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Abstract: As a powerful statistical image modeling technique, sparse representation has been successfully 

used in various image restoration applications. The success of sparse representation owes to the development 

of l1-norm optimization techniques, and the fact that natural images are intrinsically sparse in some domain. 

The image restoration quality largely depends on whether the employed sparse domain can represent well 

the underlying image. Considering that the contents can vary significantly across different images or 

different patches in a single image, we propose to learn various sets of bases from a pre-collected dataset of 

example image patches, and then for a given patch to be processed, one set of bases are adaptively selected 

to characterize the local sparse domain. We further introduce two adaptive regularization terms into the 

sparse representation framework. First, a set of autoregressive (AR) models are learned from the dataset of 

example image patches. The best fitted AR models to a given patch are adaptively selected to regularize the 

image local structures. Second, the image non-local self-similarity is introduced as another regularization 

term. In addition, the sparsity regularization parameter is adaptively estimated for better image restoration 

performance. Extensive experiments on image deblurring and super-resolution validate that by using 

adaptive sparse domain selection and adaptive regularization, the proposed method achieves much better 

results than many state-of-the-art algorithms in terms of both PSNR and visual perception. 
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I. Introduction 

Image restoration (IR) aims to reconstruct a high quality image x from its degraded measurement y. IR is a 

typical ill-posed inverse problem [1] and it can be generally modeled as  

y=DHx+υ,                                   (1) 

where x is the unknown image to be estimated, H and D are degrading operators and υ is additive noise. 

When H and D are identities, the IR problem becomes denoising; when D is identity and H is a blurring 

operator, IR becomes deblurring; when D is identity and H is a set of random projections, IR becomes 

compressed sensing [2-4]; when D is a down-sampling operator and H is a blurring operator, IR becomes 

(single image) super-resolution. As a fundamental problem in image processing, IR has been extensively 

studied in the past three decades [5-20]. In this paper, we focus on deblurring and single image 

super-resolution.  

Due to the ill-posed nature of IR, the solution to Eq. (1) with an l2-norm fidelity constraint, i.e., 

2

2
ˆ arg min= −

x
x y DHx , is generally not unique. To find a better solution, prior knowledge of natural images 

can be used to regularize the IR problem. One of the most commonly used regularization models is the total 

variation (TV) model [6-7]: { }2

2 1
ˆ arg min +λ= − ⋅ ∇

x
x y DHx x , where |∇x|1 is the l1-norm of the first order 

derivative of x and λ is a constant. Since the TV model favors the piecewise constant image structures, it 

tends to smooth out the fine details of an image. To better preserve the image edges, many algorithms have 

been later developed to improve the TV models [17-19, 42, 45, 47].  

The success of TV regularization validates the importance of good image prior models in solving the IR 

problems. In wavelet based image denoising [21], researchers have found that the sparsity of wavelet 

coefficients can serve as good prior. This reveals the fact that many types of signals, e.g., natural images, can 

be sparsely represented (or coded) using a dictionary of atoms, such as DCT or wavelet bases. That is, 

denote by Φ the dictionary, we have x≈Φα and most of the coefficients in α are close to zero. With the 

sparsity prior, the representation of x over Φ can be estimated from its observation y by solving the 

following l0-minimization problem: { }2

2 0
ˆ arg min +λ= − ⋅y DHΦα α

α
α , where the l0-norm counts the 

number of nonzero coefficients in vector α. Once α̂  is obtained, x can then be estimated as ˆ ˆ=x Φα . The 
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l0-minimization is an NP-hard combinatorial search problem, and is usually solved by greedy algorithms [48, 

60]. The l1-minimization, as the closest convex function to l0-minimization, is then widely used as an 

alternative approach to solving the sparse coding problem: { }2

2 1
ˆ arg min +λ= − ⋅y DHΦα α

α
α  [60]. In 

addition, recent studies showed that iteratively reweighting the l1-norm sparsity regularization term can lead 

to better IR results [59]. Sparse representation has been successfully used in various image processing 

applications [2-4, 13, 21-25, 32].  

A critical issue in sparse representation modeling is the determination of dictionary Φ. Analytically 

designed dictionaries, such as DCT, wavelet, curvelet and contourlets, share the advantages of fast 

implementation; however, they lack the adaptivity to image local structures. Recently, there has been much 

effort in learning dictionaries from example image patches [13-15, 26-31, 55], leading to state-of-the-art 

results in image denoising and reconstruction. Many dictionary learning (DL) methods aim at learning a 

universal and over-complete dictionary to represent various image structures. However, sparse 

decomposition over a highly redundant dictionary is potentially unstable and tends to generate visual 

artifacts [53-54]. In this paper we propose an adaptive sparse domain selection (ASDS) scheme for sparse 

representation. By learning a set of compact sub-dictionaries from high quality example image patches. The 

example image patches are clustered into many clusters. Since each cluster consists of many patches with 

similar patterns, a compact sub-dictionary can be learned for each cluster. Particularly, for simplicity we use 

the principal component analysis (PCA) technique to learn the sub-dictionaries. For an image patch to be 

coded, the best sub-dictionary that is most relevant to the given patch is selected. Since the given patch can 

be better represented by the adaptively selected sub-dictionary, the whole image can be more accurately 

reconstructed than using a universal dictionary, which will be validated by our experiments.  

Apart from the sparsity regularization, other regularization terms can also be introduced to further 

increase the IR performance. In this paper, we propose to use the piecewise autoregressive (AR) models, 

which are pre-learned from the training dataset, to characterize the local image structures. For each given 

local patch, one or several AR models can be adaptively selected to regularize the solution space. On the 

other hand, considering the fact that there are often many repetitive image structures in an image, we 

introduce a non-local (NL) self-similarity constraint served as another regularization term, which is very 

helpful in preserving edge sharpness and suppressing noise.  
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After introducing ASDS and adaptive regularizations (AReg) into the sparse representation based IR 

framework, we present an efficient iterative shrinkage (IS) algorithm to solve the l1-minimization problem. 

In addition, we adaptively estimate the image local sparsity to adjust the sparsity regularization parameters. 

Extensive experiments on image deblurring and super-resolution show that the proposed ASDS-AReg 

approach can effectively reconstruct the image details, outperforming many state-of-the-art IR methods in 

terms of both PSNR and visual perception.  

The rest of the paper is organized as follows. Section II introduces the related works. Section III presents 

the ASDS-based sparse representation. Section IV describes the AReg modeling. Section V summarizes the 

proposed algorithm. Section VI presents experimental results and Section VII concludes the paper.  

 

II. Related Works 

It has been found that natural images can be generally coded by structural primitives, e.g., edges and line 

segments [61], and these primitives are qualitatively similar in form to simple cell receptive fields [62]. In 

[63], Olshausen et al. proposed to represent a natural image using a small number of basis functions chosen 

out of an over-complete code set. In recent years, such a sparse coding or sparse representation strategy has 

been widely studied to solve inverse problems, partially due to the progress of l0-norm and l1-norm 

minimization techniques [60].  

Suppose that x∈ℜn is the target signal to be coded, and Φ =[φ1,…, φm]∈ℜn×m is a given dictionary of 

atoms (i.e., code set). The sparse coding of x over Φ is to find a sparse vector α=[α1;…;αm] (i.e., most of the 

coefficients in α are close to zero) such that x≈Φα [49]. If the sparsity is measured as the l0-norm of α, 

which counts the non-zero coefficients in α, the sparse coding problem becomes 2

2
min −
α

x Φα s.t.
0

T≤α , 

where T is a scalar controlling the sparsity [55]. Alternatively, the sparse vector α can also be found by 

{ }2

2 0
ˆ arg min +λ= − ⋅x

α
α Φα α ,                           (2) 

where λ is a constant. Since the l0-norm is non-convex, it is often replaced by either the standard l1-norm or 

the weighted l1-norm to make the optimization problem convex [3, 57, 59, 60].  

An important issue of the sparse representation modeling is the choice of dictionary Φ. Much effort has 

been made in learning a redundant dictionary from a set of example image patches [13-15, 26-31, 55]. Given 
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a set of training image patches S=[s1, …, sN]∈ℜn×N, the goal of dictionary learning (DL) is to jointly 

optimize the dictionary Φ and the representation coefficient matrix Λ=[α1,…,αN] such that i i≈s αΦ  and 

i p
T≤α , where p = 0 or 1. This can be formulated by the following minimization problem:  

2ˆˆ( ) arg min
F

=
Φ,Λ

Φ,Λ S -ΦΛ  s.t. ,i p
T i≤ ∀α ,                     (3) 

where ||·||F is the Frobenius norm. The above minimization problem is non-convex even when p=1. To make 

it tractable, approximation approaches, including MOD [56] and K-SVD [26], have been proposed to 

alternatively optimizing Φ and Λ, leading to many state-of-the-art results in image processing [14-15, 31].  

Various extensions and variants of the K-SVD algorithm [27, 29-31] have been proposed to learn a 

universal and over-complete dictionary. However, the image contents can vary significantly across images. 

One may argue that a well learned over-complete dictionary Φ can sparsely code all the possible image 

structures; nonetheless, for each given image patch, such a “universal” dictionary Φ is neither optimal nor 

efficient because many atoms in Φ are irrelevant to the given local patch. These irrelevant atoms will not 

only reduce the computational efficiency in sparse coding but also reduce the representation accuracy.  

Regularization has been used in IR for a long time to incorporate the image prior information. The 

widely used TV regularizations lack flexibilities in characterizing the local image structures and often 

generate over-smoothed results. As a classic method, the autoregressive (AR) modeling has been 

successfully used in image compression [33] and interpolation [34-35]. Recently the AR model was used for 

adaptive regularization in compressive image recovery [40]: 2

2
min   s.t.  i i i

i
x − =∑x

α y Axχ , where χi is 

the vector containing the neighboring pixels of pixel xi within the support of the AR model, and ai is the AR 

parameter vector. In [40], the AR models are locally computed from an initially recovered image, and they 

perform much better than the TV regularization in reconstructing the edge structures. However, the AR 

models estimated from the initially recovered image may not be robust and tend to produce the “ghost” 

visual artifacts. In this paper, we will propose a learning-based adaptive regularization, where the AR models 

are learned from high-quality training images, to increase the AR modeling accuracy.  

In recent years the non-local (NL) methods have led to promising results in various IR tasks, especially 

in image denoising [36, 15, 39]. The mathematical framework of NL means filtering was well established by 

Buades et al. [36]. The idea of NL methods is very simple: the patches that have similar patterns can be 
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spatially far from each other and thus we can collect them in the whole image. This NL self-similarity prior 

was later employed in image deblurring [8, 20] and super-resolution [41]. In [15], the NL self-similarity 

prior was combined with the sparse representation modeling, where the similar image patches are 

simultaneously coded to improve the robustness of inverse reconstruction. In this work, we will also 

introduce an NL self-similarity regularization term into our proposed IR framework.  

 

III. Sparse Representation with Adaptive Sparse Domain Selection  

In this section we propose an adaptive sparse domain selection (ASDS) scheme, which learns a series of 

compact sub-dictionaries and assigns adaptively each local patch a sub-dictionary as the sparse domain. 

With ASDS, a weighted l1-norm sparse representation model will be proposed for IR tasks. Suppose that 

{Φk}, k=1,2,…,K, is a set of K orthonormal sub-dictionaries. Let x be an image vector, and xi=Rix, 

i=1,2,…,N, be the ith patch (size: n n× ) vector of x, where Ri is a matrix extracting patch xi from x. For 

patch xi, suppose that a sub-dictionary 
ikΦ  is selected for it. Then, xi can be approximated as 

1
ˆ ,  

ii k i i T= ≤x Φ α α , via sparse coding. The whole image x can be reconstructed by averaging all the 

reconstructed patches ˆ ix , which can be mathematically written as [22] 

( )
1

1 1

ˆ
i

N N
T T
i i i k i

i i

−

= =

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑ ∑x R R R Φ α .                            (4) 

In Eq. (4), the matrix to be inverted is a diagonal matrix, and hence the calculation of Eq. (4) can be done in 

a pixel-by-pixel manner [22]. Obviously, the image patches can be overlapped to better suppress noise [22, 

15] and block artifacts. For the convenience of expression, we define the following operator “ο”: 

( )
1

1 1

ˆ
i

N N
T T
i i i k i

i i

−

= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑x R R RΦ α Φ α ,                         (5) 

where Φ is the concatenation of all sub-dictionaries {Φk} and α is the concatenation of all αi.  

Let = +y DHx v  be the observed degraded image, our goal is to recover the original image x from y. 

With ASDS and the definition in Eq. (5), the IR problem can be formulated as follows:  

{ }2

2 1
ˆ arg min +λ= −y DH

α
α Φ α α .                         (6) 

Clearly, one key procedure in the proposed ASDS scheme is the determination of 
ikΦ  for each local patch. 
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To facilitate the sparsity-based IR, we propose to learn offline the sub-dictionaries {Φk}, and select online 

from {Φk} the best fitted sub-dictionary to each patch xi.   

 

A. Learning the sub-dictionaries 

In order to learn a series of sub-dictionaries to code the various local image structures, we need to first 

construct a dataset of local image patches for training. To this end, we collected a set of high-quality natural 

images, and cropped from them a rich amount of image patches with size n n× . A cropped image patch, 

denoted by si, will be involved in DL if its intensity variance Var(si) is greater than a threshold Δ, i.e., 

Var(si)> Δ. This patch selection criterion is to exclude the smooth patches from training and guarantee that 

only the meaningful patches with a certain amount of edge structures are involved in DL.  

Suppose that M image patches S=[s1, s2, …, sM] are selected. We aim to learn K compact sub-dictionaries 

{Φk} from S so that for each given local image patch, the most suitable sub-dictionary can be selected. To 

this end, we cluster the dataset S into K clusters, and learn a sub-dictionary from each of the K clusters. 

Apparently, the K clusters are expected to represent the K distinctive patterns in S. To generate perceptually 

meaningful clusters, we perform the clustering in a feature space. In the hundreds of thousands patches 

cropped from the training images, many patches are approximately the rotated version of the others. Hence 

we do not need to explicitly make the training dataset invariant to rotation because it is naturally (nearly) 

rotation invariant. Considering the fact that human visual system is sensitive to image edges, which convey 

most of the semantic information of an image, we use the high-pass filtering output of each patch as the 

feature for clustering. It allows us to focus on the edges and structures of image patches, and helps to 

increase the accuracy of clustering. The high-pass filtering is often used in low-level statistical learning tasks 

to enhance the meaningful features [50].  

Denote by 1 2[ , ,..., ]h h h
h M=S s s s  the high-pass filtered dataset of S. We adopt the K-means algorithm to 

partition Sh into K clusters 1 2{ , , , }KC C C  and denote by μk the centroid of cluster Ck. Once Sh is 

partitioned, dataset S can then be clustered into K subsets Sk, k=1,2,..,K, and Sk is a matrix of dimension 

n×mk, where mk denotes the number of samples in Sk.  

Now the remaining problem is how to learn a sub-dictionary Φk from the cluster Sk such that all the 

elements in Sk can be faithfully represented by Φk. Meanwhile, we hope that the representation of Sk over Φk 
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is as sparse as possible. The design of Φk can be intuitively formulated by the following objective function: 

{ }2

1
ˆˆ( , ) arg min

k k
k k k k k kF

λ= +
Φ ,Λ

Φ Λ S -Φ Λ Λ ,                       (7) 

where Λk is the representation coefficient matrix of Sk over Φk. Eq. (7) is a joint optimization problem of Φk 

and Λk, and it can be solved by alternatively optimizing Φk and Λk, like in the K-SVD algorithm [26].  

However, we do not directly use Eq. (7) to learn the sub-dictionary Φk based on the following 

considerations. First, the l2-l1 joint minimization in Eq. (7) requires much computational cost. Second and 

more importantly, by using the objective function in Eq. (7) we often assume that the dictionary Φk is 

over-complete. Nonetheless, here Sk is a sub-dataset after K-means clustering, which implies that not only 

the number of elements in Sk is limited, but also these elements tend to have similar patterns. Therefore, it is 

not necessary to learn an over-complete dictionary Φk from Sk. In addition, a compact dictionary will 

decrease much the computational cost of the sparse coding of a given image patch. With the above 

considerations, we propose to learn a compact dictionary while trying to approximate Eq. (7). The principal 

component analysis (PCA) is a good solution to this end.  

PCA is a classical signal de-correlation and dimensionality reduction technique that is widely used in 

pattern recognition and statistical signal processing [37]. In [38-39], PCA has been successfully used in 

spatially adaptive image denoising by computing the local PCA transform of each image patch. In this paper 

we apply PCA to each sub-dataset Sk to compute the principal components, from which the dictionary Φk is 

constructed. Denote by Ωk the co-variance matrix of dataset Sk. By applying PCA to Ωk, an orthogonal 

transformation matrix Pk can be obtained. If we set Pk as the dictionary and let T
k k kZ = Ρ S , we will then 

have 
22 0T

k k k k k k kF F
= =S - P Z S - P P S . In other words, the approximation term in Eq. (7) will be exactly 

zero, yet the corresponding sparsity regularization term ||Zk||1 will have a certain amount because all the 

representation coefficients in Zk are preserved.  

To make a better balance between the l1-norm regularization term and l2-norm approximation term in Eq. 

(7), we only extract the first r most important eigenvectors in Pk to form a dictionary Φr, i.e. 

[ ]1 2, ,...,r r=Φ p p p . Let T
r r kΛ = Φ S . Clearly, since not all the eigenvectors are used to form Φr, the 

reconstruction error 2
k r r F

S -Φ Λ  in Eq. (7) will increase with the decrease of r. However, the term ||Λr||1 
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will decrease. Therefore, the optimal value of r, denoted by ro, can be determined by 

{ }2

1
arg mino k r r rFr

r λ= +S -Φ Λ Λ .                        (8) 

Finally, the sub-dictionary learned from sub-dataset Sk is 1 2, ,...,
ok r⎡ ⎤= ⎣ ⎦Φ p p p .  

Applying the above procedures to all the K sub-datasets Sk, we could get K sub-dictionaries Φk, which 

will be used in the adaptive sparse domain selection process of each given image patch. In Fig. 1, we show 

some example sub-dictionaries learned from a training dataset. The left column shows the centroids of some 

sub-datasets after K-means clustering, and the right eight columns show the first eight atoms in the 

sub-dictionaries learned from the corresponding sub-datasets.  

 

           

           

           

           

           

           
 
Fig. 1. Examples of learned sub-dictionaries. The left column shows the centriods of some sub-datasets after K-means 
clustering, and the right eight columns show the first eight atoms of the learned sub-dictionaries from the corresponding 
sub-datasets.  
 

B. Adaptive selection of the sub-dictionary 

In the previous subsection, we have learned a dictionary Φk for each subset Sk. Meanwhile, we have 

computed the centroid μk of each cluster Ck associated with Sk. Therefore, we have K pairs {Φk, μk}, with 

which the ASDS of each given image patch can be accomplished.  

In the proposed sparsity-based IR scheme, we assign adaptively a sub-dictionary to each local patch of x, 

spanning the adaptive sparse domain. Since x is unknown beforehand, we need to have an initial estimation 

of it. The initial estimation of x can be accomplished by taking wavelet bases as the dictionary and then 

solving Eq. (6) with the iterated shrinkage algorithm in [10]. Denote by x̂  the estimate of x, and denote by 

ˆ ix  a local patch of x̂ . Recall that we have the centroid μk of each cluster available, and hence we could 

select the best fitted sub-dictionary to ˆ ix  by comparing the high-pass filtered patch of ˆ ix , denoted by ˆ h
ix , 
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to the centroid μk. For example, we can select the dictionary for ˆ ix  based on the minimum distance 

between ˆ h
ix  and μk, i.e.  

2
ˆarg min h

i i kk
k = −x μ .                               (9) 

However, directly calculating the distance between ˆ h
ix  and μk may not be robust enough because the 

initial estimate x̂  can be noisy. Here we propose to determine the sub-dictionary in the subspace of μk. Let 

[ ]1 2, ,..., K=U μ μ μ  be the matrix containing all the centroids. By applying SVD to the co-variance matrix of 

U, we can obtain the PCA transformation matrix of U. Let Φc be the projection matrix composed by the first 

several most significant eigenvectors. We compute the distance between ˆ h
ix  and μk in the subspace spanned 

by Φc: 

2
ˆarg min h

i c i c kk
k = −Φ x Φ μ .                           (10) 

Compared with Eq. (9), Eq. (10) can increase the robustness of adaptive dictionary selection.  

By using Eq. (10), the ki
th sub-dictionary 

ikΦ  will be selected and assigned to patch ˆ ix . Then we can 

update the estimation of x by minimizing Eq. (6) and letting ˆ =x ˆΦ α . With the updated estimate x̂ , the 

ASDS of x can be consequently updated. Such a process is iteratively implemented until the estimation x̂  

converges.  

 

C. Adaptively reweighted sparsity regularization 

In Eq. (6), the parameter λ is a constant to weight the l1-norm sparsity regularization term 
1

α . In [59] 

Candes et al. showed that the reweighted l1-norm sparsity can more closely resemble the l0-norm sparsity 

than using a constant weight, and consequently improve the reconstruction of sparse signals. In this 

sub-section, we propose a new method to estimate adaptively the image local sparsity, and then reweight the 

l1-norm sparsity in the ASDS scheme.  

The reweighted l1-norm sparsity regularized minimization with ASDS can be formulated as follows: 

2
, ,2

1 1

ˆ arg min +
N n

i j i j
i j

λ α
= =

⎧ ⎫
= −⎨ ⎬

⎩ ⎭
∑∑y DH

α
α Φ α ,                       (11) 

where αi,j is the coefficient associated with the jth atom of 
ikΦ  and λi,j is the weight assigned to αi,j. In [59], 



11 

λi,j is empirically computed as , ,ˆ1/(| | )i j i jλ α ε= + , where ,ˆi jα  is the estimate of αi,j and ε is a small 

constant. Here, we propose a more robust method for computing λi,j by formulating the sparsity estimation 

as a Maximum a Posterior (MAP) estimation problem. Under the Bayesian framework, with the observation 

y the MAP estimation of α is given by 

{ } { }ˆ arg max log ( | ) arg min log ( | ) log ( )P P P= = − −y y
αα

α α α α .              (12) 

By assuming y is contaminated with additive Gaussian white noises of standard deviation σn, we have: 

2
2 2

1 1( | ) exp( )
22 nn

P
σσ π

= − −y y DHα Φ α .                       (13) 

The prior distribution P(α) is often characterized by an i.i.d. zero-mean Laplacian probability model:  

,1 1
,,

1 2( ) exp( )
2

N n
i ji j

i ji j

P α
σσ= =

= −∏ ∏α ,                      (14) 

where σi,j is the standard deviation of αi,j. By plugging P(y|α) and P(α) into Eq. (12), we could readily derive 

the desired weight in Eq. (11) as 2
, ,2 2 /i j n i jλ σ σ= . For numerical stability, we compute the weights by 

2

,
,

2 2
ˆ

n
i j

i j

σ
λ

σ ε
=

+
,                                  (15) 

where ,ˆi jσ  is an estimate of σi,j and ε is a small constant.  

Now let’s discuss how to estimate σi,j. Denote by ˆ ix  the estimate of ix , and by ˆ l
ix , l=1,2,…, L, the 

non-local similar patches to ˆ ix . (The determination of non-local similar patches to ˆ ix  will be described in 

Section IV-C.) The representation coefficients of these similar patches over the selected sub-dictionary 
ikΦ  

is ˆ ˆ
i

l T l
i k i= xα Φ . Then we can estimate σi,j by calculating the standard deviation of each element ,ˆi jα  in ˆ l

iα . 

Compared with the reweighting method in [59], the proposed adaptive reweighting method is more robust 

because it exploits the image nonlocal redundancy information. Based on our experimental experience, it 

could lead to about 0.2dB improvement in average over the reweighting method in [59] for deblurring and 

super-resolution under the proposed ASDS framework. The detailed algorithm to solve the reweighted 

l1-norm sparsity regularized minimization in Eq. (11) will be presented in Section V.  

 



12 

IV. Spatially Adaptive Regularization  

In Section III, we proposed to select adaptively a sub-dictionary to code the given image patch. The 

proposed ASDS-based IR method can be further improved by introducing two types of adaptive 

regularization (AReg) terms. A local area in a natural image can be viewed as a stationary process, which 

can be well modeled by the autoregressive (AR) models. Here, we propose to learn a set of AR models from 

the clustered high quality training image patches, and adaptively select one AR model to regularize the input 

image patch. Besides the AR models, which exploit the image local correlation, we propose to use the 

non-local similarity constraint as a complementary AReg term to the local AR models. With the fact that 

there are often many repetitive image structures in natural images, the image non-local redundancies can be 

very helpful in image enhancement.  

 

A. Training the AR models 

Recall that in Section III, we have partitioned the whole training dataset into K sub-datasets Sk. For each Sk 

an AR model can be trained using all the sample patches inside it. Here we let the support of the AR model 

be a square window, and the AR model aims to predict the central pixel of the window by using the 

neighboring pixels. Considering that determining the best order of the AR model is not trivial, and a high 

order AR model may cause data over-fitting, in our experiments a 3×3 window (i.e., AR model of order 8) is 

used. The vector of AR model parameters, denoted by ak, of the kth sub-dataset Sk, can be easily computed by 

solving the following least square problem: 

2arg min ( )
i k

T
k i is

∈

= −∑a
s S

a a q ,                          (16) 

where si is the central pixel of image patch si and qi is the vector that consists of the neighboring pixels of si 

within the support of the AR model. By applying the AR model training process to each sub-dataset, we can 

obtain a set of AR models {a1, a2, …, aK} that will be used for adaptive regularization. 

 

B. Adaptive selection of the AR model for regularization 

The adaptive selection of the AR model for each patch xi is the same as the selection of sub-dictionary for xi 

described in Section III-B. With an estimation ˆ ix  of xi, we compute its high-pass Gaussian filtering output 
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ˆ h
ix . Let 

2
ˆarg min h

i c i c kk
k = −Φ x Φ μ , and then the ki

th AR model 
ika will be assigned to patch xi. Denote by xi 

the central pixel of patch xi, and by χi the vector containing the neighboring pixels of xi within patch xi. We 

can expect that the prediction error of xi using 
ika and χi should be small, i.e., 

2

2i

T
i k ix − a χ  should be 

minimized. By incorporating this constraint into the ASDS based sparse representation model in Eq. (11), we 

have a lifted objective function as follows:  

22
, ,2 2

1 1

ˆ arg min +
i

i

N n
T

i j i j i k i
i j x

xλ α γ
= = ∈

⎧ ⎫⎪ ⎪= − + ⋅ −⎨ ⎬
⎪ ⎪⎩ ⎭

∑∑ ∑
x

α y DHΦ α a χ
α

,             (17) 

where γ is a constant balancing the contribution of the AR regularization term. For the convenience of 

expression, we write the third term 
2

2i

i

T
i k i

x

x
∈

−∑
x

a χ  as 2

2
( )I - A x , where I is the identity matrix and  

,  if  is an element of , 
( , )

0,  otherwise
ii j i i ka x a

i j
∈⎧⎪= ⎨

⎪⎩

χ a
A . 

Then, Eq. (17) can be rewritten as  

2 2
, ,2 2

1 1

ˆ arg min + ( )
N n

i j i j
i j

λ α γ
= =

⎧ ⎫
= − + ⋅ −⎨ ⎬

⎩ ⎭
∑∑α y DHΦ α I A x

α
.              (18) 

 

C. Adaptive regularization by non-local similarity 

The AR model based AReg exploits the local statistics in each image patch. On the other hand, there are 

often many repetitive patterns throughout a natural image. Such non-local redundancy is very helpful to 

improve the quality of reconstructed images. As a complementary AReg term to AR models, we further 

introduce a non-local similarity regularization term into the sparsity-based IR framework.  

For each local patch xi, we search for the similar patches to it in the whole image x (in practice, in a 

large enough area around xi). A patch l
ix  is selected as a similar patch to xi if l

ie = ˆ|| ix 2
2ˆ ||l

i t− ≤x , where t 

is a preset threshold, and ˆ ix  and ˆ l
ix  are the current estimates of xi and l

ix , respectively. Or we can select 

the patch ˆ l
ix  if it is within the first L (L=10 in our experiments) closest patches to ˆ ix . Let xi be the central 

pixel of patch xi, and l
ix  be the central pixel of patch l

ix . Then we can use the weighted average of l
ix , 

i.e., 
1

L l l
i il

b x
=∑ , to predict xi, and the weight l

ib  assigned to l
ix  is set as exp( / ) /l l

i i ib e h c= − , where h is a 
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controlling factor of the weight and 
1
exp( / )L l

i il
c e h

=
= −∑  is the normalization factor. Considering that 

there is much non-local redundancy in natural images, we expect that the prediction error 
2

1 2

L l l
i i il

x b x
=

−∑  

should be small. Let bi be the column vector containing all the weights l
ib  and βi be the column vector 

containing all l
ix . By incorporating the non-local similarity regularization term into the ASDS based sparse 

representation in Eq. (11), we have:  

22
, ,2 2

1 1

ˆ arg min +
i

N n
T

i j i j i i i
i j x

xλ α η
= = ∈

⎧ ⎫⎪ ⎪= − + ⋅ −⎨ ⎬
⎪ ⎪⎩ ⎭

∑∑ ∑
x

y DHΦ α b β
α

α ,              (19) 

where η is a constant balancing the contribution of non-local regularization. Eq. (19) can be rewritten as  

2 2
, ,2

1 1

ˆ arg min + ( )
N n

i j i j
i j

λ α η
= =

⎧ ⎫
= − + ⋅ −⎨ ⎬

⎩ ⎭
∑∑y DHΦ α I B Φα

α
α ,               (20) 

where I is the identity matrix and  

,  if  is an element of , 
( , )

0,  otherwise

l l l
i i i i ib x b

i l
⎧ ∈⎪= ⎨
⎪⎩

b
B

β
. 

 

V. Summary of the Algorithm 

By incorporating both the local AR regularization and the non-local similarity regularization into the ASDS 

based sparse representation in Eq. (11), we have the following ASDS-AReg based sparse representation to 

solve the IR problem: 

2 2 2
, ,2 2 2

1 1

ˆ arg min ( ) ( ) +
N n

i j i j
i j

γ η λ α
= =

⎧ ⎫
= − + ⋅ − + ⋅ −⎨ ⎬

⎩ ⎭
∑∑

α
y DHΦ α I A Φ α I B Φ αα .        (21) 

In Eq. (21), the first l2-norm term is the fidelity term, guaranteeing that the solution ˆ =x ˆΦ α  can well 

fit the observation y after degradation by operators H and D; the second l2-norm term is the local AR model 

based adaptive regularization term, requiring that the estimated image is locally stationary; the third l2-norm 

term is the non-local similarity regularization term, which uses the non-local redundancy to enhance each 

local patch; and the last weighted l1-norm term is the sparsity penalty term, requiring that the estimated 

image should be sparse in the adaptively selected domain. Eq. (21) can be re-written as 
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2

, ,
1 1

2

ˆ arg min ( )
( )

N n

i j i j
i j

γ λ α
η = =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − ⋅ +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⋅⎣ ⎦ ⎣ ⎦

∑∑
α

y DH
I - A Φ α
I - B

α 0
0

.                   (22) 

By letting 

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

y
y 0

0
, ( )

( )
γ
η

⎡ ⎤
⎢ ⎥= ⋅⎢ ⎥
⎢ ⎥⋅⎣ ⎦

DH
K I - A

I - B
,                             (23) 

Eq. (22) can be re-written as 

, ,2
1 1

ˆ arg min
N n

i j i j
i j

λ α
= =

⎧ ⎫
= − +⎨ ⎬

⎩ ⎭
∑∑

α
y KΦ αα .                    (24) 

This is a reweighted l1-minimization problem, which can be effectively solved by the iterative shrinkage 

algorithm [10]. We outline the iterative shrinkage algorithm for solving (24) in Algorithm 1.  

 

Algorithm 1 for solving Eq. (24) 

1. Initialization:  
(a) By taking the wavelet domain as the sparse domain, we can compute an initial estimate, 

denoted by x̂ , of x by using the iterated wavelet shrinkage algorithm [10]; 
(b) With the initial estimate x̂ , we select the sub-dictionary 

ikΦ  and the AR model ia  using Eq. 

(10), and calculate the non-local weight ib  for each local patch ˆ ix ; 
(c) Initialize A and B with the selected AR models and the non-local weights;  
(d) Preset γ, η, P, e and the maximal iteration number, denoted by Max_Iter; 
(e) Set k=0.  

2. Iterate on k until 
2( ) ( 1)

2
ˆ ˆk k N e+− ≤x x  or k ≥ Max_Iter is satisfied.  

(a) ( 1/ 2) ( ) ( )ˆ ˆ ˆ( )k k T k+ = + −x x K y Kx = ( ) ( ) ( )ˆ ˆ ˆ( )k k ky+ − −x U Ux Vx , where ( )T=U DH DH  and 
2 2( ) ( ) ( ) ( )T Tγ η= − − + − −V I A I A I B I B ; 

(b) Compute 
1

( 1/ 2) ( 1/ 2) ( 1/ 2)
1 ˆ ˆ[ , , ]

N

k T k T k
k k N

+ + +=α R x R xΦ Φ , where N is the total number of image 
patches; 

(c) ( 1) ( 1/ 2)
,soft( , )k+ k+

i, j i, j i jα α τ= , where ,soft( , )i jτ⋅  is a soft thresholding function with threshold ,i jτ ; 

(d) Compute ( 1) ( 1)ˆ k k+ +=x Φ α  using Eq. (5), which can be calculated by first reconstructing each 
image patch with ( 1)ˆ

i

k
i k i

+=x Φ α  and then averaging all the reconstructed image patches; 
(e) If mod(k,P)=0, update the adaptive sparse domain of x and the matrices A and B using the 

improved estimate ( 1)ˆ k+x .  
 

In Algorithm 1, e is a pre-specified scalar controlling the convergence of the iterative process, and 

Max_Iter is the allowed maximum number of iterations. The thresholds ,i jτ  are locally computed as 

, , /i j i j rτ λ=  [10], where ,i jλ  are calculated by Eq. (15) and r is chosen such that 
2

( )Tr > K KΦ Φ . Since 
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the dictionary 
ikΦ  varies across the image, the optimal determination of r for each local patch is difficult. 

Here, we empirically set r=4.7 for all the patches. P is a preset integer, and we only update the 

sub-dictionaries 
ikΦ , the AR models ia  and the weights ib  in every P iterations to save computational 

cost. With the updated ia  and ib , A and B can be updated, and then the matrix V can be updated.  

 

VI. Experimental Results 

A. Training datasets   

Although image contents can vary a lot from image to image, it has been found that the micro-structures of 

images can be represented by a small number of structural primitives (e.g., edges, line segments and other 

elementary features), and these primitives are qualitatively similar in form to simple cell receptive fields 

[61-63]. The human visual system employs a sparse coding strategy to represent images, i.e., coding a 

natural image using a small number of basis functions chosen out of an over-complete code set. Therefore, 

using the many patches extracted from several training images which are rich in edges and textures, we are 

able to train the dictionaries which can represent well the natural images. To illustrate the robustness of the 

proposed method to the training dataset, we use two different sets of training images in the experiments, 

each set having 5 high quality images as shown in Fig. 2. We can see that these two sets of training images 

are very different in contents. We use Var(si)> Δ with Δ=16 to exclude the smooth image patches, and a total 

amount of 727,615 patches of size 7×7 are randomly cropped from each set of training images. (Please refer 

to Section VI-E for the discussion of patch size selection.) 

As a clustering-based method, an important issue is the selection of the number of classes. However, the 

optimal selection of this number is a non-trivial task, which is subject to the bias and variance tradeoff. If the 

number of classes is too small, the boundaries between classes will be smoothed out and thus the 

distinctiveness of the learned sub-dictionaries and AR models is decreased. On the other hand, a too large 

number of the classes will make the learned sub-dictionaries and AR models less representative and less 

reliable. Based on the above considerations and our experimental experience, we propose the following 

simple method to find a good number of classes: we first partition the training dataset into 200 clusters, and 

merge those classes that contain very few image patches (i.e., less than 300 patches) to their nearest 

neighboring classes. More discussions and experiments on the selection of the number of classes will be 
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made in Section VI-E. 

 

     
 

     
 
Fig. 2. The two sets of high quality images used for training sub-dictionaries and AR models. The images in the first 
row consist of the training dataset 1 and those in the second row consist of the training dataset 2.  
 
 
B. Experimental settings  

In the experiments of deblurring, two types of blur kernels, a Gaussian kernel of standard deviation 3 and a 

9×9 uniform kernel, were used to simulate blurred images. Additive Gaussian white noises with standard 

deviations 2  and 2 were then added to the blurred images, respectively. We compare the proposed 

methods with five recently proposed image deblurring methods: the iterated wavelet shrinkage method [10], 

the constrained TV deblurring method [42], the spatially weighted TV deblurring method [45], the l0-norm 

sparsity based deblurring method [46], and the BM3D deblurring method [58]. In the proposed ASDS-AReg 

Algorithm 1, we empirically set γ = 0.0775, η = 0.1414, and τi,j=λi,j /4.7, where λi,j is adaptively computed 

by Eq. (15). 

In the experiments of super-resolution, the degraded LR images were generated by first applying a 

truncated 7×7 Gaussian kernel of standard deviation 1.6 to the original image and then down-sampling by a 

factor of 3. We compare the proposed method with four state-of-the-art methods: the iterated wavelet 

shrinkage method [10], the TV-regularization based method [47], the Softcuts method [43], and the sparse 

representation based method [25]2. Since the method in [25] does not handle the blurring of LR images, for 

fair comparisons we used the iterative back-projection method [16] to deblur the HR images produced by 

[25]. In the proposed ASDS-AReg based super-resolution, the parameters are set as follows. For the 

noiseless LR images, we empirically set γ =0.0894, η =0.2 and , ,ˆ0.18/i j i jτ σ= , where ,ˆi jσ  is the estimated 

                                                        
2 We thank the authors of [42-43], [45-46], [58] and [25] for providing their source codes, executable programs, or experimental 

results.  
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standard deviation of αi,j. For the noisy LR images, we empirically set γ =0.2828, η =0.5 and τi,j=λi,j /16.6.  

In both of the deblurring and super-resolution experiments, 7×7 patches (for HR image) with 

5-pixel-width overlap between adjacent patches were used in the proposed methods. For color images, all 

the test methods were applied to the luminance component only because human visual system is more 

sensitive to luminance changes, and the bi-cubic interpolator was applied to the chromatic components. Here 

we only report the PSNR and SSIM [44] results for the luminance component. To examine more 

comprehensively the proposed approach, we give three results of the proposed method: the results by using 

only ASDS (denoted by ASDS), by using ASDS plus AR regularization (denoted by ASDS-AR), and by 

using ASDS with both AR and non-local similarity regularization (denoted by ASDS-AR-NL).  

 
C. Experimental results on de-blurring 

 

    

    
 
Fig. 3. Comparison of deblurred images (uniform blur kernel, σn= 2 ) on Parrot by the proposed methods. Top row: 
Original, Degraded, ASDS-TD1 (PSNR=30.71dB, SSIM=0.8926), ASDS-TD2 (PSNR=30.90dB, SSIM=0.8941). 
Bottom row: ASDS-AR-TD1 (PSNR=30.64dB, SSIM=0.8920), ASDS-AR-TD2 (PSNR=30.79dB, SSIM=0.8933), 
ASDS-AR-NL-TD1 (PSNR=30.76dB, SSIM=0.8921), ASDS-AR-NL-TD2 (PSNR=30.92dB, SSIM=0.8939).  
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To verify the effectiveness of ASDS and adaptive regularizations, and the robustness of them to the training 

datasets, we first present the deblurring results on image Parrot by the proposed methods in Fig. 3. More 

PSNR and SSIM results can be found in Table 1. From Fig. 3 and Table 1 we can see that the proposed 

methods generate almost the same deblurring results with TD1 and TD2. We can also see that the ASDS 

method is effective in deblurring. By combining the adaptive regularization terms, the deblurring results can 

be further improved by eliminating the ringing artifacts around edges. Due to the page limit, we will only 

show the results by ASDS-AR-NL-TD2 in the following development.  

The deblurring results by the competing methods are then compared in Figs. 4~6. One can see that there 

are many noise residuals and artifacts around edges in the deblurred images by the iterated wavelet 

shrinkage method [10]. The TV-based methods in [42] and [45] are effective in suppressing the noises; 

however, they produce over-smoothed results and eliminate much image details. The l0-norm sparsity based 

method of [46] is very effective in reconstructing smooth image areas; however, it fails to reconstruct fine 

image edges. The BM3D method [58] is very competitive in recovering the image structures. However, it 

tends to generate some “ghost” artifacts around the edges (e.g., the image Cameraman in Fig. 6). The 

proposed method leads to the best visual quality. It can not only remove the blurring effects and noise, but 

also reconstruct more and sharper image edges than other methods. The excellent edge preservation owes to 

the adaptive sparse domain selection strategy and adaptive regularizations. The PSNR and SSIM results by 

different methods are listed in Tables 1~4. For the experiments using uniform blur kernel, the average PSNR 

improvements of ASDS-AR-NL-TD2 over the second best method (i.e., BM3D [58]) are 0.50 dB (when 

σn= 2 ) and 0.4 dB (when σn=2), respectively. For the experiments using Gaussian blur kernel, the PSNR 

gaps between all the competing methods become smaller, and the average PSNR improvements of 

ASDS-AR-NL-TD2 over the BM3D method are 0.15 dB (when σn= 2 ) and 0.18 dB (when σn=2), 

respectively. We can also see that the proposed ASDS-AR-NL method achieves the highest SSIM index.  
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Fig. 4. Comparison of the deblurred images on Parrot by different methods (uniform blur kernel and σn= 2 ). Top row: 
Original, degraded, method [10] (PSNR=27.80dB, SSIM=0.8652) and method [42] (PSNR=28.80dB, SSIM=0.8704). 
Bottom row: method [45] (PSNR=28.96dB, SSIM=0.8722), method [46] (PSNR=29.04dB, SSIM=0.8824), BM3D [58] 
(PSNR=30.22dB, SSIM=0.8906), and proposed (PSNR=30.92dB, SSIM=0.8936).  

 
 

    

    
 

Fig. 5. Comparison of the deblurred images on Barbara by different methods (uniform blur kernel and σn=2). Top row: 
Original, degraded, method [10] (PSNR=24.86dB, SSIM=0.6963) and method [42] (PSNR=25.12dB, SSIM=0.7031). 
Bottom row: method [45] (PSNR=25.34dB, SSIM=0.7214), method [46] (PSNR=25.37dB, SSIM=0.7248), BM3D [58] 
(PSNR=27.16dB, SSIM=0.7881) and proposed (PSNR=26.96dB, SSIM=0.7927).  
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Fig. 6. Comparison of the deblurred images on Cameraman by different methods (uniform blur kernel and σn=2). Top 
row: Original, degraded, method [10] (PSNR=24.80dB, SSIM=0.7837) and method [42] (PSNR=26.04dB, 
SSIM=0.7772). Bottom row: method [45] (PSNR=26.53dB, SSIM=0.8273), method [46] (PSNR=25.96dB, 
SSIM=0.8131), BM3D [58] (PSNR=26.53 dB, SSIM=0.8136) and proposed (PSNR=27.25 dB, SSIM=0.8408).  
 
 
D. Experimental results on single image super-resolution 

 

    

    
 
Fig. 7. The super-resolution results (scaling factor 3) on image Parrot by the proposed methods. Top row: Original, LR 
image, ASDS-TD1 (PSNR=29.47dB, SSIM=0.9031) and ASDS-TD2 (PSNR=29.51dB, SSIM=0.9034). Bottom row: 
ASDS-AR-TD1 (PSNR=29.61dB, SSIM=0.9036), ASDS-AR-TD2 (PSNR=29.63dB, SSIM=0.9038), ASDS-AR-NL- 
TD1 (PSNR=29.97 dB, SSIM=0.9090) and ASDS-AR-NL-TD2 (PSNR=30.00dB, SSIM=0.9093).  
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Fig. 8. Reconstructed HR images (scaling factor 3) of Girl by different methods. Top row: LR image, method [10] 
(PSNR=32.93dB, SSIM=0.8102) and method [47] (PSNR=31.21dB, SSIM=0.7878). Bottom row: method [43] 
(PSNR=31.94dB, SSIM=0.7704), method [25] (PSNR=32.51dB, SSIM=0.7912) and proposed (PSNR=33.53dB, 
SSIM=0.8242).  

 

   

   
Fig. 9. Reconstructed HR images (scaling factor 3) of Parrot by different methods. Top row: LR image, method [10] 
(PSNR=28.78dB, SSIM=0.8845) and method [47] (PSNR=27.59dB, SSIM=0.8856). Bottom row: method [43] 
(PSNR=27.71dB, SSIM=0.8682), method [25] (PSNR=27.98dB, SSIM=0.8665) and proposed (PSNR=30.00dB, 
SSIM=0.9093).  
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Fig. 10. Reconstructed HR images (scaling factor 3) of noisy Girl by different methods. Top row: LR image, method 
[10] (PSNR=30.37dB, SSIM=0.7044) and method [47] (PSNR=29.77dB, SSIM=0.7258). Bottom row: method [43] 
(PSNR=31.40 dB, SSIM=0.7480), method [25] (PSNR=30.70dB, SSIM=0.7088) and proposed (PSNR=31.80dB, 
SSIM=0.7590). 

 

   

   
Fig. 11. Reconstructed HR images (scaling factor 3) of noisy Parrot by different methods. Top row: LR image, method 
[10] (PSNR=27.01dB, SSIM=0.7901) and method [47] (PSNR=26.77dB, SSIM=0.8084). Bottom row: method [43] 
(PSNR=27.42 dB, SSIM=0.8458), method [25] (PSNR=26.82dB, SSIM=0.7769) and proposed (PSNR=28.72dB, 
SSIM=0.8668). 
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In this section we present experimental results of single image super-resolution. Again we first test the 

robustness of the proposed method to the training dataset. Fig. 7 shows the reconstructed HR Parrot images 

by the proposed methods. We can see that the proposed method with the two different training datasets 

produces almost the same HR images. It can also be observed that the ASDS scheme can well reconstruct 

the image, while there are still some ringing artifacts around the reconstructed edges. Such artifacts can be 

reduced by coupling ASDS with the AR model based regularization, and the image quality can be further 

improved by incorporating the non-local similarity regularization.  

Next we compare the proposed methods with state-of-the-art methods in [10, 43, 25, 47]. The visual 

comparisons are shown in Figs. 8~9. We see that the reconstructed HR images by method [10] have many 

jaggy and ringing artifacts. The TV-regularization based method [47] is effective in suppressing the ringing 

artifacts, but it generates piecewise constant block artifacts. The Softcuts method [43] produces very smooth 

edges and fine structures, making the reconstructed image look unnatural. By sparsely coding the LR image 

patches with the learned LR dictionary and recovering the HR image patches with the corresponding HR 

dictionary, the sparsity-based method in [25] is very competitive in terms of visual quality. However, it is 

difficult to learn a universal LR/HR dictionary pair that can represent various LR/HR structure pairs. It is 

observed that the reconstructed edges by [25] are relatively smooth and some fine image structures are not 

recovered. The proposed method generates the best visual quality. The reconstructed edges are much sharper 

than all the other four competing methods, and more image fine structures are recovered. 

Often in practice the LR image will be noise corrupted, which makes the super-resolution more 

challenging. Therefore it is necessary to test the robustness of the super-resolution methods to noise. We 

added Gaussian white noise (with standard deviation 5) to the LR images, and the reconstructed HR images 

are shown in Figs. 10~11. We see that the method in [10] is sensitive to noise and there are serious 

noise-caused artifacts around the edges. The TV-regularization based method [47] also generates many 

noise-caused artifacts in the neighborhood of edges. The Softcuts method [43] results in over-smoothed HR 

images. Since the sparse representation based method [25] is followed by a back-projection process to 

remove the blurring effect, it is sensitive to noise and the performance degrades much in the noisy case. In 

contrast, the proposed method shows good robustness to noise. Not only the noise is effectively suppressed, 

but also the image fine edges are well reconstructed. This is mainly because the noise can be more 

effectively removed and the edges can be better preserved in the adaptive sparse domain. From Tables 5 and 
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6, we see that the average PSNR gains of ASDS-AR-NL-TD2 over the second best methods [10] (for the 

noiseless case) and [43] (for the noisy case) are 1.13 dB and 0.77 dB, respectively. The average SSIM gains 

over the methods [10] and [43] are 0.0348 and 0.021 for the noiseless and noisy cases, respectively.  

 
E. Experimental results on a 1000-image dataset 

 

     

     
Fig. 12. Some example images in the established 1000-image dataset.  

 

To more comprehensively test the robustness of the proposed IR method, we performed extensive deblurring 

and super-resolution experiments on a large dataset that contains 1000 natural images of various contents. To 

establish this dataset, we randomly downloaded 822 high-quality natural images from the Flickr website 

(http://www.flickr.com/), and selected 178 high-quality natural images from the Berkeley Segmentation 

Database3. A 256×256 sub-image that is rich in edge and texture structures was cropped from each of these 

1000 images to test our method. Fig. 12 shows some example images in this dataset.  

For image deblurring, we compared the proposed method with the methods in [46] and [58], which 

perform the 2nd and the 3rd best in our experiments in Section VI-D. The average PSNR and SSIM values of 

the deblurred images by the test methods are shown in Table 7. To better illustrate the advantages of the 

proposed method, we also drew the distributions of its PSNR gains over the two competing methods in Fig. 

13. From Table 7 and Fig. 13, we can see that the proposed method constantly outperforms the competing 

methods for the uniform blur kernel, and the average PSNR gain over the BM3D [58] is up to 0.85 dB 

(when σn= 2 ). Although the performance gaps between different methods become much smaller for the 

non-truncated Gaussian blur kernel, it can still be observed that the proposed method mostly outperforms 
                                                        
3 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench  
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BM3D [58] and [46], and the average PSNR gain over BM3D [58] is up to 0.19 dB (when σn=2). For image 

super-resolution, we compared the proposed method with the two methods in [25] and [47]. The average 

PSNR and SSIM values by the test methods are listed in Table 8, and the distributions of PSNR gain of our 

method over [25] and [47] are shown in Fig. 14. From Table 8 and Fig. 14, we can see that the proposed 

method performs constantly better than the competing methods.  

 

  
(a)                           (b)                       

  
(c)                         (d) 

 
Fig. 13. The PSNR gain distributions of deblurring experiments. (a) Uniform blur kernel with σn= 2 ; (b) Uniform blur 
kernel with σn=2; (c) Gaussian blur kernel with σn= 2 ; (d) Gaussian blur kernel with σn=2.  
 
 
 

  
                              (a)                               (b) 
 

Fig. 14. The PSNR gain distributions of super-resolution experiments. (a) Noise level σn=0; (b) Noise level σn=5.  
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Fig. 15. Visual comparison of the deblurred images by the proposed method with different patch sizes. From left to 
right: patch size of 3×3, patch size of 5×5, and patch size of 7×7.  

 

With this large dataset, we tested the robustness of the proposed method to the number of classes in 

learning the sub-dictionaries and AR models. Specifically, we trained the sub-dictionaries and AR models 

with different numbers of classes, i.e., 100, 200 and 400, and applied them to the established 1000-image 

dataset. Table 9 presents the average PSNR and SSIM values of the restored images. We can see that the 

three different numbers of classes lead to very similar image deblurring and super-resolution performance. 

This illustrates the robustness of the proposed method to the number of classes.  

Another important issue of the proposed method is the size of image patch. Clearly, the patch size 

cannot be big; otherwise, they will not be micro-structures and hence cannot be represented by a small 

number of atoms. To evaluate the effects of the patch size on IR results, we trained the sub-dictionaries and 

AR models with different patch sizes, i.e., 3×3, 5×5 and 7×7. Then we applied these sub-dictionaries and AR 

models to the 10 test images and the constructed 1000-image database. The experimental results of 

deblurring and super-resolution are presented in Tables 10~12, from which we can see that these different 

patch sizes lead to similar PSNR and SSIM results. However, it can be found that the smaller patch sizes (i.e., 

3×3 and 5×5) tend to generate some artifacts in smooth regions, as shown in Fig. 15. Therefore, we adopt 

7×7 as the image patch size in our implementation. 

 
F. Discussions on the computational cost 

In Algorithm 1, the matrices U and V are sparse matrices, and can be pre-calculated after the initialization 

of the AR models and the non-local weights. Hence, Step 2(a) can be executed fast. For image deblurring, 

the calculation of ( )ˆ kUx  can be implemented by FFT, which is faster than direct matrix calculation. Steps 

2(b) and 2(d) require 2Nn  multiplications, where n is the number of pixels of each patch and N is the 
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number of patches. In our implementation, N=NI /4, where NI is the number of pixels of the entire image. 

Since each patch can be sparsely coded individually, Steps 2(b) and 2(d) can be executed in parallel to speed 

up the algorithm. The update of sub-dictionaries and AR models requires N operations of nearest neighbor 

search. We update them in every P iterations (P=100 in our implementation) to speed up Algorithm 1. As an 

iterative shrinkage algorithm, the proposed Algorithm 1 converges in 700~1000 iterations in most cases. 

For a 256×256 image, the proposed algorithm requires about 2~5 minutes for image deblurring and 

super-resolution on an Intel Core2 Duo 2.79G PC under the Matlab R2010a programming environment. In 

addition, several accelerating techniques, such as [51, 52], can be used to accelerate the convergence of the 

proposed algorithm. Hence, the computational cost of the proposed method can be further reduced.  

 

VII. Conclusion 

We proposed a novel sparse representation based image deblurring and (single image) super-resolution 

method using adaptive sparse domain selection (ASDS) and adaptive regularization (AReg). Considering the 

fact that the optimal sparse domains of natural images can vary significantly across different images and 

different image patches in a single image, we selected adaptively the dictionaries that were pre-learned from 

a dataset of high quality example patches for each local patch. The ASDS improves significantly the 

effectiveness of sparse modeling and consequently the results of image restoration. To further improve the 

quality of reconstructed images, we introduced two AReg terms into the ASDS based image restoration 

framework. A set of autoregressive (AR) models were learned from the training dataset and were used to 

regularize the image local smoothness. The image non-local similarity was incorporated as another 

regularization term to exploit the image non-local redundancies. An iterated shrinkage algorithm was 

proposed to implement the proposed ASDS algorithm with AReg. The experimental results on natural 

images showed that the proposed ASDS-AReg approach outperforms many state-of-the-art methods in both 

PSNR and visual quality.  
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Table 1. PSNR (dB) and SSIM results of deblurred images (uniform blur kernel, noise level σn= 2 ).  

Images [10] [42] [45] [46] [58] ASDS- 
TD1 

ASDS- 
TD2 

ASDS- 
AR-TD1

ASDS- 
AR-TD2 

ASDS-AR-
NL-TD1 

ASDS-AR-
NL-TD2 

Barbara 25.83 
0.7492 

25.59 
0.7373 

26.11 
0.7580 

26.28 
0.7671 

27.90 
0.8171 

26.60 
0.7764 

26.65 
0.7709 

26.93 
0.7932 

26.99 
0.7893 

27.63 
0.8166 

27.70 
0.8192 

Bike 23.09 
0.6959 

24.24 
0.7588 

24.38 
0.7564 

24.15 
0.7530 

24.77 
0.7740 

25.29 
0.8014 

25.50 
0.8082 

25.21 
0.7989 

25.40 
0.8052 

25.32 
0.8003 

25.48 
0.8069

Straw 20.96 
0.4856 

21.31 
0.5415 

21.65 
0.5594 

21.32 
0.5322 

22.67 
0.6541 

22.32 
0.6594 

22.38 
0.6651 

22.39 
0.6563 

22.45 
0.6615 

22.51 
0.6459 

22.56 
0.6540 

Boats 28.80 
0.8274 

28.94 
0.8331 

29.44 
0.8459 

29.81 
0.8496 

29.90 
0.8528 

28.85 
0.8076 

28.94 
0.8039 

29.40 
0.8286 

29.48 
0.8272 

30.73 
0.8665 

30.76 
0.8670 

Parrots 27.80 
0.8652 

28.80 
0.8704 

28.96 
0.8722 

29.04 
0.8824 

30.22 
0.8906 

30.71 
0.8926 

30.90 
0.8941 

30.64 
0.8920 

30.79 
0.8933 

30.76 
0.8921 

30.92   
0.8939 

Baboon 21.06 
0.4811 

21.16 
0.5095 

21.33 
0.5192 

21.21 
0.5126 

21.46 
0.5315 

21.43 
0.5881 

21.45 
0.5863 

21.56 
0.5878 

21.55 
0.5853 

21.62 
0.5754 

21.62 
0.5765 

Hat 29.75 
0.8393 

31.13 
0.8624 

30.88 
0.8567 

30.91 
0.8591 

30.85 
0.8608 

31.46 
0.8702 

31.67 
0.8736 

31.41 
0.8692 

31.58 
0.8721 

31.43 
0.8689 

31.65 
0.8733 

Penta- 
gon 

24.69 
0.6452 

25.12 
0.6835 

25.57 
0.7020 

25.26 
0.6830 

26.00 
0.7210 

25.58 
0.7285 

25.62 
0.7290 

25.88 
0.7385 

25.89 
0.7380 

26.41 
0.7511 

26.46   
0.7539

Camera 
-man 

25.73 
0.8161 

26.72 
0.8330 

27.38 
0.8443 

26.86 
0.8361 

27.24 
0.8308 

27.01 
0.7956 

27.14 
0.7836 

27.25 
0.8255 

27.37 
0.8202 

27.87 
0.8578 

28.00 
0.8605 

Peppers 27.89 
0.8123 

28.44 
0.8131 

28.87 
0.8298 

28.75 
0.8274 

28.70 
0.8151 

28.24 
0.7749 

28.25 
0.7682 

28.64 
0.7992 

28.68 
0.7941 

29.46 
0.8357 

29.51 
0.8359 

Average 25.56 
0.7217 

26.15 
0.7443 

26.46 
0.7544 

26.36 
0.7500 

26.97 
0.7748 

26.75 
0.7695 

26.85 
0.7683 

26.93 
0.7789 

27.02 
0.7786 

27.37 
0.7910 

27.47 
0.7943 

 
 

Table 2. PSNR (dB) and SSIM results of deblurred images (uniform blur kernel, noise level σn=2).  

Images [10] [42] [45] [46] [58] ASDS- 
TD1 

ASDS- 
TD2 

ASDS- 
AR-TD1

ASDS- 
AR-TD2 

ASDS-AR-
NL-TD1 

ASDS-AR-
NL-TD2 

Barbara 24.86 
0.6963 

25.12 
0.7031 

25.34 
0.7214 

25.37 
0.7248 

27.16 
0.7881 

26.33 
0.7756 

26.35 
0.7695 

26.45 
0.7784 

26.48 
0.7757 

26.89 
0.7899 

26.96 
0.7927 

Bike 22.30 
0.6391 

24.07 
0.7487 

23.61 
0.7142 

23.33 
0.7049 

24.13 
0.7446 

24.46 
0.7608 

24.61 
0.7670 

24.43 
0.7599 

24.58 
0.7656 

24.59 
0.7649 

24.72 
0.7692

Straw 20.39 
0.4112 

21.07 
0.5300 

21.00 
0.4885 

20.81 
0.4727 

21.98 
0.5946 

21.78 
0.5991 

21.78 
0.6027 

21.79 
0.5970 

21.80 
0.6008 

21.81 
0.5850 

21.88 
0.5934 

Boats 27.47 
0.7811 

27.85 
0.7880 

28.66 
0.8201 

28.75 
0.8181 

29.19 
0.8335 

28.80 
0.8145 

28.83 
0.8124 

28.97 
0.8195 

29.00 
0.8187 

29.83 
0.8441 

29.83 
0.8435 

Parrots 26.84 
0.8432 

28.58 
0.8595 

28.06 
0.8573 

27.98 
0.8665 

29.45 
0.8806 

29.77 
0.8787 

29.98 
0.8802 

29.73 
0.8784 

29.94 
0.8798 

29.94 
0.8800 

30.06   
0.8807 

Baboon 20.58 
0.4048 

20.98 
0.4965 

20.87 
0.4528 

20.80 
0.4498 

21.13 
0.4932 

21.10 
0.5441 

21.10 
0.5429 

21.17 
0.5428 

21.16 
0.5410 

21.24 
0.5285 

21.24 
0.5326 

Hat 28.92 
0.8153 

30.79 
0.8524 

30.28 
0.8433 

30.15 
0.8420 

30.36 
0.8507 

30.71 
0.8522 

30.89 
0.8556 

30.69 
0.8516 

30.86 
0.8550 

30.80 
0.8545 

30.99 
0.8574 

Penta- 
gon 

23.88 
0.5776 

24.59 
0.6587 

24.86 
0.6516 

24.54 
0.6297 

25.46 
0.6885 

25.34 
0.7051 

25.31 
0.7042 

25.42 
0.7069 

25.39 
0.7066 

25.74 
0.7118 

25.75 
0.7146 

Camera 
-man 

24.80 
0.7837 

26.04 
0.7772 

26.53 
0.8273 

25.96 
0.8131 

26.53 
0.8136 

26.67 
0.8211 

26.81 
0.8156 

26.69 
0.8243 

26.86 
0.8238 

27.11 
0.8365 

27.25 
0.8408

Peppers 27.04 
0.7889 

27.46 
0.7660 

28.33 
0.8144 

28.05 
0.8106 

28.15 
0.7999 

28.30 
0.7995 

28.24 
0.7904 

28.37 
0.8038 

28.37 
0.7988 

28.82 
0.8204 

28.87 
0.8209 

Average 24.71 
0.6741 

25.66 
0.7180 

25.75 
0.7191 

25.57 
0.7132 

26.35 
0.7487 

26.33 
0.7551 

26.39 
0.7540 

26.37 
0.7562 

26.44 
0.7566 

26.68 
0.7615 

26.75 
0.7646 
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Table 3. PSNR (dB) and SSIM results of deblurred images (Gaussian blur kernel, noise level σn= 2 ). 

Images [10] [42] [45] [46] [58] ASDS-T
D1 

ASDS-T
D2 

ASDS-A
R-TD1 

ASDS-A
R-TD2 

ASDS-AR-
NL-TD1 

ASDS-AR-
NL-TD2 

Barbara 23.65 
0.6411 

23.22 
0.5971 

23.19 
0.5892 

23.71 
0.6460 

23.77 
0.6489 

23.81 
0.6560 

23.81 
0.6556 

23.81 
0.6566 

23.81 
0.6563 

23.86 
0.6609 

23.86 
0.6611 

Bike 21.78 
0.6085 

21.90 
0.6137 

21.20 
0.5515 

22.20 
0.6407 

22.71 
0.6774 

22.59 
0.6657 

22.63 
0.6693 

22.59 
0.6663 

22.62 
0.6688 

22.80 
0.6813 

22.82 
0.6830

Straw 20.28 
0.4005 

19.76 
0.3502 

19.33 
0.2749 

20.33 
0.4087 

21.02 
0.5003

20.76 
0.4710 

20.81 
0.4754 

20.79 
0.4729 

20.82 
0.4773 

20.91 
0.4866 

20.93 
0.4894 

Boats 26.19 
0.7308 

25.53 
0.7056 

24.77 
0.6688 

26.64 
0.7464 

26.99 
0.7486 

27.12 
0.7617 

27.14 
0.7633 

27.11 
0.7616 

27.13 
0.7625 

27.27 
0.7651 

27.31 
0.7677 

Parrots 26.40 
0.8321 

25.96 
0.8080 

25.21 
0.7949 

26.84 
0.8444 

27.72 
0.8580 

27.42 
0.8539 

27.50 
0.8538 

27.45 
0.8540 

27.52 
0.8540 

27.67 
0.8600 

27.70 
0.8598 

Baboon 20.22 
0.3622 

20.01 
0.3396 

19.85 
0.3011 

20.24 
0.3673 

20.34 
0.3923 

20.36 
0.3908 

20.35 
0.3889 

20.36 
0.3916 

20.35 
0.3893 

20.39   
0.3976 

20.38 
0.3959 

Hat 28.11 
0.7916 

28.90 
0.8100 

28.29 
0.7924 

28.85 
0.8122 

28.87 
0.8119 

28.80 
0.8074 

28.92 
0.8104 

28.80 
0.8074 

28.89 
0.8099 

28.96 
0.8110 

29.01 
0.8134 

Penta- 
gon 

23.33 
0.5472 

22.48 
0.4881 

22.09 
0.4387 

23.39 
0.5540 

23.82 
0.5994 

23.89 
0.5974 

23.88 
0.5958 

23.89 
0.5978 

23.89 
0.5971 

24.00 
0.6086 

24.01 
0.6089 

Camera 
-man 

23.08 
0.7332 

23.26 
0.7483 

22.59 
0.7187 

23.51 
0.7521 

23.77 
0.7249 

23.85 
0.7603 

23.90 
0.7637 

23.83 
0.7599 

23.89 
0.7630 

24.03 
0.7619 

24.05 
0.7649 

Peppers 25.96 
0.7666 

25.58 
0.7411 

24.94 
0.7236 

26.61 
0.7843 

26.65 
0.7626 

26.99 
0.7883 

27.01  
0.7900 

26.98  
0.7880 

26.99 
0.7898 

27.12 
0.7880 

27.14 
0.7902 

Average 23.90 
0.6414 

23.66 
0.6202 

23.15 
0.5854 

24.23 
0.6556 

24.57 
0.6724 

24.56 
0.6752 

24.59 
0.6766 

24.56 
0.6756 

24.59 
0.6768 

24.70 
0.6821 

24.72 
0.6834 

 
 

Table 4. PSNR (dB) and SSIM results of deblurred images (Gaussian blur kernel, noise level σn=2).  

Images [10] [42] [45] [46] [58] ASDS- 
TD1 

ASDS- 
TD2 

ASDS- 
AR-TD1

ASDS- 
AR-TD2 

ASDS-AR-
NL-TD1 

ASDS-AR-
NL-TD2 

Barbara 23.57 
0.6309 

23.19 
0.5933 

23.07 
0.5776 

23.62 
0.6351 

23.70 
0.6399 

23.72 
0.6464 

23.72 
0.6464 

23.73 
0.6468 

23.73 
0.6471 

23.78 
0.6520 

23.78 
0.6521

Bike 21.58 
0.5903 

21.88 
0.6125 

20.97 
0.5324 

21.93 
0.6178 

22.53 
0.6643 

22.41 
0.6506 

22.45  
0.6527 

22.41 
0.6513 

22.45 
0.6536 

22.66 
0.6685 

22.69 
0.6704

Straw 20.10 
0.3750 

19.75 
0.3499 

19.24 
0.2590 

20.10 
0.3781 

20.81 
0.4762

20.57 
0.4471 

20.60 
0.4500 

20.58 
0.4484 

20.62 
0.4529 

20.72   
0.4664 

20.75 
0.4698 

Boats 25.87 
0.7157 

25.48 
0.7032 

24.63 
0.6602 

26.24 
0.7292 

26.71 
0.7359 

26.78 
0.7464 

26.82 
0.7488 

26.81 
0.7478 

26.81 
0.7487 

26.98 
0.7503 

26.96 
0.7521 

Parrots 26.10 
0.8234 

25.92 
0.8053 

25.05 
0.7907 

26.38 
0.8337 

27.40 
0.8523 

27.08 
0.8443 

27.14 
0.8447 

27.13 
0.8452 

27.24 
0.8460 

27.47 
0.8536 

27.50 
0.8535 

Baboon 20.16 
0.3497 

20.00 
0.3389 

19.79 
0.2905 

20.17 
0.3533 

20.28 
0.3826 

20.28 
0.3775 

20.28 
0.3758 

20.29 
0.3775 

20.28 
0.3762 

20.32 
0.3858 

20.31 
0.3839 

Hat 27.94 
0.7857 

28.86 
0.8084 

28.27 
0.7913 

28.59 
0.8043 

28.67 
0.8049 

28.59 
0.8009 

28.69 
0.8036 

28.59 
0.8009 

28.69 
0.8036 

28.80 
0.8056 

28.87 
0.8080 

Penta- 
gon 

23.13 
0.5267 

22.46 
0.4876 

21.89 
0.4200 

23.13 
0.5299 

23.65 
0.5843 

23.69 
0.5784 

23.69  
0.5770 

23.69 
0.5793 

23.70 
0.5783 

23.80 
0.5922 

23.81 
0.5917 

Camera 
-man 

22.93 
0.7256 

23.23 
0.7465 

22.36 
0.7130 

23.25 
0.7412 

23.60 
0.7198 

23.72 
0.7533 

23.76 
0.7568 

23.71 
0.7528 

23.76   
0.7564 

23.95 
0.7557 

23.95 
0.7583 

Peppers 25.72 
0.7570 

25.50 
0.7373 

24.38 
0.7034 

26.24 
0.7723 

26.44 
0.7555 

26.70  
0.7770 

26.76 
0.7800 

26.71 
0.7773 

26.76 
0.7804 

26.91   
0.7774 

26.93 
0.7799 

Average 23.71 
0.6280 

23.63 
0.6183 

22.96 
0.5738 

23.97 
0.6395 

24.38 
0.6616 

24.36 
0.6622 

24.39 
0.6636 

24.37 
0.6627 

24.40 
0.6643 

24.54   
0.6707 

24.56 
0.6720 
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Table 5. The PSNR (dB) and SSIM results (luminance components) of reconstructed HR images (noise levelσn=0). 

Images [10] [43] [25] [47] ASDS- 
TD1 

ASDS- 
TD2 

ASDS-AR
-TD1 

ASDS-AR
-TD2 

ASDS-AR
-NL-TD1 

ASDS-AR
-NL-TD2 

Girl 32.93 
0.8102 

31.94 
0.7704 

32.51 
0.7912 

31.21 
0.7878 

33.40 
0.8213 

33.41 
0.8215 

33.42 
0.8218 

33.41 
0.8216 

33.54 
0.8242 

33.53 
0.8242 

Parrot 28.78 
0.8845 

27.71 
0.8682 

27.98 
0.8665 

27.59 
0.8856 

29.47 
0.9031 

29.51 
0.9034 

29.61 
0.9036 

29.63 
0.9038 

29.97 
0.9090 

30.00 
0.9093 

Butterfly 25.16 
0.8336 

25.19 
0.8623 

23.73 
0.7942 

26.60 
0.9036 

26.24 
0.8775 

26.27 
0.8779 

26.24 
0.8758 

26.23 
0.8753 

27.09 
0.8975 

27.34 
0.9047 

Leaves 24.59 
0.8310 

24.34 
0.8372 

24.35 
0.8170 

24.58 
0.8878 

25.94 
0.8847 

25.97 
0.8856 

25.93 
0.8835 

25.95 
0.8842 

26.78 
0.9050 

26.80 
0.9058 

Parthenon 26.32 
0.7135 

25.87 
0.6791 

24.08 
0.6305 

25.89 
0.7163 

26.63 
0.7279 

26.61 
0.7278 

26.63 
0.7279 

26.62 
0.7277 

26.82 
0.7348 

26.83 
0.7349 

Flower 28.16 
0.8120 

27.50 
0.7800 

27.76 
0.7929 

27.38 
0.8111 

28.80 
0.8351 

28.82 
0.8354 

28.82 
0.8352 

28.84 
0.8358 

29.19 
0.8480 

29.19 
0.8480 

Hat 29.92 
0.8438 

29.68 
0.8389 

29.65 
0.8362 

29.19 
0.8569 

30.70 
0.8653 

30.69 
0.8648 

30.65 
0.8643 

30.64 
0.8641 

30.92 
0.8707 

30.93 
0.8706 

Raccoon 28.80 
0.7549 

27.96 
0.6904 

28.49 
0.7273 

27.53 
0.7076 

29.06 
0.7648 

29.10 
0.7658 

29.11 
0.7657 

29.13 
0.7664 

29.23 
0.7675 

29.24 
0.7677 

Bike 23.48 
0.7438 

23.31 
0.7219 

23.20 
0.7188 

23.61 
0.7567 

24.10 
0.7760 

24.11 
0.7772 

24.08 
0.7752 

24.07 
0.7752 

24.48 
0.7948 

24.62 
0.7962 

Plants 31.87 
0.8792 

31.45 
0.8617 

31.48 
0.8698 

31.28 
0.8784 

32.85 
0.8985 

32.91 
0.8996 

32.85 
0.8987 

32.88 
0.8995 

33.47 
0.9094 

33.47 
0.9095 

Average 28.03 
0.8115 

27.49 
0.7910 

27.69 
0.7954 

27.49 
0.8190 

28.72 
0.8354 

28.74 
0.8359 

28.73 
0.8352 

28.74 
0.8354 

29.15 
0.8461 

29.16 
0.8463 

 
 

Table 6. The PSNR (dB) and SSIM results (luminance components) of reconstructed HR images (noise level σn=5). 

Images [10] [43] [25] [47] ASDS- 
TD1 

ASDS- 
TD2 

ASDS-AR
-TD1 

ASDS-AR
-TD2 

ASDS-AR
-NL-TD1 

ASDS-AR
-NL-TD2 

Noisy Girl 30.37 
0.7044 

31.40 
0.7480 

30.70 
0.7088 

29.77 
0.7258 

31.72 
0.7583 

31.76 
0.7596 

31.72 
0.7584 

31.75 
0.7594 

31.79 
0.7593 

31.80 
0.7590 

Noisy 
Parrot 

27.01 
0.7911 

27.42 
0.8458 

26.82 
0.7769 

26.77 
0.8084 

28.81 
0.8673 

28.91 
0.8689 

28.74 
0.8634 

28.83 
0.8676 

28.66 
0.8632 

28.72 
0.8668 

Noisy 
Butterfly 

23.67 
0.7777 

24.95 
0.8427 

23.50 
0.7576 

25.47 
0.8502 

25.54 
0.8362 

25.76 
0.8435 

25.50 
0.8350 

25.61 
0.8388 

25.99 
0.8591 

26.08 
0.8612 

Noisy 
Leaves 

23.62 
0.7751 

23.17 
0.7939 

23.35 
0.7467 

23.78 
0.8457 

25.14 
0.8457 

25.21 
0.8491 

25.11 
0.8444 

25.13 
0.8455 

25.49 
0.8633 

25.50 
0.8645 

Noisy 
Parthenon 

25.31 
0.6163 

25.65 
0.6587 

23.89 
0.5847 

25.24 
0.6651 

26.06 
0.6826 

26.09 
0.6845 

26.06 
0.6816 

26.08 
0.6826 

26.09 
0.6807 

26.10 
0.6821 

Noisy 
Flower 

26.61 
0.6991 

27.16 
0.7591 

26.51 
0.7020 

26.45 
0.7509 

27.58 
0.7683 

27.55 
0.7699 

27.64 
0.7710 

27.65 
0.7733 

27.67 
0.7738 

27.69 
0.7767 

Noisy Hat 28.14 
0.6944 

29.27 
0.8049 

28.32 
0.7282 

28.11 
0.7768 

29.56 
0.8086 

29.70 
0.8151 

29.50 
0.8075 

29.58 
0.8129 

29.57 
0.8127 

29.63 
0.8175 

Noisy 
Raccoon 

27.05 
0.6434 

27.60 
0.6707 

27.20 
0.6418 

26.73 
0.6640 

27.98 
0.6886 

28.01 
0.6882 

27.99 
0.6880 

28.01 
0.6876 

28.01 
0.6840 

28.01 
0.6810 

Noisy Bike 22.74 
0.6672 

23.06 
0.6984 

22.42 
0.6459 

23.07 
0.7118 

23.49 
0.7201 

23.57 
0.7239 

23.43 
0.7182 

23.49 
0.7205 

23.52 
0.7205 

23.57 
0.7220 

Noisy 
Plants 

29.93 
0.7760 

30.80 
0.8343 

29.51 
0.7691 

29.67 
0.8028 

31.01 
0.8324 

31.03 
0.8342 

30.95 
0.8308 

30.99 
0.8327 

31.09 
0.8350 

31.10 
0.8363 

Average 26.49 
0.7048 

27.05 
0.7657 

26.34 
0.7090 

26.52 
0.7604 

27.69 
0.7808 

27.76 
0.7837 

27.66 
0.7798 

27.71 
0.7821 

27.79 
0.7851 

27.82 
0.7867 
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Table 7. Average PSNR and SSIM values of the deblurred images on the 1000-image dataset. 

Method 
Uniform blur kernel 

σn= 2  
Uniform blur kernel 

σn=2 
Gaussian blur kernel 

σn= 2  
Gaussian blur kernel 

σn=2 

ASDS-AR-NL-TD2 29.36 (0.8397) 28.66 (0.8163) 26.22 (0.7335) 26.10 (0.7261) 
[58] 28.51 (0.8139) 27.96 (0.7966) 26.09 (0.7297) 25.91 (0.7209) 
[46] 28.26 (0.8081) 27.41 (0.7763) 25.63 (0.7072) 25.37 (0.6934) 

 
Table 8. Average PSNR and SSIM results of the reconstructed HR images on the 1000-image dataset. 

Method Noise level σn=0 Noise level σn=5 

ASDS-AR-NL-TD2 27.53 (0.7975) 26.56 (0.7444) 

[25] 26.26 (0.7444) 25.34 (0.6711) 

[47] 26.09 (0.7705) 25.31 (0.7156) 
 
Table 9. Average PSNR and SSIM results by the proposed ASDS-AR-NL-TD2 method with different numbers of 
classes on the 1000-image dataset. 

Number of classes 
Deblurring with uniform blur 

kernel and σn= 2  
Super-resolution with noise level 

σn=0 

100 29.29 (0.8379) 27.51 (0.7971) 

200 29.36 (0.8397) 27.52 (0.7974) 
400 29.31 (0.8380) 27.53 (0.7975) 

 
Table 10. The PSNR and SSIM results of deblurred images by the proposed ASDS-AR-NL-TD2 with different patch 
sizes (uniform blurring kernel, σn= 2 ). 

Patch 
Size Barbara Bike Straw Boats Parrots Baboon Hat Penta- 

gon 
Camer-
aman Peppers Average 

3×3 27.33 
0.7936 

25.68 
0.8173 

22.32 
0.6320 

30.64 
0.8651 

31.07 
0.9024 

21.61 
0.5713 

32.12 
0.8816 

26.44 
0.7509 

28.09 
0.8455 

29.55 
0.8270 

27.49 
0.7887 

5×5 27.59 
0.8116 

25.54 
0.8089 

22.44 
0.6428 

30.81 
0.8689 

31.04 
0.8968 

21.61 
0.5751 

31.84 
0.8745 

26.48 
0.7549 

28.11 
0.8599 

29.63 
0.8339 

27.51 
0.7927 

7×7 27.70 
0.8192 

25.48 
0.8069 

22.56 
0.6540 

30.76 
0.8670 

30.92  
0.8939 

21.62 
0.5765 

31.65 
0.8733 

26.46   
0.7553 

28.00 
0.8605 

29.51 
0.8359 

27.47 
0.7943 

 
Table 11. The PSNR and SSIM results of reconstructed HR images by the proposed ASDS-AR-NL-TD2 with different 
patch sizes (noise level σn=0). 

Patch Size Girl Parrot Butterfly Leaves Parthenon Flower Hat Raccoon Bike Plants Average 

3×3 33.55 
0.8251 

29.96 
0.9104 

27.28 
0.9055 

27.00 
0.9139 

26.84 
0.7366 

29.27 
0.8527 

30.95 
0.8739 

29.18 
0.7660 

24.46 
0.7961 

33.54 
0.9131 

29.20 
0.8493 

5×5 33.56 
0.8240 

30.09 
0.9121 

27.39 
0.9058 

27.00 
0.9118 

26.90 
0.7377 

29.25 
0.8500 

31.10 
0.8742 

29.22 
0.7664 

24.53 
0.7965 

33.59 
0.9116 

29.26 
0.8490 

7×7 33.55 
0.8204 

30.14 
0.9092 

27.34 
0.9047 

26.93 
0.9099 

26.89 
0.7357 

29.19 
0.8463 

31.04 
0.8716 

29.24 
0.7655 

24.62 
0.7962 

33.37 
0.9061 

29.22 
0.8464 

 
Table 12. Average PSNR and SSIM results by the proposed ASDS-AR-NL-TD2 method with different patch sizes on 
the 1000-image dataset. 

Patch size 
Deblurring with uniform blur 

kernel and σn= 2  
Super-resolution with noise level 

σn=0 

3×3 29.60 (0.8466) 27.51 (0.7979) 
5×5 29.56 (0.8450) 27.54 (0.7984) 

7×7 29.36 (0.8397) 27.53 (0.7976) 

 
 
 
 


