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Fast Image Recovery Using Variable Splitting
and Constrained Optimization

Manya V. Afonso, José M. Bioucas-Dias, and Mário A. T. Figueiredo

Abstract— We propose a new fast algorithm for solving one of
the standard formulations of image restoration and reconstruc-
tion which consists of an unconstrained optimization problem
where the objective includes anℓ2 data-fidelity term and a non-
smooth regularizer. This formulation allows both wavelet-based
(with orthogonal or frame-based representations) regularization
or total-variation regularization. Our approach is based on a
variable splitting to obtain an equivalent constrained optimiza-
tion formulation, which is then addressed with an augmented
Lagrangian method. The proposed algorithm is an instance of
the so-calledalternating direction method of multipliers, for which
convergence has been proved. Experiments on a set of image
restoration and reconstruction benchmark problems show that
the proposed algorithm is faster than the current state of the art
methods.

I. I NTRODUCTION

A. Problem Formulation

Image restoration/reconstruction is one of the earliest and
most classical linear inverse problems in imaging, dating back
to the 1960’s [1]. In this class of problems, a noisy indirect
observationy, of an original imagex, is modeled as

y = Bx + n,

where B is the matrix representation of the direct operator
and n is noise. As is common, we are adopting the vector
notation for images, where the pixels on anM ×N image are
stacked into a an(NM)-vector in, e.g., lexicographic order.
In the sequel, we denote byn the number of elements ofx,
thus x ∈ R

n, while y ∈ R
m (m and n may or may not be

equal).
In the particular case of image deblurring/deconvolution,B

is the matrix representation of a convolution operator; if this
convolution is periodic,B is then a (block) circulant matrix.
This type of observation model describes well several physical
mechanisms, such as relative motion between the camera and
the subject (motion blur), bad focusing (defocusing blur),or
a number of other mechanisms which are well modeled by a
convolution.

In more general image reconstruction problems,B rep-
resents some linear direct operator, such as a set of tomo-
graphic projections (Radon transform), a partially observed
(e.g., Fourier) transform, or the loss of part of the image pixels.

It is well known that the problem of estimatingx from
y is ill-posed, thus this inverse problem can only be solved
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satisfactorily by adopting some sort of regularization (orprior
information, in Bayesian inference terms). One of the stan-
dard formulations for wavelet-based regularization of image
restoration/reconstruction problems is built as follows.Let the
unknown imagex be represented as a linear combination of
the elements of some frame,i.e., x = Wβ, whereβ ∈ R

d,
and the columns of then × d matrix W are the elements
of a wavelet1 frame (an orthogonal basis or a redundant
dictionary). Then, the coefficients of this representationare
estimated from the noisy image, under one of the well-known
sparsity inducing regularizers, such as theℓ1 norm (see [15],
[18], [21], [22], [23], and further references therein). Formally,
this leads to the following optimization problem:

β̂ = arg min
β

1

2
‖BWβ − y‖22 + τ φ(β) (1)

where φ : R
d → R̄, usually called theregularizer or

regularization functionis usually nonsmooth, or maybe even
nonconvex, andτ ≥ 0 is the regularization parameter. This
formulation is referred to as thesynthesis approach[19], since
it is based on a synthesis equation wherex is synthesized from
its representation coefficients (x = Wβ) with are the object
of the estimation criterion. Of course, the final image estimate
is computed aŝx = Wβ̂.

An alternative formulation applies a regularizer directlyto
the unknown image, leading to criteria of the form

x̂ = argmin
x

1

2
‖Bx− y‖22 + τ φ(x) (2)

where φ : R
n → R̄ is the regularizer. This type of criteria

are usually calledanalysis approaches, since they’re based
on a regularizer that analyzes the image itself,φ(x), rather
than the coefficients of a representation thereof. Arguably, the
best known and most often used regularizer used in analysis
approaches to image restoration is the total variation (TV)
norm [40], [11]. Wavelet-based analysis approaches are also
possible [19], but will not be considered in this paper.

Finally, it should be mentioned that problems (1) and (2)
can be seen as the Lagrangians of associated constrained
optimization problems: (1) is the Lagrangian of the constrained
problem

min
β

φ(β) subject to ‖BWβ − y‖22 ≤ ε, (3)

while (2) is the Lagrangian of

min
x

φ(x) subject to ‖Bx− y‖22 ≤ ε. (4)

1We will use the generic term “wavelet” to mean any wavelet-like multi-
scale representation, such as “curvelets”, “beamlets”, or“ridgelets”.
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Specifically, a solution of (3) (for anyε such that this problem
is feasible) is either the null vector, or else is a minimizer
of (1), for someτ > 0 (see [39, Theorem 27.4]). A similar
relationship exists between problems (2) and (4).

B. Previous Algorithms

For any problem of non-trivial dimension, matricesBW,
B, andW cannot be stored explicitly, and it is costly, even
impractical, to access portions (lines, columns, blocks) of
them. On the other hand, matrix-vector products involving
B or W (or their conjugate transposesBH and WH ) can
be done quite efficiently. For example, if the columns of
W contain a wavelet basis or a tight wavelet frame, any
multiplication of the formWv or WHv can be performed
by a fast wavelet transform algorithm [34]. Similarly, ifB
represents a convolution, products of the formBv or BHv

can be performed with the help of the fast Fourier transform
(FFT) algorithm. These facts have stimulated the development
of special purpose methods, in which the only operations
involving B or W (or their conjugate transposes) are matrix-
vector products.

To present a unified view of algorithms for handling (1) and
(2), we write them in a common form

min
x

1

2
‖Ax− y‖22 + τ φ(x) (5)

whereA = BW, in the case of (1), whileA = B, for (2).
Arguably, the standard algorithm for solving problems of the

form (5) is the so-callediterative shrinkage/thresholding(IST)
algorithm. IST can be derived as an expectation-maximization
(EM) algorithm [22], as amajorization-minimization(MM,
[29]) method [15], [23], or as a forward-backward splitting
technique [13], [27]. A key ingredient of IST algorithms is
the so-called shrinkage/thresholding function, also known as
the Moreau proximal mapping [13] or the denoising function,
associated to the regularizerφ, which provides the solution
of the corresponding pure denoising problem. Formally, this
function is denoted asΨτφ : R

m → R
m and defined as

Ψτφ(y) = arg min
x

1

2
‖x− y‖22 + τφ(x). (6)

Notice that if φ is proper and convex, the function being
minimized is proper and strictly convex, thus the minimizer
exists and is unique making the function well defined [13].

For some choices ofφ, the corresponding denoising func-
tions Ψτφ have well known closed forms. For example,
choosingφ(x) = ‖x‖1 =

∑
i |xi|, the ℓ1 norm, leads to

Ψτℓ1(y) = soft(y, τ), where soft(·, τ) denotes the component-
wise application of the functiony 7→ sign(y)max{|y|− τ, 0}.

If φ(x) = ‖x‖0 = |{i : xi 6= 0}|, usually referred to as
the ℓ0 “norm” (although it is not a norm), despite the fact
that this regularizer is not convex, the corresponding shrink-
age/thresholding function also has a simple close form: the
so-called hard-threshold function,Ψτℓ0(y) = hard(y,

√
2 τ),

where hard(·, a) denotes the component-wise application of
the function y 7→ y1|y|≥a. A comprehensive coverage of
Moreau proximal mapscan be found in [13].

Each IST iteration for solving (5) is given by

xk+1 = Ψτφ

(
xt −

1

γ
AH (Axk − y)

)
, (7)

where1/γ is a step size. Notice thatAH (Axk − y) is the
gradient of the data-fidelity term(1/2)‖Ax− y‖22, computed
at xk; thus, each IST iteration takes a step of length1/γ
in the direction of the negative gradient of the data-fidelity
term, followed by the application of the shrinkage/thresholding
function associated with the regularizerφ.

It has been shown that ifγ > ‖A‖22/2 andφ is convex, the
algorithm converges to a solution of (1) [13]. However, it is
known that IST may be quite slow, specially whenτ is very
small and/or the matrixA is very ill-conditioned [4], [5], [21],
[27]. This observation has stimulated work on faster variants
of IST, which we will briefly review in the next paragraphs.

In the two-step IST(TwIST) algorithm [5], each iterate
depends on the two previous iterates, rather than only on the
previous one (as in IST). This algorithm may be seen as a
non-linear version of the so-called two-step methods for linear
problems [2]. TwIST was shown to be considerably faster
than IST on a variety of wavelet-based and TV-based image
restoration problems; the speed gains can reach up two orders
of magnitude in typical benchmark problems.

Another two-step variant of IST, namedfast IST algorithm
(FISTA), was recently proposed and also shown to clearly
outperform IST in terms of speed [4]. FISTA is a non-smooth
variant of Nesterov’s optimal gradient-based algorithm for
smooth convex problems [35], [36].

A strategy recently proposed to obtain faster variants of
IST consists in relaxing the conditionγ > γmin ≡ ‖A‖22/2. In
the SpaRSA (standing forsparse reconstruction by separable
approximation) framework [44], [45], a differentγt is used in
each iteration (which may be smaller thanγmin, meaning larger
step sizes). It was shown experimentally that SpaRSA clearly
outperforms standard IST. A convergence result for SpaRSA
was also given in [45].

Finally, when the slowness is caused by the use of a small
value of the regularization parameter,continuationschemes
have been found quite effective in speeding up the algorithm.
The key observation is that IST algorithm benefits significantly
from warm-starting, i.e., from being initialized near a mini-
mum of the objective function. This suggests that we can use
the solution of (5), for a given value ofτ , to initialize IST
in solving the same problem for a nearby value ofτ . This
warm-startingproperty underliescontinuationschemes [24],
[27], [45]. The idea is to use IST to solve (1) for a larger value
of τ (which is usually fast), then decreaseτ in steps toward its
desired value, running IST with warm-start for each successive
value ofτ .

C. Proposed Approach

The approach proposed in this paper is based on the
principle of variable splitting, which goes back at least to
Courant in the 40’s [14], [43]. Since the objective function
(5) to be minimized is the sum of two functions, the idea is
to split the variablex into a pair of variables, sayx and v,
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each to serve as the argument of each of the two functions,
and then minimize the sum of the two functions under the
constraint that the two variables have to be equal, so that the
problems are equivalent. Although variable splitting is also the
rationale behind the recently proposed split-Bregman method
[25], in this paper, we exploit a different type of splittingto
attack problem (5). Below we will explain this difference in
detail.

The obtained constrained optimization problem is then dealt
with using an augmented Lagrangian (AL) scheme [37], which
is known to be equivalent to the Bregman iterative methods re-
cently proposed to handle imaging inverse problems (see [46]
and references therein). We prefer the AL perspective, rather
than the Bregman iterative view, as it is a standard and more
elementary optimization tool (covered in most textbooks on
optimization). In particular, we solve the constrained problem
resulting from the variable splitting using an algorithm known
as alternating direction method of multipliers (ADMM) [17].

The application of ADMM to our particular problem in-
volves solving a linear system with the size of the unknown
image (in the case of problem (2)) or with the size of its
representation (in the case of problem (1)). Although this
seems like an unsurmountable obstacle, we show that it is
not the case. In many problems of the form (2), such as
deconvolution, recovery of missing samples, or reconstruction
from partial Fourier observations, this system can be solved
very quickly in closed form (withO(n) or O(n log n) cost).
For problems of the form (1), we show how exploiting the
fact thatW is a tight Parseval frame, this system can still be
solved efficiently (typically withO(n log n) cost.

We report results of a comprehensive set of experiments, on
a set of benchmark problems, including image deconvolution,
recovery of missing pixels, and reconstruction from partial
Fourier transform, using both frame-based and TV-based reg-
ularization. In all the experiments, the resulting algorithm is
consistently and considerably faster than the previous state of
the art methods FISTA [4], TwIST [5], and SpaRSA [45].

The speed of the proposed algorithm, which we term
SALSA (split augmented Lagrangian shrinkage algorithm),
comes from the fact that it uses (a regularized version of) the
Hessian of the data fidelity term of (5), that is,AHA, while
the above mentioned algorithms essentially only use gradient
information.

D. Organization of the Paper

Section II describes the basic ingredients of SALSA: vari-
able splitting, augmented Lagrangians, and ADMM. In Section
III, we show how these ingredients are combined to obtain the
proposed SALSA. Section IV reports experimental results, and
Section V ends the paper with a few remarks and pointers to
future work.

II. BASIC INGREDIENTS

A. Variable Splitting

Consider an unconstrained optimization problem in which
the objective function is the sum of two functions, one of

which is written as the composition of two functions,

min
u∈Rn

f1(u) + f2 (g(u)) , (8)

where g : R
n → R

d. Variable splitting is a very simple
procedure that consists in creating a new variable, sayv,
to serve as the argument off2, under the constraint that
g(u) = v. This leads to the constrained problem

min
u∈Rn, v∈Rd

f1(u) + f2(v)

subject to g(u) = v,
(9)

which is clearly equivalent to unconstrained problem (8):
in the feasible set{(u,v) : g(u) = v}, the objective
function in (9) coincides with that in (8). The rationale behind
variable splitting methods is that it may be easier to solve the
constrained problem (9) than it is to solve its unconstrained
counterpart (8).

The splitting idea has been recently used in several image
processing applications. A variable splitting method was used
in [43] to obtain a fast algorithm for TV-based image restora-
tion. Variable splitting was also used in [6] to handle problems
involving compound regularizers;i.e., where instead of a
single regularizerτφ(x) in (5), one has a linear combination
of two (or more) regularizersτ1φ1(x) + τ2φ2(x). In [6] and
[43], the constrained problem (9) is attacked by a quadratic
penalty approach, i.e., by solving

min
u∈Rn, v∈Rd

f1(u) + f2(v) +
α

2
‖g(u)− v‖22, (10)

by alternating minimization with respect tou and v, while
slowly takingα to very large values (acontinuationprocess),
to force the solution of (10) to approach that of (9), which in
turn is equivalent to (8). The rationale behind these methods
is that each step of this alternating minimization may be
much easier than the original unconstrained problem (8). The
drawback is that asα becomes very large, the intermediate
minimization problems become increasingly ill-conditioned,
thus causing numerical problems (see [37], Chapter 17).

A similar variable splitting approach underlies the recently
proposed split-Bregman methods [25]; however, instead of
using a quadratic penalty technique, those methods attack
the constrained problem directly using a Bregman iterative
algorithm [46]. It has been shown that, wheng is a linear
function, i.e., g(u) = Gu, the Bregman iterative algorithm is
equivalent to the augmented Lagrangian method [46], which
is briefly reviewed in the following subsection.

B. Augmented Lagrangian

Consider the constrained optimization problem

min
z∈Rn

E(z)

s.t. Az− b =0,
(11)

whereb ∈ R
p andA ∈ R

p×n, i.e., there arep linear equality
constraints. The so-called augmented Lagrangian functionfor
this problem is defined as

LA(z, λ, µ) = E(z) + λT (b−Az) +
µ

2
‖Az− b‖22, (12)
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whereλ ∈ R
p is a vector of Lagrange multipliers andµ ≥ 0

is called the penalty parameter [37].
The so-calledaugmented Lagrangian method(ALM) [37],

also known as themethod of multipliers(MM) [28], [38],
consists in minimizingLA(z, λ, µ) with respect toz, keeping
λ fixed, then updatingλ, and repeating these two steps
until some convergence criterion is satisfied. Formally, the
ALM/MM works as follows:

Algorithm ALM/MM
1. Setk = 0, chooseµ > 0, z0, andλ0.
2. repeat
3. zk+1 ∈ arg minz LA(z, λk, µ)
4. λk+1 = λk + µ(b−Azk+1)
5. k← k + 1
6. until stopping criterion is satisfied.

It is also possible (and even recommended) to update the
value ofµ in each iteration [37], [3, Chap. 9]. However, unlike
in the quadratic penalty approach, the ALM/MM does not
requireµ to be taken to infinity to guarantee convergence to
the solution of the constrained problem (11).

Notice that (after a straightforward complete-the-squares
procedure) the terms added toE(z) in the definition of the
augmented LagrangianLA(z, λk, µ) in (12) can be written
as a single quadratic term (plus a constant independent ofz,
thus irrelevant for the ALM/MM), leading to the following
alternative form of the algorithm (which makes clear its
equivalence with the Bregman iterative method [46]):

Algorithm ALM/MM (version II)
1. Setk = 0, chooseµ > 0 andd0.
2. repeat
3. zk+1 ∈ arg minz E(z) + µ

2
‖Az− dk‖22

4. dk+1 = dk + (b−Azk+1)
5. k← k + 1
6. until stopping criterion is satisfied.

It has been shown that, with adequate initializations, the
ALM/MM generates the same sequence as aproximal point
algorithm applied to the Lagrange dual of problem (11) [30].
Moreover, the sequence{dk} converges to a solution of this
dual problem and all cluster points of the sequence{zk} are
solutions of the (primal) problem (11) [30].

C. ALM/MM for Variable Splitting

We now show how the ALM/MM can be used to address
problem (9), in the particular case whereg(u) = Gu, i.e.,

min
u∈Rn, v∈Rd

f1(u) + f2(v)

subject to Gu = v,
(13)

whereG ∈ R
d×n. Problem (13) can be written in the form

(11) using the following definitions:

z =

[
u

v

]
, b = 0, A = [−G I ], (14)

and
E(z) = f1(u) + f2(v). (15)

With these definitions in place, Steps 3 and 4 of the ALM/MM
(version II) can be written as follows:

(uk+1,vk+1) ∈ argmin
u,v

f1(u) + f2(v) +

µ

2
‖Gu− v − dk‖22 (16)

dk+1 = dk + Guk+1 − vk+1 (17)

The minimization problem (16) is not trivial since, in
general, it involves non-separable quadratic and possiblynon-
smooth terms. A natural to address (16) is to use a non-
linear block-Gauss-Seidel (NLBGS) technique, in which (16)
is solved by alternatingly minimizing it with respect tou and
v, while keeping the other variable fixed. Of course this raises
several questions: for a givendk, how much computational
effort should be spent in approximating the solution of (16)?
Does this NLBGS procedure converge? Experimental evidence
in [25] suggests that an efficient algorithm is obtained by
running just one NLBGS step. It turns out that the resulting
algorithm is the so-calledalternating direction method of
multipliers (ADMM) [17], which works as follows:

Algorithm ADMM
1. Setk = 0, chooseµ > 0, v0, andd0.
2. repeat
3. uk+1 ∈ argminu f1(u) + µ

2
‖Gu− vk − dk‖22

4. vk+1 ∈ arg minv f2(v) + µ
2
‖Guk+1 − v − dk‖22

5. dk+1 = dk + Guk+1 − vk+1

6. k ← k + 1
7. until stopping criterion is satisfied.

For later reference, we now recall the theorem by Eckstein
and Bertsekas, in which convergence of (a generalized version
of) ADMM is shown. This theorem applies to problems of the
form (8) with g(u) = Gu, i.e.,

min
u∈Rn

f1(u) + f2 (Gu) , (18)

of which (13) is the constrained optimization reformulation.

Theorem 1 (Eckstein-Bertsekas, [17]):Consider problem
(18), wheref1 and f2 are closed, proper convex functions,
and G ∈ R

d×n has full column rank. Consider arbitrary
µ > 0 andv0,d0 ∈ R

d. Let {ηk ≥ 0, k = 0, 1, ...} and
{νk ≥ 0, k = 0, 1, ...} be two sequences such that

∞∑

k=0

ηk <∞ and
∞∑

k=0

νk <∞.

Consider three sequences{uk ∈ R
n, k = 0, 1, ...}, {vk ∈

R
d, k = 0, 1, ...}, and{dk ∈ R

d, k = 0, 1, ...} that satisfy

ηk ≥
∥∥∥uk+1 − argmin

u

f1(u) +
µ

2
‖Gu−vk−dk‖22

∥∥∥

νk ≥
∥∥∥vk+1 − arg min

v

f2(v) +
µ

2
‖Guk+1−v−dk‖22

∥∥∥
dk+1 = dk + Guk+1 − vk+1.

Then, if (18) has a solution, the sequence{uk} converges,
uk → u∗, whereu∗ is a solution of (18). If (18) does not have
a solution, then at least one of the sequences{vk} or {dk}
diverges.
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Notice that the ADMM algorithm defined above generates
sequences{uk}, {vk}, and{dk} which satisfy the conditions
in Theorem 1 in a strict sense (i.e., with ηk = µk = 0). One
of the important consequences of this theorem is that it shows
that it is not necessary to exactly solve the minimizations in
lines 3 and 4 of ADMM; as long as sequence of errors is
absolutely summable, convergence is not compromised.

The proof of Theorem 1 is based on the equivalence
between ADMM and the so-called Douglas-Rachford splitting
method (DRSM) applied to the dual of problem (18). The
DRSM was recently used for image recovery problems in
[12]. For recent and comprehensive reviews of ALM/MM,
ADMM, DRSM, and their relationship with Bregman and
split-Bregman methods, see [26], [42].

III. PROPOSEDMETHOD

A. Constrained Optimization Formulation of Image Recovery

We now return to the unconstrained optimization formu-
lation of regularized image recovery, as defined in (5). This
problem can be written in the form (18), with

f1(x) =
1

2
‖Ax− y‖22 (19)

f2(x) = τφ(x) (20)

G = I. (21)

The constrained optimization formulation is thus

min
x,v∈Rn

1

2
‖Ax− y‖22 + τφ(v)

subject to x = v.
(22)

At this point, we are in a position to clearly explain the
difference between this formulation and the splitting exploited
in split-Bregman methods (SBM) for image recovery [25].
In those methods, the focus of attention is a non-separable
regularizer that can be written asφ(x) = ϕ(Dx), as is
the case of the TV norm. The variable splitting used in
SBM addresses this non-separability by defining the following
constrained optimization formulation:

min
x,v∈Rn

1

2
‖Ax− y‖22 + τϕ(v)

subject to Dx = v.
(23)

In contrast, we assume that the Moreau proximal mapping
associated to the regularizerφ, i.e., the function Ψτφ(·)
defined in (6), can be computed efficiently. The goal of our
splitting is not to address the difficulty raised by a non-
separable and non-quadratic regularizer, but to exploit second
order (Hessian) information of the functionf1, as will be
shown below.

B. Algorithm and Its Convergence

Inserting the definitions given in (19)–(21) in the ADMM
presented in the previous section yields the proposed SALSA
(split augmented Lagrangian shrinkage algorithm).

Algorithm SALSA
1. Setk = 0, chooseµ > 0, v0, andd0.
2. repeat

3. x′
k = vk + dk

4. xk+1 = arg minx ‖Ax− y‖22 + µ‖x− x′
k‖22

5. v′
k = xk+1 − dk

6. vk+1 = arg minv τφ(v) + µ
2
‖v − v′

k‖22
7. dk+1 = dk + xk+1 − vk+1

8. k ← k + 1
9. until stopping criterion is satisfied.

Notice that SALSA is an instance of ADMM withG = I;
thus, the full column rank condition onG in Theorem 1 is
satisfied. If the minimizations in lines 4 and 6 are solved
exactly, we can then invoke Theorem 1 to guarantee to
convergence of SALSA.

In line 4 of SALSA, a strictly convex quadratic function has
to be minimized; which leads to the following linear system

xk+1 =
(
AHA + µ I

)−1 (
AHy + µx′

k

)
. (24)

As shown in the next subsection, this linear system can be
solved exactly (naturally, up to numerical precision),i.e., non-
iteratively, for a comprehensive set of situations of interest.
The matrix AHA + µ I can be seen as a regularized (by
the addition of µI) version of the Hessian off1(x) =
(1/2)‖Ax− y‖22, thus SALSA does use second order in-
formation of this function. Notice also that (24) is formally
similar to themaximum a posteriori(MAP) estimate ofx,
from observationsy = Ax + n (wheren is white Gaussian
noise of variance1/µ) under a Gaussian prior of meanx′

k and
covarianceI.

The problem in line 6 is, by definition, the Moreau proximal
mapping ofφ applied tov′

k, thus its solution can be written
as

vk+1 = Ψτφ/µ(v′
k). (25)

If this mapping can be computed exactly in closed form, for
example, ifφ(x) = ‖x‖1 thusΨ is simply a soft threshold,
then, by Theorem 1, SALSA is guaranteed to converge. If
Ψ does not have a closed form solution and requires itself
an iterative algorithm (e.g., if φ is the TV norm), then
convergence of SALSA still holds if one can guarantee that
the error sequenceνk (see Theorem 1) is summable. This can
be achieved (at least approximately) if the iterative algorithm
used to approximateΨ is initialized with the result of the
previous outer iteration, and a decreasing stopping threshold
is used.

C. Computingxk+1

As stated above, we are interested in problems where it is
not feasible to explicitly form matrixA; this might suggest
that it is not easy, or even feasible, to compute the inverse in
(24). However, as shown next, in a number of problems of
interest, this inverse can be computed very efficiently.

1) Deconvolution with Analysis Prior:In this case we
haveA = B (see (1), (2), and (5)), whereB is the matrix
representation of a convolution. This is the simplest case,since
the inverse

(
BHB + µ I

)−1
can be computed in the Fourier

domain. Although this is an elementary and well-known fact,
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we include the derivation for the sake of completeness. Assum-
ing that the convolution is periodic (other boundary conditions
can be addressed with minor changes),B is a block-circulant
matrix with circulant blocks which can be factorized as

B = UHDU, (26)

whereU is the matrix that represents the 2D discrete Fourier
transform (DFT),UH = U−1 is its inverse (U is unitary,i.e.,
UUH = UHU = I), andD is a diagonal matrix containing
the DFT coefficients of the convolution operator represented
by B. Thus,

(
BHB + µ I

)−1
=

(
UHD∗DU + µUHU

)−1
(27)

= UH
(
|D|2 + µ I

)−1
U, (28)

where(·)∗ denotes complex conjugate and|D|2 the squared
absolute values of the entries of the diagonal matrixD. Since
|D|2 +µ I is diagonal, its inversion has linear costO(n). The
products byU andUH can be carried out withO(n log n) cost
using the FFT algorithm. The expression in (28) is a Wiener
filter in the frequency domain.

2) Deconvolution with Frame-Based Synthesis Prior:
In this case, we have a problem of the form (1),i.e.,
A = BW, thus the inversion that needs to be performed is(
WHBHBW + µ I

)−1
. Assuming thatB represents a (pe-

riodic) convolution, this inversion may be sidestepped under
the assumption that matrixW corresponds to a normalized
tight frame (a Parseval frame),i.e., WWH = I. Applying
the Sherman-Morrison-Woodbury (SMW) matrix inversion
formula yields
“

W
H
B

H
BW + µ I

”
−1

=
1

µ
(I−W

H
B

H
“

BB
H + µ I

”
−1

B

| {z }

F

W).

Let’s focus on the termF ≡ BH
(
BBH + µ I

)−1
B; using

the factorization (26), we have

F = UHD∗
(
|D|2 + µ I

)−1
DU. (29)

Since all the matrices inD∗
(
|D|2 + µ I

)−1
D are diagonal,

this expression can be computed withO(n) cost, while the
products byU andUH can be computed withO(n log n) cost
using the FFT. Consequently, products by matrixF (defined
in (29)) haveO(n log n) cost.

Defining rk =
(
AHy + µx′

k

)
=

(
WHBHy + µx′

k

)
,

allows writing (24) compactly as

xk+1 =
1

µ

(
rk −WT FW rk

)
. (30)

Notice that multiplication byF corresponds to applying an
image filter in the Fourier domain. Finally, notice also that
the termBHWHy can be precomputed, as it doesn’t change
during the algorithm.

The leading cost of each application of (30) will be either
O(n log n) or the cost of the products byWH and W. For
most tight frames used in image processing, these products
correspond to direct and inverse transforms for which fast al-
gorithms exist. For example, whenWH andW are the inverse
and direct translation-invariant wavelet transforms, these prod-
ucts can be computed using the undecimated wavelet transform

with O(n log n) total cost [32]. Curvelets also constitute a
Parseval frame for which fastO(n log n) implementations
of the forward and inverse transform exist [7]. Yet another
example of a redundant Parseval frame is the complex wavelet
transform, which hasO(n) computational cost [31], [41]. In
conclusion, for a large class of choices ofW, each iteration
of the SALSA algorithm hasO(n log n) cost.

3) Missing Pixels: Image Inpainting:In the analysis prior
case (TV-based), we haveA = B, where the observation
matrixB models the loss of some image pixels. MatrixA = B

is thus anm × n binary matrix, withm < n, which can be
obtained by taking a subset of rows of an identity matrix. Due
to its particular structure, this matrix satisfiesBBT = I. Using
this fact together with the SMW formula leads to

(
BTB + µI

)−1
=

1

µ

(
I− 1

1 + µ
BT B

)
. (31)

Since BTB is equal to an identity matrix with some zeros
in the diagonal (corresponding to the positions of the missing
observations), the matrix in (31) is diagonal with elementsei-
ther equal to1/(µ+1) or 1/µ. Consequently, (24) corresponds
simply to multiplying(BHy + µx′

k) by this diagonal matrix,
which is anO(n) operation.

In the synthesis prior case, we haveA = BW, where
B is the binary sub-sampling matrix defined in the previous
paragraph. Using the SMW formula yet again, and the fact
that BBT = I, we have

“

W
H
B

H
BW + µ I

”
−1

=
1

µ
I−

µ

1 + µ
W

H
B

T
BW. (32)

As noted in the previous paragraph,BTB is equal to an
identity matrix with zeros in the diagonal (corresponding to
the positions of the missing observations),i.e., it is a binary
mask. Thus, the multiplication byWHBHBW corresponds
to synthesizing the image, multiplying it by this mask, and
computing the representation coefficients of the result. In
conclusion, the cost of (24) is again that of the products by
W andWH , usuallyO(n log n).

4) Partial Fourier Observations: MRI Reconstruction.:The
final case considered is that of partial Fourier observations,
which is used to model magnetic resonance image (MRI)
acquisition [33], and has been the focus of much recent interest
due to its connection to compressed sensing [8], [9], [16]. In
the TV-regularized case, the observation matrix has the form
A = BU, whereB is anm× n binary matrix, withm < n,
similar to the one in the missing pixels case (it is formed by
a subset of rows of an identity matrix), andU is the DFT
matrix. This case is similar to (32), withU andUH instead
of W and WH , respectively. The cost of (24) is again that
of the products byU andUH , i.e., O(n log n) if we use the
FFT.

In the synthesis case, the observation matrix has the form
A = BUW. Clearly, the case is again similar to (32), but
with UW andWHUH instead ofW andWH , respectively.
Again, the cost of (24) isO(n log n), if the FFT is used to
compute the products byU andUH and fast frame transforms
are used for the products byW andWH .
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IV. EXPERIMENTS

In this section, we report results of experiments aimed
at comparing the speed of SALSA with that of the current
state of the art methods (all of which are freely available
online): TwIST2 [5], SpaRSA3 [45], and FISTA4 [4]. We
consider three standard and often studied imaging inverse
problems: image deconvolution (using both wavelet and TV-
based regularization); image restoration from missing samples
(inpainting); image reconstruction from partial Fourier obser-
vations, which (as mentioned above) has been the focus of
much recent interest due to its connection with compressed
sensing and the fact that it models MRI acquisition [33]. All
experiments were performed using MATLAB for Windows
XP, on a desktop computer equipped with an Intel Pentium-IV
3.0 GHz processor and1.5GB of RAM. To compare the speed
of the algorithms, in a way that is as independent as possible
from the different stopping criteria, we first run SALSA and
then the other algorithms until they reach the same value of the
objective function. The value ofµ for fastest convergence was
found to differ (though not very much) in each case, but a good
rule of thumb, adopted in all the experiments, isµ = 0.1τ .

TABLE I

DETAILS OF THE IMAGE DECONVOLUTION EXPERIMENTS.

Experiment blur kernel σ2

1 9× 9 uniform 0.562

2A Gaussian 2
2B Gaussian 8
3A hij = 1/(1 + i2 + j2) 2
3B hij = 1/(1 + i2 + j2) 8

A. Image Deblurring with wavelets

We consider five benchmark deblurring problems [22],
summarized in Table I, all on the well-known Cameraman
image. The regularizer isφ(β) = ‖β‖1, thus Ψτφ is an
element-wise soft threshold. The blur operatorB is applied
via the FFT. The regularization parameterτ is hand tuned in
each case for best improvement in SNR, so that the comparison
is carried out in the regime that is relevant in practice. Since
the restored images are visually indistinguishable from those
obtained in [22], and the SNR improvements are also very
similar, we simply report computation times.

In the first set of experiments,W is a redundant Haar
wavelet frame with four levels. The CPU times taken by each
of the algorithms are presented in Table II. In the second
set of experiments,W is an orthogonal Haar wavelet basis;
the results are reported in Table III. To visually illustrate the
relative speed of the algorithms, Figures 1 and 2 plot the
evolution of the objective function (see Eq. (1)), versus time,
in experiments1, 2B, and3A, for redundant and orthogonal
wavelets, respectively.

2Available at http://www.lx.it.pt/ ˜ bioucas/code/TwIST_
v1.zip

3Available athttp://www.lx.it.pt/ ˜ mtf/SpaRSA/
4Available at http://iew3.technion.ac.il/ ˜ becka/papers/

wavelet_FISTA.zip
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Fig. 1. Objective function evolution (redundant wavelets): (a) experiment
1A; (b) experiment 2B; (c) experiment 3A.

B. Image Deblurring with Total Variation

The same five image deconvolution problems listed in Ta-
ble I were also addressed using total variation (TV) regulariza-
tion (more specifically, the isotropic discrete total variation, as
defined in [10]). The corresponding Moreau proximal mapping
is computed using5 iterations of Chambolle’s algorithm [10].

The CPU times taken by SALSA, TwIST, SpaRSA, and
FISTA are listed in Table IV. The evolutions of the objective
functions (for experiments1, 2B, and 3A) are plotted in
Figure 3.

We can conclude from Tables II, III, and IV that, in image
deconvolution problems, both with wavelet-based and TV-
based regularization, SALSA is always clearly faster than the
fastest of the other competing algorithms.
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TABLE II

IMAGE DEBLURRING WITH REDUNDANT WAVELETS: CPUTIMES (IN

SECONDS).

Experiment TwIST SpARSA FISTA SALSA
1 38.5781 53.4844 98.2344 2.26563

2A 33.8125 42.7656 65.3281 4.60938
2B 35.2031 70.7031 112.109 12.0313
3A 20.4688 13.3594 32.2969 2.67188
3B 9.0625 5.8125 18.0469 2.07813
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Fig. 2. Objective function evolution (orthogonal wavelets): (a) experiment
1A; (b) experiment 2B; (c) experiment 3A.

C. MRI Image Reconstruction

We consider the problem of reconstructing the128 × 128
Shepp-Logan phantom (shown in Figure 4(a)) from a limited
number of radial lines (22, in our experiments, as shown in
Figure 4(b)) of its 2D discrete Fourier transform. The projec-
tions are also corrupted with circular complex Gaussian noise,

TABLE III

IMAGE DEBLURRING WITH ORTHOGONAL WAVELETS: CPUTIMES (IN

SECONDS).

Experiment TwIST SpARSA FISTA SALSA
1 16.5156 39.6094 16.8281 2.23438

2A 10.1406 16.3438 15.9531 1.375
2B 5.10938 7.96875 5.3125 0.640625
3A 3.67188 5.23438 7.46875 1.03125
3B 2.57813 2.64063 3.625 0.5625
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Fig. 3. Image deblurring with TV regularization - Objectivefunction
evolution: (a)9 × 9 uniform blur, σ = 0.56; (b) Gaussian blur,σ2 = 8;
(c) hij = 1/(1 + i2 + j2) blur, σ2 = 2.

with varianceσ2 = 0.5 × 10−3. We use TV regularization
(as described in Subsection IV-B), with the corresponding
Moreau proximal mapping implemented by40 iterations of
Chambolle’s algorithm [10].

Table V shows the CPU times, while Figure 5 plots the
evolution of the objective function over time. Figure 4(c)
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TABLE IV

TV-BASED IMAGE DEBLURRING: CPU TIMES (IN SECONDS).

Experiment TwIST SpARSA FISTA SALSA
1 63.2344 80.0469 346.734 11.2813

2A 19.1563 24.1094 34.1406 4.79688
2B 10.9375 7.75 29.0156 2.46875
3A 13.9688 12.4375 35.2969 2.79688
3B 10.9531 7.75 28.3438 2.78125

shows the estimate obtained using SALSA (the others are,
naturally, visually indistinguishable). Again, we may conclude
that SALSA is considerably faster than the other three algo-
rithms, while achieving comparable values of mean squared
error of the reconstructed image.

TABLE V

MRI RECONSTRUCTION: COMPARISON OF THE VARIOUS ALGORITHMS.

TwIST SpARSA FISTA SALSA
Iterations 1002 1001 1000 53

CPU time (seconds) 529.297 328.688 390.75 76.5781
MSE 4.384e-7 6.033e-5 4.644e-7 5.817e-7

D. Image Inpainting

Finally, we consider an image inpainting problem, as ex-
plained in Section III-C. The original image is again the
Cameraman, and the observation consists in loosing40% of
its pixels, as shown in Figure 6. The observations are also
corrupted with Gaussian noise (with an SNR of40 dB).
The regularizer is again TV implemented by20 iterations of
Chambolle’s algorithm.

The image estimate obtained by SALSA is shown in
Figure 6, with the original also shown for comparison. The
estimates obtained using TwIST and FISTA were visually very
similar. Table VI compares the performance of SALSA with
that of TwIST and FISTA and Figure 7 shows the evolution
of the objective function for each of the algorithms. Again,
SALSA is considerably faster than the alternative algorithms.

TABLE VI

IMAGE INPAINTING : COMPARISON OF THE VARIOUS ALGORITHMS.

TwIST FISTA SALSA
Iterations 302 300 33

CPU time (seconds) 305 228 23
MSE 105 101 99.1

ISNR (dB) 18.4 18.5 18.6

V. CONCLUSIONS

We have presented a new algorithm for solving the un-
constrained optimization formulation of regularized image
reconstruction/restoration. The approach, which can be used
with different types of regularization (wavelet-based, total
variation), is based on a variable splitting technique which
yields an equivalent constrained problem. This constrained
problem is then addressed using an augmented Lagrangian
method, more specifically, the alternating direction method of
multipliers (ADMM). The algorithm uses a regularized version

(a)

(b)

(c)

Fig. 4. MRI reconstruction: (a)128× 128 Shepp Logan phantom; (b) Mask
with 22 radial lines; (c) image estimated using SALSA.

of the Hessian of theℓ2 data-fidelity term, which can be com-
puted efficiently for several classes of problems. Experiments
on a set of standard image recovery problems (deconvolution,
MRI reconstruction, inpainting) have shown that the proposed
algorithm (termed SALSA, forsplit augmented Lagrangian
shrinkage algorithm) is faster than previous state-of-the-art
methods. Current and future work involves using a similar
approach to solve constrained formulations of the forms (3)
and (4).
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