The FTC algorithm is,

thus, controlled via four parameters: the number iterations of
the data-dependent cycle , the number of iterations of the
smoothing cycle , the variance of the Gaussian filter , and
the number of points used to numerically approximate the filter

. As a consequence, the smoothness of the final segmentation
increases with , and .

The algorithms have been applied to the image shown on
Fig. 9, which was constructed by adding a small amount of
Gaussian noise (SNR of 30 dB) to a binary image of a
leaf. The data-dependent term used in the tests is the Chan–Vese
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Fig. 9. Segmentation of the leaf image using the FTC and B-spline level-set algorithms. (a) FTC ( , ); (b) B-spline level-set ( , );
(c) B-spline level-set ( , ).

Fig. 10. Segmentation of the spiral image using the FTC and B-spline level set algorithms. (a) FTC ( , ); (b) B-spline level-set ( , );
(c) B-spline level-set ( , ).

TABLE I
COMPUTATION TIMES AND DICE COEFFICIENT CORRESPONDING

TO THE SEGMENTATION OF THE LEAF IMAGE

region terms, as given in (17) and used the previous results sec-
tion. Note that this image has been selected such that the two
methods may yields comparable results in terms of segmenta-
tion (i.e., there are no topological difficulties for the FTC narrow
band method). The same initialization (a centred circle with ra-
dius 110 pixels) has been used. The parameters , and , of
the FTC algorithm are set to 30 and 3, as in [17]. The remaining
parameters of the two approaches have then been selected to
yield similar segmentations.

The segmentations are quantitatively compared through
the Dice coefficient [17], [32], using the leaf binary image
as a reference. This allows controlling that the segmentation
results are close enough for the running times comparison to
be meaningful. The obtained segmentation are given in Fig. 9
and Table I provides the corresponding results in terms of total
running time, number of iterations, time spent to estimate the
parameters and and Dice coefficient.

Fig. 9 qualitatively show the closeness of the segmentation re-
sults, which is confirmed by the corresponding Dice coefficients

displayed in the fourth column of Table I. Let us note that the
running time corresponding to FTC (1.68 s) is much larger than
the time given in the original paper [17]. This is, however, quite
natural, since the evolution requires the numerical evaluation
of integrals over the image through (20) to estimate the param-
eters and . On the opposite, in the paper [17] a simple
threshold-based data-dependent term is used, which does not re-
quires intermediate parameter estimation. This is confirmed in
Table I which shows that the algorithm spends a large amount
of time (1.33 s) in estimating parameters and .

The second line in Table I gives the results corresponding
to the B-spline level-set when the curvature term is not used
(i.e., ), so the smoothing is performed using an appro-
priate scale . The corresponding total computation time
(2.03 s) is slightly larger than FTC (1.68 s). As previously men-
tioned, the number of iterations needed to segment the leaf is
much smaller for the B-spline level-set (5 iterations) than for
FTC (82 iterations). Thus, each iteration of the B-spline level-set
algorithm is computationally intensive, but this is compensated
for by the fact that fewer iterations are used.

The third line in Table I gives the results corresponding to
the B-spline level-set when the curvature term is used (i.e.,

), and the scale is set to the minimum . The
computation time is much larger (15.48 s) and the number of
iteration increases accordingly. This confirms the observations
made in the previous experimental section (see Figs. 1 and 2):
the curvature term makes the level-set more rigid and the algo-
rithm takes more iterations to reach the solution.

It is to be noted that the performance of the algorithms clearly
depends on the image. Because it works locally, a narrow band
algorithm such as FTC will be penalized when the structure to
be segmented requires propagation along a long path. This may
be illustrated on a somewhat extreme case, corresponding to the
spiral presented in the previous section on Fig. 1. In this case,
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TABLE II
COMPUTATION TIMES AND DICE COEFFICIENT CORRESPONDING TO THE

SEGMENTATION OF THE SPIRAL IMAGE. SINCE THERE IS NO REFERENCE FOR
THIS IMAGE, THE DICE COEFFICIENT IS USED HERE TO COMPARE

THE SEGMENTATION PROVIDED BY FTC WITH THE TWO
SEGMENTATIONS PROVIDED BY THE B-SPLINE LEVEL SET

the initialization is a 225 pixels centred square. The segmenta-
tion results and associated running time are given in Fig. 10 and
Table II. In this particular case, the B-spline algorithm yields a
much shorter computation time (1.86 s) as compared to the FTC
algorithm (44.10 s). This is simply due to the fact that the pro-
posed approach provides an overall control over the level set,
whereas the local nature of narrow band FTC implies propa-
gation along the internal path in the spiral, requiring a large
number of iterations (1573). Here again, the use of the curvature
constraint (third line of Table II) tends to rigidify the B-spline
level-set, implies more iterations (80) and, thus, yields larger
computation time (28.99 s).

V. CONCLUSION

We propose in this paper a new formulation of active contours
based on level-sets, where the implicit function is modeled as a
continuous parametric function expressed on a B-spline basis.
This representation provides an overall control of the level-set,
and allows one to avoid the re-initialization step of the level-set
via the normalization of the B-spline coefficients. Our proposed
method has conceptual advantages such asthe following.

• Simplification of the mathematical derivations. Our cost
function depends on a finite number of parameters, and its
gradient can be calculated exactly, without one having to
recourse to approximate finite differences. There is no need
for sophisticated calculus of variations, or, alternatively,
Gâteaux derivatives, since the gradient of the cost function
is obtained through elementary differentiation with respect
to a finite number of parameters.

• Absence of arbitrary choices. The discretization scheme is
natural since it is built in the problem from its inception.
Thanks to the underlying B-spline model, all computations
can be made exact, including derivatives.

Our B-spline formulation also offers specific features. The
level-set evolution may be expressed as a sequence of 1-D con-
volutions, yielding an efficient algorithm. Moreover, this evolu-
tion corresponds to a smoothing-filter operation, the amount of
smoothing being explicitly controlled via the scale and the de-
gree of the selected B-spline basis.

The behavior of the proposed approach has been evaluated on
various test images using the Chan–Vese functional. The seg-
mentation results show the potential of our method in terms
of computation time and flexibility. In particular, these results

show that the intrinsic smoothing of the approach allows one to
deal with additive noise, which is difficult to take into account
with the conventional level-set implementations.

APPENDIX A
ENERGY DERIVATION ACCORDING TO B-SPLINE COEFFICIENTS

We consider here the differentiation of the global energy cri-
terion (4) with respect to a given B-spline coefficient .
For brevity sake, let us skip the function arguments and note the
3 integral terms of as

Using differentiation with respect to parameter , we have

(22)

(23)

(24)

In the last equation, using integration by part, it may be shown
that

(25)

and the following expression:

(26)
Noting moreover that

(27)

yields (6) and (7).
APPENDIX B

BOUNDING OF THE LEVEL-SET FUNCTION

Since the B-splines verify the conditions [23]

(28)

then we have that

(29)
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This yields

(30)

APPENDIX C
BOUNDING OF THE LEVEL-SET GRADIENT

Let be the norm of the gradient of the level-set.
We have

(31)

This yields

(32)

where
The determination of may be then easily done using

B-splines basic properties. The d-dimensional B-spline of
degree is given by

(33)

where is the 1-D B-splines of degree . The -th com-
ponent of the gradient is, thus, given by

(34)

Since the B-splines verifies

(35)

We thus have

(36)

where . may be easily computed
for any degree . For B-splines of degrees 1, 2, and 3, we
have , and .

As a consequence, the norm of the gradient is
bounded as follows:

(37)

Coming back to and noting that only B-splines are
nonzero for any , we thus have

(38)

and finally

(39)

Applying the re-normalization given in (15)

(40)

the new gradient norm is then bounded as

(41)
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