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Abstract— The Hit-or-Miss transform (HMT) is a well known 

morphological transform capable of identifying features in 

digital images. When image features contain noise, texture or 

some other distortion, the HMT may fail. Various researchers 

have extended the HMT in different ways to make it more 

robust to noise. The most successful, and most recent 

extensions of the HMT for noise robustness, use rank order 

operators in place of standard morphological erosions and 

dilations. A major issue with the proposed methods is that no 

technique is provided for calculating the parameters that are 

introduced to generalize the HMT, and, in most cases, these 

parameters are determined empirically. We present here, a 

new conceptual interpretation of the HMT which uses a 

percentage occupancy (PO) function to implement the erosion 

and dilation operators in a single pass of the image. Further, 

we present a novel design tool, derived from this PO function 

that can be used to determine the only parameter for our 

routine and for other generalizations of the HMT proposed in 

the literature. We demonstrate the power of our technique 

using a set of very noisy images and draw a comparison 

between our method and the most recent extensions of the 

HMT.   

Index Terms— Machine vision, Morphological operations, 

Object recognition, Segmentation 

I. INTRODUCTION 

athematical Morphology, first introduced by 

Matheron [1] and Serra [2] and later extended by 

Heijmans [3], provides an extremely powerful set of 

tools for image processing. Among these is the HMT [2] 

and [3], which is capable of identifying groups of connected 

pixels that comply with certain geometric properties. If 

there is noise in a given image, or if image features are 

extremely textured, the standard HMT will fail to detect 

objects which are of interest.  

For the processing of binary images, the HMT is well 
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defined, [2]–[7], and involves searching an image for 

locations where predefined templates simultaneously fit the 

image. The templates, known as structuring elements (SEs) 

in morphology, are designed to match the geometry of 

objects of interest in the foreground and background of the 

image. If SEs are designed to closely match the geometry of 

the image features that are of interest, just one noisy pixel in 

the foreground or background can cause this transform to 

fail since the SEs will no longer fit as a result of the noise. 

To overcome these issues, various authors have proposed 

techniques that involve some pre-processing of the image or 

some modification of the SEs or of the HMT itself.  

In [8], Zhao and Daut present a technique for the 

detection of imperfect shapes where the SEs are designed 

by first smoothing the original image using a morphological 

opening, before using the boundary of these smoothed 

shapes as SEs. In [9], the same authors present a technique 

which uses the skeletons of both the object to be recognized 

and its complement as SEs.   

In [10], Bloomberg and Maragos introduce a Rank Hit-

Miss Transform using rank order filters in place of erosions 

to improve the performance of the HMT and its robustness 

to noise. The same authors present a Blur Hit-Miss 

transform in [11] which uses “blur SEs” to dilate the 

foreground and background of the image prior to applying 

the respective erosions of the HMT. This helps remove 

noise and makes it easier for the SEs to match patterns by 

slightly modifying the geometry of features in a given 

image.    

Various researchers have defined methods to extend the 

HMT for the processing of grayscale images and recently a 

unified theory for calculating a grayscale HMT has been 

presented in [12]. We review in this paper, the most 

prevalent extensions of the HMT for grayscale images and 

show the equivalences between these extensions. Despite 

the extensions of the HMT for processing grayscale images, 

the issues that cause the HMT to fail in the presence of 

noise in binary images, have the same effect in the grayscale 

case. Various techniques attempt to generalize the HMT for 

feature recognition in noisy images. In [13], Khosravi and 

Schafer present a formal definition of the grayscale HMT 

and analyze its performance in the presence of Gaussian and 

salt and pepper noise. To improve the performance of the 

HMT in noise, the authors generalize the HMT using rank 

order operators and also subsample the SEs used for 
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template matching.  

More recently, in [14], Perret et al present a Fuzzy Hit-

or-Miss Transform which they use to detect features in very 

noisy astronomical images. Their technique uses rank order 

operations and a large set of SEs that are generated using a 

mathematical model. The authors also highlight some 

techniques that could be used to improve the robustness of 

other grayscale HMTs when operating in noise. We too 

discuss these extensions and show how their parameters 

may be calculated using our design tool.      

Each of the aforementioned methods and extensions aim 

to improve the performance of the HMT such that it is more 

robust for feature detection in noisy images. Rank order 

operators feature heavily in this work, however, there 

appears to be a conceptual gap in that the authors fail to 

provide a method by which it is possible to select the 

appropriate rank or threshold for applying rank order filters 

in this way. This paper presents a Percentage Occupancy 

Hit-or-Miss transform (POHMT) which allows partial 

fitting of SEs in a similar fashion to the partial fitting 

allowed by rank order filters. The difference here however, 

is that we also provide a technique to accurately determine 

the rank of the filter that must be used for the detection of 

objects of interest. Furthermore, as a direct result of the 

plots that we use as a design tool, we show in this paper, 

how we can make the POHMT operate as a discriminatory 

filter which allows objects to be selectively marked or 

discarded by the transform.   

II. MATHEMATICAL MORPHOLOGY 

We first recall here the definition of the binary HMT before 

reviewing the work of various researchers who have 

extended the HMT such that it can be applied to grayscale 

images. We then present a novel, conceptual definition of 

the HMT in terms of SE occupancy and use this to explain 

the inability of the HMT to function where images are 

distorted by noise or when features exhibit internal texture.   

A. The Hit-or-Miss-Transform 

The HMT of a binary image X is the intersection of an 

erosion of X and erosion of the complement of X by a 

complementary pair of SEs BFG and BBG respectively where 

X, BFG and BBG are sets in 2D space, 
2E = ℤ . BFG and BBG 

are defined relative to a common origin in E where the 

composite SE 
FG BGB B B= ∪  and

FG BGB B∩ = ∅ . That is, 

                                                           

{ }( ) | ( ) , ( ) c

B FG x BG xHMT X x E B X B X= ∈ ⊆ ⊆        (1) 

 

where ( ) { }|
x

B b x b B= + ∈  and a feature is detected by the 

HMT if there is at least one point x E∈  such that the 

foreground SE (BFG)x is included in X whilst the background 

SE (BBG)x is simultaneously included in its complement, 

\cX E X= , see [2]-[7]. The HMT returns a “marker” 

consisting of single pixels or groups of pixels indicating the 

presence and locations of the objects that have the features 

specified by B. To recover the complete object after 

detection, an opening by reconstruction [7] may be applied.  

Unlike other morphological transforms, extending the 

HMT for grayscale images is not a trivial task since the 

HMT is not an increasing transform [7], [12], [14]. Various 

researchers have proposed extensions of the binary HMT 

such that it can be applied to grayscale images. A thorough 

review of these techniques, as well as a unified theory for 

calculating the grayscale HMT is given in [12]. We present 

here a brief summary of the main extensions of the HMT, 

and further details can be found in [12] and [14].   

To remain consistent with the literature, we define the 

notation used throughout this paper. Let E represent a two 

dimensional digital space ( 2
E = ℤ ) and ET be the set of all 

graylevel functions from a subspace of E to T where 

{ },T = ∪ +∞ −∞ℝ  or { },T = ∪ +∞ −∞ℤ  such that T is a 

complete lattice with respect to the order “≤ ”. Let EI T∈ , 

denote a grayscale image, and EB T∈ denote a grayscale SE. 

We can then define the grayscale erosion and dilation of 

image I by the SE, B, where the erosion of image I is 

denoted, ( )  I BΘ , and the dilation of I is denoted, ( )I B⊕ : 

for all x E∈ ,  

                                                                   

( )( )
( )

( ) ( )( )
supp

  min ,
FG FG

FG FG FG FG
b B

I B x I x b B b
∈

Θ = + −              (2) 

    ( )( )
( )

( ) ( )( )
supp
max .

FG FG

FG FG FG FG
b B

I B x I x b B b
∈

⊕ = − +             (3) 

 

The grayscale HMT uses a pair of foreground and 

background SEs, ,
E

FG BGB B T∈ , where the grayscale HMT 

defined by Ronse in [15], (denoted RHMT in [14]) using 

our notation becomes,                                       
                                   

[ ] ( )( )
( )( ) ( ) ( ) ( )( )*

,

  
.

-                
FG BG

FG FG BG

B B

I B x I B x I B x
RHMT I x

 Θ Θ ≥ ⊕ ≠ +∞
= 

∞

if

otherwise

  (4)                                           

 

where ( )* *
:  and ( )BG BG BGB E T B b B b→ − −֏ , i.e. the dual of 

BBG.                                    

In [7] and [16], Soille defines an unconstrained HMT 

(UHMT) using flat SEs, which x E∀ ∈ , returns the number 

of cross sections of a grayscale image, I, where ( )FG x
B  fits 

the cross section, ( )tCS I , and ( )BG x
B simultaneously fits the 

complement of this cross section, ( )tCS I∁ ,  

                                                          

[ ] ( )( ) ( ) ( ) ( ) ( ){ },
  , .

FG BG
FG t BG tB B x x

UHMT I x card t B CS I B CS I= ⊆ ⊆ ∁   (5) 

 

In [12], the authors extend the UHMT as written in (5), to 

allow grayscale SEs, such that, 

                                                              

[ ] ( )( ) ( ) ( ) ( )( ){ }*

,
max ,0 .

FG BG
FG BGB B

UHMT I x I B x I B x= Θ − ⊕      (6) 

 

By comparing (4) and (6), the similarity between the 

RHMT and the UHMT is clear. Both of these extensions 

mark features in a grayscale image when the result of the 

foreground erosion is greater than or equal to that of the 

background erosion. The output of the RHMT is an image 
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containing the result of foreground erosions when this 

condition is satisfied. Soille’s UHMT produces a graylevel 

image where the intensity of each pixel indicates the number 

of cross sections where both SEs fit the image i.e. the 

difference between the foreground and background 

erosions.   

In [14], the similarity between Soille’s and Barrat’s 

grayscale HMT defined in [17] is shown, where Barrat et 

al.’s HMT (denoted BHMT in [14]) is written, 

                                                                               

[ ] ( )( ) ( ) ( ) ( )( )*

,
.

FG BG
BG FGB B

BHMT I x I B x I B x= ⊕ − Θ          (7) 

 

Clearly, this grayscale HMT closely resembles that of 

Soille’s given in [12]. The two differ however in that 

Soille’s HMT returns the difference between the foreground 

erosion and the background erosion where Barrat et al. 

return the difference between the background erosion and 

the foreground erosion. In Soille’s HMT, the higher the 

output value, the better the fit of the SEs. The opposite is 

true for the BHMT, and the equivalence of these two 

operators is shown in [14] as, 

                                                                        

[ ] ( ) ( ) ( )( ){ },
min ,0

FG BGB B
UHMT I x BHMT I x= −        (8) 

 

Khosravi and Schafer, in [10], present their grayscale 

HMT which requires only one SE, BFG, as,  

                                                                                  

[ ] ( ) ( ) ( ) ( ) ( )( ) ( ).
FG

FG FGB
KHMT I x I B x I B x= Θ − − Θ −       (9) 

 

This definition is discussed in [14], where it is shown that 

the KHMT is in fact equivalent to the BHMT as shown in 

(10) and (11), 

                                                                                       

( ) ( ) ( ) ( ) ( )( )( )*

[ ] ,
FGB FG FGKHMT I x I B x I B x= Θ − ⊕           (10) 

                   
[ ] ( )( ),

.
FG FGB B

BHMT I x= −                   (11) 

 

Each of the proposed methods can be used to extract the 

features of a grayscale scale image that match the geometry 

of both BFG and BBG, however, all of these techniques fail in 

the presence of noise unless further modifications are made. 

All of these techniques are discussed further in [14] and a 

thorough review of the grayscale HMTs proposed by Ronse 

and Soille is given in [12]. In this paper we extend the 

definition of the grayscale HMT given by Soille in [7] since 

it is consistent with our conceptual description of the 

operation of the HMT.  

B. A New Conceptual View of the Hit-or-Miss-Transform 

Interpreting a grayscale image as a topographic surface 

allows the HMT to be considered as a translation of the two 

SEs in this 3D image space searching for places where they 

simultaneously fit the image to detect objects. In the various 

definitions of the grayscale HMTs given in Section II.A, the 

SEs are translated in the 2D space, and standard 

morphological operations are used to probe the image 

where these operators interact with the graylevel at each 

pixel as shown in (2) and (3).  In the 3D space, we must still 

translate the SEs to all points x E∈ in the 2D space, 

however, we may also consider the translation of SEs in the 

vertical direction. From an implementation perspective we 

may first translate the SE by a vector x such that the origin 

of the SE is coincident with an image pixel x, x E∀ ∈ . Then, 

at each point x E∈ , the concept of a vertical translation of 

the SE may be implemented by interrogating in some way, 

(dependent on the operation) the image pixels that are 

coincident with the elements of the SE, t T∀ ∈ .  

The grayscale erosion of the image foreground can be 

described conceptually as a process of translating BFG to a 

point x E∈  and raising the SE to the highest level t for 

which it is entirely beneath or fully occupied by the signal. 

By this interpretation, the erosion of an image at any point 

x E∈ is equivalent to calculating the maximum level, t, for 

which the foreground SE, BFG, is fully occupied in the 

image. For the foreground erosion, the SE is fully occupied 

if the intensity of all image pixels that are coincident with 

the elements of BFG is greater than or equal to t. We denote 

by lFG(x), the maximum level, t, for which the SE is fully 

occupied when its origin is at any point x E∈ , 

 
                  ( ) { }max , ( ) .

FG FG

FG FG FG
b B

l x t b B I x b t
∈

= ∀ ∈ + ≥             (12) 

 

By definition, the HMT uses a foreground erosion to 

match patterns from below the topographic surface and a 

background erosion to match patterns from above. The 

background erosion can be described by a similar process of 

translating BBG to a point x E∈  and lowering the SE to the 

lowest level t for which it is entirely above or fully occupied 

in the image. We therefore define the background erosion at 

a point x E∈  as the minimum level, t, for which the 

background SE, BBG, is fully occupied in the image. For the 

background erosion, the SE is fully occupied if the intensity 

of all the image pixels that are coincident with the elements 

of BBG is less than t. We denote by lBG(x), the minimum 

level, t, for which the SE is fully occupied when its origin is 

centered at a point x E∈ . 

 

              ( ) { }min , ( )
BG BG

BG BG BG BG
b B

l x t b B I x b t
∈

= ∀ ∈ + <           (13) 

 

This description of the HMT resembles the one given by 

Soille in [7] where he states that the HMT is equivalent to 

the number of intersections of the intervals [0, tFG] and [tBG, 

tmax]. Soille defines that tFG is the highest level where BFG 

fits the foreground, tBG, is the lowest level at which BBG fits 

the background, and tmax, is the highest intensity in the 

image as determined by the bitdepth. In our definition of the 

HMT, lFG and lBG are equivalent to tFG and tBG, however, our 

HMT differs significantly in that it may be calculated in a 

single pass of the image with erosion and dilation 

implemented simultaneously using a composite SE.  In (6), 

the definition of UHMT states that for a point to be marked 

by this grayscale HMT, the result of I eroded by 
FGB  must 
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be greater than or equal to that of I dilated by *

BGB . By 

analogy, we define that our HMT will mark an object as a 

“hit”, iff ( ) ( )  FG BGl x l x≥ . We express our grayscale HMT in 

terms of lFG(x) and lBG(x), x E∀ ∈ , 

                                                                            

( ) ( ) ( ) ( )2 -1     if 
.

0    otherwise

n

FG BG

B

l x l x
HMT I x

 ≥
=   



             (14) 

 

The concept of this HMT is consistent with the grayscale 

HMTs defined by Ronse and Soille, however, in our 

definition the result is a binary marker containing the 

location of any objects that have been detected. This is 

illustrated in Fig.1.  

( ) ( )
FG BG
l x l x=

( ) ( )FG BGl x l x>

( ) ( )
FG BG
l x l x<

(a) (b)

Too Narrow Too Wide 

 

Fig.1 Grayscale HMT operating on a topographic surface. (a) A synthetic 

grayscale image. (b)Topographic representation of (a) with the HMT 

detecting the middle feature when lFG(x) > lBG(x) (ticks represent objects 

that are detected and crosses denote points that have not been marked). 

 

By considering the HMT in terms of SE occupancy, the 

traditional implementation of the HMT (which requires two 

erosions) may be simplified by combining BFG and BBG into 

a unified, composite, SE (B, shown in Fig.2a). The 

composite SE, B, is translated to each point x in the image, 

( ) { }|
x

B b x b B= + ∈ . A point x E∈ is marked in the result if 

there exists a level, t T∈ , which for all of the elements, 

( )FG FG x
b B∈ , ( )FGt I b≤ , while, simultaneously, for all of the 

elements, ( )BG BG x
b B∈ , ( )BGt I b> , i.e.  

                                     

( ) ( )
( ) ( )2 -1     if  ,  |   and |  

0          otherwise

n

FG FG FG BG BG BG

B

t T b B t I x b b B t I x b
HMT I x

 ∃ ∈ ∀ ∈ ≤ + ∀ ∈ > +   =   


 (15) 

 

This technique is illustrated in Fig.2 where a combined, 

composite SE is shown in Fig.2(a) and an example of this 

SE discriminating between similar objects is shown in 

Fig.2(b).  

 

Not Fully Occupied

       Fully Occupied

FG

BG

B

B

−

−
 Fully Occupied

 Fully Occupied

FG

BG

B

B

−

−

B
BG

BFG

(b)(a)  

Fig.2 The HMT implemented using a composite SE. (a) The composite SE 

where elements of BFG are shown in dark gray and elements of BBG shown 

in light gray. (b) The SE searching for places where it is fully occupied in 

the image. 

 

Our definition of the grayscale HMT allows this operator to 

be calculated in one pass of the image instead of the 

common two pass method followed by an intersection, 

summation or comparison of the two resultant images. As a 

result, the transform is faster and simpler than the standard 

method. 

C. The Hit-or-Miss-Transform in noise 

Fundamentally, a “hit” i.e. an object which is detected and 

marked by the HMT, is one which satisfies the conditions 

stated in Section II.B. This strict definition of the HMT 

requires that the composite SE must be fully occupied in 

both the foreground and background of the image for 

successful detection of an image feature. Often, when 

features are distorted by noise or if image features contain a 

large amount of internal texture, it is not possible for B to be 

fully occupied in the image even if its geometry matches 

that of the feature. This causes the HMT to miss objects that 

should be detected as illustrated in Fig.3. 

BBG

(a) (b) (c)

BFG

 

Fig. 3 Operation of the HMT in noise (a) Composite SE that can be used 

to detect a circle (b) Fully occupied, composite SE detecting the object of 

interest (c) Composite SE cannot be fully occupied due to noise  

 

Fig. 3(a) shows a composite SE which can be used to 

detect circular objects using the standard HMT. BFG is a 

solid disk and BBG is a solid ring. The black line in Fig.3(b) 

represents a noise free shape which is to be detected using 

the SE shown in Fig.3(a). In this case, the elements of B 

corresponding to BFG are fully occupied by the shape and 

the elements corresponding to BBG are simultaneously fully 

occupied by its background at all levels t, until t is greater 

than the intensity of the shape. This feature and any feature 

that has not been corrupted by noise and whose dimensions 

are greater than BFG and less than that of BBG will be 

detected by the HMT when using this SE.  

In the case that an object of interest, its edges, or both 

are corrupted by noise, the elements of B corresponding to 

BFG and BBG may never be simultaneously fully occupied by 

the object. This is illustrated in Fig.3(c) where both the 

foreground and background regions of the object shown in 

Fig.3(b) have been perturbed by noise. Since some of the 

foreground pixels within the object are at a level t that is 

lower than the level of its noisy background, there is no 

level t at which BFG and BBG can be simultaneously fully 

occupied.  As a result, the HMT will fail to recognize this 

feature as an object of interest. For the same reasons stated 

here, objects which have internal texture, such as biological 

cells, may fail to be detected by the standard HMT.  

III. A PERCENTAGE OCCUPANCY  HIT-OR-MISS-

TRANSFORM 

In the standard HMT the foreground structuring element, 

BFG, must fit entirely within the foreground of the object 

and the background SE, BBG, must fit entirely within the 

background surrounding the object. In other words, they 

must be fully occupied by the foreground and background 

respectively. Any noise, even just one pixel, in either the 

foreground or background of the object can prevent an 
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otherwise legitimate hit occurring.  

 The idea behind the POHMT is to make the detection 

process less sensitive to moderate amounts of noise (or 

texture) in the image. We propose relaxing the constraint 

that the SEs must be 100% occupied and allow them to be 

only partially occupied and to still record a ‘hit’.  Attempts 

at relaxing these strict constraints have been proposed in 

[7], [14], [19] and [20], however, in this paper we introduce 

a new design tool in order to set the appropriate level of 

partial (or percentage) occupancy. This tool may also be 

used in order to set the parameters for equivalent methods 

in an objective rather than an empirical way. 

This paper builds upon a Percentage Occupancy Hit or 

Miss Transform (POHMT) introduced in [18], which allows 

a percentage of the SE to be “punctured” by noise or texture 

in a signal and still detect a “hit”. This section first defines a 

method that can be used to calculate the extent to which BFG 

and BBG are occupied by a signal for all levels t T∈  when 

their origin is coincident with any point x E∈ . The 

POHMT is then defined using this approach, to allow 

objects to be detected in places where the SE is only 

partially occupied by the signal.   

A. Calculating the occupancy of Structuring Elements 

We have shown that a grayscale HMT, using flat SEs, can 

be implemented with a single, composite SE, which 

searches the image to identify places where its foreground 

and background elements are simultaneously 100% 

occupied. By designing the SE to match the geometry of an 

object in both the foreground and background and 

measuring the extent to which the object occupies the SE 

when coincident with an image feature, we can estimate 

how far we must relax the 100% occupancy requirement in 

order to detect this object in the presence of noise.  

To facilitate this explanation and its comprehension, we 

first consider BFG and BBG separately before showing how 

the two can be combined (as in Section II.B) into a single 

operator, capable of processing an image in one pass. 

Separating the two SEs and measuring the extent to which 

features occupy BFG and BBG allows us to plot this data to 

determine a minimum occupancy requirement so that the 

SEs can detect objects in the presence of noise or texture.  

The number of elements of BFG that are occupied by a 

signal in the foreground can be calculated by translating BFG 

to a point x in the image, and t T∀ ∈ , calculating the 

cardinality (Card) of the set, ( ) ( ){ }
,

|FG FG FG FGx t
B b B I x b t= ∈ + ≥ , 

of image pixels which are coincident with BFG and have 

intensity greater than or equal to t. For all t T∈ , we 

calculate the foreground occupancy, 
,x tFGO ,  

 

                                ( ){ }
, ,

.
x tFG FG x t

O Card B=                          (16) 

 

By an equivalent technique, it is possible to measure the 

extent to which a feature occupies the background SE, BBG,  

                                                                                                                                                            

( ){ }
, ,

.
x tBG BG x t

O Card B=                          (17) 

 

In this case, BBG is translated to a point x E∈  and t T∀ ∈ , 

we calculate the background occupancy, 
,x tBGO , i.e. the 

cardinality of the set, ( ) ( ){ }
,

|BG BG BG BGx t
B b B I x b t= ∈ + < , of 

image pixels, coincident with BBG, that have intensity less 

than t. 

Using (16) and (17), we obtain two, one dimensional 

arrays, 
,x tFGO and 

,x tBGO , of length 2
n
 which contain the 

number of elements that are occupied by the signal in BFG 

and BBG respectively at each level t. The elements of both 

arrays can be converted to percentages such that we obtain 

the percentage occupancy of BFG and BBG for all t T∈  

when their origin is coincident with a point x E∈ . We 

denote the percentage occupancy of the foreground and 

background SEs, POFG and POBG respectively 

where, t T∀ ∈ ,     

                                                  

( )
,

,
100x t

x t

FG

FG

FG

O
PO

Card B
= ×

                   (18)                   

( )
,

,
100.x t

x t

BG

BG

BG

O
PO

Card B
= ×

                   (19) 

 

Since the cardinality of BFG and BBG is generally known, 

POFG and POBG may be calculated directly, t T∀ ∈ , using, 

                                                                

( ){ }
( ),

|
100

x t

FG FG FG

FG

FG

Card b B I x b t
PO

Card B

 ∈ + ≥
= × 

  

               (20) 

                                                                  

( ){ }
( ),

|
100

x t

BG BG BG

BG

BG

Card b B I x b t
PO

Card B

 ∈ + <
= × 

  

              (21)                   

 

   The advantage of working in a relative measure such as 

percentages is that when calculating the POHMT, being 

able to specify a minimum percentage of the SE that must 

be occupied for successful detection rather than the actual 

number of SE elements makes the transform more general. 

Calculating POFG and POBG also allows these quantities to 

be plotted against each other in the form of a percentage 

occupancy (PO) plot such as those shown in Fig.4.  

Fig.4(a) shows a noise free, synthetic, 8 bit grayscale 

image, containing a homogeneous circle on a uniform, dark 

background. By designing BFG such that it can be contained 

entirely within this circle and the elements of BBG to form a 

ring to encompass the disk, POFG and POBG may be 

calculated using (20) and (21). We have plotted POFG and 

POBG against intensity for the noise free feature in Fig.4(b) 

to illustrate how these quantities vary with t. By observation 

of Fig.4(b), it is clear that BFG is 100% occupied until t = 

150 i.e. until BFG is above the signal and BFG is 0% 

occupied for t >150. We can also see that BBG is 0% 

occupied until t = 50 i.e. it is completely below the 

background and is 100% occupied for t > 50 when the SE is 

completely above the background level of the image. We 

show in fig4.(c) the PO plot that can be generated by 

plotting the points of POFG and POBG against each other for 
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each level t. By interpolating these discrete points we obtain 

a profile, which, in this case, takes the form of a right angle. 
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Fig. 4 Images and their PO plot (a) Synthetic image (b) Plot of POFG and 

POBG against intensity (t) for (a). (c) PO plot indicating that the standard 

HMT will detect the noise free object. (d) Noisy cell image (e) Plot of 

POFG and POBG against intensity (t) for (d). (f) PO plot indicating the 

HMT will not detect the cell. N.B. If the HMT will not be affected by 

noise ((a), (b) and (c)), the critical point may be a set of points, the 

cardinality of which gives the number of times that the SEs fit the feature.  

 

The image shown in Fig.4(a) is not perturbed by noise 

and the feature of interest does not exhibit internal texture, 

hence the standard HMT, using the SEs described could be 

used to detect this object. This is reflected in the PO plot 

since it shows that there is at least one level, t, such that 

when BFG and BBG are centered at x E∈ , BFG and BBG are 

simultaneously, 100% occupied. This is indicated in Fig 

4(c) by the line forming a right angle which intersects the 

point on the 45°  diagonal where, POFG = POBG = 100. 

However, if the image is corrupted by noise, the PO plot 

will not form the ideal right angle but will instead tend 

towards a curve. This is demonstrated using the image of a 

noisy cell shown in Fig.4(d). Again, we have plotted POFG 

and POBG against intensity in Fig.4(e), and the 

corresponding PO plot, generated by plotting POFG vs POBG 

and interpolating, is shown in Fig.4(f). In this case, by 

examining Fig.4(e), it is clear that there is no level t for 

which POFG = POBG = 100% and hence the HMT will fail to 

detect this feature using the SEs described. This is reflected 

in the PO plot shown in Fig.4(f) since instead of forming the 

right angled profile shown for the noise free shape, the PO 

plot in the case of noise, tends towards a curve which 

crosses the 45°   line where (POFG = POBG) < 100. It should 

be noted that the critical point on the PO profile (Fig.4(c) 

and Fig.4(f)) is the point where the curve crosses the 45°   

line. This point is equivalent to the point at which POFG and 

POBG intersect in Fig.4(b) and Fig.4(e). The critical points 

and their equivalences in the plots are highlighted in Fig.4. 

As the noise and texture is increased, the distance 

between the curve and this ideal right angle increases. This 

effect is demonstrated in Fig.5 where zero mean, Additive 

White Gaussian Noise (AWGN) of increasing power has 

been added to a synthetic image similar to the one shown in 

Fig. 4(a). 

The PO plot shown in Fig.5 can be used to set a 

minimum percentage occupancy requirement for B such that 

the circle may be detected, using this SE, even in very noisy 

conditions. Since there is only one object (the grey circle) in 

each image on the left of Fig.5, the minimum occupancy 

requirement can be set for the image with the highest noise 

power. 

Noise Power = 12.75

Noise Power = 38.25

Noise Power = 0

Noise Power = 63.75

Noise Power = 89.25

 

Fig.5 The effect of noise on the PO plot. (left) Images corrupted by 

AWGN of zero mean and increasing power. (right) Corresponding PO 

plots for the object in each image with increasing noise power.   

 
That is, by reference of the PO plot in Fig.5, setting the 

minimum occupancy requirement of B to 75% guarantees 

that the gray circle will be detected by the POHMT in all 

five images. This is clear from the PO plot which indicates 

that 75% is the lowest occupancy of the SE in all of the 

images. If there were other objects in the image, setting the 

minimum PO requirement so low, may invoke erroneous 

hits in the images that are distorted by noise of lower power. 

Increasing the minimum PO appropriately, using the PO 

plot as noise power decreases, will reduce the likelihood of 

erroneous detection.  

It is possible for BFG and BBG to be combined to form a 

composite SE, B, as in Section II.B. This allows the extent 

to which the elements of B corresponding to the 

foreground,
FG
b B∈ , and background, 

BG
b B∈ , of an image to 

be calculated simultaneously for all t T∈ , in a single pass. 

The highest percentage of B, denoted POB that is occupied 

by a signal for all t T∈ , when its origin is coincident with a 

point x E∈  may be calculated by finding the critical point 

that was introduced in Fig.4. In the PO plot, the critical 

point is the one that crosses the 45°  line which occurs when 

POFG =POBG. However, the values on the curve are discrete 

points at finite integer values of t and hence it is unlikely 

that a data point belonging to this profile would lie exactly 

on the 45°diagonal. We must therefore find the point in the 

PO plot which is closest to the one that intersects the line to 

determine the value of this critical point. Given that the 

critical points shown in Fig.4(b) and Fig.4(e) are equivalent 

to those shown in Fig4.(c) and Fig.4(f) respectively, it can 

be seen that the critical point may be most conveniently 

computed using, 

 
                   { }

, ,
( ) max min ,  .

x t x tB FG BG
t T

PO x PO PO
∈

 =
 

                (22) 

 

In (22), the quantities POFG and POBG may be calculated 

x E∀ ∈  using (20) and (21). The POHMT, which is 

introduced in the next section, uses POB to determine 

whether or not a pixel at position x E∈ should be marked, 

as a hit, in the output of this transform, based on the extent 

to which POB is occupied at each position in the image. 

B.  The POHMT 

The POHMT uses a composite SE to detect features in 
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noisy images by allowing objects that occupy only a 

percentage of the SE to be marked in the output of this 

transform. The POHMT can be calculated x E∀ ∈ ,   

 

           
[ ]

2 -1  if ( )
( ) ,

0  otherwiseFG BG

n

B

B B B

PO x P
POHMT x∈

 ≥
= 


∪

             (23) 

 

where POB is calculated using (22) and P is the minimum 

percentage of the SE that must be occupied for successful 

detection of an image feature. The value of P can be set by 

trial and error, or, if the power and distribution of noise that 

corrupts a signal is known, then an accurate value for P may 

be calculated using noise models. A third technique, which 

we propose in this paper, is to measure an appropriate value 

for P using the PO plot and a set of test images that is 

representative of the real data. By designing SEs to best 

match the geometry of image features that are to be 

detected, the method described in the previous section can 

be used to generate a PO plot for each object of interest in 

the set. The PO plot for each object can then be used to find 

a minimum value for P such that all features of interest will 

be detected in all images using the POHMT. This can be 

done by observation of the PO plot, or, alternatively, P can 

be determined automatically by calculating the critical point 

using (22). An example of generating a PO plot, using it to 

set P and the result of applying the POHMT to a noisy 

image containing cancer cells is shown in Fig.6, where the 

images are inverted for convenience when printing. 
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(c)  

Fig.6 Example of POHMT using a PO plot to set P. (a) Original, noisy 

image. (b) PO plot showing the PO profile for each cell using the same 

composite SE. (c) Binary marker produced by the POHMT (d) Result of 

applying the POHMT and performing an opening by reconstruction. 

 

By observation of Fig.6(a), it is clear that there are four 

cells in the image. Each cell has different characteristics in 

terms of shape, intensity and noise. To detect these cells 

using the POHMT, the geometry of B was set using a priori 

knowledge of the shapes and sizes of the cells. The elements 

of B used to probe the foreground of the image were 

designed as a flat disk measuring 90 pixels in diameter such 

that it could fit inside that smallest cell in the image (bottom 

left cell in Fig.6(a)). The elements of B used to probe the 

background of the image formed a ring with an inner 

diameter of 110 pixels which was designed to encompass 

the largest cell (bottom right of Fig.6(a)). The extent to 

which the cells occupied B was measured by centering B on 

each cell and in turn and using (20) and (21) to calculate 

POFG and POBG and generate the PO plot for each cell as 

shown in Fig.6(b). By interpretation of the plot, it is clear 

that setting P to any value less than or equal to 70% is 

sufficient to ensure that all four cells will be detected by the 

POHMT using B.  

The POHMT was calculated x E∀ ∈ with P set to 70%. 

The POHMT produced a binary marker,  as shown in 

Fig.6(c) which contains four groups of marker pixels in the 

same locations as each of the four cells in the Fig.6(a). 

Performing an opening by reconstruction using the original 

image as the “mask” and the result of the POHMT as the 

“marker” produced the image shown in Fig.6(d). It should 

be noted that the standard HMT did not detect any of the 

cells as predicted by the PO plot. We also point out here, 

that the POHMT is an extension of the HMT and hence the 

standard HMT can be implemented as a special case of the 

POHMT.  Setting P to 100% in (23) and calculating the 

POHMT of an image will give the same result as any of the 

grayscale HMTs discussed in Section II of this paper.  

IV. EXTENSIONS OF THE HMT AND THE PO PLOT 

We have demonstrated that the PO plot can be used as a 

design tool to set the only parameter P for the POHMT. In 

addition to this, we show here that the PO plot may be used 

as a tool by other researchers to set corresponding 

parameters for their own routines. Further, we show that by 

exploiting the information contained within the PO plot, it is 

possible to discriminate between image features, having 

similar properties, using a single composite SE. 

A.  A design tool for existing grayscale HMTs in noise 

In addition to the grayscale extensions of the HMT that 

have been presented by various researchers (as discussed in 

Section II of this paper), numerous methods have been 

proposed which aim to generalize the HMT to make it more 

robust to noise. We review here a few of these techniques 

and provide a method which exploits the properties of the 

PO plot in order to set parameters for these methods.  

In [14], the authors present a “Generic solution to 

improve noise robustness” where they indicate that the 

grayscale HMTs proposed by Ronse and Soille can be made 

more robust to noise if the distance between the two SEs, 

BFG and BBG, is increased. In [14], an example of how to 

modify this distance is given as, ' ' and FG FG BG BGB B l B B= − = , 

or, ' ' and 
FG FG BG BG

B B B B l= = + . However, no formula or 

method is provided that can be used to calculate an 

appropriate value for l. 

It is possible to use the PO plot to determine an 

appropriate value for this parameter, l, by forcing the PO 

plot to form the ideal right angle. By calculating a distance, 

d, from the PO arrays, and shifting the elements of either 

POFG or POBG, by this distance, we can force the PO plot to 

form a right angle despite any noise or texture in the image. 

We calculate d, as the difference between the highest level, 

t, for which BFG is 100% occupied and the lowest level, t, 

for which BBG is 100% occupied. More formally,  

 
              ( ) ( )

, ,
max | 100 min | 100 .

x t x tFG BG
t Tt T

d t PO t PO
∈∈

= = − =        (24) 

 

We can then force the plot to form a right angle by shifting 

the elements of either POFG or POBG by this distance d, to 
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the right or left respectively, to obtain either PO’FG or 

PO’BG. By plotting PO’FG vs. POBG or POFG vs. PO’BG, we 

obtain the right angled plot which implies that by setting l = 

d, we can accurately set the distance between SEs using the 

method described in [14] to improve the noise robustness of 

the RHMT or the UHMT. That is, the level d that is 

calculated in order to force the plot to form the right angle, 

is equivalent to the minimum distance that must be allowed 

between BFG and BBG such that the feature of interest may be 

detected by either of these HMTs in the presence of noise. 

To demonstrate this technique we use the synthetic image 

shown in Fig.7(a) which has been corrupted by zero mean, 

AWGN, of variance 9.22. 
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Fig.7 Setting the SE separation for Ronse’s and Soille’s HMTs. (a) Noisy 

synthetic image. (b) Histogram equalization of (a) for visualization of 

noise. (c) Intensity profile of image center row, no noise (blue), noise 

corrupted signal (green).  (d) PO plot obtained before (green) and after 

(blue) shifting the elements of POFG by d as well as intermediate plots for 

increasing d. (e) PO Plots obtained before (green) and after (blue) setting 

the SE separation to d and calculating POFG and POBG.  

 

  For the purpose of illustrating the effect that the noise 

has on this signal, we have shown, in Fig.7(b), the image 

after histogram equalization, and in Fig.7(c), we show a 1D 

intensity profile taken from the center row of the image 

before and after the noise has been added. By generating the 

PO plot for the case where the distance between the SEs is 

initially zero, we can use (24) to calculate the distance d 

that should be set between the SEs to allow this feature to 

be detected. By shifting the elements of POFG to the right by 

d and plotting PO’FG vs POBG, we obtain the right angle as 

shown in Fig.7(d). To demonstrate the way in which the plot 

is forced to form the right angle, we have shown three 

additional curves in the PO plot in Fig.7(d). These curves 

have been generated purely for example by setting d to 

values that lie between zero and the critical distance of 20 

graylevels that was calculated using (24). 

By reference of Fig.7(d), it is clear that as d increases, 

the plot gradually approaches the desired right angle before 

attaining this profile when d = 20. If the distance, d, 

between the SEs is sufficient to allow the HMTs defined by 

Ronse or Soille to detect the noisy feature, the PO plot that 

is generated after fixing this distance between the SEs and 

recalculating POFG and POBG, also forms the right angle. 

This case is shown in Fig.7(e) where the distance between 

the SEs was set to 20 graylevels before calculating POFG 

and POBG. 

A drawback with the method in [14] of increasing the 

distance between the SEs is that it is prone to erroneous 

detections since any group of pixels lying between the SEs 

will be marked as a “hit”. When applying the RHMT or the 

UHMT and setting the distance between the SEs to be d as 

described, the disk in the noisy image is successfully 

detected. There are however, as expected, many erroneous 

“hits” in the resultant image. The POHMT on the other 

hand marks only the feature of interest. 

The authors [14] also discuss the performance of the 

HMTs proposed by Barrat et al. and Khosravi and Schaefer 

when images are corrupted by noise. They conclude that 

since these HMTs already evaluate a distance between the 

SEs, the problem of finding a suitable distance is 

transformed into a problem of thresholding the result of 

their HMTs. It is possible to use the PO plot in the same 

fashion as before to determine this threshold, where the 

threshold is equivalent and can therefore be equated to the 

distance d that was previously calculated using (24).  

By performing the grayscale HMTs proposed by Barrat 

and Khosravi and thresholding the results at d=20, we 

successfully detect the disk in the center of the image. 

However, as is the case with the previous example, a large 

number of erroneous detections appear in the result when 

using this technique. Thresholding the result of these HMTs 

at a level less than d does not allow successful detection of 

the circle in noise, however, the result still contains a high 

number of false positives. The same is true for the RHMT 

and the UHMT, where setting the distance between the SEs 

to be less than 20 graylevels results in erroneous “hits” 

while the feature of interest is not detected. 

In [14], the authors state that if an image is corrupted by 

AWGN, and the variance of this noise is known, then the 

distance between BFG and BBG can be set to equal twice that 

of the standard deviation of the noise. This theory can be 

verified by setting this distance between the SEs and 

generating a PO plot to form the ideal right angle as has 

been done in previous examples. This method is reliable if 

the power and distribution of the noise is known. Usually, 

this is not the case and hence the PO plot could be used in 

such situations, to calculate this parameter.    

We have shown here, that the problem of defining a 

suitable distance between the SEs and finding a suitable 

threshold to apply to the result of the HMTs are equivalent 

as stated in [14].  We also show that these parameters can be 

estimated using the PO plot by finding the minimum 

distance, d, which forces the result to form the right angle. 

However, an issue with relaxing the conditions of the HMT 

using these techniques is that the transform becomes more 

susceptible to producing erroneous hits in the output image. 

Perret et al present their solution to overcome the 

difficulties faced by the HMT in the presence of noise in 

[14]. The authors introduce a Fuzzy Hit-or-Miss Transform 

(FHMT) which they use to detect features in very noisy 

astronomical images and provide an impressive set of 

results. Their technique involves generating a large set of 

SEs using a mathematical model that incorporates the 

characteristics of the features they aim to detect for various 
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scale lengths, orientations and elongations. A measure of 

fitness is obtained for all patterns in the set of SEs at each 

point in the image, and a record of the best fitting SE at 

each pixel is stored as well as a measure of how well this SE 

fits the image. This data is used to form a so called 

“Scoremap” which is thresholded at a particular level to 

produce a binary marker image from which detected 

features can be reconstructed.   

For the FHMT, the PO plot could be used to set the ideal 

distance between the SEs, or to provide an indication of a 

suitable threshold that can be used on the output of this 

transform. Additionally, the PO plot and a suitable set of 

training data could be used to set a minimum occupancy 

requirement for a single SE, or at least a small subset taken 

from the large set of SEs that are used currently. This would 

allow the algorithm to execute, in the same way as the 

POHMT, in a fraction of the time taken by the current 

routine (2 minutes per image) described in [14].   

B.  A discriminatory filter 

Often, features that are to be detected in an image are not 

geometrically identical. If, therefore, we wish to extract 

from an image, a number of features, which differ from each 

other in terms of shape and size, we can design a number of 

composite SEs i.e. one to match the geometry of each object 

that we seek in the image. We can then perform a grayscale 

HMT using each of the composite SEs in turn before 

calculating the union of all the resulting binary images to 

obtain a single image that contains markers for each image 

feature that has been detected. That is of course assuming 

that the HMT will not fail to detect these features due to 

noise or texture in the image.   

As was illustrated in Fig.6, the POHMT allows multiple 

objects which are geometrically very different to be 

detected using just one composite SE in a single pass of the 

image. This can be achieved by exploiting the information 

contained within the PO plot in order to determine an 

appropriate level for P such that we can guarantee to detect 

all the features in this image. The PO plot does however 

provide a further advantage in that we may set P in such a 

way that we can discriminate between image features using 

just one composite SE. The simplest case of discriminating 

between features using the POHMT is to set the value of P 

high enough to eliminate objects which simultaneously 

occupy a maximum percentage of B that is always less than 

P. An example of selectively detecting cells in the image by 

varying P using the information contained in the PO plot is 

shown in Fig.8.  

Clearly, by reference of Fig.8(a), setting the level of P to 

any value that lies between the curve representing the cell in 

the bottom right and left of the image, we can eliminate the 

cell in the bottom left while successfully detecting the other 

three cells. In Fig.8(c) we have extracted only three of the 

four cells shown in  Fig.8(b) by setting 75%P =  in order to 

eliminate the cell in the bottom left of the image for which 

the maximum, simultaneous occupancy of the SE when 

coincident with this cell is 70%. By raising the level of P to 

90% and then 96% in accordance with the PO plot shown in 

Fig.8(a), we can extract respectively two cells (Fig.8(d)) 

then one cell (Fig.8(e)). Evidently, the PO plot is an 

extremely powerful design tool, as it provides information 

that allows objects to be detected selectively using one 

composite SE in a single pass of the image.  
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Fig.8 Example of POHMT operating as a discriminatory filter. (a) PO plot 

for the four cells in (b). (b) Noisy image containing four cells. (c) Three of 

the four cells detected by setting P = 75%. (d) Two of the cells detected by 

setting P = 90%. (e) One of the cells detected by setting P = 96%. 

 

The case demonstrated here is a powerful yet trivial one 

since it is obvious that increasing the level P or in other 

words increasing the strictness of the transform results in 

objects being discarded in the detection process.  

What is more interesting, is that by a similar technique to 

the one described above, it is possible to isolate any of the 

four cells in the image shown in Fig.8(b) and hence we can 

segment any combination of the image features using just 

one composite SE. In this case, the PO plot can be used as a 

shape descriptor which allows us to use one composite SE 

to discriminate between objects of interest in an image and 

objects which may have very similar geometrical properties 

in the spatial domain, for example, the two cells at the top 

of the image. Fig.9 shows each of the cells being extracted 

on their own using the same composite SE and the POHMT.  

(b)(a) (c) (e)(d)  

Fig.9 POHMT operating as a discriminatory filter (a) Image containing 

four cells of different shape and size. (b) Bottom left cell isolated. (c) Top 

right cell isolated. (d) Bottom right cell isolated. (e) Top left cell isolated. 

 

The results shown in Fig.9 can be easily achieved by 

firstly detecting and reconstructing all of the four cells in 

the image. Then, by detecting the objects that are not 

desired and reconstructing this image, the difference image 

can be calculated such that only the features specified by a 

user etc. are picked out by the POHMT. 

V.  EXPERIMENTAL RESULTS 

In this section, we test the performance of the POHMT by 

implementing each step described in Section III to detect a 

biological cell in a series of very noisy images. We also test 

our method on the same images as Perret et al. in [14] to 

determine if our routine is capable of detecting the LSB 

galaxies in less time. Our technique is simpler firstly as it 

processes the image in a single pass. Secondly, a fast 

POHMT has been implemented using techniques similar to 
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those used to optimize median filtering [21] and 

morphological operators [22]. However, instead of 

searching for the min, median or max value in the window, 

the POHMT searches for the rank specified by P. 

An example of the noisy biological images (of an immune 

system cell) is shown in Fig. 10 where we have chosen three 

of the images (Fig.10(a)) to be used as a training set in 

order that P can be determined and used to detect the 

features of interest in our test set (Fig.10(b)). We can see a 

small group of pixels in each image in Fig.10 that represents 

the feature of interest, while the rest of the image contains 

noise and other features that are not of interest. The images 

are extremely noisy, and, by observation of the data, it is 

evident that the shape and orientation of the cell changes 

between the images.  

(a)

(b) (c)

 

Fig. 10 The image set containing the cell of interest and some other 

features where the entire image is submersed in noise. (a) Training set to 

determine an appropriate value for P. (b) The set of test images in which 

we seek the feature after P has been fixed using the PO plot for the test 

set.(c) PO plot obtained for the training set shown in (a).    

 

The first stage in the process is to generate a PO plot for 

each feature of interest in the test set in order to determine 

an appropriate level for P. Although the cell is not a 

constant shape and size in all images, we can design B such 

that its elements corresponding to BFG will fit inside it in 

each image. Similarly, BBG was designed to encompass all of 

the features of interest in each image to guarantee that we 

can detect the cell in all possible orientations and variations 

of shape and size. By increasing the spatial distance 

between the SEs, as we are here, it can be argued that the 

transform may produce erroneous hits. If a problem occurs, 

this issue can easily be overcome by exploiting the 

discriminatory property of the POHMT shown in Section IV 

B. We also note that although automatic techniques are 

available for SE design, we have used a manual method 

here to compare our method with the one presented in [14]. 

We have used square SEs for processing simplicity, 

however, this may be readily extended to arbitrarily shaped 

SEs using the method described in [22]. B was used to 

generate a PO plot for each image in the training set in 

order to obtain a suitable level for P, such that the feature 

could be detected in the test set, without picking up 

erroneous hits. The PO plot, generated for the training set, 

is shown in Fig. 10(c). Clearly, by reference of the PO plot, 

setting P=81% is sufficient to ensure that this feature may 

be detected using one composite SE for the entire test set. 

The POHMT was calculated for each image in the test set 

where the results of applying this transform and 

reconstructing the features of interest that have been marked 

are shown in Fig.11. 

We also calculated the average processing time using the 

described SEs when analyzing this image on a PC with a 

Pentium IV processor. The image is 512 x 512 pixels in size 

and the average time taken to process an image was 

measured to be 0.87s. This does not include the opening by 

reconstruction which is performed largely for illustration 

and is not normally required in a practical detection or 

feature recognition system. To improve visibility in Fig.11, 

we have dilated the each image resulting from the opening 

by reconstruction. 

(b)(a) (c) (e)(d)  

Fig.11 Result of applying opening by reconstruction to the result of the 

POHMT for each image in Fig.10(b).  

 

We have also tested our routine on the images used in 

[14] to compare the performance and efficiency with the 

one described by Perret et al. We show an example of the 

POHMT detecting an LSB galaxy in Fig.12 where the 

contrast of the image shown in Fig.12(a) has been enhanced 

to make the LSB clearly visible. The average processing 

time of our routine was 4 seconds per 512 x 512 image 

which is a substantial improvement compared to the 2 

minute execution time of the optimized routine presented in 

[14].  

For the example shown, our method is faster and simpler 

to implement than the method proposed by Perret et al [14] 

since it only requires one composite SE. Further, we point 

out here that we do not optimize our routine by sub-

sampling the image, the SE, or by using any potentially 

lossy, heuristic techniques.  

(b)(a)  

Fig.12 The POHMT detecting a LSB galaxy. (a) Original noisy image 

containing a LSB galaxy in the lower right quadrant of the image. (b) The 

output of the POHMT when processing the image in (a). 

 

Clearly, our proposed routine provides a significant 

improvement to the optimized method presented in [14] 

while achieving accurate results. It should be noted 

however, that the method proposed in [14], is extremely 

well suited to the authors’ application since the visual 

appearance of LSB galaxies varies significantly between 

images. For this reason, the authors in [14] use an accurate 

mathematical model to generate a large set of SEs for 
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processing each image, however, when the sought patterns 

do not vary substantially between images our technique is 

optimal and requires that only a few frames (as 

demonstrated) be used to train the routine and set the only 

parameter, P. In addition to the simplicity of our method, 

the benefits of the PO plot in terms of discriminating 

between image features and allowing other researchers to 

set parameters for their routines, provides an element of 

novelty that is not yet found in similar techniques.    

VI.  CONCLUSIONS 

In this paper we have presented an extension of the 

grayscale HMT following the definition given by Soille, 

although various definitions exist in the literature. We have 

shown the equivalences between these extensions and we 

have highlighted the reasons that noise in images may cause 

these transforms to fail. We have presented a solution that 

offers improved robustness to noise, in the form of a 

Percentage Occupancy Hit-or-miss Transform, which 

relaxes the fitting criteria of the SEs making them more 

flexible such that they can successfully detect image 

features even in very noisy conditions. 

In addition to the POHMT, we have shown in this paper, 

a novel design tool in the form of a PO plot. The plot can be 

used to set the only parameter required by the POHMT and 

can be used by other researchers to set parameters for their 

own routines. We have given various examples of how this 

can be achieved and we have used the PO plot to 

incorporate some suggested modifications by other 

researchers to make the grayscale HMT perform better in 

noise. When performing the HMT and using the suggested 

modifications, we have shown that image features can be 

detected in noise, but unlike the POHMT, there are also a 

large number of false positives in the result.  

Further to the PO plot being used to set parameters for 

grayscale HMTs in noise, we have shown that this tool 

provides some additional benefits. The discriminatory filter 

aspect of the POHMT which is a direct result of analyzing 

the PO plot, allows us to differentiate between objects in the 

image that we wish to detect and others which may appear 

visually similar in the spatial domain but that are not of 

interest. We have also implemented a fast algorithm that can 

be used to calculate the POHMT. On the set of images 

containing the noisy biological cell, the fast POHMT 

executed in less than one second while detecting the image 

features of interest. We have shown that our method 

outperforms all of the grayscale HMTs that have been 

discussed in this paper when images are noisy and that even 

using the suggested techniques for improved robustness to 

noise, we still achieve better results. We have also shown 

that our method achieves better results than the most recent 

extension of the HMT presented by Perret et al. and we 

have verified this using their images. We have also shown 

that by exploiting the properties of the PO plot, we obtain 

our results in a fraction of the time, using just one 

composite SE, in a single pass of the image. 

Although the applications of this method have been 

demonstrated for images of a biological and astronomical 

nature, our method may be applied to any feature 

recognition problem. The only requirement of this routine is 

that we must know the spatial characteristics of the patterns 

that we seek, however, this requirement is consistent with 

most morphological operations.        
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