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Abstract—Much research has been devoted to the problem of amount of research on special purpose algorithms (se€?[[1], [

restoring Poissonian images, namely for medical and astram-
ical applications. However, the restoration of these imageusing
state-of-the-art regularizers (such as those based on midtale
representations or total variation) is still an active resarch area,
since the associated optimization problems are quite chahging.
In this paper, we propose an approach to deconvolving Poisa@n
images, which is based on an alternating direction optimizéon
method. The standard regularization (or maximum a posteriai)
restoration criterion, which combines the Poisson log-liklihood
with a (non-smooth) convex regularizer (log-prior), leadsto hard
optimization problems: the log-likelihood is non-quadratic and
non-separable, the regularizer is non-smooth, and there ia
non-negativity constraint. Using standard convex analys tools,
we present sufficient conditions for existence and uniquess of
solutions of these optimization problems, for several type of
regularizers: total-variation, frame-based analysis, ad frame-

based synthesis. We attack these problems with an instancé o

the alternating direction method of multipliers (ADMM), wh ich
belongs to the family of augmented Lagrangian algorithms. &
study sufficient conditions for convergence and show that thse
are satisfied, either under total-variation or frame-based(analysis
and synthesis) regularization. The resulting algorithms & shown
to outperform alternative state-of-the-art methods, bothin terms
of speed and restoration accuracy.

Index Terms—Image restoration, image deconvolution, Pois-
son images, convex optimization, alternating direction milods,
augmented Lagrangian.

I. INTRODUCTION

[Ql, [18], [40Q], [45] and the many references therein).

The algorithms developed for linear operators and Gaussian
noise cannot be directly applied to other observation ngdel
such as the Poisson case considered in this paper. Poissonia
image models are well studied and highly relevant in fields
such as astronomical [B8], biomedical [11], [16], [30], [33
[41], [43], and photographic imaging [19]. A very recent
and comprehensive overview of deconvolution methods for
Poissonian images can be found inl[12] (where a state-of-
the-art algorithm is also introduced); we refer the reader t
that publication for more references on this topic.

The standard criterion for deconvolution of Poissonian im-
ages consist of a convex constrained optimization problem:
the objective function includes the so-called data termictvh
is convex and smooth, but not quadratic, plus a convex non-
smooth regularizer (the log-likelihood and log-prior, fro
a Bayesian inference perspective), and a constraint fprcin
the solution to be non-negative. Although the problem is
convex, its very high dimensionality (when dealing with
images) usually rules out the direct application of off-the|f
optimization algorithms.

Furthermore, the Poisson log-likelihood, which is non-
guadratic and non-separable (except in the pure denoising
case) raises several difficulties to the current statdref-t
art image deconvolution algorithms. More specifically, the
Poisson log-likelihood does not have a Lipschitz-contirio

A large fraction of (if not all) the work on image denoisinggradient' a sufficient condition for the applicability (tviguar-

restoration, and reconstruction has been devoted to deaglo "= X
regularizers (priors, from a Bayesian point of view) to deaP!iting (FBS) family
with the presence of noise and/or the ill-conditioned or il
posed nature of the observation operator, and to devisif}

efficient algorithms to solve the resulting optimizatiorolpr

lems. Much of that work assumes linearity of the observatid
operator €.g, the convolution with some point spread func

tion, the acquisition of tomographic projections, or signph

identity in the case of denoising) and the presence of aediti
Gaussian noise. For this classical scenario, recent sfate:

anteed convergence) of algorithms of the forward-backward
[9], [12], [45]. If, neverthelessnaBS

|method is applied, it is well known to be slow, specially iéth

gservation operator is severely ill-conditioned, a fatich

has stimulated recent research on faster mettiods [1]/42]; [
Hese faster algorithms also require the log-likelihoothawe

a Lipschitz-continuous gradient, which is not the case with
Poissonian observations.

In this paper, we propose a new approach to tackle the

optimization problem referred to in the previous paragraph

the-art methods adopt non-smooth convex regularizers) sJ@e proposed algorithm is based on an instance ofttes-

as total-variation or the; norm of frame coefficients; the

nating direction method of multiplierADMM) [13], [20],

resulting optimization problems are convex but non-smoatth [211; which belongs to the family of augmented Lagrangian

very high dimensionality, and have stimulated a considera
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6nethods [20]. For this reason, we call it PIDAL (Poisson

image deconvolution by augmented Lagrangian). Although th
proposed approach is related to the recent split-BregmBj (S
technique[[2P], our splitting strategy and resulting aiton

are quite different from the one in_[22] (which, moreover,
is not adequate for Poissonian image models). Finally, we
mention that this paper is an extension of our much shorter
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and preliminary work[[1[7]. Combining [[1) and[{2) and taking logarithms leads to the
In recent work, Douglas-Rachford splitting (DRS) methodsegative log-likelihood functiori [11]/ [38],

were proposed to attack problems in which log-likelihood th m
does not have a Lipschitz-continuous gradiént [8]. In fewt, —log P[Y =yl|x] = Z(K x); — y; log (K x);) + log(ys!)
ADMM is closely related to DRS methods [13], [15], so the i=1
method proposed in this paper can also be interpreted from a = L(Kx) 3)

DRS viewpoint.

In thi ill consider three t f regulari A “
n this paper, we will consider three types of regulariza- ,
tion: total variation [[4], [31] and both frame-based anéﬂysWhere(v)i (orv;) denotes the-th component of some vector

i . : and£ : R™ — R = RU {—o0, +oc} is the negative log-
and frame-based synthesis formulations| [14]. In Sedfipn l‘ll,kelihood function for the cas& — I, that is

after presenting these three formulations, we derive seiffic
conditions for existence and uniqueness of solutions of the
corresponding optimization problems. The ADMM framework
is reviewed in Sectiop 1ll, where we also introduce the arti
ular variant that is suitable for a linear combination ofexaV . .
convex functions, which is the form of the objective funatio because of the presence of the logarithm. Seen as function of

. ; . . to be used in a minimization problem, it is convenient to
in hand. In Sections IV and]V, we instantiate the proposéd: . oo Y
brop write the negative log-likelihood function as

variant of ADMM to the three types of regularizers considere
and provide sufficient conditions for convergence. Finally B -
the effectiveness of the resulting algorithm is illustcate L(z) = O+Z§(2i’yi)’ ©)
comparison with current state-of-the-art alternatived,[[12], =t

[19], [37], [3€], via a set of experiments reported in Secfil vyhereC’ = >, log(y;!) is afinite (recall thao! _:_1) irre_levant
(independent of) constant and : R x Ny — R is defined as

L(z) =Y —y; log (z;) + zi + log(ys)- (5)
=1
Dealing with the particular casg = 0 requires some care,

II. PROBLEM FORMULATION £(z,y) = z +1ry, (2) — y log(z4), (7)

In this section, we begin by reviewing the derivation of‘n€récs is the indicator function of sef,
the standard log-likelihood resulting from assuming thed t 0 = ze S
observations are Poisson distributed with a mean intensity 4o <« z&8,
linearly related with the underlying image to be est|mateg.+ = max{0, z}, log(0) = —oo, and0log(0) = 0.

ts(z) =

Then, we present three different regularization/Bayesidg-  The following two propositions characterizeas a function
ria, using synthesis and analysis formulatidns [14], andyst o its first argument, as well aé and £ o K, in terms of the
existence/uniqueness of the corresponding solutions. key concepts of convex analysis (see Appendix A).

_ . _ Proposition 1: For anyy € Ny the functior¢(-,y) : R — R
A. The Linear/Poisson Observation Model is proper, lower semi-continuous (Isc), coercive, and eanif

Lety = (y1,...,ym) € NZ' denote ann-vector of observed ¥ > 0, thens(-, y) is also strictly convex.

counts Ny = NU {0}), assumed to be a sam_ple of a r_andom Proof: For y = 0, £(2,0) = z + g, (2), thus&(-,0)
vectorY = (¥1, ..., Y;,) of m independent Poisson variablesis the sum of the identity function withz,, which are

with probability distribution both proper, Isc, coercive, and convex. For apy> 0,
™y A £(z,y) = 2+ tr, (2) — ylog(z4); sinceylog((-)4) is also
P[Y =y|A] = H i — (1) proper, Isc, coercive, and convex, s@fs y). Finally, if y > 0,

- Y ylog((-)4) is strictly convex (see the definition in Appendix

WhereA = (A1, ... Am) € R (R denotes the non-negativeA)’ thus&(-, y) is also strictly convex. [

reals) is the underlying mean (intensity) vector, assurndset ~ Proposition 2: FunctionL is proper, Isc, coercive, and con-

a linear observation of an unknown imagei.e., vex. Ify; # 0, fori = 1,...,m, L is also strictly convex.
FunctionL o K is proper, Isc, and convex. Functidno K is
A=Kx, () coercive ifK is injective. FunctionC o K is strictly convex if

whereK the observation operator, which in our finite dimenK Is injective andy; # 0, fori =1, ...,m.

sional setting is simply a matriX < R™*™. This matrix Proof: Function £ is the sum of proper, Isc, coercive,
may model a convolution or some other linear observati@monvex functions. Ify; # 0, for ¢ = 1, ..., m, the functions in
mechanism, such as emission tomography. So that the undiee- sum are also strictly convex, thdss also strictly convex.
lying unknownx can also have the meaning of intensity, it i$-unction £ o K is the composition of a proper, Isc, convex
commonly assumed thatc R’ . It is usually further assumed functions with a linear function, thus it is proper, Isc, and
that all the elements oK are non-negative [11]/ [16][ [38]. convex. IfK is injective, its null set is the zero vector, thus
When dealing with images, we adopt the usual vector notatitim ||+ [|[K x|| = 400, thus £ o K is coercive. Finally,
obtained by stacking the pixels into a vector, in lexicotniap if K is injective andy; # 0, for i = 1,...,m, L is strictly
order. convex, thus so i€ o K. ]



B. Regularization Criteria: Analysis and Synthesis Foramaul 2) Frame Analysis RegularizationThe use of a regu-
tions larizer which is a direct function of the unknown image
(as in [9)(ID)) corresponds to a so-called analysis-based
prior/regularizer[[14]. Another well-known type of analys
based regularization penalizes the norm (typicdlly of the
representation coefficients of on some wavelet basis or
tight frame, given byPx, whereP is the analysis operator
associated with the frame [28]. This approach leads to the
following optimization problem:

Under amaximum a posterioffMAP) or regularization cri-
terion, the image estimate is obtained by solving a vamatio
problem: minimizing an objective function, which includbg
log-likelihood term plus a regularizer [17], [26], [38], der
a positivity constraint. We will now describe three possibl
ways of building such an objective function.

1) Total Variation Regularization:A standard choice for min LA(x) (11)
regularization of digital image restoration/reconsticiprob- x ’
lems is the isotropic discrete TV regularizef [4], where FA stands foframe analysisand
LA(x) = LIKx) + 7([Px]1 + try (X); (12)

TV(x) = 34/ (A2 + (A2, ®)
s=1

as abover is the regularization parameter aq@ imposes the
. _ _ ~non-negativity constraint on the estimate. The next pritioos
where(Ayx andA{x) denote the horizontal and vertical firstaddresses the existence and uniqueness of minimizet§of

order differences at pixel, respectively. This regularizer is a . _ , CEA .
discrete version of the TV regularizer proposedlin| [31]. The Proposition 4: Consider the functior.™ defined in [(1P).

resulting optimization problem is a) LA is proper, Isc, convex, and coercive, thus has a
minimizer.
min L™ (x) 9) b) If K is injective andy; # 0, for i = 1,...,m, then
x L™ is strictly convex with a unique minimizer.
with Proof:
LWV(x) = L(Kx) 4+ 7 TV(x) + tre (%), (10) a)  The functionsg:, |-|l: oP, and£o K (Proposition
[2) are proper, Isc, and convex, thus so is their sum.
wherer € R, is the regularization parameter and the role Furthermore, sincé is the analysis operator of a
of wgr, the indicator of the first orthant, is to impose the tight frame, its null space is simply the zero vector,
non-negativity constraint on the estimate. The next pritjpos thus|| - ||1 o P is coercive.
concerns the existence and uniqueness of minimizeds"6f b) If K is injective andy; #0, fori=1,....m, Lo K
Proposition 3: Consider the functiod.™ defined in [ID). is strictly convex (Propositiofi 2), thus so 5" and
its minimizer is unique.
a) L™ is proper, Isc, and convex. -
b) If the intersection of the space of constant images

{x=a(1,1,..,1), a € R} (which is the null space  3) Frame Synthesis Regularizatiofinally, another well-
of TV) with the null space ofK is just the zero known class of approaches is known as synthesis-based [14].

vector, thenL™ is coercive, and{9) has a solutionHere, the unknown image is represented on a framg, (

c) If K is injective, then[(D) has a solution. of wavelets, curvelets, or other multi-scale system) areh th
d) If K € R7*", and at least one element & is the coefficients of this representation are estimated frioen t
strictly positive, then[{9) has a solution. observed data, under some regularizer. Wih ¢ R"*¢
e) If K is injective andy; # 0, for i = 1,...,m, then denoting the synthesis matrix of the frame, the image is
L™ is coercive and strictly convex thus there is dritten asx = W's, wheres is the vector of representation
unique solution. coefficients, and the resulting optimization problem is
Proof: min LFS(s) (13)

a) The functionsm, TV, and £ o K (Proposition R)

) . where FS stands fdrame synthesiand
are proper, Isc, and convex, thus so is their sum.

b)  Similar to [5]. LFS(s) = LKW s) + 7[s]l1 + trn (W s). (14)
©) If K is injective, IE, null space 1S just the zero VeCtorNaturaIIy, the indicator functiong~ forcing the image esti-

thus Lo K and L™ are coercive. ate to be non-negative is applied to the ima¥es and not
d) If all the elements oK are non-negative and at least" 9 PP

its coefficients. The next proposition addresses the axiste

one is positive, then the constant vectarl,...,1) and uniqueness of minimizers &

doesn’t belong to the null space Bf and the result

follows from (b). Proposition 5: Consider the functiod.™ defined in [T4).

e) If Kisinjective andy; #0,fori=1,...,m, LoK  a)  LFSis proper, Isc, convex, and coercive, thus has a
is strictly convex (Propositionl 2), thus sois" and minimizer.
its minimizer is unique. b) If KW is injective andy; # 0, for i = 1,...,m,

m then LFS is strictly convex with a unique minimizer.



Proof: According to Theoreril1, it is not necessary to exactly solve
a) The functionsigr o W, || - |1, and £ o KW the minimizations in lines 3 and 4 of ADMM: as long as

(Propositior[2) are proper, Isc, and convex, thus dB€ sequences of errors are absolutely summable, conwergen

is their sum. Furthermore, sindg- ||; is coercive, IS not compromised. As shown in Sectibn1V-D, this fact is

LFS is coercive. quite relevant in designing instances of ADMM, when these

b) Same proof as that of Propositibh 4 (b). minimizations lack closed form solutions.
The proof of Theorenl]l is based on the equivalence

" between ADMM and the DRS method applied to the dual
of problem [I5). For recent and comprehensive reviews of
lIl. THE ALTERNATING DIRECTION METHOD OF ADMM, DRS, and their relationship with Bregman and split-
MULTIPLIERS (ADMM) Bregman methods, see [15], [36].

A. The Standard ADMM

The key tool in this paper is thalternating direction B: A Variant of ADMM
method of multiplier{ADMM) [L3], [20], [21]. Consider an  Notice that the ADMM and the associated convergence

unconstrained problem of the form theorem presented in the previous subsection apply to -objec
. tive functions of the form[(15)j.e., which are the sum of
ey fi(z) + f2(G z), (15)  two functions. The fact that our objective functiofis (8)I)1

B B and [I3) involve more than two terms raises the following
where f, : R? = R, fo : R — R, andG € RP*%. The question: what is the best way of mapping an objective with

ADMM for this problem is defined in Fid.]1. more than two terms intd_(15) so that the resulting ADMM is
easily applicable and the conditions of Theodgm 1 still hold
Algorithm ADMM In this section, we give an answer to this question, whict wil
1. Setk =0, choosen > 0, uo, anddo. constitute the core of our approach.
2. repeat , B} ) Consider a generalization of problem(15), where instead of
3 Zit1 € argming fi(z) + 5 (G2 —we — dillz two functions, we havel functions, that is,
4, Ujt1 € argming fo(u) + £|G zey1 — u — di|3 J
5 dk+1 —di — (G Zi+1 — uk+1) min Z gJ(H(7) Z), (17)
6 ke k+1 zeR? 7
7. until stopping criterion is satisfied. _ .
whereg; : R?» — R are closed, proper, convex functions,
Fig. 1. The ADMM algorithm. and HU) € RPi*? are arbitrary matrices. The minimization
problem [IV) can be written a$ (15) using the following
For later reference, we now recall a theorem by Ecksteﬁzﬁrrespondencej:l =0,
and Bertsekas in which convergence of (a generalized versio HD
of) ADMM is shown. G — . € RPX4, (18)
Theorem 1 (Eckstein-Bertsekas, [13Fonsider problem H()

(I5), where G ¢ Rr*< has full column rank and
fi - R* - Randf, : RP — R are closed, proper,
convex functions. Consider arbitragy> 0 andug,dy € RP. J )

Let{n, >0, k=0,1,..} and{p, > 0, k = 0,1,...} be two fo(w) =3 g; (), (19)
sequences such that 7=t

wherep = p; +--- + py, and f, : RP*4 — R given by

o o whereu?) € RP andu = [(u)T, ..., (u)T]T € RP,
D mk<oo and > pr < 0. We are now in position to apply ADMM. The resulting
0 =0 algorithm has exactly the same structure as the one inFig. 1
with
Consider three sequencgs, € RY, k = 0,1,..}, {u; € aw u®
RP, k=0,1,...}, and{d, € R?, k =0,1,...} that satisfy F k
dk = . I uk = .
21 — argmin f1(z) + %HGz—uk—dkH%H < m a ul?)
Huk“ — argmin fa(u) + E”sz+1_u_dk”§H < The fact thatf, = 0 turns Step 3 of the algorithm into a
u 2 simple quadratic minimization problem, which has a unique
and solution if G has full column rank:
dit1 = di = (G Zp1 — Upsr). (16) argmzin HGZ - CkH; = (GTG)_1 GTCk, (20)
Then, if [1%) has a solution, say, the sequencéz} con- J 1
verges taz*. If (I5) does not have a solution, then at least one = [Z(H(i))TH(j)} Z(H(j))TCg)’
of the sequencéay } or{d;} diverges. = =



where(,;, = u;, + d; (and, naturallyggcj) = ugcj) + dl(cj)) and Algorithm Poi(sl?on (gTaggs)De(i??vol(gt)ion(ggl AL (PIDAL-TV)
the second equality results from the particular structdré&o ; Choofeio sy, ug,dy, dy, g, g, andr. Setk < 0.
. . repeal
in (18). 3 ¢ y® 4 g
Furthermore, our particular way of mapping probldm] (17) y y y
4

into problem [(Ib) allows decoupling the minimization in [ste ¢ —ul® +a?

4 of ADMM into a set of.J independent ones. In fact, 5. ¢®  u® 4 a®
: H :
Uppy ¢ argmin fo(u) + 5 |G zps —u - dil3  (21) 6. v = KT+ ¢+ ¢
. . T -1
which can be written as 7 2r41 ¢ (KTK 420)
(1) 8. VS) —~Kzpi — dg)
uk+1 m
: — arg (l)min o g1 (u(l)) 4+ -4 gJ(U_(J)) 9. uﬁzl — argrr{/in gHv — 1/21)”% + Zf(vi,yi)
(J) ult),...,u @ @) i=1
Uit 10. v oz —dy
2
. HD u® dl(cl) 11. ul(i)l + argmin gl\v - u](f) 12+ 7TV(v).
+§ : Zp+1 — - . 12. V](j) — 2y — d](f)
H) u (J) 3) L 3)
d; 9 13. u, <—argn’1v1n5|\v—1/]c I +L]R1(V).
Clearly, the minimizations with respect i@, ..., ul’) are 14, ), «dl) - (Kzppn —ug))
decoupled, thus can be solved separately, leading to 15, dl(e2<21 e d? (g — uﬁ)l)

(4)

i . M (12 3 3 3
ugy, carg min g,V + S [lv-sfy @) |16 4« dlf - @ -wly

17. k—k+1

for j =1,...,J, where 18. until some stopping criterion is satisfied.
s](j) =HD gy, — d]gﬂ, Fig. 2. The PIDAL-TV algorithm.

Eq. (22) defines the so—(c;allledo(re)au proximity operator{9]
of g1, ..., g, applied tos'' ey 7) | respectively, denoted as
o7, APRICTIOSE o 8y, TESPECTVEY @—(T0). The objective function Ifi{10) has the foi(17)hwi
uw =, . s9). (23) J=3,

=L =7TV = (gn 25
Some comments on the algorithm are relevant. Firstly, 9 » 92=T 0V g3 =Ry (25)

being exactly an ADMM, and since all the functiopg, for and
j =1,..,J, are closed, proper, and convex, convergence is HY =K, H® =1, H® =1L (26)
guaranteed G has full column rank. This full column rank
condition, which is also required for the inverse [n](20) tahe resulting ADMM algorithm, which we call PIDAL-TV
exist, will be studied in the next section for each of the #gec (Poisson image deconvolution by augmented Lagrangian —
problems considered in this paper. total variation), is shown in Fid.] 2.

For some functions, this mapping can be computed exactly
in closed form. For example, if;(x) = ||x||1, the correspond-

ing proximity operator®,, ,,, is simply a soft threshold, B. Implementation Aspects and Computational Cost of

PIDAL-TV

Wy, /u(v) = sofi(v,1/p1) = sign(v) © max{|v| — (1/p), 0}, Notice that line 7 of PIDAL-TV corresponds tb 20) for the
particular form of matrixG in this problem:G = [KT I 1]7
h(E'See [2b) and(26)), which is of course of full column rank.
Moreover, if K models a periodic convolution, it is a block
circulant matrix and the inversion in line 7 of the algorithm
On be implemented i®(nlogn) operations, via the FFT
Igorithm. Although this is a well-known fact, we includeeth
ivation in the next paragraph, for the sake of completgene
Assuming that the convolution is periodig& is block-
circulant with circulant blocks and can be factorized as

where sign-) denotes the component-wise application of t
sign function, ® denotes the component-wise produft|
denotes the vector of absolute values of the elements afd
the maximum is computed in a component-wise fashion. F
other functions, the corresponding Moreau proximity opmra
does not have a simple close form solution and needs to
computed numerically.

IV. POISSONIAN IMAGE RECONSTRUCTION WITH
TV-BASED REGULARIZATION K = U”DU, (27)

A. Applying ADMM whereU is the matrix that represents the 2D discrete Fourier
In this section, we apply the algorithmic framework pretransform (DFT) U = U~! is its inverse U is unitary,i.e.,
sented in Sectiofi III-B to the total-variation-based e¢iie UU = UYU = 1), andD is a diagonal matrix containing



the DFT coefficients of the convolution operator represgntaccording to Theorer] 1, convergence to a minimizer of the
by K. Thus (withK” = K, sinceK is a real matrix) objective function, if one exists, is guaranteed. ]

(KK +21) = (UD*DU+2U"U)"" (28)
- UH (|D|2 4 21)_1 U, (29) D. Convergence of PIDAL-TV: Approximate TV

As is well known, the TV denoising problem has no
closed form solution, and many iterative algorithms havenbe
proposed to solve it (seel[4].1[6]._[10], [31], and reference
therein). Here, we adopt Chambolle’s algoritim [4].

h Of course, in practice, Chambolle’s (or any other itergtive
algorithm can only run for a finite number of iterations, thus
the minimization in line 11 of PIDAL-TV can only be solved

where (-)* denotes complex conjugate afid|? the squared
absolute values of the entriesbf Since|D|?+2 I is diagonal,
its inversion hasD(n) cost. Products byU and U can be
carried out withO(nlogn) cost using the FFT algorithm.

The minimization in line 9 of PIDAL-TV is separable. Wit
respect to each component, it has the form

min {v + g, (v) — y log(vy) + ﬁ(v — V)2} ) (30) approximately. However, as stated in Theorein 1, this will
v 2 not compromise the convergence of ADMM/PIDAL-TV, if
It is simple to show that the solution df (30) leads to the corresponding error sequence is summable. To achieve
) ) N this goal, we adopt a simple procedure in which the internal
uglk)ﬂ =3 ,jz(lk) 4 \/(Vz(lk) _ _> +4y; |, (31) Vvariables of Chambolle’s algorithm (the discrete gradiese
Iz K [4]) are initialized, in each iteration of PIDAL-TV, with tise

obtained in the previous iteration. We will now formalizésth

where z/flk) denotes the-th component Ofl/,(:). Notice that idea and provide experimental evidence that this procedure
uz(,lk)+1 is always a non-negative quantity. does produce a summable error sequenc?.

The minimization in line 11 of PIDAL-TV is, by definition,  Let us define3 = 7/, and let(s, q) = 5y (r, p) be the
the Moreau proximity operato® ., rv : R™ — R™ [9], result of runningt iterations of Chambolle’s algorithm with
which corresponds to applying TV-denoising ﬂ»éQ). Below, its internal variables initialized gb, wheres is the obtained
we address in detail the issue of how to implement th(genoised) image (which is approximatelystv(r)) and q
operator and its implications to the convergence of PIDALthe final values of the internal variables. Consider now two
TV. Suffice it to say here that most TV-denoising algorithmgossible implementations of line 11 of PIDAL-TV:
haveO(n) cost.

(2,a) ) (2)
The minimization in line 13 of PIDAL-TV corresponds to 11(a). (i1 Pet) = Warv(v,pe)  (33)
the projection ofu,(f’) onto the first orthant, thus 11(b). (u&ﬁ)v ) - ‘i’g)rv(lfgf),l))- (34)
u,(:fgl = max {u,(f), 0} , (32) Implementationi1(a) uses the proposed internal variables ini-

tialization, whereas iri1(b) the internal variables are always

where the maximum is to be understood in a component-Wiggialized to the same values (usually zeros). Considav no
sense; this prOjectlor_l has_ of cour@e_n) cost. the corresponding error sequences
From the observations in the previous paragraphs, the com-

putational costs of the lines of PIDAL-TV are the following. Pl = Hu,(fﬁ) -y TV(V,(CQ))H (35)
Lines 3, 4, 5, 9, 10, 11, 12, 13, 15, and 16 havén)

. () _ (2,) i} (2) 36
cost. Lines 6, 7, 8, and 14 hav@(nlogn) cost. Thus the Pr = || Wy pv(v )]l - (36)

computational cost of PIDAL-TV scales @¥(n logn). Notice that since the two other minimizations (lines 9 an§l 13

are solved exactly, the sequenqé%) and p,gb) correspond to
C. Convergence of PIDAL-TV: Exact TV the sequence;, in Theoren(lL.

Convergence of PIDAL-TV is addressed by the following The following experiment provides evidence théf) is
corollary of Theoreni]1, for the (ideal) case whebe., ) tv  summable, bup,gb) is not. Consider the same setup as in the
(line 11) is computed exactly. The minimizations in lines $rst experiment in[[37]: the original image is a portion of
and 13 have the closed-form solutions given[inl (31) andl (32he Cameraman image scaled to a maximum value of 3000

L o and then blurred with a Gaussian kernel of unit variance; the
Corollary 1: If the minimizations in lines 9, 11, and 13 of,

. observed image is generated accordindto (1). As’in [37], we
PIDAL-TV are solved exactly, then the algorithm converges {o, .. _ 0.008 and 1 = 7/50. The number of iterations
a minimizer of [ID), provided one exists. ' '

of Chambolle’s algorithm is set to 5 or 20. To compute
Proof: PIDAL-TV is an instance of ADMM in Fig[, Wy (1) (almost) exactly, we run 4000 iterations of Cham-

where f; = 0 and f, has the form[{19), with/ = 3 and the bolle’s algorithm. In Figur€l3, itis clear that tipéb) sequences

g; functions given in[[25), which are all closed, proper, an@re not even decreasing, let alone summable. In contrast, th

convex. Functionfs is thus also closed, proper, and convessequences,” approach zero, for both choices ofEvidence

Matrix G = [K” I I]7 has full column rank. The minimiza- for the summability of thep,(f) sequences is provided by the

tion in line 4 of ADMM corresponds to lines 9, 11, and 13act that by fitting a function of the formi (1/k)“ to the

of PIDAL-TV, if these minimizations are solved exactly, the tails of these sequencese(, for £ = 20, ...,200), we obtain
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—0@witht=5 1 2 3 1 2
---p‘kb’wnmzs 1. Choosmé ),ué ),ué ),dé ),dé ),dO , b, andr. Setk < 0.
o ith t = 20 2 repea(tl) (1) (1)
______________ —p wiht= 3. d
--------- - = =pPwith t= 20 Gl e wy +dy
4 ¢? —u® 4a?
g 5. ¢ u® ya®
g 6. v — KT 4 PTe? 4 ¢®
i | 7. zp1 — (KTK +21) ',
8. v Kz —all
9 ul? el u.<1)—1+\/(u-(1)—1>2+4y'
k+1 2 i,k w i,k u ?
10 10 G 10° 10. V;(f) — Pz — d;(f)
Iterations (k) "
11. u](ci)l <—argmvin5|\v—vl(f)||2+7’HV||1.
Fig. 3. Error sequence;sg‘) and pg’) for t = 5 andt¢ = 20 (number of @) 3)
iterations of Chambolle’s algorithm) and fitted functiorfstlee form A ¢* to 12. vz —dy

the sequence$p§f), k = 20,21,...200}. 13, “2321  max {VI(CS),O}-
4. adl), «adl) — Kz +ull)
Zafl_ijelzgly‘o;otrh?t:a;g)farger than onev(~ 1.3, for t = 5, and 15, dl(cQ+)1 - dff) P+ U;ﬁ)l
In conclusion, the experiment reported in the previous|16. dl(»c:?l —d¥ — oz + uzi%

paragraph, though of course not a formal proof, strongly|i7. ki=k+1
suggests that by implementing line 11 of PIDAL-TV as[in](33), | 18- until some stopping criterion is satisfied.
the corresponding error sequence (with respect to the exgi&t
minimizations) is summable, thus we can invoke Theorém 1
to state that PIDAL-TV converges. Moreover, this experitnen
shows that this is achieved with a quite small number of
iterations in each call of Chambolle’s algorithm. In all oufor which fast algorithms exist. For example, in the case of
experiments with PIDAL-TV, we thus usE_(33), with= 5. translation-invariant wavelet transforms, these proslugdn
be computed using the undecimated wavelet transform with
V. POISSONIAN IMAGE RECONSTRUCTION WITH O(nlogn) cost [25], [28]. Curvelets also constitute a Parseval
FRAME-BASED REGULARIZATION frame for which fastO(nlogn) implementations of the for-
. . . ard and inverse transform exist [3]. Yet another example of
an\évfhgc;\;\;r%c:;fg dtzsnftrhaerggEﬁf:gmanaz)s's criterion (1J§Tredundant Parseva}I frar_ne is prov_ided by complex wavelgts,
' with the corresponding direct and inverse transforms havin
O(n) cost [24], [34]. In conclusion, for a large class of

4. The PIDAL-FA algorithm.

A. Analysis Criterion choices ofP, the cost of lines 6, 10, and 15 of PIDAL-FA is
In this case, the objective function is given fyl(12), whick(nlogn).
has the form[(1l7) with/ = 3, The expressions in lines 9 and 13 of PIDAL-FA are similar
to those in lines 9 and 13 of PIDAL-TV, respectively; see also
n =L, =711, g93=wr 37 @0), @), and(32).
and The minimization in line 11 is, by definition, the Moreau
HY =K, H?® =p, H® =1L proximity operator of the/; norm [9], which corresponds to

L , a soft-threshold(24).
The resulting instance of ADMM, which we call PIDAL-FA

. o . In summary, from the observations in the previous para-
(where FA stands for *frame analysis”), is shown in Fig. 4ya5ng the computational costs of the lines of PIDAL-FA are

The matrix being inverted in line 7 results from assuming thg, following. Lines 3, 4, 5, 9, 11, 12, 13, and 16 haven)

P is the analysis operator of a 1-tight (Parseval) frame, thUSct |ines 6. 7. 8 10 14. and 15 haWén log n) cost. Thus

2N\T 2) _ T _ H i
(H?)TH® = PTP = 1. Notice that line 7 of PIDAL-FA o computational cost of PIDAL-FA scales @§n logn).
corresponds td_(20) for the particular form of matéiin this Finally, convergence of PIDAL-FA is addressed by the
case,G = [KT PT I]T, which of course has full column following, corollary of Theorentil

rank. As in PIDAL-TV, if K models a convolution, the inverse

(K"K +2I)~" can be computed witt)(n logn) cost, using  Corollary 2: The PIDAL-FA algorithm converges to a min-

the FFT (seel(29)). imizer of [11), provided one exists.
For most tight frames used in image processing, products

by P andP7 correspond to the inverse and direct transforms  Proof: The proof is similar to, but simpler than, that of



Algorithm Poisson Image Deconvolution b;/ AL (PIDAL-FS) INITIALIZATION OFTI'Al\iBELIEllDAL ALGORITHMS.
1. Choosmél), uéQ), ué"), dél), dff), dff , u, andr. Setk < 0.
2. repeat ) )
3. ngl) . u](;) +d}(€1) u(()l) u(()2) u(().i) d(()l) d(()2) d(().i)
) @) @) PIDAL-TV y y y 0 0 0
4 Cr  —uw +dy PIDAL-FA | vy Py y 0 0 0
PIDAL-FS WTKTy | KT 0
5 Cf’) euf’) +d§€3) y y y 0 0
6. v WTKTCI(:) + C;f) + WTC;(j)
-1 . . .
7. zpr1 — (WIKTKW + 1+ WIW) "y, inversion formula yields
1 (1)
8 ) e KWa —d (WHKIK + )W + 1) =
1 1 1\? -l
o ulies y;},g_fﬂug},g_;) +4yz~> - I—WH(WWH+(KHK+I) ) W
2) (2) H H -1\ !
0. vz -df = I-WA(1+ (KK+1) ) W, (38)
(2) (2)
11. < SO s . . .
Uiy € SO, /) Using the factorizatior({27), we have
12. v e Wz —adl? N1 .
H - _ H 2 -1\~
13. “/(cﬁl <—max{u§€3),0}. (I+(K K+I) ) =U (I+(|D| +I) ) U, (39)
14, Al —d) KWz +ul)) where both inversions havé(n) cost since|D|? and I
1 42 d® g u® are diagonal, thus products by the matrix in](39) have the
' k+1 k P Tk O(nlogn) cost associated to the FFT implementation of the
16. AP «dP — Wz, +ul) products byU and U*.
17. k:i=k+1 e leading cost of line 7 o - iven
+ The leading t of line 7 of PIDAL-FS (g bi (38
18. until some stopping criterion is satisfied. will thus be eitherO(nlogn) or the cost of the products

by W# and W. As mentioned above, for a large class of
choices of frames, matrix-vector products By and W#
haveO(nlogn) cost.

From the observations in the previous paragraphs, the com-
Corollary[1, since all the minimizations involved are s@vepytational costs of the lines of PIDAL-FS are the following.
exactly in closed form. Clearly, matria = [K” P I" |jnes 3, 4, 5, 9, 10, 11, 12, 13, 15, and 16 ha¥¢n)
has full column rank, thus Theordm 1 guarantees convergegegt. Lines 6, 7, 8, and 14 hav@(nlogn) cost. Thus the
to a minimizer of the objective function. B computational cost of PIDAL-FS scales &nlogn).

Finally, convergence of PIDAL-FS is addressed by the
following corollary of Theoreni]1.

Fig. 5. The PIDAL-FS algorithm.

B. Synthesis Criterion ) .
Corollary 3: The PIDAL-FS algorithm converges to a mini-

In the synthesis formulation, the objective function isegiv mjzer of [13), provided one exists.
by (3), which has the forni.(17) withi = 3,

Proof: The proof is similar to that of Corollafy 2, since all
n =L, =711, g93=wn the minimizations involved are solved exactly in closedror
Clearly, matrixG = [WTK” I W77 has full column
rank, thus Theorernl 1 guarantees convergence to a minimizer
of the objective function. [ ]

and
HY =Kw, H? =1, H® =w.

The resulting ADMM algorithm, which we call PIDAL-FS
(where FS stands for “frame synthesis”), is shown in Elg. 5.

Notice that line 7 of PIDAL-FS corresponds to [20) for VI. EXPERIMENTS
the particular form of matrixG in this problem: G = We now report experiments where PIDAL is compared with
[(KW)T T WT]T. This matrix has of course full column other state-of-the-art methods, namely those proposét2ii [
rank. However, even iK models a periodic convolution (thus[19], [37]. All the algorithms are implemented in MATLAB
is block circulant), the question remains of how to effichgnt and the experiments are carried out on a PC with a 3.0GHz
compute the matrix inverse in line 7, sinBeW is not block Intel Core2Extreme CPU, with 4Gb of RAM, under Microsoft
circulant. The next paragraph shows how to sidestep thMindows Vista. Unless otherwise indicated, we adjust tlge re

difficulty. ularization parameter to achieve the highestmprovement in
Consider that matrixW corresponds to a 1-tight (Parsesignal-noise-ratio(ISNR = 10log;, (|ly — x||3/|/x — x/13)).
val) frame,i.e, WW?® = I, and start by noticing that The PIDAL algorithms are initialized as shown in Table I.

WIKTKW + 1+ WI'w = WHKAK + )W + L According to Theorerfil1, ADMM (thus PIDAL) converges
Applying the Sherman-Morrison-Woodbury (SMW) matrixfor any choice ofy > 0. However, this parameter does



influence the speed of the algorithms. To our knowledgeegther time (seconds)

is work on methods to choose this parameter for optimal speed 05 1 15 2 25 3 85 4 45
in our experiments, we use the following rule of thumb, found sy et T

to achieve satisfactory resultg:= 60 7/M, where M is the ul
maximum intensity of the original image. We have observed
that the results do not change significantly if this paramiste
changed to one order of magnitude below or above this choice.
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A. Comparison with[[3[7]

We begin by comparing with the algorithms (PIDSplit and ol 180
PIDSplit+) proposed in[37], which (as acknowledged by the 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ -
authors of [[37]) is based on the earlier version of PIDAL- -

TV [L7]. The setup was already described in Secfion 1V-D: _ _ _
the original image is a portiors{ x 84) of the Cameraman £, EXoltin & beresn sbeoie srotua®) ane moserent
image, scaled to a maximum value of 3000 and blurred Wigh} the experiment of Sectidn VIIA.

a Gaussian kernel of unit variance; the observed image is
generated according t@1(1); the regularization parameter i
set tor = 0.008. In the experiments reported ih_[37], the
TV denoising step of PIDAL-TV is implemented by an inner
iterative algorithm with a tight stopping criterion basetdtbe
change between two consecutive images. Our implementation
of PIDAL-TV, as explained in Sectidn IVAD, uses a small and
fixed number of iterations (just 5) of Chambolle’s algorithm
which is initialized as explained in that section. Becaukda-P
Split and PIDSplit+ have no inner loop, each of its iterasion

is roughly equivalent to one iteration of PIDAL-TV with just
one iteration of Chambolle’s algorithm. In_[37], PIDSplitch
PIDSplit+ were run for 2150 iterations; we thus run PIDAL-
TV for 2150/5 = 430 iterations, corresponding to roughly the
same amount of computation. Hig. 6 shows the evolution of the
mean absolute errofMAE = ||Xx—x||; /n) and ISNR along the
first 160 iterations of PIDAL-TV (as well as elapsed time)sit
clear that convergence is achieved after less than 14Gidesa
(4.3 seconds, in our computer). This is dramatically less th
what is reported in[[37] for PIDAL-TV; in terms of iterationsrig. 7. Experiment of Sectiofi - VIIA. Top row: original (leftblurred and
of PIDSplit and PIDSplit+, this corresponds to approxinate noisy image (right). Bottom row: estimate from [37]; estimay PIDAL-TV
150 x 5 = 750 iterations, thus also much less than the 215¢PNR=4-8¢B).

iterations (11 seconds) reported in that work. Finally,. Eg

shows the original, observed, and restored images; as texjpec ime (ssconds)

the image estimates produced by PIDSplit and PIDAL-TV are Q@ 02 04 06 08 1 12 e

very similar.

Finally, we also tested PIDAL-FA and PIDAL-FS on the 5t
same example, using a fully redundant Haar frame. The plots
of ISNR and MAE are presented in Fidd. 8 ddd 9, while the
estimated images are shown in Hig] 10.

These results show that, in this example, PIDAL-FA per-
forms slightly better than PIDAL-TV in terms of ISNR and
similarly in terms of MAE, with PIDAL-FA achieving its
best estimate faster than PIDAL-TV. The synthesis-based
criterion implemented by PIDAL-FS is a little worse in terms
of both ISNR and MAE, and PIDAL-FS also takes longer o
than PIDAL-FA to achieve its best estimate. This poorer S -+
performance of the synthesis formulation (in line with reice _ ' '
results in 35) was also found in all the experiments rembrt 1, & S f ST, Erolon o e s oo
below, so we will only present results from PIDAL-TV andejapsed time of PIDAL-FA.

PIDAL-FA.
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Fig. 9. Experiment of Section V[3A. Evolution of thmean absolute error Fig 11, Experiment of Sectidi VIIB. Evolution of thsean absolute error
(MAE) andimprovement in signal-noise-rati)SNR) along the iterations and (MAE) andimprovement in signal-noise-ratigSNR) along the iterations and

elapsed time of PIDAL-FS. elapsed time of PIDAL-TV.

Fig. 10. Experiment of Section VHA. Left: PIDAL-FA estin@t(ISNR =
5.3dB). Right: PIDAL-FS estimate (ISNR = 4.3dB).

B. Comparison with[[19]

The next experiment follows [19]: the original image is the
complete £56 x 256) Cameraman, scaled to a maximum value
of 17600, the blur is9 x 9 uniform. As in the experiment

i ; ; o i ; 9. 12. Experiment of Sectidn_VIIB. Top row: blurred noisydge (left)
r(?poded In. the previous SUbseC.tlon’ this is a hlgh SNI}_:ng estimate from_[19] (ISNR=6.61dB). Bottom row: PIDAL-T&stimate
situation. Fig[IlL shows the evolution of the MAE and ISNlﬂeﬂ’ ISNR = 7.0dB); PIDAL-FA estimate (right, ISNR=6.98}1
along the execution of PIDAL-TV; it is clear that convergenc

is achieved after about 160 iterations (25 seconds, in our co
puter). A detail of the blurred, and estimated images (fi&] [ better performance.é., lower MAE) than the others, except

and using PIDAL-TV and PIDAL-FA) are shown in Fig.]12.for one of the images (a microscopy cell image) where RL-
Although the TV and FA regularizers are considerably simpl&IRS outperforms DFS. For this reason, we will report results
than the locally adaptive approximation techniques used éomparing PIDAL-TV and PIDAL-FA versus DFS and RL-

[19], both PIDAL-TV and PIDAL-FA achieve higher ISNR MRS. For PIDAL-FA, we use a redundant Haar frame for the

values (7.0dB and 6.95dB, respectively) than that repdriedCameraman image and Daubechies-4 for the other images. As
[19] (6.61dB). in [12], the original images are scaled to a maximum value

M, belonging to{5, 30,100, 255}, and then blurred by @x 7
. . uniform filter.

C. Comparison with[[IP] The DFS algorithm does not include a stopping criterion,

In the last set of experiments we compare our approach Wifth the results reported if [12] having been obtained by
another recent state-of-the-art algorithm (herein reféto as running a fixed number (200) of iterations. In order to corepar
DFS), proposed in_[12], for which the MATLAB implemen-the running times of PIDAL-TV, PIDAL-FA, and DFS, we run
tation is available atwww.greyc.ensicaen.fr/~fdupe. DFS until the MAE decreases less than 0.01% between two
That work includes comparisons with other methods, nameinsecutive iterations. Our algorithms are stopped when th
Richardson-Lucy with multi-resolution support waveleg+e following condition is met:
ularization (RL-MRS) [[39]; fast translation invariant ¢re
pruning reconstruction (FTITPR) [44]; Richardson-Lucyttwi w

Zg—1||2

total variation regularization (RL-TV) [11]. The results [12]
show that the algorithm therein proposed generally ackiewsith 6 = 0.005 if M = 5 andé = 0.001 in all the other cases.

<9,
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Notice that this favors DFS, since a stopping criterion dase A function f is called coercive if it verifies

on MAE is not applicable in practice due to the absence &ifn) x| f(x) = +oo. Proper, Isc, coercive functions

the original image. play a key role in optimization via the following theoren [9]
The results reported in Tabld Il show that, in 9 out of the

12 experiments, either PIDAL-TV or PIDAL-FA achieves the Theorem 2:If f is a proper, Isc, coercive, convex function,

lowest MAE. Notice however, that the main goal of this papehen the setrgminge» f(x) is nonempty.

was not to introduce a new restoration criterion aiming at The next theorem concerns strictly convex functions.

obtaining the lowest possible MAE (or any other performance Theorem 3:If f is a strictly convex function, the set

measure), but rather to introduce algorithms to solve t@@gminxexf(X) possesses at most one element.

optimization problems resulting from variational formtides

of Poissonian image restoration. In terms of computational

efficiency, PIDAL-TV and PIDAL-FA are clearly faster than REFERENCES
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TABLE Il
RESULTS OF THE COMPARISON OPIDAL-TV AND PIDAL-FA WITH THE ALGORITHMS PROPOSED INJ12] AND [39] (AVERAGE OVER 10 RUNS); THE
REPORTED TIMES ARE IN SECONDS

PIDAL-TV PIDAL-FA DFS [12] RL-MRS [39]
Image [ M ]| MAE | iterations | time | MAE | iterations | time | MAE | iterations | time MAE
Cameraman| 5 0.27 120 22 0.26 70 13 0.35 6 45 0.37
Cameraman| 30 1.29 51 9.1 1.22 39 7.4 1.47 98 75 2.06
Cameraman| 100 || 3.99 33 6.0 | 3.63 36 6.8 | 431 426 318 5.58
Cameraman| 255 8.99 32 5.8 8.45 37 7.0 | 10.26 480 358 12.3
Neuron 5 0.17 117 36 | 0.18 66 29 | 0.19 6 3.9 0.19
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