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ABSTRACT

In their recent paper, Alnasser and Foroosh derive a wavelet-domain (in-band) method for

phase-shifting of 2D “nonseparable” Haar transform coefficients. Their approach is parametrical to

the (a-priori known) image translation. In this correspondence, we show that the utilized transform is

in fact the separable Haar discrete wavelet transform (DWT). As such, wavelet-domain phase shifting

can be performed using previously-proposed phase-shifting approaches that utilize the overcomplete

DWT (ODWT), if the given image translation is mapped to the phase component and in-band position

within the ODWT.
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I. INTRODUCTION

N a recent paper [1], a wavelet-domain (in-band) solution for the 2D phase-shifting of an input

image was derived. The method is formulated for the multilevel 2D “nonseparable” Haar

discrete wavelet transform (DWT) and it is parametrical to the (known) image translation (shift) in the

spatial domain. Experiments are proposed that demonstrate that the proposed in-band solution

provides significantly higher quality against conventional interpolation approaches when the input

image undergoes a series of subpixel shifts [1].

In this correspondence, we show that the utilized transform of [1] is in-fact the conventional

separable Haar transform (Section II). We also correct some minor mistakes made in the transform

formulation of [1]. This means that the in-band phase shifting results obtained by [1] can be obtained

I



Manuscript submitted to the IEEE Transactions on Image Processing, EDICS: TEC-MRS 2

with previously-known theoretical and practical results proposed in [2]-[4], as discussed in Section

III.

II. COMMENTS ON TRANSFORM USED BY ALNASSER AND FOROOSH

We follow the notations of [1] and assume that the input is a 2D signal (image) with 2 2N N

samples. Equation (2) of [1], which shows the single-level synthesis that produces the low-frequency

(blur) coefficients, can be written as:
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where {1, , }l N  indicates the synthesis level1 and 1, {0, ,2 1}li j   are the image

coordinates at level 1l  (coarse resolution). Coefficients 2 {0,1},2 {0,1}
l
i jA   are the blur coefficients

of level l . They are calculated in (1) by adding the blur coefficient of level 1l  at position ( , )i j to

the “composite” coefficients ,
l
i jX , ,

l
i jY , ,

l
i jZ , and ,

l
i jW . These composite coefficients are actually

calculated based on the detail coefficients of level 1l  [1]:
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(2)

where a , b , and c are the horizontal, vertical and diagonal detail coefficients, w 
  is the largest

integer that is less or equal to w , and notation Q is used to specify that quantity Q is derived by

equation (1) of [1]. By replacing (2) in (1) we derive the following transform synthesis:

1 We follow the convention used in [1], where the finest-resolution level that corresponds to the image
pixels is level l N , while the coarsest-resolution level is 0l  , which contains only one blur
coefficient and three detail coefficients.
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Since we have 1, {0, ,2 1}li j   for (1)-(3), the transform synthesis of (3) is erroneous as it uses

only half of the detail coefficients of level 1l  to reconstruct the blur coefficients of level l , thereby

not allowing for perfect reconstruction. For example, for 3N  we have {0,1,2}l  ; for level

2l  (finest decomposition level) we have , {0,1}i j  , which means that, based on (3), all high

frequency coefficients 1
0,1h , 1

1,0h , 1
1,1h , with { , , }h a b c , are not used for the reconstruction of the

blur coefficients of level two.

The problem is actually created by (2), i.e. equation (1) of [1], which should be written in [1]

as:
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with 1, {0, ,2 1}li j   .

Then, by replacing (4) in (1) we derive the correct transform synthesis as:
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The corresponding transform analysis is derived by inverting the system of (5), i.e.:
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Under this modification, the proposed phase shifting results of the paper follow, e.g. (8) (10), (11),

(14) of [1]. Hence, the results of [1] are valid for the transform given by (6) and they are correct for

this case.
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However, it is straightforward to demonstrate that (6) corresponds to the scaled separable Haar DWT

analysis. The row-column (separable) decomposition with the Haar DWT is given by:
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with 1, 0, ,2 1li j   and the analysis matrix:
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Equation (7) expands to:
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i.e. the decomposition of (6) scaled by 2.

Finally, in order to agree with Figure 1 of [1] and with equation (2) of [1], the three parts of

Figure 2 of [1] should be altered to include only the pairs of 2 2 coefficients used in the actual

computation of the algorithm shown by equations (6) and (9) of [1] and by the computations

thereafter. In addition, the superscript of the summation that appears in equations (6) and (9) of [1]

should be 2 ( 1) 1k i   instead of 2 ( 1)k i  .

III. LINK TO PRIOR WORK ON IN-BAND PHASE SHIFTING OF THE DWT

The results of [1] are expressed via complicated formulae for the direct 2D phase shifting of the

(separable) Haar transform due to the choice of the authors to utilize the direct 2D kernel of the Haar

DWT given by (5) instead of the separable transform of (7). Hence, they provide rather limited insight

on how to extend this process to a variety of wavelet transforms existing in the literature. In addition,

the contribution of the high frequency coefficients of the multilevel critically-sampled decomposition

is not evident from the proposed formulation since the terms ,
l
i jD [which depend on the composite

coefficients of (4)] appear in the proposed phase shifting results.

Previous works [2]-[4] have already derived in-band phase shifting approaches for separable

DWTs. By extending the notations of [1], having an input 2D signal (image) ( , )x m n and its N -level

DWT consisting of 0
0,0A and ,

l
i ja , ,

l
i jb , ,

l
i jc (with {0, , 1}l N  and , {0, , 2 1}li j   ), based

on [2]-[4] we can derive all the phase components 0
{ , },0,0r cA and { , }, ,

l
r c i ja , { , }, ,

l
r c i jb , { , }, ,

l
r c i jc (with
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, {0, ,2 1}N lr c   ) of the ODWT by applying the 1D wavelet-domain phase-shifting

formulation horizontally and vertically. The relationship between an image shift in the spatial domain

and the equivalent positions within the subbands of a certain phase of level l was given by [2,

Prediction Rules] and [5, eq. (3)]. For any level l , this relationship links the image shift to the phase

components of the ODWT and also with the in-band translation within each subband. Hence, for any

spatial translation of the image, the ODWT phase components and the in-band translation within each

subband is established, and then the separable in-band phase-shifting of [2]-[4] can be applied

directly. This has already been used for practical applications involving 2D DWT decompositions,

e.g. for in-band motion estimation and compensation [2] [4] [5].
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