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Abstract—Much research has been devoted to the problem of
restoring Poissonian images, namely for medical and astronom-
ical applications. However, the restoration of these images using
state-of-the-art regularizers (such as those based on multiscale
representations or total variation) is still an active research area,
since the associated optimization problems are quite challenging.
In this paper, we propose an approach to deconvolving Poissonian
images, which is based on an alternating direction optimization
method. The standard regularization (or maximum a posteriori)
restoration criterion, which combines the Poisson log-likelihood
with a (non-smooth) convex regularizer (log-prior), leadsto hard
optimization problems: the log-likelihood is non-quadratic and
non-separable, the regularizer is non-smooth, and there isa
non-negativity constraint. Using standard convex analysis tools,
we present sufficient conditions for existence and uniqueness of
solutions of these optimization problems, for several types of
regularizers: total-variation, frame-based analysis, and frame-
based synthesis. We attack these problems with an instance of
the alternating direction method of multipliers (ADMM), wh ich
belongs to the family of augmented Lagrangian algorithms. We
study sufficient conditions for convergence and show that these
are satisfied, either under total-variation or frame-based(analysis
and synthesis) regularization. The resulting algorithms are shown
to outperform alternative state-of-the-art methods, bothin terms
of speed and restoration accuracy.

Index Terms—Image restoration, image deconvolution, Pois-
son images, convex optimization, alternating direction methods,
augmented Lagrangian.

I. I NTRODUCTION

A large fraction of (if not all) the work on image denoising,
restoration, and reconstruction has been devoted to developing
regularizers (priors, from a Bayesian point of view) to deal
with the presence of noise and/or the ill-conditioned or ill-
posed nature of the observation operator, and to devising
efficient algorithms to solve the resulting optimization prob-
lems. Much of that work assumes linearity of the observation
operator (e.g., the convolution with some point spread func-
tion, the acquisition of tomographic projections, or simply an
identity in the case of denoising) and the presence of additive
Gaussian noise. For this classical scenario, recent state-of-
the-art methods adopt non-smooth convex regularizers, such
as total-variation or theℓ1 norm of frame coefficients; the
resulting optimization problems are convex but non-smooth, of
very high dimensionality, and have stimulated a considerable
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amount of research on special purpose algorithms (see [1], [2],
[9], [18], [40], [45] and the many references therein).

The algorithms developed for linear operators and Gaussian
noise cannot be directly applied to other observation models,
such as the Poisson case considered in this paper. Poissonian
image models are well studied and highly relevant in fields
such as astronomical [38], biomedical [11], [16], [30], [33],
[41], [43], and photographic imaging [19]. A very recent
and comprehensive overview of deconvolution methods for
Poissonian images can be found in [12] (where a state-of-
the-art algorithm is also introduced); we refer the reader to
that publication for more references on this topic.

The standard criterion for deconvolution of Poissonian im-
ages consist of a convex constrained optimization problem:
the objective function includes the so-called data term, which
is convex and smooth, but not quadratic, plus a convex non-
smooth regularizer (the log-likelihood and log-prior, from
a Bayesian inference perspective), and a constraint forcing
the solution to be non-negative. Although the problem is
convex, its very high dimensionality (when dealing with
images) usually rules out the direct application of off-the-shelf
optimization algorithms.

Furthermore, the Poisson log-likelihood, which is non-
quadratic and non-separable (except in the pure denoising
case) raises several difficulties to the current state-of-the-
art image deconvolution algorithms. More specifically, the
Poisson log-likelihood does not have a Lipschitz-continuous
gradient, a sufficient condition for the applicability (with guar-
anteed convergence) of algorithms of the forward-backward
splitting (FBS) family [9], [12], [45]. If, nevertheless, an FBS
method is applied, it is well known to be slow, specially if the
observation operator is severely ill-conditioned, a fact which
has stimulated recent research on faster methods [1], [2], [45];
these faster algorithms also require the log-likelihood tohave
a Lipschitz-continuous gradient, which is not the case with
Poissonian observations.

In this paper, we propose a new approach to tackle the
optimization problem referred to in the previous paragraph.
The proposed algorithm is based on an instance of thealter-
nating direction method of multipliers(ADMM) [13], [20],
[21], which belongs to the family of augmented Lagrangian
methods [29]. For this reason, we call it PIDAL (Poisson
image deconvolution by augmented Lagrangian). Although the
proposed approach is related to the recent split-Bregman (SB)
technique [22], our splitting strategy and resulting algorithm
are quite different from the one in [22] (which, moreover,
is not adequate for Poissonian image models). Finally, we
mention that this paper is an extension of our much shorter
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and preliminary work [17].
In recent work, Douglas-Rachford splitting (DRS) methods

were proposed to attack problems in which log-likelihood the
does not have a Lipschitz-continuous gradient [8]. In fact,the
ADMM is closely related to DRS methods [13], [15], so the
method proposed in this paper can also be interpreted from a
DRS viewpoint.

In this paper, we will consider three types of regulariza-
tion: total variation [4], [31] and both frame-based analysis
and frame-based synthesis formulations [14]. In Section II,
after presenting these three formulations, we derive sufficient
conditions for existence and uniqueness of solutions of the
corresponding optimization problems. The ADMM framework
is reviewed in Section III, where we also introduce the partic-
ular variant that is suitable for a linear combination of several
convex functions, which is the form of the objective function
in hand. In Sections IV and V, we instantiate the proposed
variant of ADMM to the three types of regularizers considered
and provide sufficient conditions for convergence. Finally,
the effectiveness of the resulting algorithm is illustrated in
comparison with current state-of-the-art alternatives [11], [12],
[19], [37], [39], via a set of experiments reported in Section VI.

II. PROBLEM FORMULATION

In this section, we begin by reviewing the derivation of
the standard log-likelihood resulting from assuming that the
observations are Poisson distributed with a mean intensity
linearly related with the underlying image to be estimated.
Then, we present three different regularization/Bayesiancrite-
ria, using synthesis and analysis formulations [14], and study
existence/uniqueness of the corresponding solutions.

A. The Linear/Poisson Observation Model

Let y = (y1, ..., ym) ∈ N
m
0 denote anm-vector of observed

counts (N0 = N ∪ {0}), assumed to be a sample of a random
vectorY = (Y1, ..., Ym) of m independent Poisson variables,
with probability distribution

P [Y = y|λ] =

m∏

i=1

λyi

i e−λi

yi!
, (1)

whereλ = (λ1, ..., λm) ∈ R
m
+ (R+ denotes the non-negative

reals) is the underlying mean (intensity) vector, assumed to be
a linear observation of an unknown imagex, i.e.,

λ = Kx, (2)

whereK the observation operator, which in our finite dimen-
sional setting is simply a matrixK ∈ R

m×n. This matrix
may model a convolution or some other linear observation
mechanism, such as emission tomography. So that the under-
lying unknownx can also have the meaning of intensity, it is
commonly assumed thatx ∈ R

n
+. It is usually further assumed

that all the elements ofK are non-negative [11], [16], [38].
When dealing with images, we adopt the usual vector notation
obtained by stacking the pixels into a vector, in lexicographic
order.

Combining (1) and (2) and taking logarithms leads to the
negative log-likelihood function [11], [38],

− logP [Y = y|x] =

m∑

i=1

(Kx)i − yi log ((Kx)i) + log(yi!)

= L(Kx) (3)

= (L ◦K) (x), (4)

where(v)i (or vi) denotes thei-th component of some vector
v andL : Rm → R̄ = R ∪ {−∞,+∞} is the negative log-
likelihood function for the caseK = I, that is

L(z) =

m∑

i=1

− yi log (zi) + zi + log(yi!). (5)

Dealing with the particular casezi = 0 requires some care,
because of the presence of the logarithm. Seen as function of
z to be used in a minimization problem, it is convenient to
write the negative log-likelihood function as

L(z) = C +

m∑

i=1

ξ(zi, yi), (6)

whereC =
∑

i log(yi!) is a finite (recall that0! = 1) irrelevant
(independent ofz) constant andξ : R×N0 → R̄ is defined as

ξ(z, y) = z + ιR+(z)− y log(z+), (7)

whereιS is the indicator function of setS,

ιS(z) =

{
0 ⇐ z ∈ S
+∞ ⇐ z 6∈ S,

z+ = max{0, z}, log(0) = −∞, and0 log(0) = 0.
The following two propositions characterizeξ as a function

of its first argument, as well asL andL ◦K, in terms of the
key concepts of convex analysis (see Appendix A).

Proposition 1: For anyy ∈ N0 the functionξ(·, y) : R→ R̄

is proper, lower semi-continuous (lsc), coercive, and convex. If
y > 0, thenξ(·, y) is also strictly convex.

Proof: For y = 0, ξ(z, 0) = z + ιR+(z), thus ξ(·, 0)
is the sum of the identity function withιR+ , which are
both proper, lsc, coercive, and convex. For anyy > 0,
ξ(z, y) = z + ιR+(z) − y log(z+); since y log((·)+) is also
proper, lsc, coercive, and convex, so isξ(·, y). Finally, if y > 0,
y log((·)+) is strictly convex (see the definition in Appendix
A), thus ξ(·, y) is also strictly convex.

Proposition 2: FunctionL is proper, lsc, coercive, and con-
vex. If yi 6= 0, for i = 1, ...,m, L is also strictly convex.
FunctionL ◦ K is proper, lsc, and convex. FunctionL ◦ K is
coercive ifK is injective. FunctionL ◦K is strictly convex if
K is injective andyi 6= 0, for i = 1, ...,m.

Proof: FunctionL is the sum of proper, lsc, coercive,
convex functions. Ifyi 6= 0, for i = 1, ...,m, the functions in
the sum are also strictly convex, thusL is also strictly convex.
FunctionL ◦ K is the composition of a proper, lsc, convex
functions with a linear function, thus it is proper, lsc, and
convex. IfK is injective, its null set is the zero vector, thus
lim‖x‖→+∞ ‖Kx‖ = +∞, thusL ◦ K is coercive. Finally,
if K is injective andyi 6= 0, for i = 1, ...,m, L is strictly
convex, thus so isL ◦K.
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B. Regularization Criteria: Analysis and Synthesis Formula-
tions

Under amaximum a posteriori(MAP) or regularization cri-
terion, the image estimate is obtained by solving a variational
problem: minimizing an objective function, which includesthe
log-likelihood term plus a regularizer [17], [26], [38], under
a positivity constraint. We will now describe three possible
ways of building such an objective function.

1) Total Variation Regularization:A standard choice for
regularization of digital image restoration/reconstruction prob-
lems is the isotropic discrete TV regularizer [4],

TV(x) =

n∑

s=1

√
(∆h

sx)
2 + (∆v

sx)
2, (8)

where(∆h
sx and∆v

sx) denote the horizontal and vertical first
order differences at pixels, respectively. This regularizer is a
discrete version of the TV regularizer proposed in [31]. The
resulting optimization problem is

min
x

LTV(x) (9)

with

LTV(x) = L(Kx) + τ TV(x) + ιRn
+
(x), (10)

where τ ∈ R+ is the regularization parameter and the role
of ιRn

+
, the indicator of the first orthant, is to impose the

non-negativity constraint on the estimate. The next proposition
concerns the existence and uniqueness of minimizers ofLTV.

Proposition 3: Consider the functionLTV defined in (10).

a) LTV is proper, lsc, and convex.
b) If the intersection of the space of constant images

{x = α(1, 1, ..., 1), α ∈ R} (which is the null space
of TV) with the null space ofK is just the zero
vector, thenLTV is coercive, and (9) has a solution.

c) If K is injective, then (9) has a solution.
d) If K ∈ R

m×n
+ , and at least one element ofK is

strictly positive, then (9) has a solution.
e) If K is injective andyi 6= 0, for i = 1, ...,m, then

LTV is coercive and strictly convex thus there is a
unique solution.

Proof:

a) The functionsιRn
+

, TV, andL ◦ K (Proposition 2)
are proper, lsc, and convex, thus so is their sum.

b) Similar to [5].
c) If K is injective, its null space is just the zero vector,

thusL ◦K andLTV are coercive.
d) If all the elements ofK are non-negative and at least

one is positive, then the constant vector(1, 1, ..., 1)
doesn’t belong to the null space ofK and the result
follows from (b).

e) If K is injective andyi 6= 0, for i = 1, ...,m, L ◦K
is strictly convex (Proposition 2), thus so isLTV and
its minimizer is unique.

2) Frame Analysis Regularization:The use of a regu-
larizer which is a direct function of the unknown image
(as in (9)–(10)) corresponds to a so-called analysis-based
prior/regularizer [14]. Another well-known type of analysis-
based regularization penalizes the norm (typicallyℓ1) of the
representation coefficients ofx on some wavelet basis or
tight frame, given byPx, whereP is the analysis operator
associated with the frame [28]. This approach leads to the
following optimization problem:

min
x

LFA(x), (11)

where FA stands forframe analysisand

LFA(x) = L(Kx) + τ‖Px‖1 + ιRn
+
(x); (12)

as above,τ is the regularization parameter andιRn
+

imposes the
non-negativity constraint on the estimate. The next proposition
addresses the existence and uniqueness of minimizers ofLFA.

Proposition 4: Consider the functionLFA defined in (12).
a) LFA is proper, lsc, convex, and coercive, thus has a

minimizer.
b) If K is injective andyi 6= 0, for i = 1, ...,m, then

LFA is strictly convex with a unique minimizer.
Proof:

a) The functionsιRn
+

, ‖ ·‖1 ◦P, andL◦K (Proposition
2) are proper, lsc, and convex, thus so is their sum.
Furthermore, sinceP is the analysis operator of a
tight frame, its null space is simply the zero vector,
thus‖ · ‖1 ◦P is coercive.

b) If K is injective andyi 6= 0, for i = 1, ...,m, L ◦K
is strictly convex (Proposition 2), thus so isLFA and
its minimizer is unique.

3) Frame Synthesis Regularization:Finally, another well-
known class of approaches is known as synthesis-based [14].
Here, the unknown image is represented on a frame (e.g.,
of wavelets, curvelets, or other multi-scale system) and then
the coefficients of this representation are estimated from the
observed data, under some regularizer. WithW ∈ R

n×d

denoting the synthesis matrix of the frame, the image is
written asx = Ws, wheres is the vector of representation
coefficients, and the resulting optimization problem is

min
s

LFS(s) (13)

where FS stands forframe synthesisand

LFS(s) = L(KWs) + τ‖s‖1 + ιRn
+
(Ws). (14)

Naturally, the indicator functionιRn
+

forcing the image esti-
mate to be non-negative is applied to the imageWs and not
its coefficients. The next proposition addresses the existence
and uniqueness of minimizers ofLFS.

Proposition 5: Consider the functionLFS defined in (14).
a) LFS is proper, lsc, convex, and coercive, thus has a

minimizer.
b) If KW is injective andyi 6= 0, for i = 1, ...,m,

thenLFS is strictly convex with a unique minimizer.
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Proof:

a) The functionsιRn
+
◦ W, ‖ · ‖1, and L ◦ KW

(Proposition 2) are proper, lsc, and convex, thus so
is their sum. Furthermore, since‖ · ‖1 is coercive,
LFS is coercive.

b) Same proof as that of Proposition 4 (b).

III. T HE ALTERNATING DIRECTION METHOD OF

MULTIPLIERS (ADMM)

A. The Standard ADMM

The key tool in this paper is thealternating direction
method of multipliers(ADMM) [13], [20], [21]. Consider an
unconstrained problem of the form

min
z∈Rd

f1(z) + f2(Gz), (15)

where f1 : Rd → R̄, f2 : Rp → R̄, andG ∈ R
p×d. The

ADMM for this problem is defined in Fig. 1.

Algorithm ADMM
1. Setk = 0, chooseµ > 0, u0, andd0.
2. repeat
3. zk+1 ∈ argminz f1(z) +

µ

2
‖Gz− uk − dk‖

2
2

4. uk+1 ∈ argminu f2(u) +
µ

2
‖Gzk+1 − u− dk‖

2
2

5. dk+1 ← dk − (Gzk+1 − uk+1)

6. k ← k + 1
7. until stopping criterion is satisfied.

Fig. 1. The ADMM algorithm.

For later reference, we now recall a theorem by Eckstein
and Bertsekas in which convergence of (a generalized version
of) ADMM is shown.

Theorem 1 (Eckstein-Bertsekas, [13]):Consider problem
(15), where G ∈ R

p×d has full column rank and
f1 : R

d → R̄ and f2 : R
p → R̄ are closed, proper,

convex functions. Consider arbitraryµ > 0 andu0,d0 ∈ R
p.

Let {ηk ≥ 0, k = 0, 1, ...} and{ρk ≥ 0, k = 0, 1, ...} be two
sequences such that

∞∑

k=0

ηk <∞ and
∞∑

k=0

ρk <∞.

Consider three sequences{zk ∈ R
d, k = 0, 1, ...}, {uk ∈

R
p, k = 0, 1, ...}, and{dk ∈ R

p, k = 0, 1, ...} that satisfy
∥∥∥zk+1 − argmin

z

f1(z) +
µ

2
‖Gz−uk−dk‖

2
2

∥∥∥ ≤ ηk
∥∥∥uk+1 − argmin

u

f2(u) +
µ

2
‖Gzk+1−u−dk‖

2
2

∥∥∥ ≤ ρk

and
dk+1 = dk − (Gzk+1 − uk+1). (16)

Then, if (15) has a solution, sayz∗, the sequence{zk} con-
verges toz∗. If (15) does not have a solution, then at least one
of the sequences{uk} or {dk} diverges.

According to Theorem 1, it is not necessary to exactly solve
the minimizations in lines 3 and 4 of ADMM: as long as
the sequences of errors are absolutely summable, convergence
is not compromised. As shown in Section IV-D, this fact is
quite relevant in designing instances of ADMM, when these
minimizations lack closed form solutions.

The proof of Theorem 1 is based on the equivalence
between ADMM and the DRS method applied to the dual
of problem (15). For recent and comprehensive reviews of
ADMM, DRS, and their relationship with Bregman and split-
Bregman methods, see [15], [36].

B. A Variant of ADMM

Notice that the ADMM and the associated convergence
theorem presented in the previous subsection apply to objec-
tive functions of the form (15),i.e., which are the sum of
two functions. The fact that our objective functions (9), (11),
and (13) involve more than two terms raises the following
question: what is the best way of mapping an objective with
more than two terms into (15) so that the resulting ADMM is
easily applicable and the conditions of Theorem 1 still hold.
In this section, we give an answer to this question, which will
constitute the core of our approach.

Consider a generalization of problem (15), where instead of
two functions, we haveJ functions, that is,

min
z∈Rd

J∑

j=1

gj(H
(j) z), (17)

where gj : R
pj → R̄ are closed, proper, convex functions,

andH(j) ∈ R
pj×d are arbitrary matrices. The minimization

problem (17) can be written as (15) using the following
correspondences:f1 = 0,

G =




H(1)

...
H(J)


 ∈ R

p×d, (18)

wherep = p1 + · · ·+ pJ , andf2 : Rp×d → R̄ given by

f2(u) =

J∑

j=1

gj(u
(j)), (19)

whereu(j) ∈ R
pj andu = [(u(1))T , . . . , (u(J))T ]T ∈ R

p.
We are now in position to apply ADMM. The resulting

algorithm has exactly the same structure as the one in Fig. 1
with

dk =




d
(1)
k
...

d
(J)
k


 , uk =




u
(1)
k
...

u
(J)
k


 .

The fact thatf1 = 0 turns Step 3 of the algorithm into a
simple quadratic minimization problem, which has a unique
solution if G has full column rank:

argmin
z

∥∥Gz− ζk

∥∥2
2

=
(
GTG

)−1
GT ζk, (20)

=

[ J∑

j=1

(H(j))TH(j)

]−1 J∑

j=1

(
H(j)

)T
ζ
(j)
k ,
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whereζk = uk + dk (and, naturally,ζ(j)
k = u

(j)
k + d

(j)
k ) and

the second equality results from the particular structure of G
in (18).

Furthermore, our particular way of mapping problem (17)
into problem (15) allows decoupling the minimization in Step
4 of ADMM into a set ofJ independent ones. In fact,

uk+1 ← argmin
u

f2(u) +
µ

2
‖Gzk+1 − u− dk‖

2
2 (21)

which can be written as



u
(1)
k+1

...

u
(J)
k+1


 ← arg min

u
(1),...,u(J)

g1(u
(1)) + · · ·+ gJ(u

(J))

+
µ

2

∥∥∥∥∥∥∥∥




H(1)

...
H(J)


 zk+1 −




u(1)

...
u(J)


−




d
(1)
k

...

d
(J)
k




∥∥∥∥∥∥∥∥

2

2

.

Clearly, the minimizations with respect tou(1), . . . ,u(J) are
decoupled, thus can be solved separately, leading to

u
(j)
k+1 ← arg min

v∈R
pj

gj(v) +
µ

2

∥∥v − s
(1)
k

∥∥2
2
, (22)

for j = 1, ..., J , where

s
(j)
k = H(j)zk+1 − d

(j)
k .

Eq. (22) defines the so-calledMoreau proximity operators[9]
of g1, ..., gJ , applied tos(1)k , ..., s

(J)
k , respectively, denoted as

u
(j)
k+1 = Ψgj/µ(s

(j)
k ). (23)

Some comments on the algorithm are relevant. Firstly,
being exactly an ADMM, and since all the functionsgj , for
j = 1, ..., J , are closed, proper, and convex, convergence is
guaranteed ifG has full column rank. This full column rank
condition, which is also required for the inverse in (20) to
exist, will be studied in the next section for each of the specific
problems considered in this paper.

For some functions, this mapping can be computed exactly
in closed form. For example, ifgj(x) = ‖x‖1, the correspond-
ing proximity operatorΨgj/µ is simply a soft threshold,

Ψgj/µ(v) = soft(v, 1/µ) = sign(v)⊙max{|v| − (1/µ), 0},
(24)

where sign(·) denotes the component-wise application of the
sign function,⊙ denotes the component-wise product,|v|
denotes the vector of absolute values of the elements ofv, and
the maximum is computed in a component-wise fashion. For
other functions, the corresponding Moreau proximity operator
does not have a simple close form solution and needs to be
computed numerically.

IV. POISSONIAN IMAGE RECONSTRUCTION WITH

TV-BASED REGULARIZATION

A. Applying ADMM

In this section, we apply the algorithmic framework pre-
sented in Section III-B to the total-variation-based criterion

Algorithm Poisson Image Deconvolution by AL (PIDAL-TV)
1. Chooseu(1)

0 , u(2)
0 , u(3)

0 , d(1)
0 , d(2)

0 , d(3)
0 , µ, andτ . Setk ← 0.

2. repeat
3. ζ

(1)
k
← u

(1)
k

+ d
(1)
k

4. ζ
(2)
k
← u

(2)
k

+ d
(2)
k

5. ζ
(3)
k
← u

(3)
k

+ d
(3)
k

6. γk ← KT ζ
(1)
k

+ ζ
(2)
k

+ ζ
(3)
k

7. zk+1 ←
(

KTK + 2 I
)

−1
γk

8. ν
(1)
k
← Kzk+1 − d

(1)
k

9. u
(1)
k+1 ← argmin

v

µ

2
‖v − ν

(1)
k
‖22 +

m
∑

i=1

ξ(vi, yi)

10. ν
(2)
k
← zk+1 − d

(2)
k

11. u
(2)
k+1 ← argmin

v

µ

2
‖v − ν

(2)
k
‖2 + τ TV(v).

12. ν
(3)
k
← zk+1 − d

(3)
k

13. u
(3)
k+1 ← argmin

v

µ

2
‖v − ν

(3)
k
‖2 + ιRn

+
(v).

14. d
(1)
k+1 ← d

(1)
k
− (Kzk+1 − u

(1)
k+1)

15. d
(2)
k+1 ← d

(2)
k
− (zk+1 − u

(2)
k+1)

16. d
(3)
k+1 ← d

(3)
k
− (zk+1 − u

(3)
k+1)

17. k ← k + 1
18. until some stopping criterion is satisfied.

Fig. 2. The PIDAL-TV algorithm.

(9)–(10). The objective function in (10) has the form (17) with
J = 3,

g1 ≡ L, g2 ≡ τ TV, g3 ≡ ιRn
+

(25)

and

H(1) ≡ K, H(2) ≡ I, H(3) ≡ I. (26)

The resulting ADMM algorithm, which we call PIDAL-TV
(Poisson image deconvolution by augmented Lagrangian –
total variation), is shown in Fig. 2.

B. Implementation Aspects and Computational Cost of
PIDAL-TV

Notice that line 7 of PIDAL-TV corresponds to (20) for the
particular form of matrixG in this problem:G = [KT I I ]T

(see (25) and (26)), which is of course of full column rank.
Moreover, if K models a periodic convolution, it is a block
circulant matrix and the inversion in line 7 of the algorithm
can be implemented inO(n log n) operations, via the FFT
algorithm. Although this is a well-known fact, we include the
derivation in the next paragraph, for the sake of completeness.

Assuming that the convolution is periodic,K is block-
circulant with circulant blocks and can be factorized as

K = UHDU, (27)

whereU is the matrix that represents the 2D discrete Fourier
transform (DFT),UH = U−1 is its inverse (U is unitary,i.e.,
UUH = UHU = I), andD is a diagonal matrix containing
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the DFT coefficients of the convolution operator represented
by K. Thus (withKT = KH , sinceK is a real matrix)

(
KTK+ 2I

)−1
=

(
UHD∗DU+ 2UHU

)−1
(28)

= UH
(
|D|2 + 2 I

)−1
U, (29)

where(·)∗ denotes complex conjugate and|D|2 the squared
absolute values of the entries ofD. Since|D|2+2 I is diagonal,
its inversion hasO(n) cost. Products byU andUH can be
carried out withO(n log n) cost using the FFT algorithm.

The minimization in line 9 of PIDAL-TV is separable. With
respect to each component, it has the form

min
v

{
v + ιR+(v)− y log(v+) +

µ

2
(v − ν)2

}
. (30)

It is simple to show that the solution of (30) leads to

u
(1)
i,k+1 =

1

2


ν

(1)
i,k −

1

µ
+

√(
ν
(1)
i,k −

1

µ

)2

+ 4 yi


 , (31)

where ν
(1)
i,k denotes thei-th component ofν(1)

k . Notice that

u
(1)
i,k+1 is always a non-negative quantity.
The minimization in line 11 of PIDAL-TV is, by definition,

the Moreau proximity operatorΨ(τ/µ)TV : R
n → R

n [9],

which corresponds to applying TV-denoising toν(2)
k . Below,

we address in detail the issue of how to implement this
operator and its implications to the convergence of PIDAL-
TV. Suffice it to say here that most TV-denoising algorithms
haveO(n) cost.

The minimization in line 13 of PIDAL-TV corresponds to
the projection ofν(3)

k onto the first orthant, thus

u
(3)
k+1 = max

{
ν
(3)
k , 0

}
, (32)

where the maximum is to be understood in a component-wise
sense; this projection has of courseO(n) cost.

From the observations in the previous paragraphs, the com-
putational costs of the lines of PIDAL-TV are the following.
Lines 3, 4, 5, 9, 10, 11, 12, 13, 15, and 16 haveO(n)
cost. Lines 6, 7, 8, and 14 haveO(n log n) cost. Thus the
computational cost of PIDAL-TV scales asO(n log n).

C. Convergence of PIDAL-TV: Exact TV

Convergence of PIDAL-TV is addressed by the following
corollary of Theorem 1, for the (ideal) case whereΨ(τ/µ)TV

(line 11) is computed exactly. The minimizations in lines 9
and 13 have the closed-form solutions given in (31) and (32).

Corollary 1: If the minimizations in lines 9, 11, and 13 of
PIDAL-TV are solved exactly, then the algorithm converges to
a minimizer of (10), provided one exists.

Proof: PIDAL-TV is an instance of ADMM in Fig. 1,
wheref1 = 0 andf2 has the form (19), withJ = 3 and the
gi functions given in (25), which are all closed, proper, and
convex. Functionf2 is thus also closed, proper, and convex.
Matrix G = [KT I I ]T has full column rank. The minimiza-
tion in line 4 of ADMM corresponds to lines 9, 11, and 13
of PIDAL-TV; if these minimizations are solved exactly, then

according to Theorem 1, convergence to a minimizer of the
objective function, if one exists, is guaranteed.

D. Convergence of PIDAL-TV: Approximate TV

As is well known, the TV denoising problem has no
closed form solution, and many iterative algorithms have been
proposed to solve it (see [4], [6], [10], [31], and references
therein). Here, we adopt Chambolle’s algorithm [4].

Of course, in practice, Chambolle’s (or any other iterative)
algorithm can only run for a finite number of iterations, thus
the minimization in line 11 of PIDAL-TV can only be solved
approximately. However, as stated in Theorem 1, this will
not compromise the convergence of ADMM/PIDAL-TV, if
the corresponding error sequence is summable. To achieve
this goal, we adopt a simple procedure in which the internal
variables of Chambolle’s algorithm (the discrete gradient, see
[4]) are initialized, in each iteration of PIDAL-TV, with those
obtained in the previous iteration. We will now formalize this
idea and provide experimental evidence that this procedure
does produce a summable error sequence.

Let us defineβ = τ/µ and let(s,q) = Ψ̃
(t)

β TV(r,p) be the
result of runningt iterations of Chambolle’s algorithm with
its internal variables initialized atp, wheres is the obtained
(denoised) image (which is approximatelyΨβ TV(r)) and q

the final values of the internal variables. Consider now two
possible implementations of line 11 of PIDAL-TV:

11(a). (u
(2,a)
k+1 ,pk+1) = Ψ̃

(t)

β TV(ν
(2)
k ,pk) (33)

11(b). (u
(2,b)
k+1 , ·) = Ψ̃

(t)

β TV(ν
(2)
k ,p). (34)

Implementation11(a) uses the proposed internal variables ini-
tialization, whereas in11(b) the internal variables are always
initialized to the same values (usually zeros). Consider now
the corresponding error sequences

ρ
(a)
k =

∥∥∥u(2,a)
k+1 −Ψβ TV(ν

(2)
k )

∥∥∥ (35)

ρ
(b)
k =

∥∥∥u(2,b)
k+1 −Ψβ TV(ν

(2)
k )

∥∥∥ . (36)

Notice that since the two other minimizations (lines 9 and 13)
are solved exactly, the sequencesρ

(a)
k andρ(b)k correspond to

the sequenceρk in Theorem 1.
The following experiment provides evidence thatρ

(a)
k is

summable, butρ(b)k is not. Consider the same setup as in the
first experiment in [37]: the original image is a portion of
the Cameraman image scaled to a maximum value of 3000
and then blurred with a Gaussian kernel of unit variance; the
observed image is generated according to (1). As in [37], we
set τ = 0.008 and µ = τ/50. The number of iterations
of Chambolle’s algorithm is set to 5 or 20. To compute
Ψβ TV(ν

(2)
k ) (almost) exactly, we run 4000 iterations of Cham-

bolle’s algorithm. In Figure 3, it is clear that theρ(b)k sequences
are not even decreasing, let alone summable. In contrast, the
sequencesρ(a)k approach zero, for both choices oft. Evidence
for the summability of theρ(a)k sequences is provided by the
fact that by fitting a function of the formA (1/k)ω to the
tails of these sequences (i.e., for k = 20, ..., 200), we obtain
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Fig. 3. Error sequencesρ(a)
k

and ρ
(b)
k

for t = 5 and t = 20 (number of
iterations of Chambolle’s algorithm) and fitted functions of the formAtω to
the sequences{ρ(a)

k
, k = 20, 21, ...200}.

values ofω that are larger than one (ω ≃ 1.3, for t = 5, and
ω ≃ 1.43, for t = 20).

In conclusion, the experiment reported in the previous
paragraph, though of course not a formal proof, strongly
suggests that by implementing line 11 of PIDAL-TV as in (33),
the corresponding error sequence (with respect to the exact
minimizations) is summable, thus we can invoke Theorem 1
to state that PIDAL-TV converges. Moreover, this experiment
shows that this is achieved with a quite small number of
iterations in each call of Chambolle’s algorithm. In all our
experiments with PIDAL-TV, we thus use (33), witht = 5.

V. POISSONIAN IMAGE RECONSTRUCTION WITH

FRAME-BASED REGULARIZATION

We now consider the frame-based analysis criterion (11),
and the frame-based synthesis criterion (13).

A. Analysis Criterion

In this case, the objective function is given by (12), which
has the form (17) withJ = 3,

g1 ≡ L, g2 ≡ τ‖ · ‖1, g3 ≡ ιRn
+

(37)

and
H(1) ≡ K, H(2) ≡ P, H(3) ≡ I.

The resulting instance of ADMM, which we call PIDAL-FA
(where FA stands for “frame analysis”), is shown in Fig. 4.
The matrix being inverted in line 7 results from assuming that
P is the analysis operator of a 1-tight (Parseval) frame, thus
(H(2))TH(2) = PTP = I. Notice that line 7 of PIDAL-FA
corresponds to (20) for the particular form of matrixG in this
case,G = [KT PT I ]T , which of course has full column
rank. As in PIDAL-TV, if K models a convolution, the inverse
(KTK+2 I)−1 can be computed withO(n log n) cost, using
the FFT (see (29)).

For most tight frames used in image processing, products
by P andPT correspond to the inverse and direct transforms

Algorithm Poisson Image Deconvolution by AL (PIDAL-FA)
1. Chooseu(1)

0 , u(2)
0 , u(3)

0 , d(1)
0 , d(2)

0 , d(3)
0 , µ, andτ . Setk ← 0.

2. repeat
3. ζ

(1)
k
← u

(1)
k

+ d
(1)
k

4. ζ
(2)
k
← u

(2)
k

+ d
(2)
k

5. ζ
(3)
k
← u

(3)
k

+ d
(3)
k

6. γk ← KT ζ
(1)
k

+PT ζ
(2)
k

+ ζ
(3)
k

7. zk+1 ←
(

KTK + 2 I
)

−1
γk

8. ν
(1)
k
← Kzk+1 − d

(1)
k

9. u
(1)
k+1 ←

1

2



ν
(1)
i,k
−

1

µ
+

√

(

ν
(1)
i,k
−

1

µ

)2

+ 4 yi





10. ν
(2)
k
← Pzk+1 − d

(2)
k

11. u
(2)
k+1 ← argmin

v

µ

2
‖v − ν

(2)
k
‖2 + τ ‖v‖1.

12. ν
(3)
k
← zk+1 − d

(3)
k

13. u
(3)
k+1 ← max

{

ν
(3)
k

, 0
}

.

14. d
(1)
k+1 ← d

(1)
k
−Kzk+1 + u

(1)
k+1

15. d
(2)
k+1 ← d

(2)
k
−Pzk+1 + u

(2)
k+1

16. d
(3)
k+1 ← d

(3)
k
− zk+1 + u

(3)
k+1

17. k := k + 1
18. until some stopping criterion is satisfied.

Fig. 4. The PIDAL-FA algorithm.

for which fast algorithms exist. For example, in the case of
translation-invariant wavelet transforms, these products can
be computed using the undecimated wavelet transform with
O(n logn) cost [25], [28]. Curvelets also constitute a Parseval
frame for which fastO(n log n) implementations of the for-
ward and inverse transform exist [3]. Yet another example of
a redundant Parseval frame is provided by complex wavelets,
with the corresponding direct and inverse transforms having
O(n) cost [24], [34]. In conclusion, for a large class of
choices ofP, the cost of lines 6, 10, and 15 of PIDAL-FA is
O(n logn).

The expressions in lines 9 and 13 of PIDAL-FA are similar
to those in lines 9 and 13 of PIDAL-TV, respectively; see also
(30), (31), and (32).

The minimization in line 11 is, by definition, the Moreau
proximity operator of theℓ1 norm [9], which corresponds to
a soft-threshold (24).

In summary, from the observations in the previous para-
graphs, the computational costs of the lines of PIDAL-FA are
the following. Lines 3, 4, 5, 9, 11, 12, 13, and 16 haveO(n)
cost. Lines 6, 7, 8, 10, 14, and 15 haveO(n logn) cost. Thus
the computational cost of PIDAL-FA scales asO(n logn).

Finally, convergence of PIDAL-FA is addressed by the
following corollary of Theorem 1.

Corollary 2: The PIDAL-FA algorithm converges to a min-
imizer of (11), provided one exists.

Proof: The proof is similar to, but simpler than, that of
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Algorithm Poisson Image Deconvolution by AL (PIDAL-FS)
1. Chooseu(1)

0 , u(2)
0 , u(3)

0 , d(1)
0 , d(2)

0 , d(3)
0 , µ, andτ . Setk ← 0.

2. repeat
3. ζ

(1)
k
← u

(1)
k

+ d
(1)
k

4. ζ
(2)
k
← u

(2)
k

+ d
(2)
k

5. ζ
(3)
k
← u

(3)
k

+ d
(3)
k

6. γk ←WTKT ζ
(1)
k

+ ζ
(2)
k

+WT ζ
(3)
k

7. zk+1 ←
(

WTKTKW+ I+WTW
)

−1
γk

8. ν
(1)
k
← KWzk+1 − d

(1)
k

9. u
(1)
k+1 ←

1

2



ν
(1)
i,k
−

1

µ
+

√

(

ν
(1)
i,k
−

1

µ

)2

+ 4 yi





10. ν
(2)
k
← zk+1 − d

(2)
k

11. u
(2)
k+1 ← soft(ν(2)

k
, τ/µ)

12. ν
(3)
k
←Wzk+1 − d

(3)
k

13. u
(3)
k+1 ← max

{

ν
(3)
k

, 0
}

.

14. d
(1)
k+1 ← d

(1)
k
−KWzk+1 + u

(1)
k+1

15. d
(2)
k+1 ← d

(2)
k
− zk+1 + u

(2)
k+1

16. d
(3)
k+1 ← d

(3)
k
−Wzk+1 + u

(3)
k+1

17. k := k + 1
18. until some stopping criterion is satisfied.

Fig. 5. The PIDAL-FS algorithm.

Corollary 1, since all the minimizations involved are solved
exactly in closed form. Clearly, matrixG = [KT PT I ]T

has full column rank, thus Theorem 1 guarantees convergence
to a minimizer of the objective function.

B. Synthesis Criterion

In the synthesis formulation, the objective function is given
by (13), which has the form (17) withJ = 3,

g1 ≡ L, g2 ≡ τ‖ · ‖1, g3 ≡ ιRn
+

and
H(1) ≡ KW, H(2) ≡ I, H(3) ≡W.

The resulting ADMM algorithm, which we call PIDAL-FS
(where FS stands for “frame synthesis”), is shown in Fig. 5.

Notice that line 7 of PIDAL-FS corresponds to (20) for
the particular form of matrixG in this problem: G =
[(KW)T I WT ]T . This matrix has of course full column
rank. However, even ifK models a periodic convolution (thus
is block circulant), the question remains of how to efficiently
compute the matrix inverse in line 7, sinceKW is not block
circulant. The next paragraph shows how to sidestep this
difficulty.

Consider that matrixW corresponds to a 1-tight (Parse-
val) frame, i.e., WWH = I, and start by noticing that
WTKTKW + I + WTW = WH(KHK + I)W + I.
Applying the Sherman-Morrison-Woodbury (SMW) matrix

TABLE I
INITIALIZATION OF THE PIDAL ALGORITHMS.

u
(1)
0 u

(2)
0 u

(3)
0 d

(1)
0 d

(2)
0 d

(3)
0

PIDAL-TV y y y 0 0 0

PIDAL-FA y Py y 0 0 0

PIDAL-FS y WTKTy KTy 0 0 0

inversion formula yields
(
WH(KHK+ I)W + I

)−1
=

= I−WH
(
WWH +

(
KHK+ I

)−1
)−1

W

= I−WH
(
I+

(
KHK+ I

)−1
)−1

W. (38)

Using the factorization (27), we have
(
I+

(
KHK+I

)−1
)−1

= UH
(
I+(|D|2+I)−1

)−1
U, (39)

where both inversions haveO(n) cost since |D|2 and I

are diagonal, thus products by the matrix in (39) have the
O(n logn) cost associated to the FFT implementation of the
products byU andUH .

The leading cost of line 7 of PIDAL-FS (given by (38))
will thus be eitherO(n log n) or the cost of the products
by WH and W. As mentioned above, for a large class of
choices of frames, matrix-vector products byW and WH

haveO(n logn) cost.
From the observations in the previous paragraphs, the com-

putational costs of the lines of PIDAL-FS are the following.
Lines 3, 4, 5, 9, 10, 11, 12, 13, 15, and 16 haveO(n)
cost. Lines 6, 7, 8, and 14 haveO(n logn) cost. Thus the
computational cost of PIDAL-FS scales asO(n logn).

Finally, convergence of PIDAL-FS is addressed by the
following corollary of Theorem 1.

Corollary 3: The PIDAL-FS algorithm converges to a mini-
mizer of (13), provided one exists.

Proof: The proof is similar to that of Corollary 2, since all
the minimizations involved are solved exactly in closed form.
Clearly, matrixG = [WTKT I WT ]T has full column
rank, thus Theorem 1 guarantees convergence to a minimizer
of the objective function.

VI. EXPERIMENTS

We now report experiments where PIDAL is compared with
other state-of-the-art methods, namely those proposed in [12],
[19], [37]. All the algorithms are implemented in MATLAB
and the experiments are carried out on a PC with a 3.0GHz
Intel Core2Extreme CPU, with 4Gb of RAM, under Microsoft
Windows Vista. Unless otherwise indicated, we adjust the reg-
ularization parameterτ to achieve the highestimprovement in
signal-noise-ratio(ISNR = 10 log10

(
‖y− x‖22/‖x̂− x‖22

)
).

The PIDAL algorithms are initialized as shown in Table I.
According to Theorem 1, ADMM (thus PIDAL) converges

for any choice ofµ > 0. However, this parameter does
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influence the speed of the algorithms. To our knowledge, there
is work on methods to choose this parameter for optimal speed;
in our experiments, we use the following rule of thumb, found
to achieve satisfactory results:µ = 60 τ/M , whereM is the
maximum intensity of the original image. We have observed
that the results do not change significantly if this parameter is
changed to one order of magnitude below or above this choice.

A. Comparison with [37]

We begin by comparing with the algorithms (PIDSplit and
PIDSplit+) proposed in [37], which (as acknowledged by the
authors of [37]) is based on the earlier version of PIDAL-
TV [17]. The setup was already described in Section IV-D:
the original image is a portion (84 × 84) of the Cameraman
image, scaled to a maximum value of 3000 and blurred with
a Gaussian kernel of unit variance; the observed image is
generated according to (1); the regularization parameter is
set to τ = 0.008. In the experiments reported in [37], the
TV denoising step of PIDAL-TV is implemented by an inner
iterative algorithm with a tight stopping criterion based on the
change between two consecutive images. Our implementation
of PIDAL-TV, as explained in Section IV-D, uses a small and
fixed number of iterations (just 5) of Chambolle’s algorithm,
which is initialized as explained in that section. Because PID-
Split and PIDSplit+ have no inner loop, each of its iterations
is roughly equivalent to one iteration of PIDAL-TV with just
one iteration of Chambolle’s algorithm. In [37], PIDSplit and
PIDSplit+ were run for 2150 iterations; we thus run PIDAL-
TV for 2150/5 = 430 iterations, corresponding to roughly the
same amount of computation. Fig. 6 shows the evolution of the
mean absolute error(MAE = ‖x̂−x‖1/n) and ISNR along the
first 160 iterations of PIDAL-TV (as well as elapsed time); itis
clear that convergence is achieved after less than 140 iterations
(4.3 seconds, in our computer). This is dramatically less than
what is reported in [37] for PIDAL-TV; in terms of iterations
of PIDSplit and PIDSplit+, this corresponds to approximately
150 ∗ 5 = 750 iterations, thus also much less than the 2150
iterations (11 seconds) reported in that work. Finally, Fig. 7
shows the original, observed, and restored images; as expected,
the image estimates produced by PIDSplit and PIDAL-TV are
very similar.

Finally, we also tested PIDAL-FA and PIDAL-FS on the
same example, using a fully redundant Haar frame. The plots
of ISNR and MAE are presented in Figs. 8 and 9, while the
estimated images are shown in Fig. 10.

These results show that, in this example, PIDAL-FA per-
forms slightly better than PIDAL-TV in terms of ISNR and
similarly in terms of MAE, with PIDAL-FA achieving its
best estimate faster than PIDAL-TV. The synthesis-based
criterion implemented by PIDAL-FS is a little worse in terms
of both ISNR and MAE, and PIDAL-FS also takes longer
than PIDAL-FA to achieve its best estimate. This poorer
performance of the synthesis formulation (in line with recent
results in [35]) was also found in all the experiments reported
below, so we will only present results from PIDAL-TV and
PIDAL-FA.
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Fig. 6. Evolution of themean absolute error(MAE) and improvement in
signal-noise-ratio(ISNR) along the iterations and elapsed time of PIDAL-TV,
for the experiment of Section VI-A.

Fig. 7. Experiment of Section VI-A. Top row: original (left); blurred and
noisy image (right). Bottom row: estimate from [37]; estimate by PIDAL-TV
(ISNR=4.8dB).
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Fig. 9. Experiment of Section VI-A. Evolution of themean absolute error
(MAE) and improvement in signal-noise-ratio(ISNR) along the iterations and
elapsed time of PIDAL-FS.

Fig. 10. Experiment of Section VI-A. Left: PIDAL-FA estimate (ISNR =
5.3dB). Right: PIDAL-FS estimate (ISNR = 4.3dB).

B. Comparison with [19]

The next experiment follows [19]: the original image is the
complete (256×256) Cameraman, scaled to a maximum value
of 17600, the blur is9 × 9 uniform. As in the experiment
reported in the previous subsection, this is a high SNR
situation. Fig. 11 shows the evolution of the MAE and ISNR
along the execution of PIDAL-TV; it is clear that convergence
is achieved after about 160 iterations (25 seconds, in our com-
puter). A detail of the blurred, and estimated images (from [19]
and using PIDAL-TV and PIDAL-FA) are shown in Fig. 12.
Although the TV and FA regularizers are considerably simpler
than the locally adaptive approximation techniques used in
[19], both PIDAL-TV and PIDAL-FA achieve higher ISNR
values (7.0dB and 6.95dB, respectively) than that reportedin
[19] (6.61dB).

C. Comparison with [12]

In the last set of experiments we compare our approach with
another recent state-of-the-art algorithm (herein referred to as
DFS), proposed in [12], for which the MATLAB implemen-
tation is available atwww.greyc.ensicaen.fr/∼fdupe.
That work includes comparisons with other methods, namely:
Richardson-Lucy with multi-resolution support wavelet reg-
ularization (RL-MRS) [39]; fast translation invariant tree-
pruning reconstruction (FTITPR) [44]; Richardson-Lucy with
total variation regularization (RL-TV) [11]. The results in [12]
show that the algorithm therein proposed generally achieves
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Fig. 11. Experiment of Section VI-B. Evolution of themean absolute error
(MAE) and improvement in signal-noise-ratio(ISNR) along the iterations and
elapsed time of PIDAL-TV.

Fig. 12. Experiment of Section VI-B. Top row: blurred noisy image (left)
and estimate from [19] (ISNR=6.61dB). Bottom row: PIDAL-TVestimate
(left, ISNR = 7.0dB); PIDAL-FA estimate (right, ISNR=6.95dB).

better performance (i.e., lower MAE) than the others, except
for one of the images (a microscopy cell image) where RL-
MRS outperforms DFS. For this reason, we will report results
comparing PIDAL-TV and PIDAL-FA versus DFS and RL-
MRS. For PIDAL-FA, we use a redundant Haar frame for the
Cameraman image and Daubechies-4 for the other images. As
in [12], the original images are scaled to a maximum value
M , belonging to{5, 30, 100, 255}, and then blurred by a7×7
uniform filter.

The DFS algorithm does not include a stopping criterion,
with the results reported in [12] having been obtained by
running a fixed number (200) of iterations. In order to compare
the running times of PIDAL-TV, PIDAL-FA, and DFS, we run
DFS until the MAE decreases less than 0.01% between two
consecutive iterations. Our algorithms are stopped when the
following condition is met:

‖zk − zk−1‖2
‖zk−1‖2

≤ δ,

with δ = 0.005 if M = 5 andδ = 0.001 in all the other cases.
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Notice that this favors DFS, since a stopping criterion based
on MAE is not applicable in practice due to the absence of
the original image.

The results reported in Table II show that, in 9 out of the
12 experiments, either PIDAL-TV or PIDAL-FA achieves the
lowest MAE. Notice however, that the main goal of this paper
was not to introduce a new restoration criterion aiming at
obtaining the lowest possible MAE (or any other performance
measure), but rather to introduce algorithms to solve the
optimization problems resulting from variational formulations
of Poissonian image restoration. In terms of computational
efficiency, PIDAL-TV and PIDAL-FA are clearly faster than
the DRS algorithm, except in the very low SNR situations
(M = 5) for two of the images (Cameraman and Cell).

VII. C ONCLUDING REMARKS

We have propose new algorithms to handle the optimiza-
tion problems resulting from regularization approaches tothe
restoration of Poissonian images. These optimization problems
include several difficulties: the Poisson log-likelihood is non-
quadratic and its gradient is not Lipschitz; the state-of-the-
art regularizers are non-smooth; there is a non-negativity
constraint. We have started by presenting sufficient conditions
for existence and uniqueness of solutions of these optimization
problems, for the following regularizers: total-variation, frame-
based analysis, and frame-based synthesis. These problems
were handled by adapting the alternating direction method
of multipliers (ADMM) to their particular forms. This adap-
tation is based on a new way of using ADMM to deal
with problems in which the objective function is a linear
combination of convex terms, which can be used in many other
problems. We gave sufficient conditions for convergence and
proved that these are met in the considered cases. Finally,
we have experimentally compared the proposed algorithms
against competing techniques, showing that they achieve state-
of-the-art performance both in terms of speed and restoration
accuracy.

APPENDIX A: CONVEX ANALYSIS

We very briefly review some basic convex analysis results
used in this paper. For more details see [9], [47].

Consider a functionf : X → R̄ = R ∪ {−∞,+∞}, where
R̄ is called the extended real line, andX is a real Hilbert
space. The domain of functionf is the set dom(f) = {x :
f(x) < +∞}.

The functionf is convexif f(αu+ (1− α)v) ≤ αf(u) +
(1−α)f(v), for anyu,v ∈ X and anyα ∈ [0, 1]. Convexity
is said to be strict if the inequality holds strictly (<) for any
u,v ∈ dom(f) andα ∈ ]0, 1[.

The function is calledproper if it is not equal to+∞
everywhere and is never equal to−∞.

The functionf is lower semi-continuous(lsc) atv if

lim
δց0

inf
x∈B(v,δ)

f(x) ≥ f(v),

whereB(v, δ) = {x : ‖x− v‖ ≤ δ} is the δ-ball aroundv,
and ‖ · ‖ is the norm in the Hilbert spaceX . A function is
called lsc if it is lsc at every point of its domain.

A function f is called coercive if it verifies
lim‖x‖→∞ f(x) = +∞. Proper, lsc, coercive functions
play a key role in optimization via the following theorem [9]:

Theorem 2:If f is a proper, lsc, coercive, convex function,
then the setargminx∈X f(x) is nonempty.

The next theorem concerns strictly convex functions.
Theorem 3:If f is a strictly convex function, the set

argminx∈X f(x) possesses at most one element.
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