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ABSTRACT
In our previous work, we proposed a systematic sztager framework for dynamic multimedia

systems, which allows each layer to malkt¢onomous and foresighted decisions that maximize the
system’s long-term performance, while meeting the application’s real-time delagnstraints. The
proposed solution solved the cross-layer optimiratiffline, under the assumption that the multimedia
system’s probabilistic dynamics wekmown a priori, by modeling the system as a layered Mark
decision process. In practice, however, these digsaaneunknown a priori and therefore must be learned
online. In this paper, we address this problem by allgvtire multimedia system layers to learn, through
repeated interactions with each other, to autonatyooptimize the system’s long-term performance at
run-time. The two key challenges in this multi-ag€iayered) learning setting are: (i) each layer’s
learning performance is directly impacted by notyoits own dynamics, but also by the learning
processes of the other layers with which it intexaand, (ii) selecting a learning model that appiaiely
balances time-complexity (i.e. learning speed) wiith multimedia system’s limited memory and the
multimedia application’s real-time delay constrairitVe propose two reinforcement learning algorithms
for optimizing the system under different desigmstoaints: the first algorithm solves the crosshay
optimization in a centralized manner, and the sé@mives it in a decentralized manner. We analyek b
algorithms in terms of their required computatiommory, and inter-layer communication overheads.
After noting that the proposed reinforcement leagnalgorithms learn too slowly, we introduce a
complementary accelerated learning algorithm thatloits partial knowledge about the system’s
dynamics in order to dramatically improve the sysgeperformance. In our experiments, we demonstrate
that decentralized learning can perform as weltexgtralized learning, while enabling the layersatd
autonomously. Additionally, we show that existingphcation-independent reinforcement learning
algorithms, and existing myopic learning algorithmdgployed in multimedia systems, perform

significantly worse than our proposed applicatioraee and foresighted learning methods.

|. INTRODUCTION
State-of-the-art multimedia technology is poisedet@ble widespread proliferation of a variety of
life-enhancing applications, such as video conferey) emergency services, surveillance, telemeeéjcin

remote teaching and training, augmented reality, distributed gaming. However, efficiently desigmin
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and implementing such delay-sensitive multimedigliaptions on resource-constrained, heterogeneous
devices and systems is challenging due to thetireal-constraints, high workload complexity, and the
time-varying environmental dynamics experiencedh®s system (e.g. video source characteristics, user
requirements, workload characteristics, numbeunhing applications, memory/cache behavior etc.).

Cross-layer adaptation is an increasingly popuart®n for addressing these challenges in dynamic
multimedia systems (DMSs) [1]-[8]. This is becatise performance of DMS®.g. video rate-distortion
costs, delay, and power consumption) can be saamifly improved by jointly optimizing parameters,
configurations, and algorithms across two or mysesn layers (i.e. the application, operating syste
and hardware layers), rather than optimizing angptidg them in isolation. However, existing cross-
layer solutions have several important limitations.

Centralized cross-layer solutions: The majority of these solutions require a centptimizer to
coordinate the application, operating system, asadiiare adaptations to optimize the performance of
one or multiple multimedia applications sharing BdS’s limited resources. To this end, a new irzsteef
between the central optimizer and all of the layisrsreated, requiring extensive modifications he t
operating system [4] [5] or the introduction of aentirely new middleware layer [1] [2] [3] [24] [25]
Unfortunately, these approaches ignore the fadtttiea majority of modern system’s are comprised of
layers (components or modules) that are designediffgrent manufacturers, which makes such tightly
integrated designs impractical, if not impossit@g[L8] [19].

Myopic cross-layer solutions. Another limitation of many existing cross-layeligions for DMSs is
that they aremyopic. In other words, cross-layer decisions are madetingely in order to optimize the
immediate utility, without considering the impact of thesectsions on the future utility. However, in
DMSs, it is essential to predict the impact of therent decisions on the long-term utility becatise
multimedia source characteristics, workload chamstics, OS and hardware dynamics are often
correlated across time. Moreover, in DMSs, utifityctuations across time lead to poor user expeeen
and bad resource planning leads to inefficient uss® usage and wasted power [26] [27]. In contrast,
foresighted (i.e. long-term) optimization techniques take iatzount the impact of immediate cross-layer
decisions on the DMS’s expected future utility. bripntly, foresighted policy optimizations have bee
successfully deployed at the hardware layer toestite dynamic power management problem [11]-[13];
however, with the exception of our prior work [®hey have never been used for cross-layer DMS
optimization, wherall the layers make foresighted decisions.

Sngle-layer learning solutions: The various multimedia system layers must be &bledapt at run-
time to their experienced dynamics. Most existimgrhing solutions for multimedia systems are
concerned with modeling the unknown and potentitahe-varying environment experienced by a single

layer. We refer to these asgle-agent learning solutions (in our setting, an agent gpoads to a layer).
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A broad range of single-agent techniques have lukgioyed in multimedia (and general purpose)
systems in recent years, which include estimatgohriiques such as maximum likelihood estimation [4]
[5] [10] [12] [13], statistical fitting [7], regreson methods [28], adaptive linear prediction [28)d ad-
hoc estimation heuristics [3]. However, these sohg ignore the fact that DMSs do not only expeséen
dynamics at a single layer (e.g. time-varying woskl), but at multiple (possibly all) layers, which
interact with each other. Hence, it is necessaryertable the layers to learn at run-time how to
autonomously and asynchronously adapt their protpssrategies based on forecasts about (i) their
future dynamics and, importantly(ii) how they impact and are impacted by the other layers. For this
reason, we will model the run-time cross-layer mpation as a cooperative multi-agent learning
problem [30] (where the layers are the agents).

In summary, while significant contributions haveehenade to enhance the performance of DMSs
using cross-layer design techniques, no systeroaigs-layer framework exists that explicitly coresil
() the design and implementation constraints inggoBy a layered DMS architecture; (ii) the ability
the various layers to autonomously make foresighgisions in order to jointly maximize the DMS’s
utility; and, most importantly, (iii) how layers rdearn their unknown environmental dynamics and
determine how they impact and are impacted by therdayers.

In this paper, similar to [6] [7] [8], we considarmultimedia system in which (i) a video encoder at
the application layemakes rate-distortion-complexity tradeoffs by adapits configuration and (ii) the
operating system layemakes energy-delay tradeoffs by adapting the hamwayer's operating
frequency. Our contributions are as follows:

« We propose a centralized reinforcement learningorétgn for online cross-layer DMS
optimization based on the well-known Q-learningoaidnm. This centralized solution can be
easily implemented if a single manufacturer desahsf the layers in the multimedia system.

« We propose a novel multi-agent (layered) Q-learrafgprithm, which allows the multimedia
system layers to autonomously learn their optiroaggighted policies online, through repeated
interactions with each other. This decentralizellitsmn can be implemented if the layers are
designed by different manufacturers. We show erpanmtally that the proposed layered learning
algorithm, which adheres to the layered systemitecare, performs as well as a traditional
centralized learning algorithm, which does not.

* We propose a reinforcement learning technique, viiccomplementary to the aforementioned
learning algorithms, that exploits partial a prikmowledge about the system’s dynamics in order
to accelerate the rate of learning and improve abéearning performance. Unlike existing
reinforcement learning techniques [14], [15], whazn only learn about previously visited state-

action pairs, the proposed algorithm exploits cantipl knowledge about the system’s dynamics
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in order to learn about multiple state-action pairen before they have been visited.

The remainder of this paper is organized as folldwsSection Il, we present the cross-layer problem
formulation. In Section lll, we describe the twogrdéa multimedia system model. In Section 1V, we
propose a centralized and layered (decentralizedeafping algorithm for run-time cross-layer
optimization. In Section V, we propose a technituaccelerate the rate of learning by exploitingiph
a priori knowledge that we have about the systeiygamics. In Section VI, we present our experimenta
results and we conclude the paper in Section VII.

[l. CROSSLAYER PROBLEM FORMULATION
In this section, we define the layered structurghef system under study and formulate the cross-
layer system optimization problem as a Markov deniprocess (MDP). In Section Ill, we discuss in
detail how the considered DMS problem can be madeigthin the proposed cross-layer MDP
framework.

A. Layered system model
We model the layered system as a tuple- (£,.A4,S,p,R), where
e L£={1..L} is a set of L autonomous layers, which participat® the cross-layer
optimization. Each layer is indexelde {1,...,L} with layer 1 corresponding to the lowest

participating layer (e.g. the HW layer) and layercorresponding to the highest participating
layer (e.g. the APP layer).

« A is the global action sedl = x,...A 7% where 4, is thelth layer’s local action set (e.g.

the APP layer's available source-coding parametanfigurations and the OS layer’'s

available commands for switching the CPU’s opegafiequency).

* S8 is the global state s& = x,cS;, where§, is thelth layer’s local state set (e.g. the set
of buffer states at the APP layer).

* p is the joint transition probability function mappi the global state, global action, and
global next-state to a value jn,1],i.e.p: S x A xS — [0,1].

R is the expected reward function, which maps tlobal state and global action to a real
number representing the system’s expected reward?i: S x A — R, .

Within the proposed DMS framework, we are inter@stetrading off multiple objectives including

application performance (characterized by delay\ad€lo distortion) and power consumption. Hence, we

! We note that for a layer to “participate” in thess-layer optimization it must be able to adap onmore of its parameters, configurations,
or algorithms (e.g. the APP layer can adapt its@uooding parameters); alternatively, if a layeesinot “participate”, then it is omitted.

2% A = A x -+ X A isthe L -ary Cartesian product.
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assume that the reward function is of the form:

R(s,a) = gr(s,ar) — > wii(s;, ), (1)
lel

where J; is the local cost at layer, which is independent of the states and actiorteeabther layers
(e.g. the application’s distortion and hardwareisvpr consumption); the utility gaip;(s,a;) is related

to the delay experienced by the application atrldyegiven its own state and action, and the stateélseof

other system layers, which support it (see Sectlo@€ for details); and,w; weights the relative
importance of the layer costs with the utility galn Section Ill, we formulate an illustrative DMS
problem within this layered modeling framework.
B. System optimization objective

Unlike existing cross-layer optimization solutionshich focus on optimizing the myopic (i.e.
immediate) utility, the goal in the proposed crésger framework is to find the optimal actions atle

stagen € N that maximize theliscounted sum of future rewards[9] [11] [14] [15], i.e.
> (V)" R(s"a"|s") 2)
n=0
where the parametey (0 < v < 1) is the “discount factor,” which defines the relatimportance of

present and future rewards, and is the initial state. We refer to the Markov démis policy

™ :8 — A, which maximizes the discounted sum of future melwdrom each initial statg’ ¢ S, as
the optimalforesighted policy. We use dgiscounted sum of rewards instead of, for example, &lerage
reward, because: (i) typical video sources havepterily correlated statistics over short time inéds
such that the future environmental dynamics cateoeasily predicted without error [7], and therefor
the system may benefit by weighting its immediat®ard more heavily than future rewards; and, (i T
multimedia session’s lifetime is not known a prifire. the session may end unexpectedly) and thieref
rewards should be maximized sooner rather than late

Throughout this paper, we will find it conveniet work with the optimalaction-value function
Q" SxA— R [15]

Q*(s,a) = R(s,a)+ 7Y p(s'| s,a)V*(s'), 3)

ses
whereV* (s> = maxQ* (s,a), Vs € §, is the optimaktate-value function [15]. In words,Q*(s,a) is
the expected sum of discounted rewards achieveidkigg actiona in states and then following the
optimal policy 7* : S — A thereafter, where

m(s) = argmax Q*(s,a), Vs € S. 4)
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[Il. ILLUSTRATIVE SYSTEM SPECIFICATION
In this section, using the framework introduced \ehhove model a system in which two layers

participate in the cross-layer optimization (i.8.= {1,2}). In particular, the APP layanakes rate-

distortion-complexity tradeoffs by adapting its @igaration and the OSayer makes energy-delay
tradeoffs by adapting the HWlyer's operating frequency (using, for example, phatform independent
open standard known as the Advanced ConfiguratihRower Interface [11]). Due to the fact that the
OS layer controls the HW layer, we combine thero mtingle decision making layer, which we call the
joint OS/HW layer.

As in [21], we model the video source as a sequaicedeo data units (for example, video
macroblocks, groups of macroblocks, or pictured)ictv arrive at a constant rate into the applicasion
pre-encoding buffer. Similar to [11], we assumet ttiee system operates over discrete time slots.
Additionally, we assume that the time slots havealde length, such that one data unit is encoded i
each time slot. We interchangeably refer to the tdiot during which the: th data unit is encoded as the
n th “time slot” or “stage,” where, € N .

For clarity, instead of specifying the layers bgithindices, in this section we use the subscripts
APP to represent quantities related to the APP layet ¢ ) and OS to represent quantities related to
the joint OS/HW layer's parameters £ 1). Fig. 1 illustrates the system model, which weatide in
detail in the following subsections, and Table dypdes an abbreviated list of the notation intraetlin

this section.

s ¥ - ~N
Source ). > Buffer State & Encoder
dynamics Data unit type Configuratior] | APP
7'y
N J

- ¥ A
Hardware ..[»|  Operating Frequency | [ jgint
response-time Frequency Command | [og/HW
(N J

D States - » Temporal dependencies—p Interdayer dependencie
(state transitions) (coupling)
D Actions O Environment

Fig. 1. System model diagram showing the states, actiodssrarironment at each layer. Although not illustrated
here, the actions at each layer are selected based on the globalstgtem
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Table I. Abbreviated list of notation

f Operating frequency U Frequency command
2 Data unit type h Encoding parameter configuration
q Buffer occupancy ap = apg = U Joint OS/HW layer action

s =505 = [ Joint OS/HW layer state| a; = aapp = h | APP layer action

sy = sapp = (2,4) | APP layer state a = (ay,ay) Global action
s = (5,8) Global state 92(8,0a3) Utility gain
p(si | s.a), Transition probability Ji(siar), Cost functions for the joint
functions for the joint
p2(8§ | 5,09) OS/HW and APP layers Ja (82, 0) OS/HW and APP layers

A. Hardware Layer Specification (HW Layer)
The n th data unit is processed at the HW layer’s curopatrating frequency™, which is a member

of the joint OS/HW layer’s state s&los = {f, : ¢ = 1,...,N;}. We let the joint OS/HW layer’s cost

represent the power dissipated at operating frequéfi € Sog, i.e. Jog(f") = P(f") (watts), where
P> is the system’s power-frequency function (sed{bfor example power-frequency functions).
At stagen , the OS layer can issue a command in its actiondse = {u : v € Spg} to change the

HW layer's operating frequency. Similar to [11], vassume that there is a non-deterministic delay

associated with the operating frequency transiiach that

8, if frl = gn

o (F" = N F = ) = 41 6, i = (5)

0, otherwise
where { F"} = {F" : n € N} is the sequence of operating frequencigsand f"*! are the operating
frequencies at stage and n + 1, respectively; and,3 € (0,1] is the probability of a successful
operating frequency transition (with probability- 3 the operating frequency remains the same). In Fig.
1, this transition is illustrated by a temporal degency between the frequency command (action) and
operating frequency (state) in the joint OS/HW layéote that, regardless of the OS layer's actidn

the n th data unit is processed at the operating frequgfice Sog at the power-cosfog(f").
B. Application Layer Specification (APP Layer)
The nth data unit can be classified as being one Bdf types in the state set
Wpp = 12 i =1,...,N,}. The set of state§ 3p depends on the specific video coder being used at

the APP layer. In this paper, for illustration, a&sume thafV, = 3 because video streams are typically
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compressed into group of pictures structures comgiintra-predicted (1), inter-predicted (P), abd
directionally predicted (B) data units (e.g. MPEGVIPEG-4, and H.264/AVC); however, the set of data
unit types can be further refined based on, fonmgta, each frame’s activity level [7] [20]. It hbsen
shown that transitions among data unit types aachdractivity levels in an (adaptive) group of pieti
structure can be modeled as a stationary Markosgso[7] [20] [31]: i.e.,

pkzﬁp(z’n#l — zn+1 | Zn — zn) (6)
where {Z"} = {Z" : n € N} is the sequence of data unit types, afidand :" "' are the types of the
data units that are encoded in time slotand n + 1, respectively. We assume that the choice of data
unit type is governed by an algorithm similar te time in [20]; therefore, the probabilities in @pend
on the desired ratio of I, P, and B data units.(B8P...), the source characteristics (i.e. the A®fer's
environment illustrated in Fig. 1), and the coratitused to decide when to code an | frame [20].

The n th data unit can be coded using any oneVgf encoding parameter configurations in the APP
layer's action setd,pp = {h; : i = 1,..., N, } (for example, a video encoder can adapt at rue-iis
choice of quantization parameter, macroblock partisize, deblocking filter, entropy coding scheme,
sub-pixel motion accuracy, motion-vector searclyearand motion estimation search algorithm). Given
the data unit type" € Sipp, each configuratiorh” € A pp achieves different operating points in the
rate-distortion-complexity space [6]. We Et(z",r"), d"(2",h"), andc"(z",h") represent the encoded
bit-rate (bits per data unit), encoded distortiomeén square error), and encoding complexity (cycles
respectively. We assume that(z",r"), d"(z",h"), and ¢"(z",h") are instances of the i.i.d. random
variables B(z",h"), D(z",h"), and C(z",h"), respectively. Note that we do not need to know th
distributions of these random variables to leamdhtimal state-value function and optimal polityumn-
time (see Section V).

We penalize the APP layer’s actigfi € A,pp by employing the Lagrangian cost measure used in
the H.264/AVC reference encoder for making rateedigon optimal mode decisions: i.e. we define the
APP layer's cost adpp(2",h") = d"(2",h") + A gd" (2",h"), whered"(2",h") is then th data unit's
encoded distortionb”(z",h") is its encoded bit-rate; and,; € [0,00) is a Lagrangian multiplier, which
can be set based on the rate-constraints.

At stagen , the APP layer's pre-encoding buffer contaifisdata units, wherg” is a member of the
APP layer’s pre-encoding buffer state %@?P = {qi t1= 0,...,Nq} and N, is the maximum number
of data units that can be stored in the bufferthis paper, we assume that, is not limited by the

available memory, but instead it is determined oy $pecific application’s delay-constraints [21]e W
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assume that data units arrive in the pre-encodinffeb at » data units per second based on a
deterministic arrival process from the video captdevice (for example, if data units are framesnth

will typically be 15, 24, or 30 frames per secoréithe buffer is full when a data unit arriveseththat
data unit is discarded.

The pre-encoding buffer’s state at stage- 1 can be expressed recursively based on its statagd

n:i.e.,
"t :min{[q” —i—[t"(z”,hn’fn)'m_1}+aNq} 7)
qo = init»
where
tn(z’n’hn’f’n) — % (SeCOHdS) (8)

is the n th data unit's processing delay, which dependst®ramplexityc”(z",h") and the processor’s
operating frequency™ (in Fig. 1, the coupling between the operatingjfiency and processing delay is
represented by the inter-layer dependency arrow);is the integer part of ; and rz1+ = max{z,0}.
Note that ¢"(:",h") is an instance of the random variabl€(z",n") with distribution
C(z",h") ~ po (C = c" | 2",h").

Recall that the system operates over discrete s$iots of variable length, such that one data it i

encoded in each time slot. Hence, in (7), thie indicates that the th data unit departs the pre-encoding

buffer after the non-deterministic encoding delBf",z",r") = C(z",h")/ f" (seconds). Meanwhile,
the number of data units that arrive in the presdimy buffer during thenth time slot,
£z A" ) = (2" A ") -, is an instance of the random variable
T(f", 2", ") = nC(z",h™)/ f* (data units) with distribution

(o 00) a0 = |50 = 2

Based on (7) and (9), the pre-encoding buffer'tedt@nsition can be modeled as a controllable Bhark

ﬁ-c"’ \z”,hn] 9)
Ul

chain with transition probabilities
ik (@ = 7@ = " )
pT{T<2]f”,z”,h"}, " =¢""=0
= p{T =N, —q+1]| 2" h ), ¢ =N,
Pl =" 1< T <"t —g" + 2| 72" A"}, otherwise,

(10)

where{Q"} = {Q" : n € N} is the sequence of buffer states]" } = {7" : n € N} is the sequence
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of data unit arrivals; andp\{y, (Q" ' = ¢"*' | Q" = ¢", f",2",h" ) is the probability that the queue’s

occupancy transitions from" € SXQP to ¢"*! ¢ SffP’P given the operating frequencl/* € Syg, the
data unit type 2" € Si\tp, and the APP layer's configuratioh” € A,pp. Note that, from (7),

¢t — ¢ > —1, with equality when there are no data unit argyake.t" = 0.

Noting that the transitions of the data unit's tyjgee (6)) and the pre-encoding buffer’'s state (see
(10)) are conditionally independent given the cotrrdata unit typez", the APP layer's transition
probability function can be expressed as

Papp (3/@113 = (2" ") | shpp = (znaqn>vfn7hn> (11)

= Pl (@ = " | Q" = ¢ 12 B ) i (27T = 2 | 20 = )
where siipp = (2",¢") € Sapp and sijp = (2"11,¢"™) are the APP layer’s state at time siotand

n + 1, respectively. Meanwhile, the joint OS/HW layetransition probability function can be expressed
as (see (5))

pos (s651 = f [sbs = fhut) = pQ (F" = f P = frat). (12)
Because the state transitions at the APP layerjaimdl OS/HW layer are independent, the global

transition probability function defined in SectitrA can be factored as
p(sn+1 | Sn’an) — pOS<58§1 — fn+1 ’ 888 — fn’un) . (13)
Papp (SXFIID = (Z”leaq”Jrl) | SKPP = (Znaqn)>fn>h”>

wheres anda are defined as in Table I.

C. System Reward Details
Recall the definition of the reward function in (Thus far, we have defined the costs at each layer

but we have not defined the utility gainpp(s”,as). As mentioned in Section Il.A, the utility gain is

closely related to the application’s experienceduig delay in the pre-encoding buffer. Conventilgna
multimedia buffers are used to enforce a maximulerable processing [22] or transmission delay [21]
and as long as the buffer does not overflow (he. everflow constraint is not violated), there s n
penalty. In our setting, however, the multimediatsyn’s dynamics are unknown and non-stationary;
therefore, we cannot guarantee that the bufferfloverconstraints will be satisfied. In light of giwe
design the utility gain to non-linearly reward thgstem for maintaining queuing delays less than the
maximum tolerable delay, thereby protecting agawstrflows that may result from a sudden increase i
encoding delay. Formally, we define the utility gat stagen as
" +[t"] -1 ]2

q

gapp(s",03) =1~ [ (14)
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which is near its maximum when the buffer is emfigrresponding to zero queuing delay) and is
minimized when the buffer is full. Note that = ¢"(f", 2", r"), but we omit the arguments for brevity.

In Appendix A, we discuss in detail why (14) is@od definition for the utility gain.

Given the utility gain defined in (14), the APP éa\s cost.J,pp(2",h") defined in Section III.B, and
the joint OS/HW layer’s cosfys(f") defined in Section Ill.A, the reward at stagedefined in (1) can

be rewritten as

n n qn + lgnJ B 1 2 n n n n n n n
R(S , @ ):1_ N _wOSP(f )_WAPP[d (Z ah )+>"rdb (Z 7h )] (15)
——
e qn) Jos(f™) Japp(2",h")
gaprp(S a2

V. LEARNING THE OPTIMAL DECISIONPOLICY
A. Selecting a Learning Model

As we mentioned before, the multimedia system’sadyios (i.e. R(s,a) and p(s’ | s,a)) are
unknown and therefore the optimal action-value functi@n and the optimal policy=* must be learned
online, based on experience. However, it remaimsxfain how we can learn the optimal policy online
despite these unknown quantities. Let us conshaefdllowing two options:

» Direct estimation and policy computation: One option is to directly estimate the reward and

transition probability function using, for examplaaximum likelihood estimation, and then to
perform value iteratich[15] to determine the optimal policy; however stisiolution is far too

complex because each iteration of the algorithmcoasplexity O (|S|*|.A|) and the number of

iterations required to converge to the optimal @ols polynomial in the discount facter. Also
note that storing the estimated transition proligbfunction incurs a memory overhead of

O(|8|2|A|), which for a large number of states is unacceptédiige (e.g. our experimental

test-bed in Section VI uses 765 states and 15retiand therefore requires over 33 MBs of
memory to directly store the transition probabifitymction using 32 bit single-precision floating
point numbers).

« Offline policy computation and online policy interpolation (supervised learning): To avoid using
the complex value iteration algorithm online, irR[Xhe authors propose a supervised learning
approach involving an offline stage and an onlitegs. Offline, they quantize every unknown
probability parameter intaVS samples (more samples yield more accurate res#its)each

quantized probability bin (acting as a training pé) they compute a corresponding policy
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(acting as a desired output). Then, online, thagaly estimate the transition probability

function and, based on this, interpolate the ddflsomputed policies to determine the current

policy. For M parameters, this learning algorithm requiHszINSm policy look-up tables of
size |S x . A| as defined in [11]. Thus, the memory overheads tlis solution are
O(|S X .A|Hi[:1NSm ) which, even for modest values &f and NS, requires much more

memory than the direct estimation solution above.
Clearly, given the multimedia system’s limited meynand the multimedia application’s real-time
delay constraints, neither of the above solutiomsmactical. Thus, in our resource-constrainegsro
layer setting with many states and actions (andymawrknown parameters), we adoptredel-free

reinforcement learning solution, which can be ugedearn the optimal action-value functiagp® and

optimal policy 7* online, without directly estimating the reward atmdnsition probability functions.
Specifically, we adopt a low complexity algorithralled Q-learning, which also has limited memory
requirements (see Table Il in Section IV.D). Inrawross-layer setting, the conventional Q-learning
algorithm can be implemented by a central optimizéocated at either the APP layer, the joint O&/H

layer, or a separate middleware layer.

B. Proposed Centralized Q-learning
Central to the conventional centralized Q-learrafgprithm is a simple update step performed at the

end of each time slot based on éxperiencetuple (ET) (s",a",r",s"*!):

5" = [T’" 4 ’er,lai‘: Q"(S"Jrl,a/)} _ Qn(sn,’an) , (16)
a €
Qn+1(sn7an) - Qn(sn7an) 4 anén, (17)

where s", a™, and " = g} — Zwl,],j” are the state, performed action, and correspongingrd in
leL

time slotn, respectively;s"*! is the resulting state in time slot+ 1; a’ is thegreedy action® in state
s"*1: 6" is the so-calletemporal-difference (TD) error [14]; and,a” € [0,1] is a time-varying learning
rate parameter. We note that the action-value fomcan be initialized arbitrarily at time = 0.

It is well known that if (i) the rewards and tratin probability functions are stationary, (ii) all the

state-action pairs are visited infinitely often,daiii) «" satisfies thestochastic approximation

% Policy iteration or linear programming could almused, but these solutions are also too complex.
* A greedy actiona™ is one that maximizes the current estimate oftitmn-value function, i.ea” = arg max {Q(s,a)}.
a
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conditions’ Y " (a") = oo and > (a")’ < oo, then @ converges with probability 1 t@)* [16].
n=0 n=0

Subsequently, the optimal policy can be found ugh)g

During the learning process, it is not entirely ol what the best action is to take in each s@ie.
the one hand, the optimal action-value function banlearned by randomlgxploring the available
actions in each state. Unfortunately, unguided oarided exploration cannot guarantee acceptable
performance during the learning process. On therdtland, taking greedy actions, whiekploit the

available information in the action-value functigis,a), can guarantee a certain level of performance.

Unfortunately, exploiting what is already known abthe system prevents the discovery of new, hetter
actions. To judiciously trade off exploration ankpkitation, we use the so-called-greedy action
selection method [14]:

€ -greedy action selection:With probability 1 — ¢, take the greedy action that maximizes the action-

value function, i.e.a” = argmax{@(s,a)}; and, with probabilitye, take an action randomly and

a
uniformly over the action set.

We write a = ®, (Q,s) to show thata is an e -greedy joint-action. Note that, if the e -greedy
action is taken from the optimal state-value fumtt)*, then actions corresponding to the optimal policy
will only be taken with probabilityl — ¢ ; therefore, ife does not decay to 0, then optimal performance
will not be achieved.

Fig. 2 illustrates the information exchanges regpito deploy the centralized Q-learning algoritinm i
a two layer multimedia system during one time diotFig. 2, the top and bottom blocks represent the
APP layer and joint OS/HW layer, respectively. Tdemter block represents the centralized optimizer,
which selects both layers’ actions and updatessiystem’s global action-value functio. As we
mentioned before, the centralized optimizer mayldoated at either the APP layer, the joint OS/HW
layer, or a separate middleware layer. To bestligighthe information exchanges, we illustrate the
centralized optimizer as a separate middleware Ifthough we do not explicitly indicate this ingr 2,

the ET(s,a,r,s’) is used by the block labeled “Updafs, a),” which performs the update step defined
in (17).

® For example,a" =1 /(n + 1) satisfies the stochastic approximation conditions.
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Centralized decisions
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Fig. 2. Information exchanges required to deploy the centrafziséirning update step in one time slot.

~¥® Information exchanges

C. Proposed Layered Q-learning
Thus far, we have discussed how the traditionab&@Hing algorithm can be implemented by a

centralized optimizer. As we discussed in the ihiidion, this centralized solution is most apprajari
when a single manufacturer designs all of the systdayers. However, we are also interested in
developing learning solutions that allow layersigiesd by different manufactures to act autonomaqusly
but still cooperatively optimize the system’s pemnfiance. This is a challenging problem in auoss-
layer setting because the dynamics experienced at egehmay depend on the learning processes of the
other layers. Hence, a key challenge is determihing to coordinate the autonomous learning prosesse
of the various layers to enable them to succegsledirn. In this section, we proposéagered Q-learning
algorithm, which we derive by exploiting the sturet of the transition probability and reward funos

in order to decompose the global action-value foncinto local action-value functions at each layer
Then, in subsection IV.D, we compare the computattmommunication, and memory overheads incurred
by the centralized and the proposed layered legraligorithms.

In this subsection, we first show how the actiotugdunction can be decomposed by exploiting the
structure of the considered cross-layer problenbs8guently, we show how this decomposition leads to
a layered Q-learning algorithm, which solves thessflayer optimization online, in decentralized
manner, when the transition probability and reward fuoos are unknown a priori. In this section, for
notational simplicity, we drop the time slot index and denote the next-sta¢&™! usings’.

1) Action-Value Function Decomposition
The proposed decomposition assumes that (i) egeh s access to the global statén each time

slot; (ii) the APP layer knows the number of statethe joint OS/HW layer, i.6Sqg | ; and, (iii) the joint
OS/HW layer knows the number of states and acttise APP layer, i.6Sypp| and|Axpp |-

Given the additive reward function defined in (Es)d the factored transition probability function
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defined in (13), we can rewrite the optimal acti@iue function defined in (3) as follows:
Q*(s,a) = g1(8,a2) — wiJi(s1,a1) — waa(82,02) +
Y Z pl(SII ‘ 517601)102(35 | S;GQ)V*(3,>7

S ES|,HES,

(18)

where,V*(s') = max Q*(s',a’) is the optimal state-value for state= (s/,s; ) (refer to Table | for a
ac

review of the notation).

Observing thatg, (s, ay) — wyJ5(82,a5) is independent of; and thatz pi(s | 81,a) = 1, we may
S ES

rewrite (18) as follows:

Q" (s,a1,a9) = —wJi(81,01) +

92(8,a9) — waJo(s2,09) + (19)
/
po LEERY N eppmarin |
52€02

Given the global state = (s;,s,) and the optimal state-value functidfi , the APP layer can perform
the inner computation:

92(8,02) — waJ5(82,a9) +
* I\ __ /
Ql (370,2,81> =y Z p2(sé ‘ S,a2>V*(S{,Sé) , Vay € ./42 anstl S 81 (20)
5HES,
which is independent of the immediate action atjoet OS/HW layer (i.eq; ), but depends on the joint

OS/HW layer’s potential next-stat¢. For each global state = (s;,s,), the APP layer must compute
the set{Ql* (s,a9,81) 1 ag € Ay, 81 €S } using (20). Then, given this set from the APP tatee joint

OS/HW layer can perform the outer computation @){ie.,
—wiJi(s1,a1) +
Q* (s,a1,a9) = Z pl(Sf | 51,01)@1* (S,CLQ,S{) , Va € A andVa, € A, (22)

€S,
Q* can be computed by repeating this procedure fos al S .

Intuitively, @ (s,ay,s1) can be interpreted as the APP layer's estimathefxpected discounted
future rewards; however, there are two importaffedinces betweei); (s, a2,sl’) and the centralized
action-value functionQ* (s,a). First, @ (s,ay,s;) does not include the immediate reward at the joint
OS/HW layer (i.e.—wJi(s,a,)) because it is unknown to the APP layer; and, rs&c@); (s, az,sl')

depends on the joint OS/HW layer’s next-statginstead of the expectation over of the next-stateit

does in the centralized case) because the APP the= not know the joint OS/HW layer’s transition
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probability function. After receiving); (s, as,s; ) from the APP layer, the joint OS/HW layer is atde
“fill in” this missing information. Clearly, fromhe derivation,Q* (s,a;,a,) at the joint OS/HW layer is

equivalent to the centralized action-value functi@its,a) .

For more information about this decomposition, wker the interested reader to our prior work [9],
in which we use a similar decomposition to solve thoss-layer optimizatiooffline, in a decentralized
manner, under the assumption that the transitiobability and reward functions akaown a priori.

2) Layered Q-learning
Recall that the centralized Q-learning algorithreat#oed in Section 1V.B violates the layered system

architecture because it requires a centralized gaana select actions for both of the layers. Intcast,
the layered Q-learning algorithm that we proposé¢hia subsection — made possible by the actionevalu
function decomposition described above — adherdbedayered architecture by enabling each layer to
autonomously select its own actions and to updatewn action-value function. In the following, we
discuss the local information requirements for elgter, how each layer selects its local actioms] a
how each layer updates its local action-value fionct

Local information: The proposed layered Q-learning algorithm requinas the APP layer maintains

an estimate of the action-value function on thehehd side of (20): i.e.,
{Ql (s,a2,31') :s5€8,ay €A, s € 81},
and that the joint OS/HW layer maintains an estindtthe action-value function on the left-handesid
(21): i.e.,
{Q(s,al,aQ) 18 €8, (a,a9) € A}

At time slot n = 0, these tables can be initialized to 0, i#.(s,as,s1) = 0 and Q° (s,a;,ay) = 0.
Thus, at initialization, the only information reged by the APP layer about the joint OS/HW layethis
number of states at the joint OS/HW layer, {&g|; and, the only information required by the joint
OS/HW layer about the APP layer is the number afest and actions at the APP layer, [&pp| and
| Aspp .

Local action selection: At run-time, given the current global state= (s;,s, ), the APP layer selects

an ¢ -greedy actiom, € A, as described in Section IV.B, but with the greadijon selected as follows:

(ai‘,é{) = argmax {Ql(s,@,s{)}, (22)

€l sIES
and, the joint OS/HW layer selects isgreedy actions; € 4, but with the greedy action selected as

follows:



17/35

(afadQ) = argmax {Q(Saaba’Q)}' (23)

a €EALaEA

Note that the APP layer selects actighunder the assumption that the joint OS/HW laydr select its
action a; to transition to the next-statg, which maximizes the APP layerstimated discounted future
rewards @, (s, ay, S| ) . Similarly, the joint OS/HW layer selects actiafi under the assumption that the
APP layer will select actiori, , which maximizes the joint OS/HW layeréstimated discounted future

rewards @) (s,a;,a, ). The message exchanges during the local learniuigite procedures (described

immediately below) serve to “teach” each layer hibwy impact and are impacted by the other layer.
Thus, through the learning process, the layersorgtheir assumptions about each other, which esabl
them to improve their greedy actions.

Local learning updates: After executing thes -greedy actiora™ = (af',a3 ) in states” = (s7,s5 ),

the system obtains the reward = g5 — wJi' — wyJy and transitions to state” ™ = (s/ !, s7 7).

Based on the experience tugle’,a”,r",s"*!), each layer updates its action-value functionotieis.

First, the joint OS/HW layer must forward the scald (s ™', 55" ) = Q" (s{t, 851 a1, a5)

aleAL azeAz
to the APP layer. Using this forwarded informatitihe APP layer can perform its action-value functio

update based on the form of (20): i.e.,
6y = {92 — w3 +’Yvn< . Hl)] Qr (3 az,sf“), (24)
Qrt(s",ad,si ) — Q' (s",a3, 5 ) + a3y (25)
Then, given the scala® ' (s",a5,s{ ™" ) from the APP layer and the APP layer's selectatbaaz)
the joint OS/HW layer can perform its action-vafuaction update based on the form of (21) as fodlow
o *[ wi i + QWH(S a2,sf“)]—Q"(s",af’,aﬁ), (26)
Q" (s",af'a} ) — Q" (s",af',a} ) + f'6}'. (27)
Note that, by using the layered Q-learning algaomithhe layers do not need to directly share their

local rewards (i.e. the local learning updates omguire the APP layer to know its local reward

g5 —wyJy and for the joint OS/HW layer to know its localstow,J{'). This is because of the
coordinating message exchanges during the locahiten update process (i.e/"(s{*!,si*!) is
forwarded from the joint OS/HW layer to the APPdaand Q)" (s",a},s{'*!) is forwarded from the

APP layer to the joint OS/HW layer).
Fig. 3 illustrates the information exchanges reggiito deploy the layered Q-learning algorithm in a

two layer multimedia system during one time slothdugh we do not explicitly indicate this in Fig,
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the ETs (s,a5,9o — wody,s1) and (s,a;,—wiJy,s1) are used by the blocks labeled “Update

Q1 (s,a9, 51 )" at the APP layer and “Updat@ (s,a;,a, )" at the joint OS/HW layer, respectively.

APP Layer
- Perform Update
@,@ ®.(Qp )| o (3’ 0y, s 1/)

81

sé éV(Slvgz),gll §Q1(3702;31/),a2

v
Perform Calculate Update
SoE s e

OS/HW Layer

Decentralized decisions _J Information
and updates exchanges

Fig. 3. Information exchanges required to deploy the layerkh@ing update step in one time slot.

D. Computation, communication, and memory overheads
In this subsection, we compare the computation,nconication, and memory overheads associated

with the centralized and layered Q-learning aldgponis. Fig. 2 and Fig. 3 illustrate the exact infaiora
exchanges required for each algorithm; Table Il rmanizes the greedy action selection procedure and
update steps used in each algorithm; and, TabléstH the per time slot computation, communication
and memory overheads associated with each algarithm

Interestingly, the layered Q-learning algorithnmisre complex and requires more memory than the

centralized algorithm. Note that, in our setting;| = |4 |; hence, the layered Q-learning algorithm

incurs approximately twice the computational andnogy overheads as the centralized algorithm. The
increased overheads can be interpreted as th@fcoptimal decentralized learning (optimal in tlense
that it performs as well as the centralized leayraigorithm). Nevertheless, the proposed centrlaed
layered Q-learning algorithms are far less comg@ag use less memory than the alternative learning
solutions discussed in Section IV.A. We also obsdhat, in both cases, the communication overheads

per time slot ar€)(1) because they are independent of the size of &éte ahd action sets at each layer;

however, the precise number of messages exchargmehds on the deployed learning algorithm as
illustrated in Fig. 2 and Fig. 3, and noted in Eabl.
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Table 1. Summary of greedy action selection and update steparious Q-learning algorithms.

Greedy Action Update Step
Middl L Middleware Layer:

. iddleware Layer: , ,
Centralized « §" = | n+1 ./ }_ non
Q-learning a = argeriax{Q(s,a)} "+ ymaxQ(s",a’)| - Q(s",a")

Q(sﬂ?aﬂ) — Q(Sn7an> + anén
Layer! = 1:
o [l @ (s st
Layer! = 1: —Q"(s",ar',a
of = argmax {Q (s,a,a,)} Q" (8" afaf ) — Q" (s",af' a3 ) + af's]
a €A a0 €Ay
Layered
Q-learning ) Layer! = 2:
Layer! = 2: "
— W JT AV Sn+1 sn+1
a; = argmlax {Q1(37a2751/>} (55 _ [92 2J2 Y ( 1 992 )}
€A, $€S _an (Sn’ag,’siz—&-l)
P (870850 ) = QF (8”085 1) + 038}

Table Ill. Comparison of computation, memory, and commumicaiiverheads (per time slot).

Centralized Layered
Q-learning Q-learning
Computation Action Selection: Action Selection:
overheads O(|-A]) O(JA[+18 x Al)
Update: Update:
O(lA]) O(Al)
Memory 0(|8 x A|) O(|8 x A|+|8 x A x S )
overheads
Communication
overheads 0 (1) (8 messages) 0 (1) (7 messages)

V. ACCELERATEDLEARNING USINGVIRTUAL EXPERIENCE
The large number of buffer states at the APP Iaygmificantly limits the system’s learning speed

because the Q-learning update step defined inyp@ates the action-value function for only oneestat
action pair in each time slot. Several existingiarats of Q-learning adapt the action-value function
multiple state-action pairs in each time slot. Eh@xlude model-free temporal-differende-updates,
and model-based algorithms such as Dyna and pzextitsweeping [14] [15]; however, these existing
solutions are not system specific and assume naiai knowledge of the problem’s structure.
Consequently, they can only update previously etdsgtate-action pairs, leaving the learning alparito
act blindly (or with very little information) therkt few times that it visits each state, therebgutting in
suboptimal learning performance (our experimenggdults in Section VI.D strongly support this
conclusion).

In this subsection, we propose a new Q-learningiamgr which is complementary to the
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abovementioned variants. Unlike conventional raicément learning algorithms, which assume that no a
priori information is available about the problerdigamic§, the proposed algorithm exploits thoem of

the transition probability and reward functionsfided in Section IIl) in order to update the actialue
function for multiplestatistically equivalent” state-action pairs in each time slot, includingsththat have

never been visited. In our specific setting, we lekphe fact that the data unit arrival distrikarti

p#(t | f,2,h) (defined in (9)) is conditionally independent bétcurrent buffer state” (given 2", A",
and f"). This allows us to extrapolate the experiencaioled in each time slot to other buffer states and

action pairs. Thus, in stationary (non-stationagyjvironments, the proposed algorithm improves
convergence time (adaptation speed) at the expEnisereased computational complexity. For ease of
exposition, we discuss the algorithm in terms o ttentralized system; however, it can be easily

extended to work with the layered Q-learning aldyon proposed in Section IV.C.

Let 0" = (s",a",r",s""") represent the ET at stage wheres” = (z",¢", f"), a" = (u",h"),
r" = g8 —wlJi' —wyJy, and s"T = (2" ¢"T f"*1). Given ¢" and the number of data unit
arrivals [£" | = [{"(2",h", f")], the next buffer state/""' can be easily determined from (7). By

exploiting our partial knowledge about the systemiygamics, we can use the statistical information
provided by[Z”J to generateirtual experience tuples (virtual ETs)that are statistically equivalent to the
actual ET. This statistical equivalence allowsapérform the Q-learning update step for the virkibs
using information provided by the actual ET.

We let 6" = (§,a,7,8') € (o") represent one virtual ET in the set of virtual EX$5" ). In
order to be statistically equivalent to the acta@| the virtual ETs inX(o" ) must satisfy the following

two conditions:

1. The data unit arrival distributiop;(¢ | f,2,/) defined in (9) must be the same for the virtual
ETs as it is for the actual ET. In other words, ¥ireual operating frequency , the virtual

type Z, and the virtual configuration must be the same as the actual operating frequency

/", the actual type:" , and the actual configuratioi™, respectively. This also implies that

the virtual costs at the APP and joint OS/HW layanes the same as the actual costs at these

% In conventional reinforcement learning [14] [15he actors (i.e. the system layers in our settmg) assumed to have no a priori
information about the form of the transition protiband reward functions beyond possible highelestructural knowledge about the factored
transition and reward dynamics [17] [23]. In otheords, in a conventional reinforcement learningrfeavork, the additive decomposition
structure of the reward function defined in (1) ahd factored transition probability structure defi in (11) may be known a priori, but the
actual form of the utility gain defined in (14) atiee actual form of the transition probability faieo defined in (10) cannot be known a priori.

7 We say that a state-action p4i8, @ ) is statistically equivalent to the pair( S, @) if p ( s | s, a) =7 ( s | 8,a ), Vs'e 8
and R (8,a) can be determined fronk (S, @ ).
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layers, i.e.J; = J' andJ, =
2. The next virtual buffer statg’ € S{%, must be related to the current virtual buffer estat
q € S\, through the buffer evolution equation definedj {.e.,
¢ =min{[g+|i"|-1]",N,}, (28)
where|{" | is the number of data unit arrivals under the @dfiT .

Any virtual ET that satisfies the two above coratis can have its reward determined using

information embedded in the actual ET. Specificaitpm the first condition, we know that the virtua
ET’s local costs are/, = J* andJ, = J§. Then, based on the second condition, we can ctntha

qg+|t"]-1

2
I ] . Finally, the Q-learning update step defined iR)(1
q

virtual ET’s utility gain asg, = 1 — [

can be performed on every virtual BT = (§, a,r, 5’) € ¥(o") asifitis the actual ET.

Performing the Q-learning update step on everyusirtET in 3 (o") incurs a computational
overhead of approximatel® (|3 (") x A|) in time slotn (note thatX (o) is typically as large as
the buffer state saS&‘{.?P = {q ti= 0,...,Nq} if you include the actual ET). Unfortunately, iaynbe
impractical to incur such large overheads in exeng slot, especially if the data unit granulaigysmall
(e.g. one macroblock). Hence, in our experimengslits in Section VI, we show how the learning
performance is impacted by updating < |3 (" )| virtual ETs in each time slot by selecting them
randomly and uniformly from the virtual ET sEX(o" ).

Table IV describes the virtual ET based learningcpdure in pseudo-code and Fig. 4 compares the
backup diagram [14] of the conventional Q-learnahgorithm to the proposed algorithm with virtual ET
updates. Importantly, because the virtual ETs tatstically equivalent to the actual ET, the vattdeT
based learning algorithm isot an approximation of the Q-learning algorithm; &ctf the proposed
algorithm accelerates Q-learning by exploiting partial knowledge about the structure of the cozrsid

problem.
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Table IV. Accelerated learning using virtual experience tuples.

1. Initialize Q(s,a) arbitrarily for all (s,a)e SxA;
2. Initialize state s°;
3. For n =0,1,...
4. Take action a”" using c-greedy action selection on Q(s",);
S. Qotain experience tuple o" = (s",a",r",s""") and record |¢"|;
6. For all §€ S%p % Generate the virtual ET set X(o")
7. i = min{[§+[t’LJ—1]+,Nq}, % virtual ET next buffer state
8. §:(f,2,§):(f”,z”,q); % virtual ET state
9. d:(ﬂ,ﬁ):(u”,h”), % virtual ET action
10 . q+|t]-1Y . .
F=|1- N —w ] — wedy'; % virtual ET reward
q
11. 5= (f’,z’,q’) = (/"2 NE); % virtual ET next state
12. G =(8ar8)ex(o"); % store virtual ET
13. For ¥ virtual ETs & € X(o") % Updat e virtual ETs
14. = N -~ . -
o = [F—kfyg}gicQ(s/,a')}—Q(s,a); % TD error for virtual ET &"
15. Q(3,a) — Q(5,a) + ab; % Q| earning update for virtual ET "
(s",a™) (8(1),a(1)) Statistically equivalent  (3(W),a(¥))
. . ...... state-action pairs ™, .
r 7 (1) ()
sn+1 5’(1) .§,(\I/)
max max max

!

/
a; as

a/
1A

!/ !
@ Na

i !/
@ DA

(a) Q-learning backup

for actual ET
n+1)

(b) Q-learning backup fo® virtual ETs
6" =(3,a,73)eX(a")
o' = (s",a",r”,s
Fig. 4. Backup diagrams. (a) Conventional Q-learning; (Heapaing with virtual updates. The virtual update
algorithm applies a backup on the actual ET and an additibnaackups on virtual ETs iXx (" ) indexed by
1<y <.

VI. EXPERIMENTS
In this section, we compare the performance of ph@posed learning algorithms against the

performance of several existing algorithms in therdture using the cross-layer DMS described in
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Section Ill. Table V details the parameters usedunDMS simulator, which we implemented in Matlab.
In our simulations, we use actual video encodeetdata, which we obtained by profiling the H.264 J
Reference Encoder (version 13.2) on a Dell PentMmomputer. Our traces comprise measurements of
the encoded bit-rate (bits/MB), reconstructed digin (MSE), and encoding complexity (cycles) for
each video MB of thé&oreman sequence (30 Hz, CIF resolution, quantizationmpatar 24) under three
different encoding configurations. The chosen patans are listed in Table V. We use a data unit

granularity of one macroblock. As in [7], we assuthat the power frequency function is of the form
P(f) = rf’, wherex € R, and@ < [1,3]. Since real-time encoding is not possible with kailable
encoder, we set the data unit arrival ratente= 44 DUs/sec, which corresponds to 1/9 frames per

second.

For the simulations in Sections VI.B and VI.C, wsestationary data traces, which we generate from
the measured (non-stationary) data traces by asguthat the rate, distortion, and complexity sample
are drawn from i.i.d. random variables with distitions equivalent to the distributions of the qutéed
over the entire non-stationary data traces. Ini@ectI.D, we perform simulations using both the
measured (non-stationary) and generated (statipdaty traces.

Table V. Simulation parameterSgreman sequence, 30 Hz, CIF resolution, quantization parameter 24).

Layer Parameter Value
Data Unit Granularity 1 Macroblock
Buffer State Set S = {0,...,Q}, N, = 50 DUs

SI&%)P = {Zla 292, 23}

Data Unit Type Set
yp ZIZP,ZQZB,Zgzl

ApEgcaetrion Aspp = {P,ho, hs}
y . . hy : Quarter-pel MV, 8x8 block ME
APP) Parameter Configuration 1h2(:gFuII-peE)MV, 8x8 block ME
hs : Full-pel MV, 16x16 block ME
APP Cost Weight wypp = 22/1875
Rate-Distortion Lagrangiar] Aa =1/16
Data Unit Arrival Rate n = 44 (Data Units/Sec)
P(f) = rf’

_ Power-Frequency Function
Operating System k€1.5%x107% andf = 3.

/ Hardware Layer -
(Joint OS/HW) Operating Frequency Setl Aos = {200,400,600,800,1000} Mhz

Joint OS/HW Cost Weight wog = 22/125

A. Evaluation Metrics
We deploy two different metrics to compare the qerfance of the various learning algorithms

discussed in this paper. The first metric isweighted estimation error, which we define as

. o Vi) —V"cs
Weighted estimation error £ Z JTARE:D) p ,
== Vs

(29)
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where p* is the stationary distribution under the optimaliqgy 7", V* (s> = maxQ* (s,a) is the
a
optimal state-value function, aid” (s> = max Q" (s,a) is the state-value function estimate at stage
a

In (29), we weight the estimation errpf* cs> — V" ¢s>| by u* s> because the optimal policy will

often only visit a small subset of the states, thiredremaining states will never be visited; thtigya were
to estimateV*cs> while following the optimal policy, aon-weighted estimation error would not
converge to 0, but the proposed weighted estimaticor would.

Although the weighted estimation error tells hsv quickly an algorithm can learn the optimal
policy, it does not tell ubow well the algorithm performs while learning. To see why this is, consider an

(exaggerated) scenario in whi¢dh™* ¢s> — V" ¢s>| = 0, but the exploration rate in the greedy action

selection procedure is = 1 (i.e. always explore). In this scenario, the gyeactions are optimal, but the
random policy implemented by always exploring v far from optimal. For this reason, we define a
second evaluation metric using tlagerage reward, which more accurately measures the system’s

performance. For a simulation of duratidh, the average reward metric is defined as
1 N-1
Average reward £ i Z r’, (30)
n=0

wherer" is the reward sample obtained at stagdf the exploration rate decays appropriately to O as
n — oo, then the average reward will increase as the hietbestimation error decreases. Determining
an optimal decay strategy far is an important problem, but is beyond the scdpéie paper. We refer
the interested reader to [32] [14] [15] for moréoimation on the exploitation-exploration trade. off

We note that the weighted estimation error canrmtebaluated under non-stationary dynamics
because the optimal state value function cannatdbermined. Hence, for non-stationary dynamics, we
rely solely on the average reward to evaluatedghening performance. Nevertheless, the rate athhie
weighted estimation error converges under statjormlynamics for a particular learning algorithm is

indicative of how well that algorithm will performihen the dynamics are non-stationary.

B. Sngle-layer Learning Results
Before presenting our cross-layer learning resulis,believe it is informative to see how well a

single layer can learn (say layé) when the other layer (say laye#l) deploys a static policy (see
Appendix B for details on how we adapted the Q#@wy algorithm to a single-layer setting). For
illustration, we assume that the static layer dgplis optimal local policyx*; corresponding to the
global optimal policynr™ = (#j,7*;); hence, layei attempts to learnr; . Fig. 5 illustrates the optimal
policies at the APP layerrf) and the joint OS/HW layera{') for each buffer state and data unit type

when the current operating frequencyfis= 600 MHz. In Fig. 5, the application actions (i.e. paeter
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configurations) are as defined in Table VI.

Fig. 6 compares the cumulative average reward médaiusing single-layer learning to the optimal
achievable reward, and Table VII shows the corredpmy power, rate-distortion costs, utility gaimda
buffer overflows, for a simulation of duratiodM = 192,000 time slots (approximately 485 frames drawn
from the Foreman sequence, CIF resolution, by tépedahe sequence from the beginning after 300
frames). We observe that the total average rewéatdireed when the joint OS/HW layer learns in

response to the APP layer’s optimal local poligy is lower than when the APP layer learns in respons
to the joint OS/HW layer's optimal local policy; . This is because there are more actions to expliore

the joint OS/HW layer (5 compared to 3), and thatj@S/HW layer’'s policy is more important to the
system’s overall performance than the APP layeslgcp for the chosen simulation parameters (sedelab
V). For instance, given the action sets definedable V, the joint OS/HW layer can significantly pact
the application’s experienced delay (i.e. a faofds change from 200 MHz to 1000 Mhz), while theFAP
layer cannot (i.e. its actions impact the delayléss than a factor of 2). Consequently, when th® AP
layer learns in response to the joint OS/HW layeptimal policy (Fig. 5(b)), the system is initialbetter
off than when the joint OS/HW layer learns in rasp®to the APP layer’s optimal policy (Fig. 5(a)).

We note that, in Fig. 6, the saturated performaridbe APP and joint OS/HW layers’ best-response
learning algorithms is due to the finite exploratiprobability (i.e.s > 0 in the ¢-greedy action

selection procedure), which forces the layers ttasionally test suboptimal actions.

=
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3
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800 B type
—=— | type
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400444
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1 L) I type

OS/HW Freq. Command (MHz)

L L L L J 200<)u 1 L L | )
0 10 20 30 40 50 0 10 20 30 40 50
Buffer State Buffer State
() (b)

Fig. 5. Optimal policies for each data unit type. (a) APRupater configurations. (b) Joint OS/HW layer frequency
command. The current operating frequency is set tp be600 Mhz.
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Fig. 6. Cumulative average reward for single-layer learniniy stationary tracelyf = 192,000 ).

Table VII. Single-layer learning performance statistics foigtaty tracel N = 192,000 ).

Best-response| Best-response Optimal
APP Layer Joint OS/HW Layer
Avg. Reward 0.7337 0.7172 0.7631
Avg. Power (W) 0.2835 0.4512 0.2435
Avg. Rate-Distortion 14.93 15.08 14.75
Avg. Utility Gain 0.9588 0.9736 0.9790
No. Overflows 0 61 0

C. Cross-layer Learning Results
In this subsection, we evaluate the performandbefcentralized and layered Q-learning algorithms

proposed in Section IV.B and IV.C, respectivelyg.F¥ compares the cumulative average reward
obtained using layered Q-learning to the perforreamicthe centralized learning algorithm, the optima
achievable reward, and the performance of the naylgairning algorithm deployed in the state-of-thie-a
cross-layer coordination framework called GRACHSI; Fig. 8 compares the weighted estimation error
for the centralized and layered Q-learning algongh and, Table VIII shows the corresponding power,
rate-distortion costs, utility gain, and buffer ol@wvs. As in the previous simulations, the simidat
duration isN = 192,000 time slots. Recall from Table Il that the algbrits compared in this subsection
have roughly the same computational complexitygrbat the complexity of the GRACE-1 algorithm is
roughly O(|.A|) in our setting because it requires finding theoacthat will most closely meet a data
unit’s deadline).

As expected, the layered Q-learning algorithm pemfo as well as the centralized Q-learning
algorithm, but also adheres to the layered ardhitedbecause it allows the layers to act autonohpous
through decentralized decisions and updates. Meigswthe myopic learning algorithm deployed by
GRACE-1 performs very poorly in terms of overallveed. This is because, for each data unit, GRACE-1
myopically selects the lowest processing frequeth@t can successfully encode it before its deagline
consequently, the buffer quickly fills, which makii® system susceptible to delay deadline violation

® In GRACE-1, the statistical cycle demand (compigxif a video encoding application is measuredgisin exponential average of thd"95
percentile complexity of recently completed jobsogessed data units) in a sliding window. Basedhenstatistical cycle demand, GRACE-1
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due to the time-varying workload (this is similar what happens when using the “conventional gain”

function described in Appendix A).
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Fig. 7. Cumulative average reward for cross-layer learning ghgusiwith stationary traceN = 192,000 ).
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Fig. 8. Weighted estimation error metric for cross-layer legraigorithms with stationary tra¢&v = 192,000 ).

Table VIII. Cross-layer learning performance statistics foiastaty trace (V = 192,000 ).

. Centralized Layered
Optimal Q-learning Q-Lgarning GRACE-1
Avg. Reward 0.7631 0.4727 0.4721 -0.1730
Avg. Power (W) 0.2435 0.3815 0.4061 0.4982
Avg. Rate-Distortion| 14.75 15.00 14.99 15.30
Avg. Utility Gain 0.9790 0.7158 0.7195 0.0942
No. Overflows 0 1231 1251 3040

It is important to note that, even though the psmablearning algorithms outperform the existing
myopic learning algorithm, there is still signifitamprovement to be made. In particular, the cdizied
and layered Q-learning algorithms learn too slobggause they only update one state-action pamdh e
time slot. Consequently, the number of buffer desré and the power consumption are both higher, and

the utility gain is lower, than in the optimal cade the next subsection, we show that the learning

myopically encodes jobs at the lowest frequencyctvhiill meet the job’s deadline. If slack remairieaprocessing a job, then it is reclaimed
for future jobs.
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performance (including the weighted estimation remod the average reward) can be dramatically

improved bysmartly updating multiple state-action pairs in each tinoé s

D. Accelerated Learning with Virtual ETs
In this subsection, we compare the performancé@fproposed virtual ET based learning algorithm

(see Section V) to an existing reinforcement leagrilgorithm called temporal-difference-learning

(i.e. TD(\) [15]), which has comparable complexity (roughl( (¥ + 1)|.4|) in each time slot forr

virtual ET orTD(A) updates in addition to the actual ET update).aRdbat, in this subsection, we
simulate the system with the measured (non-statfprteace data and the generated (stationary) trace
data.

Fig. 9 illustrates the cumulative average rewartieaed when we allowd € {0,1,15,30,45}

virtual ET orTD(\) updates in each time slot (the case wRer- 0 is equivalent to the conventional
centralized Q-learning algorithm in which only thetual ET is updated); Fig. 10 compares the weihhte
estimation error for the same learning algorithraed, Table IX illustrates corresponding detailed
simulation results.

Interestingly, theTD(\) updates are completely ineffectual at improvihg system’s performance.
In particular, it is obvious that increasing theminer of TD(\) updates in each time slot does not
guarantee higher average rewards or lower weigkdgthation errors. Meanwhile, increasing the number
of virtual ET updates in each time slot dramaticathproves the weighted estimation error metric tred
average reward. The reason for this stark diffexeimc performance is because the virtual ET based
learning algorithm can learn about state-actionrspaithout visiting them, while the TD() learning
algorithm can only learn abopteviously visited state-action pairs. The ability to learn about unvisited
states is very important in our problem settingduse after the buffer initially fills from early ghoration
(resulting in the initial drop in rewards illusteat in Fig. 6, Fig. 7, and Fig. 9), the learningoaithm
must learn to efficiently drain the buffer withoctnsuming too much power or unnecessarily reducing
the application’s quality. This is simple when ugivirtual ETs because the information obtained from
experience in a “near full” buffer state (eqg= Q@ — 1) can be extrapolated to a “near, near full” buffer
state (e.gg = Q@ — 2) and so on. When usinP( A ) updates, however, the algorithm learns very stowl
about “near, near full” buffer states because teyvisited only infrequently from the “near fulluffer
state. For this reasomD(A) (even for a large number of updates) has troabiptying the buffer, and
performs no better than the conventional centrdli@elearning algorithm, which updates only oneestat

action pair in each time slot.
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One might expect that violating the stationaritysutamption, which is widely used in the
reinforcement learning literature (see [14][15][16Yould be disastrous to the system’s performavée.
observe in Fig. 9 and Table IX, however, that thppsed virtual ET based learning algorithm is sibu
to the non-stationary dynamics in the measured watas. This is primarily due to its ability toickly
propagate new information obtained at one stateraqair throughout the state-action space. Froen th
data in Table IX, we observe that the percent difiee between the reward obtained in the stationary
case and the non-stationary case is less than 6%.

As in the single-layer learning case, the learrpegiormance with virtual ETs saturates due to the
finite exploration probability (i.e.e > 0), which prevents the learning algorithm from comgieg to the
optimal policy.

It is important to note that, in these experimemis, have assumed that the update complexity is
negligible. This would be true if the updates wpegformed infrequently (e.g. per video frame) othié
updates were performed in parallel (e.g. usinga@oveprocessor); however, it is not a valid assuompt
for the very frequent and serial updates deployerk Hi.e. per video macroblock, without a vector
processor). Hence, performing 15, 30, or 45 updatesch time slot is not reasonable, but perfogrin
or 2 virtual ET updates is. Despite this techntgaliwe have shown the relative performance
improvements that can be achieved by updating pleltrirtual experience tuples in each time slot. An
interesting trade off to investigate in future @®h is the impact of a coarser data unit granylarith a
simultaneous increase in the number of virtual tggiésuch that the average learning complexity mesna
constant). Lastly, we note that the learning penfmice could be further improved (for the same numbe
of virtual ET updates) by directing the virtual Hpdates to states that are most likely to be dsitehe
near future (e.g. states near the observed nafstastead of randomly updating the virtual eigrece

tuples.

°In our impIementationTD()\) applies the update step defined in (17) to e most frequently visited states in the recent phisese
recently visited states are updated using the TDr ebtained for the current state weighted by gheviously visited states’ “eligibility” as
defined in [15]. Informally, the “eligibility” ishe discounted frequency with which states have bis#tied in the past (see [15]).
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Fig. 9. Cumulative average reward achieved with virtual ETT{d\ ) updates for a stationary trace and a non-
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Fig. 10. Weighted estimation error metric for virtual ETd ab(\ ) with stationary tracé N = 64,000 ).

Table 1X. Virtual experience learning statistics for stationapn¢stationary) data trace outside (inside) parentheses
(N = 64,000).

Number of Virtual ET Updates

U =0 U =1 U =15 U = 30 U = 45
Avg. Reward 0.2785 (0.3015)| 0.6414 (0.6078)| 0.6893 (0.6710)| 0.7076 (0.6759)| 0.7200 (0.6944)
Avg. Power (W) 0.4212 (0.4632]  0.4164 (0.4314) 03@.3864) | 0.3432 (0.3657)  0.3108 (0.3381)

Avg. Rate-Distortion

15.00 (14.89)

14.92 (14.77) | 15.06 (14.84)

14.93 (14.81)

14.87 (14.71)

Avg. Utility Gain | 0.5287 (0.5577)]  0.8898 (0.8570) .9832 (0.9131)| 0.9432 (0.9140)  0.9492 (0.9264)
No. Overflows 1196 (1410) 1035 (1271) 502 (437) 226 (378) 103 (438)
Number ofTD(\ ) Updates
v =0 v =1 U =15 U = 30 U =45
Avg. Reward 0.2835 (0.3188)| 0.3807 (0.2899)| 0.3449 (0.2903)| 0.3141 (0.3088)| 0.3287 (0.3388)
Avg. Power (W) 0.4494 (0.4707 0.4649 (0.473R) 8148.4672) 0.4530 (0.4644 0.4544 (0.4875)

Avg. Rate-Distortion

15.07 (14.88)

15.14 (14.92) 15.14 (14.88)

15.03 (14.84)

15.15 (14.91)

Avg. Utility Gain

0.5395 (0.5763)

0.6402 (0.5483) .6026 (0.5472)

0.5703 (0.5647

0.5866 (0.599

7

No. Overflows

1255 (1630)

1230 (1491) 1267 (1511)

1234 (1491)

1250 (1317)
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VIl. CONCLUSION

Foresighted decisions are required to optimizeptiformance of resource-constrained multimedia
systems. However, in practical settings, in whioh $ystem’s dynamics are unknown a priori, effittien
learning the optimal foresighted decision policyr d#e a challenge. Specifically, selecting an improp
learning model can lead to an unacceptably slownieg speed, incur excessive memory overheads,
and/or adversely impact the application’s real-timeeformance due to large computational overhdads.
this paper, we choose reinforcement learning tor@ppately balance time-complexity, memory
complexity, and computational complexity. We prapas centralized and a layered reinforcement
learning algorithm and extend these algorithms xplet our partial knowledge of the system’s
dynamics. The proposed accelerated learning afgoritvhich is based on updating multiple statiskjcal
equivalent state-action pairs in each time sldgvad us to judiciously tradeoff per-stage compuwoiai
complexity and time-complexity (i.e. learning spgethile incurring low memory overheads.

In our experimental results, we verify that the elegd learning solution achieves the same
performance as the centralized solution, which @ympractical to implement if the layers are desit)
by different manufacturers. We also illustrate thlmatr proposed foresighted learning algorithms
outperform the myopic learning algorithm deployed an existing state-of-the-art cross-layer
optimization framework and that, by exploiting kredge about the system’s dynamics, we can
significantly outperform an existing applicatiordependent reinforcement learning algorithm that has
comparable computational overheads.

In the long term, we believe this work can catalgizhift in the design and implementation of DMSs
(and systems in general) by enabling system lafrecglules or components) to proactively reason and
interact based on forecasts, as well as evolvebandme smarter, by learning from their interaction

APPENDIXA: UTILITY GAIN FUNCTION

In this appendix, we discuss the form of the wtitjain function defined in (14). Conventionallf/ai
multimedia buffer does not overflow (i.e. the bufé®nstraints are not violated), then there is eogity.
Within the proposed MDP-based framework, where am@not explicitly impose constraints because the
dynamics are not known a priori, the conventionaffdr model must be integrated into the system’s
reward function. Specifically, it can be integraiatb the reward through a utility gain function thie

form:
1, g+|t|-1<N,

gconv(s7 aL) = Nq _ (q + Hj — 1)7 Othel"WiSG,

which provides a reward of 1 if the buffer does oe¢rflow, and a penalty proportional to the numdiker

overflows otherwise.
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In contrast to the proposed continuous utility daimction defined in (14)g .., (s,ar) is disjoint. As
a result, the optimal foresighted policy obtainesihg g....(s,a;) will initially fill the buffer rapidly in
an attempt to minimize rate-distortion and powestsdbecause it is not penalized for filling thdfér)
as illustrated in Fig. 11(a). Subsequently, thecgolill attempt to keep the buffer nearly full oxder to
balance the cost of overflow with the rate-distortiand power costs required to reduce the buffer’s
occupancy. Unfortunately, with the buffer nearlyl,fany sudden burst in the complexity of a dat# un
will immediately overflow the buffer as illustrated Fig. 11(b). In contrast, the proposed utilitgiry
function is robust against bursts in complexity dnese it encourages the buffer occupancy to reroan |
as illustrated in Fig. 11(c,d).

The data in Table X shows that the proposed utjén function not only prevents buffer overflows,
but it also achieves comparable power consumptstha conventional utility gain function. Thus, we
have verified that our choice of utility gain fuimet is good. An added benefit of the proposedtutdain
function is that it aids in the learning processisTis because actions aimmediately rewarded (or

penalized) based on how they impact the buffeestat

Buffer fills rapidly Buffer overflows
50 —_— 60
40 l |niiEi| | |l||l|| 1|
2 o 50 ; . =
8 30 8
n n
£ 20 £ 40
o @ —— Buffer State
10 —— Buffer State 30 ---- Overflows
Buffer Size Buffer Size
0
0 500 1000 1500 0 1 2
Time slot Time slot 4
(a) (b) x10
Buffer fills slowly Buffer does not overflow
50 50
40 40
° —— Buffer State ° — g”ger ?ate
< Buffer Size IS urrer size
& 30 & 30
o @
£ 20 £ 20
m m
10 ,_HI 10
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(c) (d) x 10

Fig. 11. Buffer evolution inN = 20,000 time slot simulation. (a) Conventional utility gaiesults in the buffer

filling rapidly; (b) Conventional utility gain leadto overflows; (¢) Proposed utility gain keeps ibiudfer occupancy
low; (d) Proposed utility gain prevents overflows.
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Table X. Performance statistics using the conveatiatility gain function and the proposed utilggin function.
Form of the utility gain

Conventional Proposed
Avg. Power (W) 0.2421 0.2427
Avg. Rate-Distortion 14.95 14.84
No. Overflows 394 0

APPENDIXB: SINGLE-LAYER LEARNING
In the single-layer learning algorithm, the leaghlayer (say layei ) knows the global state, but

does not know the actions implemented by the dtyar (say layer1), which are dictated by its static
policy m_;. Thus, the stage rewai(s,a) defined in (15) that is observed by layecan be rewritten as
R(s,a | m_;) = R(s,(a;,7_; (8)), (31)
and the transition probability function defined(8) can be rewritten as
p(s" | s,a,m ) = p(s | s,(a;, 7 ¢8)). (32)

We define thdocal best-response action-value function at layer! (for a fixed7_;) as

Q (s, | ) = R(s,aqp | ) + ’Yz p(sl ‘ 3;@177771)21632 Qr (S/, a | 7Lz), (33)

s'cS
and thdocal best-response policy at layer/, which we denote by (s | 7_; ), as

m (8| m) = arg max Q(s,ay | my). (34)
a,G

Although the local costs at layel'se £; (i.e. J, (sy,m (s))) are independent of thth layer’s action
a;, layer [ still needs to know them in order to learn hovinmpacts the other system layers [17]. For

example, if the joint OS/HW layer is unaware ofiitgoact on the application’s delay and qualitywil
always selfishly minimize its own costs by opergtiat its lowest frequency and power, which can
adversely impact the real-time application’s perfance. For this reason, in (33), we make the
assumption that laydr has access to the global reward.

The [th layer's optimal local action-value functiof; (for a fixed n_;) and the corresponding
optimal local best-response poliey (s | 7_;) can be learned online using a straightforward dimm

of the centralized Q-learning update step descriextion IV.B: i.e.,

o = [+ Y QR el | w0 - Qrs a7 ), (35)
(L]E
PNl [ my) < QF (8" ol | my) + af'df (36)
L

where r" = g} — szJz" is a random sample of the reward with expectedevél(s”,a/' | 7_;). We
=1

refer to this learning procedure at layeaslocal best-response Q-learning. The best response Q-learning
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update at layel requires the experience tuple”,af',r",s""" ). Note that, given the global stasé

layer [ trades off exploitation and exploration by selegtihe c -greedy action]’ = ¢, (Q/',s" ).
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