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Fast Image Recovery Using Variable Splitting
and Constrained Optimization

Manya V. Afonso, José M. Bioucas-Dias, and Mario A. T. Fgado

Abstract— We propose a new fast algorithm for solving one of satisfactorily by adopting some sort of regularizationgaor
the standard formulations of image restoration and reconstuc-  information, in Bayesian inference terms). One of the stan-
tion which consists of an unconstrained optimization probém dard formulations for wavelet-based regularization of gema
where the objective includes ar¢, data-fidelity term and a non- - . . .
smooth regularizer. This formulation allows both waveletbased restoratlon/reconstructlon problems is bl_“lt as followst the
(with orthogonal or frame-based representations) regulaization ~Unknown imagex be represented as a linear combination of
or total-variation regularization. Our approach is based on a the elements of some framee., x = W3, where3 € R¢,
variable splitting to obtain an equivalent constrained optmiza- gnd the columns of the x d matrix W are the elements
tion formulation, which is then addressed with an augmented of a wavelet frame (an orthogonal basis or a redundant

Lagrangian method. The proposed algorithm is an instance of . . - . .
the so-calledalternating direction method of multipliergor which dictionary). Then, the coefficients of this representatioe

convergence has been proved. Experiments on a set of image€Stimated from the noisy image, under one of the well-known
restoration and reconstruction benchmark problems show tlt sparsity inducing regularizers, such as thenorm (see [15],
the proposed algorithm is faster than the current state of te art  [18], [21], [22], [23], and further references therein) rially,
methods. this leads to the following optimization problem:

I. INTRODUCTION ﬁ=argﬁﬁn§|\BWﬁ—YH§+T¢(ﬂ) 1)

A. Problem Formulation 4 _ )
here ¢ : R® — R, usually called theregularizer or

. . . . Wi
Image restoration/reconstruction is one of the earliest agy,,|arization functionis usually nonsmooth, or maybe even
most classical linear inverse problems in imaging, dat@gd ,oqconvex, and- > 0 is the regularization parameter. This
tobthe 19603 [1]' In th|§ clla_ss of prpblemj,ladnmsy indireGh mylation is referred to as treynthesis approacii9], since
observationy, of an original imagex, is modeled as it is based on a synthesis equation wheiis synthesized from
y = Bx + n, its representation coefficients & W/3) with are the object
) i i _ of the estimation criterion. Of course, the final image eatan
where B is the matrix representation of the direct operatqg computed as — Wa
andn is noise. As is common, we are adopting the vector xp 5jterative formulation applies a regularizer diredty
notation for images, where the pixels on &hx N image are o unknown image, leading to criteria of the form
stacked into a ariN M/)-vector in, e.g., lexicographic order.

= 1
In the sequel, we denote by the number of elements of, X = argmin 5||Bx —ylZ+7o(x) (2)
thusx € R", while y € R™ (m andn may or may not be e
equal). where ¢ : R™ — R is the regularizer. This type of criteria

In the particular case of image deblurring/deconvolut®n, are usually calledanalysis approachessince they're based
is the matrix representation of a convolution operatorhi§t On a regularizer that analyzes the image itselfx), rather
convolution is periodicB is then a (block) circulant matrix. than the coefficients of a representation thereof. Argyabéy
This type of observation model describes well several miaysi best known and most often used regularizer used in analysis
mechanisms, such as relative motion between the camera apgroaches to image restoration is the total variation (TV)
the subject (motion blur), bad focusing (defocusing blar), norm [40], [11]. Wavelet-based analysis approaches ae als

a number of other mechanisms which are well modeled bypgssible [19], but will not be considered in this paper.
convolution. Finally, it should be mentioned that problems (1) and (2)

In more general image reconstruction problefs,rep- can be seen as the Lagrangians of associated constrained
resents some linear direct operator, such as a set of torggtimization problems: (1) is the Lagrangian of the coristd
graphic projections (Radon transform), a partially obedrv problem
(e.g._, Fourier) transform, or the loss of part of_the @mageksi. min¢(8) subjectto [[BWSB—y|2 <e, 3)

It is well known that the problem of estimating from J¢]

y is ill-posed, thus this inverse problem can only be solveg e (2) is the Lagrangian of

The authors are with thimstituto de Telecomunicagdeasd the Department : ; o2
of Electrical and Computer Engineeringstituto Superior Técnicdl049-001 chm (b(x) SUbJECt to HB X yH2 se (4)
Lisboa, Portugal.
Emails: mafonso@lIx.it.pt, bioucas@Ix.it.pt, mario.figedo@Ix.it.pt IWe will use the generic term “wavelet” to mean any wavele-limulti-
A preliminary much shorter version of this work appearedda]{ scale representation, such as “curvelets”, “beamlets*yidgelets”.
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Specifically, a solution of (3) (for any such that this problem  Each IST iteration for solving (5) is given by

is feasible) is either the null vector, or else is a minimizer 1

of (1), for somer > 0 (see [39, Theorem 27.4]). A similar Xpt1 = Pro (xt -~ AT (Axy - y)) , @)

relationship exists between problems (2) and (4). v

where1/v is a step size. Notice thah” (Ax; —y) is the

gradient of the data-fidelity terrfl /2)||Ax — y||%, computed

at xi; thus, each IST iteration takes a step of lengihy
For any problem of non-trivial dimension, matricBW, in the direction of the negative gradient of the data-figtelit

B, and W cannot be stored explicitly, and it is costly, everierm, followed by the application of the shrinkage/thrddhmy

impractical, to access portions (lines, columns, blockk) @unction associated with the regularizer

them. On the other hand, matrix-vector products involving |t has been shown thatif > ||A||2/2 and¢ is convex, the

B or W (or their conjugate transposd” and W) can algorithm converges to a solution of (1) [13]. However, it is

be done quite efficiently. For example, if the columns dfnown that IST may be quite slow, specially wheris very

W contain a wavelet basis or a tight wavelet frame, ar§mall and/or the matrid is very ill-conditioned [4], [5], [21],

multiplication of the formWv or W¥v can be performed [27]. This observation has stimulated work on faster vasian

by a fast wavelet transform algorithm [34]. Similarly, B of IST, which we will briefly review in the next paragraphs.

represents a convolution, products of the foBw or B v In the two-step IST(TWIST) algorithm [5], each iterate

can be performed with the help of the fast Fourier transforgiepends on the two previous iterates, rather than only on the

(FFT) algorithm. These facts have stimulated the developmeyrevious one (as in IST). This algorithm may be seen as a

of special purpose methods, in which the only operatiomgn-linear version of the so-called two-step methods fuedr

involving B or W' (or their conjugate transposes) are matrixproblems [2]. TwWIST was shown to be considerably faster

B. Previous Algorithms

vector products. than IST on a variety of wavelet-based and TV-based image
To present a unified view of algorithms for handling (1) angestoration problems; the speed gains can reach up twosorder
(2), we write them in a common form of magnitude in typical benchmark problems.
1 Another two-step variant of IST, naméaist IST algorithm
min §||Ax—y|\§ + 7 o(x) (5) (FISTA), was recently proposed and also shown to clearly

] ] outperform IST in terms of speed [4]. FISTA is a non-smooth
where A = BW, in the case of (1), while\ = B, for (2).  variant of Nesterov’s optimal gradient-based algorithm fo
Arguably, the standard algorithm for solving problems & thsmooth convex problems [35], [36].

form (5) is the so-callederative shrinkage/thresholdingST) A strategy recently proposed to obtain faster variants of
algorithm. IST can be derived as an expectation-maxinorati|ST consists in relaxing the condition> .., = ||A[|2/2. In
(EM) algorithm [22], as amajorization-minimization(MM,  the SpaRSA (standing faparse reconstruction by separable
[29]) method [15], [23], or as a forward-backward splittingypproximation) framework [44], [45), a different, is used in
technique [13], [27]. A key ingredient of IST algorithms iseach iteration (which may be smaller thay, meaning larger
the so-called shrinkage/thresholding function, also km@s  step sizes). It was shown experimentally that SpaRSA glearl
the Moreau proximal mapping [13] or the denoising functionyytperforms standard IST. A convergence result for SpaRSA
associated to the regularizet which provides the solution a5 also given in [45].

of the corresponding pure denoising problem. Formallys thi Finally, when the slowness is caused by the use of a small

function is denoted a¥,; : R™ — R™ and defined as value of the regularization parameteontinuationschemes
1 ) have been found quite effective in speeding up the algorithm
¥rp(y) = argmin o f|x — y |3 + 7é(x). (6) The key observation is that IST algorithm benefits signifilgan

] o ) . from warm-starting i.e., from being initialized near a mini-
Notice that if ¢ is proper and convex, the function beingym of the objective function. This suggests that we can use

minimized is proper and strictly convex, thus the minimizge solution of (5), for a given value of, to initialize IST
exists and is unique making the function well defined [13]. j, solving the same problem for a nearby valuerofThis

~ For some choices o, the corresponding denoising funcyarm-startingproperty underliesontinuationschemes [24],
tions W, have well known closed forms. For examplep7) [45]. The ideais to use IST to solve (1) for a larger ealu
choosingg(x) = |x[x = 3_;[=:l, the &4 norm, leads to of - (which is usually fast), then decreasén steps toward its

W, (y) = soft(y, 7), where soft., 7) denotes the component-gesijred value, running IST with warm-start for each sudeess
wise application of the functiop — sign(y) max{|y| —7,0}. yalue ofr.

If ¢(x) = ||x]lo = |{i : x; # 0}|, usually referred to as
the ¢y “norm” (although it is not a norm), despite the fact
that this regularizer is not convex, the correspondingnhri C- Proposed Approach
age/thresholding function also has a simple close form: theThe approach proposed in this paper is based on the
so-called hard-threshold functiol,, (y) = hardy,/27), principle of variable splitting, which goes back at least to
where har¢,a) denotes the component-wise application dfourant in the 40’s [14], [43]. Since the objective function
the functiony — y1,,>,. A comprehensive coverage of(5) to be minimized is the sum of two functions, the idea is
Moreau proximal mapsan be found in [13]. to split the variablex into a pair of variables, sayx andv,
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each to serve as the argument of each of the two functiomghich is written as the composition of two functions,
and then minimize the sum of the two functions under the )

constraint that the two variables have to be equal, so that th aeRh fi(a) + f2 (g(u)), (8)
problems are equivalent. Although variable splitting soathe N J ) L ,
rationale behind the recently proposed split-Bregman mthwhereg PR R.' Va_nable s_pllttlng IS a very simple
[25], in this paper, we exploit a different type of splittirig procedure that consists in creating a new variable, say

attack problem (5). Below we will explain this difference i 0 serve as _the argument gf, un_der the constraint that
g(u) = v. This leads to the constrained problem

detail.
The obtained constrained optimization problem is thentdeal min fi(u) + fo(v)
with using an augmented Lagrangian (AL) scheme [37], which ueR”, veRrd 9

is known to be equivalent to the Bregman iterative methods re subjectto g(u) = v,

cently proposed to handle imaging inverse problems (sefe [4fhich is clearly equivalent to unconstrained problem (8):
and references therein). We prefer the AL perspectivegrathin the feasible set{(u,v) : g(u) = v}, the objective
than the Bregman iterative view, as it is a standard and mdigction in (9) coincides with that in (8). The rationale beh
elementary optimization tool (covered in most textbooks arariable splitting methods is that it may be easier to sdhee t
optimization). In particular, we solve the constrainedisemn constrained problem (9) than it is to solve its unconstiine
resulting from the variable splitting using an algorithnolim  counterpart (8).
as alternating direction method of multipliers (ADMM) [17]  The splitting idea has been recently used in several image
The application of ADMM to our particular problem in-processing applications. A variable splitting method wasdu
volves solving a linear system with the size of the unknowin [43] to obtain a fast algorithm for TV-based image restora
image (in the case of problem (2)) or with the size of it§on. Variable splitting was also used in [6] to handle peshs
representation (in the case of problem (1)). Although thigvolving compound regularizers;e., where instead of a
seems like an unsurmountable obstacle, we show that itsiaigle regularizet-¢(x) in (5), one has a linear combination
not the case. In many problems of the form (2), such a$two (or more) regularizers; ¢ (x) + m¢2(x). In [6] and
deconvolution, recovery of missing samples, or reconsnc [43], the constrained problem (9) is attacked by a quadratic
from partial Fourier observations, this system can be sblvgenalty approach, i.e., by solving
very quickly in closed form (withO(n) or O(nlogn) cost).

. . [ 9
For problems of the form (1), we show how exploiting the =~ _min fr(w) + f2(v) + 5 llg(w) = vll2, (10)
fact thatW is a tight Parseval frame, this system can still be o _ _
solved efficiently (typically withO(n logn) cost. by alternating minimization with respect @ and v, while

We report results of a comprehensive set of experiments, JAWIY takinga to very large values (aontinuationprocess),
a set of benchmark problems, including image deconvolutid® force the solution of (10) to approach that of (9), which in
recovery of missing pixels, and reconstruction from péartifurn is equivalent to (8). The rationale behind these meghod
Fourier transform, using both frame-based and TV-based rdg that each step of this alternating minimization may be
ularization. In all the experiments, the resulting alduritis Much easier than the original unconstrained problem (8¢. Th
consistently and considerably faster than the previous sa drawback is that as becomes very large, the intermediate
the art methods FISTA [4], TwIST [5], and SpaRSA [45]. Minimization problems become increasingly ill-conditioh

The speed of the proposed algorithm, which we terthus causing numerical problems (see [37], Chapter 17).
SALSA (split augmented Lagrangian shrinkage algoritpm A similar variable splitting approach underlies the regent
comes from the fact that it uses (a regularized version &) tRroposed split-Bregman methods [25]; however, instead of
Hessian of the data fidelity term of (5), that i&Z A, while using a quadratic penalty technique, those methods attack

the above mentioned algorithms essentially only use gnadiéh€ constrained problem directly using a Bregman iterative
information. algorithm [46]. It has been shown that, whenis a linear

function,i.e, g(u) = Gu, the Bregman iterative algorithm is

o equivalent to the augmented Lagrangian method [46], which

D. Organization of the Paper is briefly reviewed in the following subsection.
Section Il describes the basic ingredients of SALSA: vari-

able splitting, augmented Lagrangians, and ADMM. In Sectigy Augmented Lagrangian
lll, we show how these ingredients are combined to obtain the
proposed SALSA. Section IV reports experimental resutid, a
Section V ends the paper with a few remarks and pointers to min  E(z)

zER™ 11
future work. st. Az—Db =0, (1)

Consider the constrained optimization problem

1. BASIC INGREDIENTS whereb € R? and A € RP*", i.e, there arep linear equality
. . constraints. The so-called augmented Lagrangian funétion
A. Variable Splitting this problem is defined as
Consider an unconstrained optimization problem in which - L )
the objective function is the sum of two functions, one of £4(2, A, p) = E(z) + A" (b — Az) + 5 Az —Dbll3, (12)
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whereX € R? is a vector of Lagrange multipliers and> 0  With these definitions in place, Steps 3 and 4 of the ALM/MM

is called the penalty parameter [37]. (version Il) can be written as follows:
The so-callecaugmented Lagrangian methddLM) [37], )
also known as themethod of multiplierstMM) [28], [38], (Wht1, Vi1) € arg run Fi(w) + fa(v) +

consists in minimizingC 4(z, A, 1) with respect taz, keeping

A fixed, then updating\, and repeating these two steps
until some convergence criterion is satisfied. Formallg th dpy1 = di+ Gupgr — Vigg 17)
ALM/MM works as follows:

LIGu—v—di3 ()

The minimization problem (16) is not trivial since, in
general, it involves non-separable quadratic and possitihy
smooth terms. A natural to address (16) is to use a non-
linear block-Gauss-Seidel (NLBGS) technique, in which)(16

Algorithm ALM/MM
1. Setk =0, chooseu > 0, zg, and Ag.

2. repeat . is solved by alternatingly minimizing it with respect toand

3 Zi+1 € argming L£4(z, Ak, i) - . . 4 ! .
v, while keeping the other variable fixed. Of course this ise

4. Akt1 = A+ pu(b — Azpyq) several questions: for a givedy,, how much computational

5 ke k+1 ﬁ hqldb' .gk*..h leG

6. until stopping criterion is satisfied. effort should be spent in approximating the solution of 16)

Does this NLBGS procedure converge? Experimental evidence

It is also possible (and even recommended) to update tRe[25] suggests that an efficient algorithm is obtained by
value of iz in each iteration [37], [3, Chap. 9]. However, unlikdUnning just one NLBGS step. It turns out that the resulting
in the quadratic penalty approach, the ALM/MM does ndlgorithm is the so-calledilternating direction method of
require . to be taken to infinity to guarantee convergence @ultipliers (ADMM) [17], which works as follows:
the solution of the constrained problem (11). .

Notice that (after a straightforward complete-the-sq1;|ar'(%lgorslthtrll1 _AODM':]/I 0 dd
procedure) the terms added 1(z) in the definition of the - S =Y, CNOOSEL >0, vo, anddo.

: . ; 2. repeat
augmented Lagrangiafi4(z, Ag, ) in (12) can be written P Weer € argming fi(u) + £ Gu — vy — dy 2
as a single quadratic term (plus a constant independent oﬁ' k1 &M J1 Zla k kd2 )
thus irrelevant for the ALM/MM), leading to the following Vi+1 € argminy fo(v) + 5| Gur — v — dy[[3

dit1 =dip + Gugyr — Vi
k—k+1
7. until stopping criterion is satisfied.

alternative form of the algorithm (which makes clear it&"
equivalence with the Bregman iterative method [46]):

Algorithm ALM/MM (version 1)

1. Setk =0, choosey > 0 anddy. For later reference, we now recall the theorem by Eckstein

and Bertsekas, in which convergence of (a generalizedorersi

2. repeat . . :

3 Zr1 € argming E(z) + & Az — 2 ;)(Rn,:\l?fls\;ll\\:l\HESTO\;VE 'éh|s itr:eeorem applies to problems of the
4, diy1 =di + (b — Azpyq) giu) =, 1.8y

> k—k+1 min f1(u) + f2 (Gu), (18)

6. until stopping criterion is satisfied. uck»

of which (13) is the constrained optimization reformulatio
It has been shown that, with adequate initializations, the
ALM/MM generates the same sequence agraximal point ~ 1heorem 1 (Eckstein-Bertsekas, [17fonsider problem
algorithm applied to the Lagrange dual of problem (11) [30](18). wheref, and f, are closed, proper convex functions,
Moreover, the sequendgl;,} converges to a solution of this@d G € R*" has full column rank. Consider arbitrary
dual problem and all cluster points of the sequefig} are # > 0 andvo,do € R% Let{n;, > 0, k = 0,1,...} and

solutions of the (primal) problem (11) [30]. {vk 20, k=0,1,...} be two sequences such that
C. ALM/MM for Variable Splitting > k<o and > v < oo
We now show how the ALM/MM can be used to address ) h=0 h=0
problem (9), in the particular case wheyéu) = Gu, i.e., Consider three sequencgs, € R", k = 0,1,..}, {vi €

. R k=0,1,..},and{d; € R% k =0,1,...} that satisfy
min fi(u) + fa(v)
ueRn”, veRd (13)
subjectto Gu=1v, "Ik

Y

“uk+1 — argm&n fi(u) + gHGu—Vk—dkH%H

. . . m
where G € R?*". Problem (13) can be written in the form vk > Hvk+1 —argmin f>(v) + §|\Guk+1—V—dk||§H

(11) using the following definitions: dis1 = di+ GUpss — Vil
7z = { u } , b=0 A=[-G I], (14) Then, if (18) has a solution, the sequerfag,} converges,
v u; — u*, whereu* is a solution of (18). If (18) does not have
and a solution, then at least one of the sequerfogs; or {d;}

E(z) = fi(u) + fa(v). (15) diverges.
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Notice that the ADMM algorithm defined above generates X), = vi +dg
sequence$uy }, {vx}, and{d,} which satisfy the conditions 4. Xpq1 = argming [|[Ax —y||3 + pllx — x}[|3
in Theorem 1 in a strict senseg, with . = ur = 0). One 5. V), = X1 — dg
of the important consequences of this theorem is that it shoé Vi1 = argminy 7(v) + §[|v — v} |3
that it is not necessary to exactly solve the minimizatians 7. dit1 =di + Xpr1 — Vit
lines 3 and 4 of ADMM; as long as sequence of errors B k—k+1

absolutely summable, convergence is not compromised. 9. until stopping criterion is satisfied.
The proof of Theorem 1 is based on the equivalence

between ADMM and the so-called Douglas-Rachford splitting Notice that SALSA is an instance of ADMM witl = T,

method (DRSM) applied to the dual of problem (18). Ththus, the full column rank condition o in Theorem 1 is

DRSM was recently used for image recovery problems #atisfied. If the minimizations in lines 4 and 6 are solved

[12]. For recent and comprehensive reviews of ALM/MMegxactly, we can then invoke Theorem 1 to guarantee to

ADMM, DRSM, and their relationship with Bregman andconvergence of SALSA.

split-Bregman methods, see [26], [42]. In line 4 of SALSA, a strictly convex quadratic function has
to be minimized; which leads to the following linear system

Ill. PROPOSEDMETHOD (AHA+ I)71 (AH + /) (24)

. o . Xit+1 = Xi) -

A. Constrained Optimization Formulation of Image Recovery " : VR
We now return to the unconstrained optimization formuS shown in the next subsection, this linear system can be

lation of regularized image recovery, as defined in (5). Thglved exactly (naturally, up to numerical precisidrg,, non-

problem can be written in the form (18), with iteratively, for a comprehensive set of situations of iastr
1 The matrix A”A + I can be seen as a regularized (by
Lx) = =|Ax—y|? (19) the addition of uI) version of the Hessian off(x) =
2 (1/2)||Ax — y||3, thus SALSA does use second order in-
f(x) = 71é(x) (20) " formation of this function. Notice also that (24) is fornyall
G = L (21)  similar to themaximum a posterior{MAP) estimate ofx,

from observationss = Ax + n (wheren is white Gaussian

The constrained optimization formulation is thus . . . .
noise of variancé /;) under a Gaussian prior of meaf) and

x%{én s Ax — y|I3 + 76(v) - covariancel.
subject to x = v. (22) The problem in line 6 is, by definition, the Moreau proximal

) ) ) - ) mapping of¢ applied tovy,, thus its solution can be written
At this point, we are in a position to clearly explain the,g

difference between this formulation and the splitting eiteld _ /
in split-Bregman methods (SBM) for image recovery [25]. Vit = Wro/u(Vi). (25)
In those methods, the focus of attention is a non-separaliléhis mapping can be computed exactly in closed form, for
regularizer that can be written as(x) = ¢(Dx), as is example, if¢(x) = ||x||; thus ¥ is simply a soft threshold,
the case of the TV norm. The variable splitting used ithen, by Theorem 1, SALSA is guaranteed to converge. If
SBM addresses this non-separability by defining the foll@vi & does not have a closed form solution and requires itself
constrained optimization formulation: an iterative algorithm €.g, if ¢ is the TV norm), then
min LlAx — y|2 + ro(v) convergence of SALSA still holds if one can guarantee that
x,vER™ (23) the error sequence, (see Theorem 1) is summable. This can
subjectto Dx = v. be achieved (at least approximately) if the iterative atyor

In contrast, we assume that the Moreau proximal mappit§ed to approximatal is initialized with the result of the
associated to the regularize#, i.e, the function ¥, ,(-) Previous outer iteration, and a decreasing stopping tbidsh
defined in (6), can be computed efficiently. The goal of ouf used.
splitting is not to address the difficulty raised by a non-
separable ar_1d no_n-quadr_atic regularizer, t_)ut to expl_o'rbmdz C. Computingxy.;1
order (Hessian) information of the functiofi, as will be

shown below. As stated above, we are interested in problems where it is

not feasible to explicitly form matribxA; this might suggest
that it is not easy, or even feasible, to compute the invarse i
(24). However, as shown next, in a number of problems of

Inserting the definitions given in (19)—(21) in the ADMMinterest, this inverse can be computed very efficiently.
presented in the previous section yields the proposed SALSA

B. Algorithm and Its Convergence

(Sp|it augmented Lagrangian Shrinkage a|gorit}]m 1) Deconvolution with Analysis Prior:In this case we
have A = B (see (1), (2), and (5)), wherB is the matrix

Algorithm SALSA representation of a convolution. This is the simplest csisee

1. Setk =0, chooseu > 0, v, anddp. the inverse(BHB + /LI)_I can be computed in the Fourier

2. repeat domain. Although this is an elementary and well-known fact,
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we include the derivation for the sake of completeness. fssuwith O(nlogn) total cost [32]. Curvelets also constitute a
ing that the convolution is periodic (other boundary coiedis Parseval frame for which fasb(nlogn) implementations
can be addressed with minor changd)is a block-circulant of the forward and inverse transform exist [7]. Yet another
matrix with circulant blocks which can be factorized as example of a redundant Parseval frame is the complex wavelet

B - UYDU (26) transform, which ha®)(n) computational cost [31], [41]. In

’ conclusion, for a large class of choices W, each iteration

whereU is the matrix that represents the 2D discrete Fourief the SALSA algorithm ha®)(nlogn) cost.
transform (DFT), U = U~ is its inverse U is unitary,i.e.,
UUY = UHU =1), andD is a diagonal matrix containing
the DFT coefficients of the convolution operator represgént

3) Missing Pixels: Image Inpaintingtn the analysis prior
gase (TV-based), we havA = B, where the observation

by B. Thus, matrixB models th_e loss of some i_mage pixels. Mamix: B
. . is thus anm x n binary matrix, withm < n, which can be
(B"B+pI) = (U"D*DU+pU"U)  (27) obtained by taking a subset of rows of an identity matrix. Due
- . . . . . T .
- yH (|D|2 I MI) 1 U, 28) to its particular structure, this matrix satisfB8* = I. Using

this fact together with the SMW formula leads to

where (-)* denotes complex conjugate afid|? the squared
absolute values of the entries of the diagonal mddixSince (BTB + MI)_I - 1 (I _ BTB) ) (31)
|D|? + 11 is diagonal, its inversion has linear c@3tn). The K L+ p
products byU andU* can be carried out with)(nlog n) cost - gjnce BB is equal to an identity matrix with some zeros
using the FFT algorithm. The expression in (28) is a Wiengf ihe diagonal (corresponding to the positions of the migsi
filter in the frequency domain. observations), the matrix in (31) is diagonal with elemegits

2) Deconvolution with Frame-Based Synthesis Prior: therequaltal/(u+1) or 1/u. Consequently, (24) corresponds

In this case, we have a problem of the form (1., simply to multiplying(B#y + ux),) by this diagonal matrix,
A = BW, thus the inversion that needs to be performed ighich is anO(n) operation.

(WHBHBW + 1)~ Assuming thatB represents a (pe- _In the synthesis prior case, we have = BW, where

riodic) convolution, this inversion may be sidesteppedamdB is the binary sub-sampling matrix defined in the previous

the assumption that matri¥V corresponds to a normalizedparagraph. Using the SMW formula yet again, and the fact

tight frame (a Parseval frame)e, WW?# = I Applying thatBB” =TI, we have

the Sherman-Morrison-Woodbury (SMW) matrix inversion - 19 . -

formula yields (W B"BW + MI) = -1- = W'B"BW. (32)

Ly o I +u

(WHBHBW+NI> = (I-w" B" (BBH+ MI) BW).  As noted in the previous paragrapB?B is equal to an

identity matrix with zeros in the diagonal (corresponding t

. . the positions of the missing observationisg,, it is a binary

Let's focus on the ternF = B” (BB + 1) B; using mask. Thus, the multiplication byv# B¥ BW corresponds

the factorization (26), we have to synthesizing the image, multiplying it by this mask, and

_ prHy* 2 -1 computing the representation coefficients of the result. In

F=U"D (|D| + MI) bU. (29) conclusion, the cost of (24) is again that of the products by

Since all the matrices iD* (|D|? +MI)71 D are diagonal, W andW¥  usuallyO(nlogn).

this expression can be computed withn) cost, while the ) ) , )

products byU andU* can be computed witth(n log n) cost 4) Partial Fourier Observations: MRI Reconstructiorhe

using the FFT. Consequently, products by mafixdefined final case considered is that of partial Fourier observation
in (29)) haveO(n logn) cost. ’ which is used to model magnetic resonance image (MRI)

i _ H AN HRH / acquisition [33], and has been the focus of much recentdster
Defining r;. = (A y—HLXk) B (W B y+uxk), due to its connection to compressed sensing [8], [9], [16]. |
the TV-regularized case, the observation matrix has the for

Xppp1 = 1 (rk — WIFW rk) ) (30) A =BU, whereB is anm x n binary matrix, withm < n,
H similar to the one in the missing pixels case (it is formed by
Notice that multiplication byF corresponds to applying ana subset of rows of an identity matrix), aldd is the DFT
image filter in the Fourier domain. Finally, notice also thanatrix. This case is similar to (32), withl and U instead
the termBY Wy can be precomputed, as it doesn't changef W and W, respectively. The cost of (24) is again that

F

allows writing (24) compactly as

during the algorithm. of the products byU andU#, i.e,, O(nlogn) if we use the
The leading cost of each application of (30) will be eithefFT.
O(nlogn) or the cost of the products by and W. For In the synthesis case, the observation matrix has the form

most tight frames used in image processing, these produdts= BUW. Clearly, the case is again similar to (32), but
correspond to direct and inverse transforms for which fast avith UW and W7 U instead of W andW#, respectively.
gorithms exist. For example, whdW 7 andW are the inverse Again, the cost of (24) i€)(nlogn), if the FFT is used to
and direct translation-invariant wavelet transformssthprod- compute the products By andU* and fast frame transforms
ucts can be computed using the undecimated wavelet transf@re used for the products BV and W,
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I V E X P E R | M E N T S 5 Objective function 0. 5||y—A§W\\|x\|l

— TwIST
In this section, we report results of experiments aimed - GpareA
at comparing the speed of SALSA with that of the current . A
state of the art methods (all of which are freely available
online): TwIST [5], SpaRSA [45], and FISTA [4]. We
consider three standard and often studied imaging inverse
problems: image deconvolution (using both wavelet and TV-
based regularization); image restoration from missingptas
(inpainting); image reconstruction from partial Fouridrser-
vations, which (as mentioned above) has been the focus of Yo 1w 3 40 = w0 7o 8 w0 o
much recent interest due to its connection with compressed

sensing and the fact that it models MRI acquisition [33]. All

(@

experiments were performed using MATLAB for Windows o OEJEC"W"“"C""‘"°5"yjA§"“'f'h o
XP, on a desktop computer equipped with an Intel Pentium-IV — s
3.0 GHz processor antl5GB of RAM. To compare the speed ‘ T

of the algorithms, in a way that is as independent as possible
from the different stopping criteria, we first run SALSA and
then the other algorithms until they reach the same valuleeof t
objective function. The value qgf for fastest convergence was
found to differ (though not very much) in each case, but a good
rule of thumb, adopted in all the experimentsuis= 0.17.

TABLE | o 2 4 6 8 10 1z 1 1 1w
seconds
DETAILS OF THE IMAGE DECONVOLUTION EXPERIMENTS

(b)

Experiment | blur kernel o2 , Objective function 0.5]ly-AZAlxl}
1 9 x 9 uniform 0.562 1 ‘ ‘ ‘ ‘ r——
2A Gaussian 2 __FsTA
. paRSA
2B Gaussian 8 , - - -SALSA
3A hij =1/(1+i%+352) | 2 o
3B hi; =1/(1+i%+35%) | 8

A. Image Deblurring with wavelets

We consider five benchmark deblurring problems [22],
summarized in Table I, all on the well-known Cameraman o s b 5w s w0 ®
image. The regularizer i®(8) = ||8|1, thus ¥, is an ©
element-wise soft threshold. The blur operalris applied
via the FFT. The regularization parameteis hand tuned in Fig. 1. Objective function evolution (redundant waveletg)) experiment
each case for best improvement in SNR, so that the comparid6n(®) experiment 28; (c) experiment 3A.
is carried out in the regime that is relevant in practice c8in
the restored images are visually indistinguishable froos¢h
obtained in [22], and the SNR improvements are also Veg/ |mage Deblurring with Total Variation
similar, we simply report computation times.
In the first set of experiments\Wv is a redundant Haar

i . The same five image deconvolution problems listed in Ta-
wavelet fram_e with four levels. Th? CPU times taken by eac[ﬂe | were also addressed using total variation (TV) regzdar
of the algorithms are presented in Table II. In the secon

. . .tion (more specifically, the isotropic discrete total véda, as
set of experimentsW is an orthogonal Haar wavelet basis; ( b y P

. . : defined in [10]). The corresponding Moreau proximal mapping
the r.esults are reported in Table Il. .To visually illuserdahe is computed using iterations of Chambolle’s algorithm [10].
relative speed of the algorithms, Figures 1 and 2 plot the

evolution of the objective function (see Eq. (1)), versusetj _ 1he CPU times taken by SALSA, TwiIST, SpaRSA, and
in experimentsl, 2B, and 3A, for redundant and orthogonal FISTA are listed in Table IV. The evolutions of the objective

wavelets, respectively. functions (for experiments, 2B, and 3A) are plotted in
Figure 3.
“Available at http://www.Ix.it.pt/ ~bioucas/code/TwIST_ We can conclude from Tables II, lll, and IV that, in image
v1.zip : : _ 2
Savailable athttp:/www.Ix.it.pt - Mt/SpaRSA/ deconvolut|0n_ prqblems, both with wavelet-based and TV
4pvailable at http://iew3.technion.ac.il/ - beckalpapers/ based regularization, SALSA is always clearly faster than t

wavelet_FISTA zip fastest of the other competing algorithms.
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TABLE Il
|MAGEDEBLURRlNGWlTHREDUNDANTWAVELETSZCPUTlMES(IN
SECONDS.

Experiment | TwIST SpARSA | FISTA SALSA
1 38.5781 | 53.4844 | 98.2344 | 2.26563
2A 33.8125| 42.7656 | 65.3281| 4.60938
2B 35.2031| 70.7031 | 112.109 | 12.0313
3A 20.4688 | 13.3594 | 32.2969 | 2.67188
3B 9.0625 | 5.8125 18.0469 | 2.07813

Objective function 0. 5||y—A§M)\||><|L
10’ ! ! ! ! .
—TwIST
FISTA
== SpaRSA
i |- -sausa
I T U DU I
GY
) Objective function 0. 5||yfA§|M||x|£
10 T T T T r
—TwIST
FISTA
== SpaRSA
- - -SALSA
BT T S N R R
(b)
Objective function 0,5||yfA§M||x|L
10’ ! ! ! ! .
—TwIST
FISTA
== SpaRSA
- - -SALSA

10°
0

1 2 3 4 5 6 7
seconds

©

Fig. 2. Objective function evolution (orthogonal wavejet&) experiment

1A; (b) experiment 2B; (c) experiment 3A.

C. MRI Image Reconstruction

We consider the problem of reconstructing th8 x 128

8
TABLE IlI
IMAGE DEBLURRING WITH ORTHOGONAL WAVELETS CPUTIMES (IN
SECONDS.
Experiment | TwIST SpARSA | FISTA SALSA
1 16.5156 | 39.6094 | 16.8281 | 2.23438
2A 10.1406 | 16.3438 | 15.9531| 1.375
2B 5.10938 | 7.96875 | 5.3125 | 0.640625
3A 3.67188 | 5.23438 | 7.46875| 1.03125
3B 2.57813 | 2.64063 | 3.625 0.5625

Objective function D.SHyfA)g«)\ (%)

—TwIST
FISTA
-- SpaRSA
1¢° - - -SALSA |4
10’
10" L L L L L L
50 100 150 200 250 300 350
seconds
@
) Objective function 0.5HyfA§|¢)\ @, (x)
10 T T T T
—TwIST
FISTA
== SpaRSA
- - =SALSA
5
10
h
i
|
'
'
10},
'
'
1
10° L L L L L
5 10 15 20 25 30
seconds
Objective function 0.5ly-AZA ®.. (x)
10’ ! ! ! . ! .
—TwIST
FISTA
== SpaRSA
- - -SALSA

10’

15 20 25 30 35 40
seconds

(©

Fig. 3. Image deblurring with TV regularization - Objectifanction
evolution: (a)9 x 9 uniform blur, o = 0.56; (b) Gaussian blurg? = §;
(©) hij = 1/(1 + 142 + 52) blur, 02 = 2.

with variances? = 0.5 x 1073, We use TV regularization
(as described in Subsection 1V-B), with the corresponding

Shepp-Logan phantom (shown in Figure 4(a)) from a limitedoreau proximal mapping implemented Y iterations of
number of radial lines (22, in our experiments, as shown fBhambolle’s algorithm [10].

Figure 4(b)) of its 2D discrete Fourier transform. The peeje  Table V shows the CPU times, while Figure 5 plots the
tions are also corrupted with circular complex Gaussiaseaoi evolution of the objective function over time. Figure 4(c)
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TABLE IV
TV-BASEDIMAGE DEBLURRING: CPU TIMES (IN SECONDS).

Experiment | TwIST SpARSA | FISTA SALSA
1 63.2344 | 80.0469 | 346.734| 11.2813
2A 19.1563 | 24.1094 | 34.1406 | 4.79688
2B 10.9375| 7.75 29.0156 | 2.46875
3A 13.9688 | 12.4375 | 35.2969 | 2.79688
3B 10.9531| 7.75 28.3438 | 2.78125

shows the estimate obtained using SALSA (the others are,
naturally, visually indistinguishable). Again, we may chrde

that SALSA is considerably faster than the other three algo-
rithms, while achieving comparable values of mean squared
error of the reconstructed image.

TABLE V
MRI RECONSTRUCTION COMPARISON OF THE VARIOUS ALGORITHMS

TwIST SpARSA | FISTA SALSA

Iterations 1002 1001 1000 53
CPU time (seconds) 529.297 | 328.688 | 390.75 76.5781
MSE 4.384e-7| 6.033e-5 | 4.644e-7| 5.817e-7

D. Image Inpainting

Finally, we consider an image inpainting problem, as ex-
plained in Section IlI-C. The original image is again the
Cameraman, and the observation consists in loo$iig of
its pixels, as shown in Figure 6. The observations are also
corrupted with Gaussian noise (with an SNR 4§ dB).
The regularizer is again TV implemented bg iterations of
Chambolle’s algorithm.

The image estimate obtained by SALSA is shown in
Figure 6, with the original also shown for comparison. The
estimates obtained using TwIST and FISTA were visually very
similar. Table VI compares the performance of SALSA with
that of TwIST and FISTA and Figure 7 shows the evolution
of the objective function for each of the algorithms. Again, (c)
SALSA is considerably faster than the alternative algomgh

Fig. 4. MRI reconstruction: (a8 x 128 Shepp Logan phantom; (b) Mask
with 22 radial lines; (c) image estimated using SALSA.

TABLE VI
IMAGE INPAINTING : COMPARISON OF THE VARIOUS ALGORITHMS
TWIST | FISTA | SALSA of the He_s_sian of thé, data-fidelity term, which can be com-
lterations 302 300 33 puted efficiently for several classes of problems. Expenisie
CPU t'“'\}les I(Eseconds fgg fgf Sg L on a set of standard image recovery problems (deconvolution
ISNR (dB) 184 185 | 186 MRI reconstruction, inpainting) have shown that the preubs

algorithm (termed SALSA, foisplit augmented Lagrangian
shrinkage algorith is faster than previous state-of-the-art
methods. Current and future work involves using a similar

V. CONCLUSIONS . .
_ . approach to solve constrained formulations of the forms (3)
We have presented a new algorithm for solving the un;q (4).

constrained optimization formulation of regularized ireag

reconstruction/restoration. The approach, which can el us

with different types of regularization (wavelet-basedtato REFERENCES
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