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LULU Operators and Discrete Pulse Transform for
Multidimensional Arrays

Roumen Anguelov and Inger Fabris-Rotelli

Abstract—The LULU operators for sequences, that is L,,, U,
and their compositions, are extended to multidimensional arrays
in a way which preserves their essential properties, e.g., consistent
separation, total variation and shape preservation. The power of
the operators is demonstrated by deriving the discrete pulse trans-
form (DPT), which is a hierarchical decomposition of the input
array into pulses. Similar to its 1-D counterpart this transform sat-
isfies a basic consistency property.

Index Terms—Area closing, area opening, connection, discrete
pulse transform (DPT), LULU, separator, total variation.

I. INTRODUCTION

HE LULU operators and the associated discrete pulse
T transform (DPT) developed during the last three decades
or so are an important contribution to the theory of the nonlinear
multiresolution analysis of sequences. The basics of the theory
as well as the most significant results until 2005 are published
in the monograph [29]. For more recent developments and
applications see [2], [8], [14], [26], and [30].

The LULU operators are morphological filters. However, un-
like mainstream mathematical morphology, the emphasis here is
on what one may call structure preserving properties, like: con-
sistent separation (e.g., noise from signal), total variation and
shape preservation, and consistent hierarchical decomposition,
which are discussed in the following.

A. Consistent Separation

The issue of consistency of nonlinear filters is not easy to ad-
dress in a straightforward manner. In fact, one may note that
there is no established approach to this issue, with some authors
only providing empirical evidence on the quality of their con-
sidered filters. Characterization of the quality of nonlinear filters
is discussed at length in [18]. The concept of a smoother intro-
duced there is based upon preserving some linearity, namely,
these are operators which are shift, location and scale invariant.

A common requirement for a filter P, linear or nonlinear, is
its idempotence, i.e., P o P = P. For example, a morpholog-
ical filter is by definition an increasing and idempotent operator.
For linear operators the idempotence of P implies the idempo-
tence of the complementary operator id — P, where ¢d denotes
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the identity operator. For nonlinear filters this implication gen-
erally does not hold so the idempotence of id — P, also called
co-idempotence [39] can be considered as an essential measure
of consistency.

The previously mentioned properties are all discussed in [29]
where they are considered to collectively constitute what the
author calls a consistent separation and are absorbed into the
concept of a separator. We will give the definition of a sepa-
rator for operators on real functions defined on a domain with
a group structure. Let {2 be an abelian group, so that commu-
tativity always holds. Denote by .A(?) the vector lattice of all
real functions defined on 2 with respect to the usual point-wise
defined addition, scalar multiplication and partial order. Let us
recall that

Definition 1: A partially ordered set L is a lattice if any /1,
{y € L admit a least upper bound ¢; V {5 and a largest lower
bound ¢; A /5. For a vector lattice we have that for two se-
quences = (2,),y = (yn) thatx <y <= =z, <y, Vn €
Z.

For every a € € the operator £, : A(2) — A(€2) given by
E.(f)(z) = f(z — a), z € Q, is called a shift operator.

Definition 2: An operator P : A(Q) — A(Q) is called a
separator if

a) PoFE, = FE, o P, a € Q (horizontal shift invariance);

b) P(f+c¢) = P(f) +ec f,c € A(R), c-constant function

(vertical shift invariance);

¢) P(af) = aP(f),a € RT, f € A(Q) (scale invariance);

d) P o P = P (idempotence);

e) (id — P)o (id — P) = id — P (co-idempotence).

B. Total Variation and Shape Preservation

The total variation TV () is a seminorm on .A({2), that is, it
satisfies only three of the four axioms of a norm, namely (1)
TV(f) > 0.2) TV (af) = |o|TV(f) and 3) TV (f + g) <
TV (f)+TV(g). It does not satisfy the axiom TV (f) = 0 <=
f = 0. In the practically significant case of 1-D sequences
(2 = Z), which is the one considered by Rohwer and his col-
laborators, the total variation is a generally accepted measure for
the amount of information present. Note that any separation of
sequences may only increase the total variation. More precisely,
for any operator P : A(Z) — A(Z) we have

TV(f) <TV(P(f) +TV((id = P)(f)). (1)

Hence, it is natural to expect that a good separator P should not
create new variation, that is we have

TV(f) =TV(P(f)) + TV((id = P)(f))- )
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An operator P satisfying property (2) is called rotal variation
preserving [25].

Shape preservation generally refers to the preservation of
edges in the input. Total variation preservation is closely linked
to the shape preservation properties of the filter. In the case of
sequences, the preservation of shape is actually preservation of
trend. It is shown in [29] that a fully trend preserving operator
on sequences is also total variation preserving.

C. Consistent Hierarchical Decomposition

Similarly to the consistency of separation, characterizing
the quality of hierarchical decompositions by nonlinear filters
is also problematic. See [38] for an example of a hierarchical
decomposition derived via functional minimization. In [17], a
linear hierarchical decomposition via wavelets is investigated.
As a side note, the DPT hierarchical decomposition derived
here is in fact closely related to that of stack filters.

As mentioned in [26], a decomposition by linear operators
should typically recover the coordinates of any given linear
combination of basis vectors, a property not at all applicable to
the nonlinear case. A measure of the quality of any hierarchical
decompositions is introduced in [26] in the following way:

A nonnegative linear combination of the output of the
decomposition is decomposed into the same components.
(3)

As mentioned, the LULU theory was developed for se-
quences, that is, the case {2 = Z. Given a bi-infinite sequence
¢ = (&)icz and n € N the basic LULU operators L,, and U,
are defined as follows:

(Ln€); = max{min{&_,,..., &}, ..., min{&, ..., &vnt}
(4)

(Un€)i = min{max{&_n,..., &}, ..., max{&, ..., &itn}}-
Q)

It is shown in [29] that for every . € N the operators L,, and U,
as well as their compositions are increasing separators. Hence,
they are an appropriate tool for signal extraction. Furthermore
they are fully trend preserving in the sense that both the operator
and its complement preserve the monotonicity between consec-
utive terms in the input sequence. As mentioned this implies that
these operators are total variation preserving.

Using the LULU operators, a hierarchical decomposition
called DPT of a finite sequence & of length IV is derived in the
form

DPT(&) = (D1(§), D2(€), - .-, Dn(§)) (6)

with the components of (6) being obtained through
Dy (&) = (id — P1)(§) (N
Dn(§) =(@(id—Py)oQn-1(§), n=2,....,N (8)

where P, = L,oU,or P, =U,0oL,and Q, = P,o0---0Py,
n € N. In (6), each component D,, is a sum of discrete pulses
with pairwise disjoint supports of size n. Moreover

N
£=> Dn(9). ©)
n=1
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The DPT for LULU operators is defined in [29] but its properties
are particularly discussed in [26]. It is proved in [26] that the
DPT satisfies the consistency property (3).

The operators L,, and U,, are built up from rank selectors
since they select the minimum and maximum value in the spec-
ified window. It is, thus, natural to compare them to the median
operator which is also a rank selector since it selects the middle
element in the ranked window. It is given by

M, (z); = median{z;_, ..., (10)
A comprehensive discussion can be found in [24], [27], and
[29]. In [23], the total variation of the sequence z is shown to
decrease with each application of the median operator. This is
indicative of its smoothing ability. However the median operator
is not idempotent. This is the main disadvantage of the median
operator, and calls for recursive application which introduces
additional computational complexity, see [36] and [10] for work
dedicated to solving this complication. The median operator is
a smoother however, that is, it satisfies the first three axioms
in Definition 2. Thus, although the median operator also pre-
serves edges and constant regions, and removes impulsive noise
effectively [23] its lack of idempotence results in complications
whereas the LULU operators do not.

The aim of this paper is to generalize the LULU operators to
functions on Q = Z¢ in such a way that their essential prop-
erties, mentioned previously, are preserved. In Section II, the
definitions of the basic operators L,, and U,, on A(Z%) are de-
rived by using a strengthened form of the morphological con-
cept of connection. Then we show that indeed these operators
replicate the properties of the LULU operators for sequences.
Section III deals with their shape preservation properties while
in Section IV we discuss the total variation preservation. The
developed theory is applied to deriving the DPT for functions
on Z? (Section V) which satisfies the consistency property (3).
[lustrative examples for the application of the theory are given
in Section VI.

II. BASIC OPERATORS L,, AND U,

The definition of the operators L,, and U,, for sequences in-
volves maxima and minima over sets of consecutive terms, thus,
making essential use of the fact that Z is totally ordered. Since
7%, d>1, is only partially ordered the concept of “consecutive”
does not make sense in this setting. Instead, we use the morpho-
logical concept of set connection [34].

Definition 3: Let B be an arbitrary nonempty set. A family C
of subsets of B is called a connected class or a connection on
B if:

i) ec;

i) {z} e Cforallz € B;

iii) {C; 11 €I} CC, (e, Ci # 0= U;c; Ci €C.

If a set C belongs to a connection C then C'is called connected.

This definition generalizes the topological concept of connec-
tivity (i.e., a set is connected if it cannot be partitioned into two
open disjoint sets) to arbitrary sets including discrete sets like
Z<. 1t generalizes the concept of graph connectivity. If the un-
derlying set B is a graph, then the graph connectivity also de-
fines a connectivity.
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It is clear from Definition 3 that a connection on Z¢ does not
necessarily contain sets of every size. For example, {0} U{{z} :
x € 7%} and {0} U {{z} : x € Z¢} U {Z¢} are connections
on Z? but neither of them contain sets of finite size other than
0 and 1. In the definition of the operators L,, and U,,, we need
sets of every size. We assume that the set Z¢ is equipped with a
connection C which satisfies the following conditions:

eZlccC (11)
e For any a € 7¢, E,(C) € C whenever C € C

so that C is translation invariant (12)
o If VCW V,W €, then there exists

z € W\ V such that VU {z} € C. (13)

The aim of the conditions (11)—(13) is to define a connection
which is sufficiently rich in connected sets. This is demonstrated
by the following property, which is obtained via iterative appli-
cation of the property (13):

Let VC W, V,W € C. For every k € N such that
card(V) < k < card(W) there exists S € C such

that V' C S C Wand card(S) = k. (14)
As usual, card(V) is the number of the elements in the set V.

Definition 4: Given a point z € Z% and n € N we denote by
N, (z) the set of all connected sets of size n + 1 that contain
point x, that is

No(z)={VeC:xeV, card(V) =n+1}.
In addition to (11)—(13) we assume that the connection C is such
that
card(NV,, (7)) < oo, VneN, VzeQ. (15)

A connection satisfying the properties (11)—(13) and (15) we
shortly call an Array Connection. We should note that if a con-
nection on Z¢ is defined via graph connectivity, where all ver-
tices are of finite degree, then properties (13)—(15) hold auto-
matically. In image analysis (d = 2), the connectivity is a
graph connectivity defined via a neighbor relation, e.g., 4-con-
nectivity, 8-connectivity. In this case, all properties (11)—(15)
hold. However, in order to have maximum generality in this sec-
tion, and the next two, we adopt the present axiomatic approach.
Let us also mention that LULU operators on a continuous do-
main (2 = R) are discussed in [2] and [3]. Now the operators
L,, and U, are defined on .A(Z?) as follows.

Definition 5: Let f € A(Z?) and n € N. Then for z € 74

Ln(f)(@) = | max min f(y) (16)
Un(f)(z) = min max f(y). (17

VEN, (z) yeV

Let us confirm that Definition 5 generalizes the definition of
L,, and U,, for sequences. Suppose d = 1 and let C be the con-
nection on Z generated by the pairs of consecutive numbers.
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Then all connected sets on Z are sequences of consecutive inte-
gers and for any ¢« € Z we have

Nn(z):{{z—nz} {i—n+1,...,i+1},

.,{i,...,i—l—n}}.

Hence, for an arbitrary sequence ¢ considered as a function
on Z the formulas (16) and (17) are reduced to (4) and (5),
respectively.

The median filter, which has been the standard point of com-
parison for the LULU operators in one dimension, has been ex-
tended into two and more dimensions as well. However, the fact
that Z¢, d>1, in general, and the more common case of Z? in
particular, is only partially ordered, leads to problems as those
encountered in the extension of L,, and U,, to multiple dimen-
sions (see the paragraph before Definition 3). The freedom that
is allowed in the shape of the window in multiple dimensions,
has allowed for various definitions to be adopted by authors. For
example, in [11] we have

M(f)(wij) = med {f(zij-1), f(ij+1)

f(@ij), f(®i15),

Another alternative is presented in [21]

f(@it15)}-

M(f)(xij)

where I = {(r,s) € Z*} C Z?. The formulation in (18) does
not specify the window over which the median is taken, that
is the index set I, though. A possible window is investigated
in [13]. Here they use a rectangular window of size n X m
(where m, n are odd integers) and the median operation is the
median of the gray levels of the picture elements lying in this
m X n window with the window centered at the element z;;. We,
thus, propose the following formulation for the median operator
in d dimensions, which incorporates the requirement that the
window should contain every possible connected set in Ny, (),
as is the case in one dimension. Following the approach adopted
here for the extension of L,, and U,,, the median operator on VA
can be defined as follows:

= med{f(Titrjts): (r,s) €1} (18)

Mn(f)(x) = median{f(y) Yy e Bn}

where B,, = Uy{V € N, (z)}. It is easy to see that this def-
inition, similarly to the ones stated previously, is equivalent to
(10) when d = 1. Indeed, we have

B, = {V € No()}
v

= U{{xi_m et {Tim g, -
Az, ,x,i+n}}

~7xi+n}'

371',-1—1}7 ..

= {xi—rn sy Ly



ANGUELOV AND FABRIS-ROTELLI: LULU OPERATORS AND DPT FOR MULTIDIMENSIONAL ARRAYS

+

() () (©)

Fig. 1. neighborhoods for the median operator on Z¢: (a) n = 1; (b) n = 2;
and (c) n = 3.

In two dimensions, using 4-connectivity, the neighborhoods for
n = 1, 2, 3 are given in Fig. 1.

The operators L,, and U,, in Definition 5 as well as their 1-D
counterparts (4)—(5) can also be presented in the general setting
of Mathematical Morphology. Within this theory L,, is an area
opening and U, is an area closing, where the area of a set refers
to the number of points in it. Let us recall that a morphological
opening (closing) is a composition of an erosion and a dilation
(dilation and erosion) with a specified structuring element. Due
to the simple structure of Z the 1-D L,, and U,, are morpho-
logical opening and closing, respectively, where the structuring
element is a segment of length n+ 1. However, the segments are
the only connected sets under the considered connectivity on Z.
In this sense, all connected sets have the same shape. One may
consider morphological opening and closing as a generalization
of the 1-D L,, and U,, to operators on A(Z?). However, an es-
sential property of L,, and U,, for sequences is that they form a
Matheron pair [30], that is

L,oU,oL,=U,0oL,andU,0oL,oU, =L,oU,. (19)

It is easy to see by examples that for a general structuring ele-
mentonZ%,d > 1,onecanfind f € A(Zd) such that (19) is vio-
lated by the respective morphological opening and closing. This
motivates the proposed definition of L,, and U,,, when d > 1,
which is independent of shape. One can obtain the proof of (19)
from known results on attribute filters of which L,, and U,, are
particular cases, [9, Property 4]. More precisely, L,, and U,, are
an area opening and area closing, respectively. However, this
property is also an easy consequence from the results that follow
as well as those in Section III. A short proof will be given in
Section III.

It is well known that the area opening (closing) is an alge-
braic opening (closing). We may recall that a map is called an
algebraic opening (closing) if it is increasing, idempotent and
anti-extensive (extensive). Then the following holds:

[ <g= (La(f) < Lu(9),Un(f) < Unlg)) (20)
L,oL,=L,, U,oU,=U, 21
L (f) < f < UL(f)- (22)

Furthermore, it is easy to see that these operators are monotone
with respect to n in the following sense:

ny < ng = (Lp, > Lyp,,U,, <U,,). (23)
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Indeed, it follows from (14) that for every x € Z4and V €
N, (z) there exists a set W € N, (z) such that W C V.
Therefore

min f(y) < min f(y) < max min f(y) = L, (f)(z).

yev yew SEN,, (z) yES
Hence
L,,(f)(z) = max minf(y) <Ly, (f)(z), =€ 7%,

VeN,, (z) yeV

The inequality for U,, in (23) is proved in a similar way.

The main consequence of L,, and U,, comprising a Matheron
pair, as originally shown by Matheron [19], is that L,,, U,,, and
all their compositions form a four element semigroup with re-
spect to composition. Moreover, this semigroup is fully ordered
as follows:

L,<U,oL,<L,oU,<U,. (24)
The semigroup is also a band which means that all elements are
idempotent.

Next we relate U,, and L,, to the concept of a separator given
in Definition 2. Indeed, conditions i), ii), and iii) of Definition
2 hold for all openings and closings, [37, Ch. 2]. The idempo-
tence was given in (21). Thus, only the co-idempotence remains.
We can remark that co-idempotence is seldom discussed in the
standard literature on Mathematical Morphology. However, L,,
and U,, are also min-max operators as defined by Wild [39].
As such, their co-idempotence follows from [39, Corollary 11].
Therefore

L,,, U, are separators for every n € N. (25)

III. SHAPE PRESERVATION PROPERTIES OF L,, AND U,,

Similar to their counterparts for sequences the operators Ly,
and U,, defined in Section II smooth the input function by re-
moving sharp peaks (the application of L,,) and deep pits (the
application of U,,). The smoothing effect of these operators is
made more precise by using the concepts of a local maximum
set and a local minimum set defined in the following.

Definition 6: LetV € C. A point z ¢ V is called adjacent to
Vif VU{x} € C. The set of all points adjacent to V' is denoted
by adj(V), that is

adj(V)={ze2¢:2 ¢ V,VU{z} €C}.

An equivalent formulation of the property (13) of the connec-
tion C is as follows:
VVWel, WCV=adjW)nV #£0. (26)
Lemma 7:
a) Given VW € C with W C V. Then for z ¢ V but
x € adj(W), we have z € adj(V);
b) given distinct V,W € C with V. N W = (), there exists an
x € V\W such that z € adj(W);
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(b)

Fig. 2. (a) Local maximum set; (b) local minimum set.

c) for any V. € C, we have card(V)

card(adj(V)) < oc.
Proof:

a) V and W+ {z} are connected and have a nonempty inter-
section, thus, their union V' U {x} is also connected. Then
by Definition 6, = € adj(V).

b) Applying (26) to V U W, since V. C V U W, we get
adj(W)nV = adj(W)n (VU W) # 0. Thus, there
exists x € V\W such that x € adj(W).

c¢) This follows from condition (15). Let card(V') = n then
foran arbitrary € V wehave {{a}UV :a € adj(V)} C
Npt1(z), so that card(adj(V)) < card(N,41(z)) < 00

|

Definition 8: A connected subset V of Z? is called a
local maximum set of f € A(Z%) if sup,c.qiv) f(y) <
infrey f(z). Similarly V' is a local minimum set if
infycaqjvy f(y) > sup, ey f(x), see Fig. 2.

The next four theorems deal with different aspects of the ap-
plication of L,, and U,, to functions in .A(Z?). They are followed
by a discussion on their cumulative effect. All theorems con-
tain statements a) and b). Due to the duality we present only the
proofs of a).

Theorem 9: Let f € A(Z%) and x € Z?. Then we have

a) L,(f)(z) < f(z) if and only if there exists a local max-
imum set V' of f such that z € V and card(V) < n;

b) U,(f)(z) > f(z) if and only if there exists local min-
imum set V' of f such that z € V and card(V) < n.

Proof: a) Implication to the left. Suppose that there exists
a local maximum set V' € Ny(z), k < n. Consider an arbitrary
W € N, (z) and let S be a connected component of W N V.
Then W\V # { since card(S) < card(W) by (14) and by
(26) we have adj(S) N W £ (. Letz € adj(S)NW.Ifz € V
then this means z € V U W, and so S U {z} is connected.
This is a contradiction on S being a connected component of
V NW.So z ¢ V. Then using also that V' is a local maximum
set we obtain minyew f(y) < f(z) < miney f(t) < f(z).
Since the set W € N,,(p) is arbitrary, this inequality implies

that L,,(f)(z) < f(x).

< 0 =

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 11, NOVEMBER 2010

Implication to the right. Suppose L, (f)(z) < f(z). Let V
be the greatest (in terms of C) connected set containing x with

fly) = f(x)VyeV. 27
The set V' is obviously unique and can be constructed as V' =
v:(Y'), where ~, is the morphological point connected opening
generated by z, see [33] or [35],and Y = {y € Z?¢ : f(y) >
f(z)}. Assume that card(V) > n. It follows from (14) that
there exists W € N,,(x) such that W C V. Then

Ln(f)(z) =

s min f(y)

f%lvr& f(y)

> ;rg‘r} f(y)

=f(x).

Y

This contradicts the assumption L, (f)(z) < f(z). Therefore,
card(V) < n. We have f(z) < f(z), for all z € adj(V),
because otherwise (27) is satisfied on the larger connected
set {z} U V. Then, also using Lemma 7c), we obtain
max.caqj(v) f(2) < f(x) = mingev f(y). Hence, V is
a local maximum set. ]
Theorem 10: Let f € A(Z%). Then
a) the size of any local maximum set of the function L, (f)
is larger than n;
b) the size of any local minimum set of the function U, (f)
is larger than n.

Proof: a) Assume the opposite, that is, there exists a local
maximum set V' of L,,( f) such that card(U) < n. By Theorem
9 we have that L,,(L,(f))(z) < L.(f)(z), z € V. Since L,
is idempotent, see (21), this implies the impossible inequality
L, (f)(z) < Ln(f)(x), which completes the proof. [ |

Theorem 11: Let V € C and let z € adj(V).
a) If f(x) )S infyev f(y) then L,(f)(z) <

inf e Lu(f)(0);
b) If f(r) > supyey f(y) then U,(f)(z) >
supyer Un(F)(5).
Proof: a) Forany W € N,,(z) the set W UV is connected
and of size at least n + 1. Therefore, by (14), for every y € V
there exists S, € N, (y) such that S, C W U V. Then, using
also the given inequality and since inf.cyuga) f(2) = f(7),
forevery y € V and W € N,,(z) we have

min F2) = gt F2) S mip 7 S L))
Hence, L,(f)(x) = Maxy en, () Minzew f(2)<

infyev Ln(f)(y). [ |

Theorem 12: Let f € A(Z?) and V be a finite connected set.

a) If V is a local minimum set of L, (f) then there exists a
local minimum set W of f such that W C V.

b) If V is a local maximum set of U, (f) then there exists a
local maximum set W of f such that W C V.
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Proof:

a) Let V be a finite connected set which is a local minimum
set of L,,(f). Then by Lemma 7c) the set adj(V) is finite
and we have

min VzeV.

,dninf@) 2 min La(£)(y) > La(f) @)

y€adj(V)

Let ¢ € adj(V) be such that f(gq) = minyecaqv) f(y)
andletY = {y € V : f(y) < f(q)}. Note that Y # 0,
since if Y = 0, then f(q) < inf ey f(y) and by The-
orem 11 we have L,,(f)(¢) < inf,ecy L, (f)(y). This is
a contradiction since V is a local minimum set of L., (f).
Nevertheless, this result is an essential ingredient of the
proof not least due to the fact that this is the only point
where we use that V' is a local minimum set of L, (f).
Lett € Y and let W be the largest connected component
of Y containing ¢ so that W = ~;(Y") as in the proof of
Theorem 9. For every z € adj(WW), due to Lemma 7 we
have either z € V or z € adj(V'). In both cases, it easy to
see that f(z) > f(g) > maxyew f(y). Therefore W is a
local minimum set of f. [ ]
Theorems 9-12 provide the following characterization of the
effect of the operators L,, and U,, on a function f € A(Z%).

¢ The application of L, (U,,) removes local maximum (min-
imum) sets of size smaller or equal to n.

» The operator L,, (U, ) does not affect the local minimum
(maximum) sets in the sense that such sets may be affected
only as a result of the removal of local maximum (min-
imum) sets. However, no new local minimum (maximum)
sets are created where there were none. This does not ex-
clude the possibility that the action of L, (U, ) may en-
large existing local minimum (maximum) sets or join two
or more of them into one local minimum (maximum) set
of L (f) (Un())-

o L,(f) = f(Un(f) = f) if and only if f does not have
local maximum (minimum) sets of size n or less.

Furthermore, as an immediate consequence of Theorem 10

and Theorem 12 we obtain the following corollary.

Corollary 13: For every f € A(Z?) the functions (L, o

U,)(f) and (U, o L,,)(f) have neither local maximum sets nor
local minimum sets of size n or less. Furthermore

(Ln o Un)(f) = (Un o Ln)(f) = f

if and only if f does not have local maximum sets or local min-
imum sets of size less than or equal to 7.
Theorem 14: For f € A(Z%)
a) L,(f)is constant on any local maximum set W of f with
card(W) < n+1;
b) U,(f) is constant on any local minimum set W of f with
card(W) < n + 1.
Proof: We only prove a). Resultb) is proven by duality. Let
W be alocal maximum set of f with card(W) < n+1 and take
arbitrary p, ¢ € W. Consider V' € N, (p) such that V' # W.
Then V U W is connected and so by Lemma 7b) there exists
x € V with z € adj(W). Since W is a local maximum set
of f we have f(z) < inf,cw f(2) and, hence, inf,cy f(2) =
inf.evuw f(2). By (14) there exists U € N,,(q) such that U C
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Vuw. Thus, infzev f(Z) = infzeVUw' f(Z) < infzeU f(Z),
and since U € N,,(q) we have

inf £(2) < inf £(2) < La(/)(0). (28)

We consider V' € A, (p) such that V' = W, we have

inf f(2) = inf f(2) < Lu(f)(9)
since ¢ € W means that W € N, (q). Thus, since (28) holds
for all V- € N, (p) we have L,(f)(p) < L.(f)(q). By inter-
changing the role of p and ¢ we obtain the other inequality and,
thus, have equality. [ |

We should remark that in the 1-D setting, the sequences
without local maximum sets or local minimum sets of size
less than or equal to n are exactly the so-called n-monotone
sequences [29]. Hence, Corollary 13 generalizes the respective
results in the LULU theory of sequences, [29, Th. 3.3].

As mentioned earlier, using Theorem 9 to Theorem 12, it is
easy to show that L,, and U,, are a Matheron pair, that is, they
satisfy (19). Indeed, if we assume that first identity in (19) is
violated, in view of the inequality

L,oU,oL, <idoU,oL,=U,oL,
we obtain that there exists f € A(Z¢) and z € Z¢ such that

L (Un(Ln())(2) < Un(Ln(f))(2)-

It follows from Theorem 9 that there exists k < nand V €
Ni(z) such that V is a local maximum set for U, (L, (f))(z).
Then, by Theorem 12, there exists W C V such that W is alocal
maximum set of the function L,,(f). We have card(W) < k <
n. However, L, (f) does not have any local maximum sets of
size less than or equal to n, see Theorem 10. This contradiction
shows the first identity in (19) holds. The second one is obtained
by the duality.

The preservation of shape presented in Theorem 9 to Theorem
12 in this section can be made more precise by generalising to
A(Z4) the concepts of neighbor trend preserving and fully trend
preserving introduced in [29, Ch. 6] for sequences.

Definition 15: An operator P is neighbor trend preserving
if for any points p, ¢ € €, such that {p,¢q} € C, and for f €
A(Z?) we have f(p) < f(g)= P(f)(p) < P(f)(q). The
operator P is fully trend preserving if both P and ¢d — P are
neighbor trend preserving.

In Definition 15, for P to be fully trend preserving the re-
quirement on id — P, that is the neighbor trend preserving prop-
erty, can be equivalently formulated as

|P(f)(p) — P(f)(a)| < |f(p) — f(q)l

In the context of sequences the property (29) is called difference
reducing.
Theorem 16: The operators L,,, U,,n = 1,2, ..., and their
compositions, are all fully trend preserving.
Proof: We prove the result for L,,. The case for U,, follows
by duality. Furthermore, it is easy to obtain that compositions

(29)
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of fully trend preserving operators are fully trend preserving,
which proves the rest of the theorem.

Since, the neighbor trend preserving property of L,, follows
directly from Theorem 11, we only need to prove the neighbor
trend preserving property of id — L,, or equivalently, the in-
equality (29). Consider p, ¢ € Z< such that {p,q} € C. We
may assume without loss of generality that f(p) > f(q). Then
L,.(f)(p) > L,(f)(q) by the neighbor trend preservation. By
(22) we have either (i) L,(f)(q) = f(q) or (i) L,(f)(q) <
f(q). If () holds then, Ly (f)(p) — Ln(f)(a) = Ln(f)(p) —
fla) < f(p) — f(q), again due to (22), so that |L,(f)(p) —
L,.(f)(q)] < |f(p) — f(q)|- If (ii) holds, by Theorem 9, ¢ must
belong to the support of a local maximum set, say W, of size at
most n of f. Since f(p) > f(q) and {p,q} € C, ¢ must also
belong to the support of W. This means that by Theorem 14 we
have Ly (f)(p) = La(f)(q) so that | L. (f)(p) = Ln(f)(9)| =
0 < |f(p)— f(q)]- So L,, is difference reducing and, thus, fully
trend preserving. ]

The next theorem generalizes the properties of L,, and U, in
Theorem 12 to arbitrary neighbor trend preserving operators.

Theorem 17: Let A : A(Z%) — A(Z?) be a neighbor trend
preserving operaror and let f € A(Z?). For every finite local
minimum (maximum) set V' of A(f) there exists a local min-
imum (maximum) set W of f such that W C V.

Proof: Let V be a finite local minimum set of A(f). Let
q € adj(V') be such that f(q) = minycaqj(vy f(y). It follows
from (13) that there exists p € V such that {p, ¢} is connected.
By the local minimality of V' we have

A(f)(p) < A(f)(a)-

Due to the fact that A is neighbor trend preserving the inequality
f(p) > f(q) implies that A(f)(p) > A(Sf)(q) which contra-
dicts (30). Therefore, f(p) < f(q).LetY ={z eV : f(z) <
f(q)}. Clearly, p € Y. Denote by W the largest connected com-
ponent of Y which contains p. In terms of the notations used in
the proof of Theorem 9, we have W = ~,(Y"). We will show
that W is a local minimum set of f. Let z € adj(W). It follows
from the construction of W that f(q) > max.cw f(z). Hence,
it is enough to show that f(z) > f(q). By the Lemma 7a) we
have two possibilities:
i) z € V. Then z ¢ Y. Indeed, if z € Y then W U {z} is
a connected component of Y which contains W. This is
impossible since W is the largest such component of Y.
Since z ¢ Y, then it violates the defining inequality of Y,
that is we have f(z) > f(q).
ii) z € adj(V'). Then f(z) > minycaajv f(y) = f(q).
The proof for local maximum sets is carried out similarly. H

(30)

IV. TOTAL VARIATION PRESERVATION

In this section, we assume that the connection C on Z% is
defined via the so-called graph connectivity. More precisely, the
points of Z? are considered as vertices of a graph with edges
connecting some of them. Equivalently, the connectivity of such
a graph can be defined via a relation » C Z? x 7%, where p €
74 is connected (by an edge) to ¢ € Z? <= (p,q) € 7.
The relation r reflects what we consider neighbors of a point in
the given context. For example, in image analysis (d = 2), it
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TABLE 1
STANDARDIZED TOTAL VARIATION OF SOME SAMPLE IMAGES

Image in Figure 3 | Total Variation
(standardized)

(a) 109173

(b) 132527

(c) 167011

(d) 193650

(e) 235908

[65) 245480

(g) 386408

(h) 703707

is common to use 4-connectivity (neighbors left, right, up and
down) and 8-connectivity (in addition, the diagonal neighbors
are considered). Let r be a relation on Z¢. We call a set C C
Z¢ connected, with respect to the graph connectivity defined by
r, if for any two points p, ¢ € C there exists a set of points
{p1,p2,---,pr} C C such that each point is neighbor to the
next one, p is neighbor to p; and py is neighbor to q. Here we
assume that:

* 7 is reflexive, symmetric, shift invariant;

s (p,p+er) €r,forallk =1,2,...,dand p € Z¢, where

d: _J0 ifi#k
er € 2 is defined by (e); = { L
These two assumptions shown previously ensure that the set of
connected sets C defined through this relation is a connection in
terms of Definition 3 and satisfies the conditions (11)—(13). The
second assumption is essential to the definition of total variation
as will be seen in the sequel.

Since the information in an image is in the contrast, the total
variation of the luminosity function is an important measure of
the quantity of this information. Image recovery and noise re-
moval via total variation minimization are discussed in [6] and
[31]. It should be noted that there are several definitions of total
variation for functions of multidimensional argument (Arzeld
variation, Vitali variation, Pierpont variation, Hardy variation,
etc., see [1], [7], [20]). In the applications cited previously, the
total variation is the L' norm of a vector norm of the gradient of
the function. Here we consider a discrete analogue of this con-
cept. Namely, the Total Variation of f € A(Z?) if given by

d
TV(F) =Y 1fp+ (en)i) = (D).

peEZ? =1

3D

If TV(f) < oo, then f is said to be of bounded variation.
Table I gives the total variation of a few sample images seen in
Fig. 3. Notice that the pure noise image has the highest total vari-
ation and as the images contain more homogenous areas their
total variation reduces.

As mentioned in the introduction, the LULU operators for se-
quences are total variation preserving. We show that their d-di-
mensional counterparts considered here have the same property
with respect to the total variation as given in (31).

Let us denote by BV (Z%) the set of all functions of bounded
variation in A(Z%). Clearly, all functions of finite support are in
BV (Z%). For example, the luminosity functions of images are
in BV (Z?). Note that when d = 1 (31) gives the total variation
of sequences as discussed in [29, Ch. 6]. Similar to sequences
the total variation in (31) is a seminorm so that (1) holds. An
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® (h)

Fig. 3. Sample images.

operator P on BV (Z%) is called total variation preserving if
(2) holds.
Theorem 18: Tf an operator P : BV (Z?) — BV (Z%) is fully
trend preserving then it is also total variation preserving.
Proof: For p, q € Q such that {p, q} € C, we have

[f(p) = f(@I < |P(H)(p) = P(H)(@)] + 1£(p)
—P(f)p) - (f(@) = P(N)()]- (32)
If f(p) > f(q)then P(f)(p)—P(f)(q) > Osince P is neighbor

trend preserving. Then [f(p) — P(f)(p) — (f(¢) = P(f)(a))|=
(f(p)=f(0)—(P(f)(p)—P(f)(q)) = Osince P is difference
reducing, see (29). Thus, (32) holds as an equality. Hence

d
Z Z |f(p+ (ex)i) —

TV(f) = f(p)l
p€eZd i=1
-3 Z(|P (p+ (e)) = P())(p)]
p€eZd i=1
+1f 0+ (ex)i) = P(F)(p + (ex):)
- (/) - PLHW)I)
=TV(P(f))+TV((id = P)(f))-
|
As an easy consequence of Theorems 16 and 18 we have
Theorem 19: The operators L,,, U,, n = 1,2,..., and all

their compositions, are total variation preserving.

Note that if an operator P is total variation preserving then the
complementary operator id— P is also total variation preserving
by (2). Similarly to the case for compositions of fully trend pre-
serving operators, it is easy to show that compositions of opera-
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tors which individually preserve the total variation maintain the
preservation as well.

V. DPT OF IMAGES

The DPT based upon the LULU operators for sequences was
derived in [26], [29], and [30]. Using the extension of the LULU
operators to functions on Z% in the preceding sections we derive
the DPT for functions in .A(Z?) now. Following the success of
the DPT for sequences in signal processing one may expect that
the DPT on .A(Z?) can play an important role in the analysis of
these functions. Some illustrative applications in the case d = 2,
that is image analysis, are given in the Section VI.

Similar to the case of sequences we obtain a decomposition of
a function f € A(Z?), with finite support. As usual supp(f) =
{p e 7?: f(p) # 0}. Let N = card(supp(f)). Following
(6)—(8) we derive the DPT of f € .A(Z?) by applying iteratively
the operators L,,, U,, with n increasing from 1 to N as follows:

DPT(f) = (D1(f),D2(f). ... Dn(f)) (33)

where the components of (33) are obtained through
Dy (f) = (id — P1)(f) (34)
and P, = L,oU, or P, =U,oL, andQ,, = P,o---0P;,n €

N. We will show that this decomposition retains the properties
of the decomposition (6) in the sense that each component D,, in
(33) is a sum of discrete pulses with pairwise disjoint supports of
size n, where in this setting a discrete pulse is defined as follows.

Definition 20: A function ¢ € A(Z<) is called apulse if there
exists a connected set V' and a nonzero real number o such that

a, ifxeV
9(z) = {o, ifzezd\V.

The set V' is the support of the pulse ¢, that is supp(¢) = V.
The concept of a pulse as defined in Definition 20 is similar to
the idea of a flat zone from mathematical morphology. It should
be remarked that the support of a pulse may generally have any
shape, the only restriction being that it is connected. Note that
the smoothing process ultimately results in the last component
Dy (f) being a constant image, that is, one pulse the size of the
entire image. The remaining image is Qn(f) = 0. It follows
from (34)—(35) that:

N
=>D (36)
n=1
The usefulness of the representation (36) of a function f €
A(Z4) is in the fact that all terms are sums of pulses as stated in
the sequel. We use the next technical lemma proved in [4].
Lemma 21: Let f € A(Z?), supp(f) < oo, be such that f
does not have local minimum sets or local maximum sets of size
smaller than n, for some n € N. Then we have the following
two results:

a)

7~ (n) 7 (n)

=1 =1

(37
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where V,,; = supp(¢ni),i = 1,2,...,7 (n), are local
minimum sets of f of size n, W,,; = supp(pn;),j =
1,2,...,7T(n), are local maximum sets of f of size n,
¢ni and @, ; are negative and positive discrete pulses, re-
spectively, and we also have that

,5=1,..., v (n), i#j (38)
o W, NW,,; =0 and adj(W,.;) " W,,; =0

ihj=1,...,9T(n), i#j (39)
o Vi NWy; = 0

i=1,..., Y (n), j=1 vt (n). (40)

b) For every fully trend preserving operator A

Un(id — AU,) = U, — AU,

Ln(id— ALy) = Ly — AL,.
Theorem 22: Let f € A(Z?%). For every n € N the function
D, (f) derived through (34)—(35) is a sum of discrete pulses

with pairwise disjoint support, that is, there exist y(n) € N and
discrete pulses ¥, s = 1,...,v(n), such that

v(n)
Z s (41)
and
SUpp(Yns, ) N supp(ns, ) = B for s1 # so. (42)

Moreover, if n1, no, s1, so € N are such that nqy < ng, 1 <
s1 < v(ni)and 1 < sy < 7(ngy). Then

Supp(i/fnl 51 )ﬁ Supp(d’nm) 7£ 0

= SuppP(¢Yn,s,) C SUPP(Pnyss)-

Proof: According to (35), D,, is obtained by applying ¢d —

P, to the function Q,,—1(f) which, by Corollary 13, does not

have local maximum or minimum sets of size less than n. Thus,

by Lemma 21a) we have that D,,(f) = (id — P,,)Qn_1(f) isa

sum of pairwise disjoint discrete pulses as given in (37). More
precisely

(43)

7(n) 7~ (n) 7t (n)

= ans— Z ¢nz+ Z Pnj
s=1

where v(n) = ~v7(n) + v (n). Property (42) follows from
(38)—(40).

Let supp(¥n,s;,) N supp(¥n,s,) # 0. It follows from the
construction of (41) derived above that the functions Q,,(f) and
Ly 4+1(Qn(f)), n > ny, are constants on the set Supp(¢n, s, )-
Furthermore, the set supp(tn,s,) is a local maximum set of
Qn,—1(f) or a local minimum set of Ly, (Qn,—1(f)). From
the definition of local maximum set and local minimum set, it
follows that supp(1n, s, ) C SUPP(Ynyss )- ]

Using Theorem 22, the identity (36) can be written as

N ~(n)

F=Y s

n=1 s=1

(44)
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The equality (44) is a discrete pulse decomposition of f, where
the pulses 1,5 have the properties (42)—(43).

Although the importance of total variation preservation for
separators cannot be doubted, it is even more so for hierarchical
decompositions like the DPT, due to the fact that they involve
iterative applications of separators. Using Theorem 19 it is easy
to obtain the statement of the following theorem, which shows
that, irrespective of the length of the vector in (33) or the number
of terms in the sum (44), no additional total variation, or noise,
is created via the decomposition.

Theorem 23: The discrete pulse decomposition (33) is total
variation preserving, that is

N ~v(n)

=3 > TV ().

n=1 s=1

(45)

We should remark that representing a function as a sum of
pulses can be done in many different ways. However, in gen-
eral, such decompositions increase the total variation, that is,
we might have strict inequality in (45) instead of equality. Based
upon Theorem 23 we can construct the total variation distribu-
tion of images. More precisely, this is the distribution of the total
variation of an image among the different layers of the DPT.
That is, essentially the plot of TV (D,,(f)) versus n. In Fig. 4,
we present the total variation distributions of some of the im-
ages in Fig. 3, where one can observe how the total variation
of each image as given in Table I is distributed over the pulse
size. A log scale is used on the vertical axis and the pulse size
values are grouped as on a histogram. The different character of
the images naturally manifests through different kinds of total
variation distributions.

As discussed in the introduction, the quality of a nonlinear
hierarchical decomposition, such as the DPT given in (33), can
be characterized through the concept of consistent decomposi-
tion (also called strong consistency [26]) given in (3). Whether
or not the multidimensional DPT in (33) is strongly consistent
is still an open problem. In the 1-D case, it is stated in [15] to
have been proven and the proof is presented at a later stage in
[26]. However, the next theorem shows that the DPT in (33) sat-
isfies a weaker kind of consistency, referred to in [26] as basic
consistency, involving only the sums of the output layers.

Theorem 24: Let f € A(Z?). For any two integers m and n
such that m < n the function g = Dy, (f) + Dpy1 (f) + -+
D, (f) decomposes consistently, that is

form<j<n
0, otherwise.

The proof uses the following Lemma.

Lemma 25: LetQ, = P, P,_1 ...
Py, = Uy L. We have the following:

a) Qan = Qmax{n,m,};

b) Qm(id—Qn) = Qum—Qn = (id—Q,)Qm for all integer

m, n such that m < n.
Proof: We consider only P, = LU}, as the other case is

dealt with by symmetry. Let f € A(Z%).

Py where P, = LUy, or
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Fig. 4. Total variation distributions of images in: (a) Fig. 3(h)-noise;
(b) Fig. 3(a)-potatoes; (c) Fig. 3(c)-tank; and (d) Fig. 3(f)-boat with glint.

a) It follows from Corollary 13 that Q,,(f) does not have
any local minimum or local maximum sets of size n or less.
Hence, Pr(Qn(f)) = Qu(f) fork = 1,...,n. Form < n
this implies that Q. (Qn(f)) Qn(f). If m > n then
we have (QmQn)(f) = (Pm...Poy1Pn...P)(Qn(f))=
(P -+ - Poy1)(Qn(f)) = Con(f). b) We use induction on j as
in the proof of this property in the 1-D case, see [28]. Let j = 1.
Using the result in Lemma 21b), the full trend preservation
property of the LULU operators established in Theorem 16 and
the absorbtion property in a) we have

=L(Uy(id — Q.. L1Uy))

=L1(U1 — QunL1Uy) = L1(id — Q. L1)Uq
= (L1 — Qnl1)U;

=Q1— Qn = (id — Qn)Q1.
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Assume now that the statement is true for some m = 5 < n.
From the inductive assumption, we have

Qj+1(id — Qn) = Pj11Q;(id — Qn) = Pi11(Q;j — Qu)
= j+1(QJ Q"QJ) J+1(‘d Qn)Q

Using Lemma 21b), Theorem 16 and a) as for 7 = 1 we obtain

Pj1(id — Qn)Qj = Ljt1(Ujt1(td — QuLj+1Uj41)Q;
=(Lj41Uj41 — QuLjr1U;11)Q;
= Qj-i—l - Qn = (Zd - Qn)Qj+1~

|
Proof of Theorem 24: Using Lemma 25, function g can be
written in the following equivalent forms:

= ((id = Pp)Qm-1 + (id — Pry1)Qm
+ oo+ (id = Po)Qn_1)(f)

= (Qm—l - Qn)(f) = (id - Qn)Qm—l

:mel(id_ Qn>

It follows from Corollary 13 and Theorem 17 that g does not
have any local maximum or local minimum sets of size less
than m. Hence, P;(g) = g for k = 1,...,m — 1 and therefore
Qr(g) = gfork =1,...,m—1. Then it follows from (46) that
D;(g) = (3d — Pj)(g) = 0for j < m.Letm < j < n. Then
using again Lemma 25 we obtain

Dj(g)

(46)

(Qj—1—Qj)(9)

(Qj-1(id = Qn)Qm-1 — Q;(id — Qn)Qm—1)(f)
((id = Qn)Qj—1Qm—1 — (id — Qn)Q;Qm—1)(f)
(
(

(1d = Qn)Qj—1 — (id — Qn)Q;)(f)

Q I_Qn D](f)

Finally, for k& > n we have

Qr(g ):(Qk(Zd Qn)Qm-1)(f)
(Qan(ld - Qn)Qm—l)(f) =0

which implies that D;(g) = 0 for j > n. ]

Qj + Qn)(f) =

VI. SOME APPLICATIONS TO IMAGE ANALYSIS

It is generally accepted that an image is perceived through
the contrast, that is, the difference in the luminosity of neighbor
pixels. The DPT (33) extracts all such differences as single
pulses. Hence, (33) can be a useful tool in the analysis of
images.

Random noise has very distinctive discrete pulse decompo-
sition characterized by fast decrease of the number of pulses
with the increase of the pulse size. The total variation of the
pulses in decomposition (33) versus their size for a image of
random noise [in Fig. 3(h)] is plotted in Fig. 4(a). It is apparent
that random noise seldom generates pulses of large size. In fact,
90% of the total variation represented on Fig. 4(a) arises from
pulses of size less than or equal to 76, only about 8% of the
total variation arises from pulses with size greater than 100 and
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(© (d

Fig. 5. Reconstruction via DPT of Fig. 4(a) with only pulses of size: (a) 1 to
100; (b) 101 to 22000; (c) 22001 to 45000; and (d) 45001 to 57478.

Fig. 6. (a) Detection of the targets in Fig. 3(d). (b) Potato defects detected.

only about 5% of the total variation arises from pulses with size
greater than 200. Hence, by removing the pulses of small sup-
port we remove a large portion of the impulsive noise.

Possibly the simplest application of the discrete pulse decom-
position (33) is via partial reconstructions of images. This can
be used for example in removing noise or extracting features of
interest. See [12] for additional examples. Fig. 4(b) gives total
variation distribution of the image in Fig. 3(a). A large portion
of the pulses have small support but, unlike Fig. 4(a), we have
also significant proportion of the total variation arising from
pulses with relatively larger support. Partial reconstruction of
the image by using pulses of selected sizes is given on Fig. 5. We
can consider (a) as removal of impulsive noise and the defects on
each of the potatoes, (b) as the removal of the background sur-
face illumination and detection of the individual potatoes, (c) as
the extracted illumination and (d) as extraction of large features.

Every feature on an image is represented without distortion
by a set of pulses in the DPT. This can be used to carry out many
of the usual tasks in image processing like segmentation, detec-
tion, identification. In the general setting of DPT, the issue of
detection or identification of objects means identifying pulses
uniquely associated these objects. Hence, a good detection al-
gorithm will necessarily employ a good criterion for selecting
pulses in the DPT of the image. Some applications of are pre-
sented in [5]. For example, due to the largely homogeneous
background the three targets in Fig. 3(d) can be easily detected
by selecting pulses of a particular size. By varying the pulse
sizes on a sliding scale from 4500 to 5300 pixels at the top to
9000 to 12000 in the bottom, three nested sets of pulses associ-
ated with the targets are selected. The pulses with largest support
in each set are indicated in Fig. 6(a).

As a further example, one may detect the defects on the pota-
toes in Fig. 3(a) (possibly for automatic grading) as small pulses
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(b)

Fig. 7. (a) Original image; (b) pulses with high rectangularity.

(2) (b)

(©) (d)

Fig. 8. (a) Original glint image; (b) layers of the ocean image in (a); (c) image
with three boats and glint; and (d) detection of the biggest boat within ocean
glint by restricting the total variation only.

of sufficiently large value (relative luminosity) appearing within
the pulses representing the potatoes, see Fig. 6(b).

Such a simple approach does not always work. For example
the image in Fig. 7(a) has no pulses of a particular size asso-
ciated only with the tank. In this sense, the tank can be con-
sidered to be well camouflaged. However, as it often happens,
straight lines and rectangular shapes are associated with man-
made objects. In Fig. 7(b), we indicate the pulses of size 8001
to 43000 with rectangularity larger than 0.5. This selection cri-
terion yields only pulses associated with the tank and that can
be considered to be specific for its “DPT signature.” Here we
use rectangularity, which is a measure of approximation of the
support of the pulse by a rectangle and is measured as the ratio
between the size of the support and the size of its minimum
bounding rectangle.

As already indicated in Fig. 5(c) and (d), large pulses are a re-
sult of global features like illumination. In Fig. 8(b), large pulses
represent the layers of the sea and the horizon from the image
in Fig. 8(a). The horizon has also been highlighted. Due to the
angle of the camera the glint on the ocean surface becomes more
homogenous out towards the horizon and we are able to pick out
three different glint layers, as well as the horizon, separately.
It is well known that detection on a sea surface is a difficult
problem due to glint on the ocean’s surface producing “noise”
of various shapes, sizes and luminosities. The pulses associated
with the boats in Fig. 8(c) have lower total variation on their
support, thus, restricting the total variation we obtain Fig. 7(d).
Here, we see the boat without the glint.

VII. CONCLUSION

In this paper, we derived an extension of Carl Rohwer’s
LULU theory for sequences to higher dimensions, namely
to functions on multidimensional arrays. We proved that the
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essential properties of the LULU operators (e.g., separator,
shape preservation, and total variation preservation) are repli-
cated in the considered multidimensional setting. Hence, we
can construct a DPT, where the pulses are functions which are
constant on a connected set and zero elsewhere. The quality of
a hierarchical decomposition, of which the DPT is a particular
case, can be characterized in terms of their consistency. We
prove that the DPT satisfies the basic consistency, while its
strong consistency remains an open problem. Some motivation
for this theory and its further development is provided through
applications to problems in image analysis. These applications,
although mainly for illustrative purposes, nevertheless indicate
a wide range of problems that one might be able to address
using DPT. Future work will focus on both extending the theory
and strengthening its applications. There are many image pro-
cessing ideas that have sprung up during this research which
will be further investigated in the near future. These include a
scale space theory derived via the DPT, granulometries, image
compression, pattern recognition and image segmentation,
amongst others. The applicability of the extension for images,
and more complex domains e.g., video, is also now open for
investigation.
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