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Accelerating X-Ray Data Collection Using
Pyramid Beam Ray Casting Geometries

Amir Averbuch, Guy Lifschitz, and Yoel Shkolnisky

Abstract—Image reconstruction from its projections is a neces-
sity in many applications such as medical (CT), security, inspec-
tion, and others. This paper extends the 2-D Fan-beam method in
[2] to 3-D. The algorithm, called Pyramid Beam (PB), is based upon
the parallel reconstruction algorithm in [1]. It allows fast capturing
of the scanned data, and in 3-D, the reconstructions are based upon
the discrete X-ray transform [1]. The PB geometries are reordered
to fit parallel projection geometry. The underlying idea is to use the
algorithm in [1] by porting the proposed PB geometries to fit the
algorithm in [1]. The complexity of the algorithm is comparable
with the 3-D FFT. The results show excellent reconstruction qual-
ities while being simple for practical use.

Index Terms—Computerized tomography, X-Ray tomography.

I. INTRODUCTION

X -RAY imaging is a critical component in many applica-
tions such as medical scans (CT), baggage scanning in

airports, material inspection, cars tire inspection, food inspec-
tion, biology, electronics, and many more.

In practice, emitters emanating electromagnetic radiation and
detectors, which measure the radiation power arrived at them,
are used in X-ray tomography. From the power at the detectors,
it is possible to reconstruct a 3-D function of the radiance atten-
uation. The attenuation factor is unique for different materials.
Recently, 3-D reconstructions become practical.

In this paper, we present several related methods to accel-
erate 3-D X-ray data acquisition when only one emitter is used.
These methods are based upon the PB geometry. Its perfor-
mance is compared with the parallel beam geometry. The orig-
inal (source) image is reconstructed by the application of the
inverse X-ray algorithm [1].

All the proposed methods in the paper are based upon careful
positioning of multiple detectors to enable simultaneous col-
lection of many rays that are emitted in all directions by one
emitter. The acquisition geometries described in this paper are:
1) Boundary Aligned emitter Pyramid Beam (BAPB). 2) Sliding
Boundary Aligned emitter Pyramid Beam (SBAPB), which is a
variant of the BAPB method in which the detectors are utilized

Manuscript received June 06, 2009; revised February 13, 2010; accepted June
24, 2010. Date of publication August 05, 2010; date of current version January
14, 2011. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Rick P. Millane.

A. Averbuch is with the School of Computer Science, Tel Aviv University,
Tel Aviv 69978, Israel (e-mail: amir@math.tau.ac.il).

G. Lifschitz and Y. Shkolnisky are with the Department of Applied Mathe-
matics, School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978,
Israel (e-mail: prometheus.the.great@gmail.com, yoelsh@post.tau.ac.il).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2010.2064328

more efficiently. This method reduces the number of detectors.
3) Mirrored Pyramid Beam (MPB), which collects only a por-
tion of the data required for the reconstruction. The rest of the
data is collected by mirroring the rays.

The MPB method requires that the emitter is located on
planes inside the bounding volume of the object. Therefore,
it is applicable for scanning simultaneously several separated
objects in different X-ray chambers. The BAPB method has
no such restrictions. In Section V-A, we show how to reduce
the number of detectors to the minimum dictated by [1], by
positioning them on moving boards. This idea is applicable to
all the previously mentioned methods. In our implementation,
the geometry in each axis is the same, but nevertheless, each
axis can have its own geometry.

The proposed PB ray casting topology speeds the 3-D X-ray
data acquisition by a factor of in comparison to the par-
allel beam topology.

The structure of the paper is as follows. Section II reviews re-
lated works on fast inversion algorithms of the X-ray transform
and fast data acquisition using pyramid beams or cone beams. In
Section III, the X-ray transform and its discrete version, which
appeared in [1], are described. Section IV describes the parallel
beam data acquisition and reconstruction from X-ray data. The
pyramid beam projections are defined in Section V, which con-
tains a description of several acquisition methods and how to
convert from pyramid beam projection data into parallel projec-
tion data.

II. RELATED WORKS

Two main approaches are used to reconstruct 3-D volumes
from X-ray projections. The first reconstructs separately 2-D
slices of the image and then concatenates the slices to form a
3-D image. This requires the image to be static to prevent reg-
istration problems. It also may generate discontinuities in the
reconstructed 3-D image. The second generalizes the 2-D re-
construction algorithms to 3-D.

One approach for 3-D object segmentation and reconstruction
is used in [8], [9]. [10] registers the 2-D slices and then recon-
structs the 3-D object. A technique, which improves the quality
of 2-D slices and then uses the improved slices to construct the
3-D image via image processing methods, is described in [11],
[12].

In this paper, we are interested in accelerating the acquisition
while using a fast 3-D X-ray reconstruction algorithm in [1].
Usually, fast 3-D X-ray reconstruction algorithms are based
upon the Fourier slice theorem. Some of these algorithms
interpolate the polar grid into a Cartesian grid. The Fourier
transform is sensitive to interpolation and the reconstructed
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image suffers from distortions. The filtered back-projection
based algorithms overcome this problem but their complexity
is where is the image resolution in each axis.
Accurate reconstruction that does not necessitate interpolation
is described in [1] and it is based upon the constructions in [3],
[4].

Bresler et al. [18] propose an hierarchical algorithm for ap-
plying the back-projection of the 3-D Radon transform. Their
algorithm is a “native” 3-D algorithm and does not rely on fac-
torization of the 3-D Radon transform into pairs of 2-D Radon
transforms, which makes the algorithm independent of the sam-
pling geometry. The algorithm in [18] decomposes each pro-
jection into a sum of eight back-projections, each having
plane-integrals projections onto volumes. Each volume is
one octant of the reconstruction. The algorithms are applied re-
cursively until each octant’s size is one voxel. The complexity
of the algorithm is .

Another family of reconstruction algorithms is the multilevel
inversion algorithms. Those divide the input sinogram to a
number of subsinograms that use either exact or approximate
decomposition algorithms. The sinograms are repeatedly subdi-
vided until they are represented by one voxel. Then, the inverse
transformation is applied to reconstruct the subvolumes. The
subvolumes are aggregated to form the final volume. An exact
method to decompose the sinograms is described in [13], which
also presents a fast algorithm for approximate reconstruction,
and a method that combines both.

Maximum likelihood expectation maximization ([14]) is an
iterative reconstruction method, in which an initial reconstruc-
tion is guessed, and then updated in order to minimize the dif-
ference between the projections of the reconstructed image and
the measured projections. It describes a cone beam data acqui-
sition method.

An algorithm that decomposes the image’s frequency domain
into subbands and reconstructs the subbands on a down-sampled
grid is given in [17].

Cone beam projection methods, which are based upon accel-
erating data acquisition by measuring multiple rays emitted si-
multaneously from a single source, are given in [14]–[16].

This paper proposes a fast acquisition algorithm which is a
variation of the cone beam method. The projection is assumed
to be a collection of rays that form a pyramid. These rays are
sampled simultaneously. The reconstruction algorithm, which
is described in [1], is algebraically accurate, preserves the geo-
metric properties of the continuous transforms, and is rapidly
invertible.

III. X-RAY TRANSFORM

The proposed fast data acquisition methods in this paper are
based upon the 3-D X-ray transform geometry, described in [1].
This 3-D transform is outlined here.

The X-ray transform of a 3-D function is a
collection of all line integrals of over all lines in 3-D space. A
line , , in 3-D space is defined by its direction
unit vector and a point that the line passes
through.

Definition III-1. Direction by Angles: Two angles
define a unit direction vector by rotating the unit
vector by around the Y axis, and then rotating
the resulting vector by around the Z axis. is also known as
the vector heading and as the vector elevation. A line in
with direction is denoted by .

Definition III-2. Direction by a Point: A point
defines a line direction by a unit vector, denoted by , as
the vector from that point to the origin (0,0,0). That is,

. A line in with is denoted by .
Directions by angles and direction by a point are equivalent.
Definition III-3. Line Integral: The line integral of

over the line , denoted by , is

, , .

From these definitions, the X-ray transform of , de-

noted by , is the set .

In a similar way, the line integral of over the line

, denoted by , is ,

, .
By using these definitions, we get that the X-ray trans-

form of , is equivalently given by
.

Definition III-4. Parallel Projection: A parallel projection of
the X-ray transform is a collection of all the computed line in-
tegrals that have the same direction. These lines are defined by
a specific direction or where ,
and an arbitrary . The projection is denoted by
or , respectively.

The Fourier slice theorem links between the parallel projec-
tions , , and the Fourier transform. It es-
tablishes that the Fourier transform of a parallel projection in the
direction of a 3-D function is the Fourier trans-
form of sampled on a hyper-space perpendicular to

that passes through the origin. Formally,

where is the hyper-space perpendicular to the

vector , that passes through the origin. In other words, the
2-D Fourier transform of the parallel projection equals
to the 3-D Fourier transform of sampled on .

The Fourier slice theorem shows that in order to reconstruct
an image from parallel projections, we need to apply the 2-D
Fourier transform to the projections, reorganize them in 3-D
space to get the Fourier transform of the original image, and
then to apply the 3-D inverse Fourier transform to recover the
original image. The discrete X-ray transform in [1] provides
an algorithm for accurately reconstructing the 3-D
image. It is based upon the reorganization of the Fourier trans-
forms of the projections in the pseudo-polar grid as was ex-
plained in [3], [4].

The invertibility of the algorithm [1] and its validity in rep-
resenting discrete volumes are proven there in details. Here is
a description of how to discretize the image and the underlying
pseudo-polar grid (see [3], [4]).

Following are the definitions that describe a discrete image
and the sets of points defining the lines directions and their trans-
lations. We assume that the image is a discrete 3-D function
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that is defined as
.

According to [1], the projections are separated into three
groups. For that, we define,

Definition III-5: Main axis, denoted , is if
, respectively, where Secondary axes, denoted by and

, are

otherwise otherwise.

The lines in are also partitioned into three subsets. Each
subset is associated with a main axis , or . At each subset
of lines, the absolute value of the angles between the projections
of the lines on the planes , and and the main axis

are smaller than 45 .
Definition III-6. (Lines Division I): The three subsets of the

lines in are

or

or

or

or

or

Loosely speaking, lines that belong to are “closer” to the
main axis than to any other axis. This division covers all the
lines in —see proof in [1].

Lemma III-7: .
From Lemma III-7, Definition III-6 becomes:
Definition III-8. (Lines Division II): The three subsets of the

lines in are

As explained in Definition III-3, a line integral is defined by a
direction and a point the line passes through. The limitations on
the directions of the lines that participate in the discrete X-ray
transform, are given in Definition III-8. Lemma III-9 determines
the minimal set of points required to define lines that produce
nontrivial line integrals.

Lemma III-9. ([1]): Assume that each of the coordinates
of the function are spatially bounded by the

interval . In addition, we restrict the directions to
the set defined in III.8. Then, the minimal set of points, which
is required to define the nontrivial line integrals, includes points
with coordinate and the coordinates and are
bounded by . The lines pass through these points as was
described in Definition III-3.

Definition III-10: Denote by the discrete subset of points
of Lemma III-9 that have the coordinates and

.
Definition III-11: are defined for each by

if , respectively.

The collection of nontrivial line integrals over lines from ,
, is denoted by and , respectively.

For a point , Definition III-2 describes how to de-
termine the line direction. In order to discretize the lines sets in
Definition III-8, a discrete set of points is defined.

Definition III-12. Discrete Set of Directions: A discrete set
of points, denoted by , which includes points with the co-
ordinate and , defines
a discrete subset of the line set , .

For all the points in , the coordinate is equal to 0. Sim-
ilarly, for all the points in , is equal to . Therefore,
these points can be defined uniquely by pairs of values from the
other two coordinates and . This leads to the following
definition.

Definition III-13. Simplified Directions and Translations Sets:
The points in the sets and are defined uniquely by the
pairs and , respectively, . and repre-
sent the coordinate while or represent the coordinate .
These sets of pairs are denoted by and , respectively.

According to [1], the discrete sets and , ,
define the set of line integrals required to arrange the data on
the pseudo-polar grid. This enables to use the fast and accurate
reconstruction method that was described there.

IV. PARALLEL PROJECTION GEOMETRY

The discrete parallel projections with respect to a main axis
are retrieved by restricting the line integrals from Definition

III-4 to the set of lines defined by the points in and (see
Definition III-13). For a point , the discrete parallel

projection , , contains line integrals whose

directions are defined by . For each point , there
is exactly one line integral in the projection that passes through
the point .

The image is bounded in the interval in each axis. The
image resolution at each axis is . This implies that the set of
coordinates is mapped to . The points
in the set , defined in III.10, have the coordinates and

. The points in the set ,
defined in III.12, have the coordinates and

.
In order to understand where the emitter and detector have to

be placed, a specific line is analyzed.
Definition IV-1. Generalized Point Description:

is a point where are the coordinates of , and
, respectively.
Definition IV-2. Generalized Planes: A plane, which is de-

fined by setting the main axis coordinate to a constant value
, , is denoted by .

A line that is defined by the translation point
and by the direction point passes through the
point . From Definition III-2, the line direction is

. Therefore, this line intersects the
planes and at the points and

, respectively, where
and .

The line integrals in the discrete parallel projection are

, where is a specific point in and are
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Fig. 1. Lines defined by the point �� ��� �� and by different �� � �� . (a) Line defined by �� �������. (b) Line defined by �� ������ ����. (c) Line
defined by �� ����������. (d) Line defined by �� ��� ����. (e) All lines directions defined by the set �� .

Fig. 2. Lines defined by �� ���������� and by different �� � �� . (a) Line defined by �� �����������. (b) Line defined by �� ����������. (c) Line defined

by �� ����������. (d) Line defined by �� ���������. (e) Subset of lines from the parallel projection � .

all the points in . Each line passes through a different point
on the plane . Therefore, the lines are parallel as this
method’s name suggests.

For a specific direction defined by the point ,

the process, which calculates the projection
using one emitter, is described in the following. For each
point , the emitter is placed at the point

and the detector is placed at the point
, and

. The emitter’s positions are all in
a square where the coordinates and , are from the
interval . The detectors’ positions are the same as
the emitter except that . This geometry shows that the

emitter and the detectors are being located on parallel planes
and , respectively.

Fig. 1 shows lines from (see Definition III-11), which
are defined by and by different points from .
Fig. 2 shows the lines from which are defined by

and by different points from . In Fig. 2,
the gray dashed line denotes the translation . Fig. 3
describes several subsets of lines from parallel projections at
different directions.

According to Lemma III-9 and the fact that is
bounded in each direction, it is easy to verify that line integrals
over lines with translation greater than 2.0 in one of the dimen-
sions are equal to 0.
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Fig. 3. Parallel projections. A subset of the projection (a) � , (b) � , and (c) � .

Fig. 4. Different views of lines with the same direction �� ����� ����. The emitter is located on the plane � ��� and the detector is located on the plane � ����.

Fig. 4 describes the parallel projection . The
bold lines in Fig. 4 represent the bounding volume of .
The gray lines begin in the plane where the emitter is lo-
cated and end in the plane where the detector is located.
The figure shows that the emitter’s and the detector’s coordi-
nates and , respectively, are in the interval , as was
mentioned earlier.

From Definition III-10, are points on the plane
. Fig. 4 shows that the coordinates and of the points

on the plane are in the interval . It also shows
that lines, which are defined by the points where or

equal or 2.0, are tangent to the bounding volume. For
or , the lines do not intersect the bounding

volume. These results are also true for projections in directions
defined by where or .

The inverse discrete X-ray transform [1] reconstructs the
image from a set of parallel projections. The sets and
together define all the line integrals required to reconstruct the
image.

Definition IV-3. The Input to the Inverse X-ray Transform:
The input to the inverse X-ray transform is all the parallel pro-
jections defined by the sets and . This set, denoted ,
is

The parallel projection is computed for each direc-

tion defined by the point . The projection is a 2-D
array of size . The coordinates of each ele-
ment in the array correspond to a point . The value of

the array element is .
Definition IV-4. Parallel Projections Data Structure: All

the line integrals required to reconstruct the image by the

discrete inverse X-ray transform ([1]), are stored in the array
. The first coordinate in the array is , ,

representing the main axis , or . The following two
coordinates represent the direction of
the line integral where
and . The last two coordinates,

, represent the translation of the
line integral, where and

. Formally

(1)

For specific and all , the
collection of values is the parallel projec-

tions where and

.
In order to measure a parallel projection in a given direction,

the emitter and the detector have to be positioned at lo-
cations. It means that each parallel projection requires
operations. For each main axis , , there are
parallel projections that correspond to different directions. Thus,
filling the data structure requires
operations. Therefore, the total number of operations is
where is the resolution of each dimension.

V. PYRAMID-BEAM (PB) RECONSTRUCTION

The PB data acquisition geometry suggests to use one emitter
and add detectors in order to collect simultaneously the line in-
tegrals in multiple directions. Line integrals in all directions are
measured simultaneously. Therefore, the number of operations
required to collect the projection data is divided by .

In this section, a family of methods, which are based upon PB
geometry, is described. For two constants ,
PB projections are computed by locating the emitter on the
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Fig. 5. Different emitter’s positions in the ���� geometry. (a)���� projection. (b) Emitter located at � ����� ��������.

plane (see Definition IV-2) and the detectors on the
plane . For different PB methods, and have different
values. This geometry allows a simultaneous acquisition of
multiple different line integrals that pass through the same point
and have different directions.

The planes and are parallel. Therefore, the lines
participating in each PB projection form a shape of a square
pyramid. PB projection is defined in a similar way to Definition
III-4.

Definition V-1. PB Projection: A PB projection of the X-ray
transform is a collection of all the computed line integrals that
pass through a specific point and have arbitrary direc-
tions or where . This projection
is denoted by or by .

A PB projection , , is a collection of line

integrals defined by a specific point from the set and by all
the points from the set (see Definition III-13).

The main goal of this paper is to find an efficient method to
collect simultaneously multiple line integrals. In order to recon-
struct the image by the inverse X-ray transform [1], the PB pro-
jections have to be transformed into the data structure de-
fined by (1). This transformation is called reordering. Each data
acquisition method has its own version of reordering algorithm.

The idea is that the algorithm in [1] is efficient and accurate
and so each acquisition method with a different PB geometry is
transformed into the parallel projection methodology described
in Definition III-4.

Several PB methods called , , and are
presented here (see also Section I). For each method, its data
acquisition geometry and its reordering algorithm are described,
and its complexity is analyzed.

A. Boundary Aligned Pyramid Beam Acquisition
Geometry

In BAPB we place the emitter on the planes . To mea-
sure line integrals with different directions that pass through the
same point in the geometry, the emitter is moved in the
plane . Multiple detectors are located on an equally spaced
grid in a square in the plane . Then, only a subset of
the detectors’ values, which correspond to line integrals whose
slopes are bounded by , are stored in the data
structure (see Definition V-4). Fig. 5 displays the pyramid ge-
ometry of BAPB. The tip of the pyramid is on the plane .

The two points and define a
line. This line intersects the plane at the point

. A second line with a different direction ,

which passes through the point , intersects the
planes and at the points
and , respectively. Therefore,
the second line is defined by the points
and . Since , the detectors’ secondary
coordinates satisfy and

, and . Therefore,
the locations of the detectors that are required to collect the line
integrals in the set , have the coordinates ,

. The emitter’s positions have the coordinates
, .
This geometry requires to position the emitter at lo-

cations while spreading detectors on the plane .
From these detectors, only detectors’ values
represent line integrals from the set . How to select these
detectors? Two points from the set define two different
line directions. Two line integrals with different line directions,
which pass through the same point, will be detected by different
detectors.

In order to collect the line integrals given in (see Defi-
nition IV-3), the distance between two neighboring locations of
the emitter is , since for two lines in a parallel projection,
which are defined by the points , and

, the emitter in the geometry must be located
at and . This is illus-
trated in Fig. 6. The emitter is located at two neighboring loca-
tions. The distance between the closest detectors, which contain
line integrals from in the two pyramid projections,
is the same as in the parallel-beam geometry.

By comparing between the and the parallel projec-
tions geometries, we get that the emitter in both methods is lo-
cated on the planes with and coordinates satisfying

.
The geometry leads to poor utilization of the

detectors.
Corollary V-2. Inefficient Detectors Utilization: At each

location of the emitter, only of the detectors,
are line integral values from the set . Moreover, there
are no two neighboring detectors which contain values from

. Either odd or even positioned detectors are used for the
reconstruction.

Fig. 6 visualizes Corollary V-2. In Fig. 6(a) and (b), the de-
tectors are placed in the even and odd positions, respectively.
Fig. 6(c) shows all the detectors that collect line integrals whose
slopes are bounded by .

As was mentioned before, the line integral defined by the
points and , intersects the plane
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Fig. 6. Detectors’ locations for two adjacent emitter’s locations in the ���� geometry. (a) Emitter located at � ����� ��������. (b) Emitter located at
� ���������������. (c) All line integrals whose slopes are bounded by ������.

Fig. 7. Translation of the emitter’s location in ���� geometry. (a) Line defined by �� ��������� and �� ����������� in the ���� geometry. (b) Line
defined by �� ��������� and �� ���������� in the ���� geometry.

at the point . This leads to the following
conclusion.

Corollary V-3. Lines From , Which Pass Through the
Same Point, Appear in Different Pyramid-Beam Pro-
jections: Two line integrals, which are defined by two different
directions and and by one translation

, appear in different projections. These line
integrals will appear in the projections where the emitter is lo-
cated at the points and .

Fig. 7 visualizes Corollary V-3. It shows two lines with a
translation that is defined by . The lines’ directions are
defined by and . In the
geometry, each line is acquired by a different pyramid.

The translation of the emitter in the geometry does
not enable to compute the projections in a similar way as was
defined in V.1. Instead, the emitter is located in positions where

, and vary in the interval with the step .
For each and , the detectors, whose coordinates
are and , generate the
projection.

The projection’s result is a 2-D array of size
. The coordinates of each element in the array correspond to

a pair where . This pair rep-
resents the direction of the line integral in the same way as the
points in the set . This pair together with the emitter’s po-
sition , , de-

fine the pair . The pair , represents
the emitter’s translation point . The points

and , which are defined by , ,
and , can neither be in nor in (see Definition III-13),
respectively. This is due to the fact that half of the detectors’
values do not represent line integrals from the set (see Def-

inition IV-3). The value of the array element is
(see Definition III-3).

Definition V-4. Data Structure: All the line integrals,
computed by the projections, are stored in . Its
first coordinate is , . It represents the main axis ,

or . The following two coordinates,
represent the translation of the line integral where

and . The last
two coordinates represent the direction
of the line integral where and

. Formally

(2)

For specific and all , the
collection of values is the pro-

jection where and

.
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Fig. 8. Sliding detectors positioned on a mobile board that moves together with the emitter. (a) Emitter located at � ����� �������� in the ����� geometry.
(b) Emitter located at � ��������������� in the ����� geometry.

From Corollary V-3 and the size of each projction
in , we get the reordering algorithm for processing effi-
ciently the projections.

Lemma V-5. Reordering of the BAPB Dataset: The data in the
is reordered to fit the parallel projections geometry by

, where , and
. The pair represents the parallel

projections directions where
and . The pair represents the parallel
projections translation , where
and .

Proof: A line with the direction , which passes
through the point , intersects the plane at
the point . Therefore, the coordinates

are transformed to the coordinates in
representing the position . The

range of the translation indices in is . The range
of the emitter’s coordinates and is . The range of
the directions indices in is . The slopes’ ranges
are bounded by . A linear mapping of these ranges shows
that and . Therefore,

.
Translation of the range of the emitter’s positions back
to the range of the indices, shows that the new
index, which represents the coordinate of the emitter, is

. The
second coordinate is transformed similarly. The indices, which
represent the direction, are doubled and then 1 is
subtracted since only the odd indices of the projection belong
to the set of line integrals in , as was shown in Corollary
V-2.

For each main axis there are projec-
tions. At each emitter’s location, all line integrals
are measured simultaneously. Only line integrals
from each projection are used. Therefore, computing the data
structure requires operations, i.e.,
operations.

B. Sliding Boundary Aligned Pyramid Beam
Acquisition Geometry

In order to overcome the low detectors utilization in the
method, a variation of the method is suggested. This

variation uses only detectors. These detectors are

located on a moving board. The distances between the detectors
are doubled in order to collect only line integrals from the set

. In order to collect the correct data when the emitter moves
to its next position, the board with the detectors moves together
with the emitter. Therefore, the detectors’ coordinates and

change at the same amount as the emitter’s coordinates
and . This setting reduces the number of required detectors
by a factor of 25 and, thus, it provides a full utilization of the
detectors.

This setting is called Sliding Boundary Aligned Pyramid
Beam . Fig. 8 shows detectors (marked in red) which
are placed on a moving board (marked as gray rectangle). The
detectors’ distances are doubled. The right figure shows how
the board moves together with the emitter (marked in blue).

When is used, the projections become
arrays. All the data elements in these arrays contain valuable

data. The reordering transform becomes:
where , , ,

and are the same as in Lemma V-5.
The time complexity of the data acquisition method

is the same as the complexity since there is no differ-
ence between these methods except for the number of line inte-
gral being calculated simultaneously. The memory complexity
is also but it is reduced by a factor of 25.

C. Mirrored Pyramid Beam Acquisition Geometry
From Multiple Objects

Another set of detectors is placed on the planes . This
set represents the mirror image of the original set with respect
to planes . The rays emitted from an emitter at are
detected by this new set of detectors, and form a mirror image of
the original pyramid [the gray pyramid in Fig. 10(a)]. Due to the
symmetry of the original pyramid, each line integral in the orig-
inal pyramid has its line extension in the mirrored pyramid. The
sum of the line integrals is the complete line integral through
the scanned object [see Fig. 9(a) and (b)].

Definition V-6. Data Structure: All the line integrals,
which are required to reconstruct the image by the discrete in-
verse X-ray transform [1], are stored in the arrays and

. The first coordinate in each array, , rep-
resents the main axis , or . The following two coordi-
nates represent the translation of the
line integral, where and

. The last two coordinates,



AVERBUCH et al.: ACCELERATING X-RAY DATA COLLECTION USING PYRAMID BEAM RAY CASTING GEOMETRIES 531

Fig. 9. Line integrals calculated with the ��� geometry. (a) Line integrals defined by �� ������ ���� and �� ���������. (b) Line integrals defined by
�� ����������� and �� ���������.

Fig. 10. ��� geometry. (a) Emitter is located at � �����. (b) Emitter is located at � ����������.

represent the direction of the line integral where
and . Formally

(3)

where is the portion of the function between the
planes and , and is the portion of the function

between the planes and .
Lemma V-7. Reordering the Data Structure: The

data in the and data structures is re-
ordered into parallel projections by

where ,
and . The pair

represents the parallel projections directions ,
and . The

pair represents the line integrals translations ,
and .

Collecting the line integrals with the method requires
operations. additions are required to compute

the full line integrals through . The memory complexity stays
while the number of detectors is doubled.

The geometry is based upon the sets of points
and (see Definition III-13). This method can be used
to scan simultaneously eight objects with lower resolutions.
Putting an object in one of the eight chambers and doubling the
number of detectors placed in each plane, can be a substitute
for the method. When it is known that chambers are
kept empty, it is possible to reduce significantly the number
of the required detectors. Fig. 11 visualizes the quality of the
reconstruction.

Fig. 11. Reconstructed images (uses analytic projections and inversion from
[1]) versus analytic images. � � �	. (a) Analytic image with � � �	. (b) Re-
constructed image with � � �	.
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Fig. 12. Comparison between line profiles of the reconstructed image (uses projections that were computed analytically and reconstructed by the application of
[1]) and the analytic image. The line profiles in (a), (b), and (c) are ��� ���� ����, ����� �� ����, and ����� ���� ��, respectively, where �� �� � � �� � � � � �. The
solid lines and the dotted lines represent the line profiles from the analytic image and from the reconstructed image, respectively, for � � ��.

TABLE I
� IS THE � NORM OF THE DIFFERENCE BETWEEN THE IMAGE

THAT WAS RECONSTRUCTED FROM THE ANALYTIC PROJECTIONS

USING [1] AND THE ANALYTIC IMAGE. THE PROJECTIONS

WERE CALCULATED WITH THE �	
� GEOMETRY

D. Numerical Results

The performance of the reconstruction algorithm that
uses the different acquisitions strategies (described in
Sections V-A–V-C) is shown in this section. We sample
analytic projections of the 3-D Shepp-Logan phantoms at
different resolutions, reconstruct the 3-D object using the 3-D
inverse X-ray transform [1], and compare the result to the
original Shepp-Logan phantom.

Four different geometries were described in the paper.
and are the only ones that have substantially

different geometries. The geometry was implemented
by computing all the line integrals between the planes
and that pass through the object. The outputs were not
separated into two different arrays as was done in the original

method.
The numerical outputs from the application of and

methods were almost identical. They demonstrate the
convergence of the reconstructed image to its analytic image
version as the image’s resolution increases. The time and
memory requirements increase cubically with resolution in-
crease. The algorithms were tested on volumes with resolutions

.
Table I shows the decrease of the reconstruction error as

the image resolution in each direction increases. Different
acquisition methods generate almost identical results. There-
fore, Table I presents only the results from the method.
Fig. 12 shows the profiles of the main axes of the reconstructed
image in comparison to the analytic profiles.

E. Conclusion

In Sections V-A–V-C, we described a family of reconstruc-
tion algorithms that acquire the scanned data via different PB
geometries. These geometries accelerate the data acquisition
for X-ray reconstructions that use the method in [1]. All these
methods save operations in the data acquisition process
by measuring simultaneously line integrals in different direc-
tions. All the described geometries are independent of the axes.
In our implementation, the geometry in all axes was the same.
In other implementations, each axis can have its own geometry.
For example, if an object does not intersect the plane where
one of the axes is zero, then, we can apply the method
only along this axis while applying the method to the
others. Moving boards with detectors can be used in each PB
method. This can further reduce the data acquisition costs. Only
the and methods where implemented and tested in
this paper. Other methods ( and ) will have the
same performance and numerical accuracies, since the data are
the same and only their ordering is different.
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