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Abstract: As a powerful statistical image modeling technique, sparse representation has been successfully
used in various image restoration applications. The success of sparse representation owes to the development
of /;-norm optimization techniques, and the fact that natural images are intrinsically sparse in some domain.
The image restoration quality largely depends on whether the employed sparse domain can represent well
the underlying image. Considering that the contents can vary significantly across different images or
different patches in a single image, we propose to learn various sets of bases from a pre-collected dataset of
example image patches, and then for a given patch to be processed, one set of bases are adaptively selected
to characterize the local sparse domain. We further introduce two adaptive regularization terms into the
sparse representation framework. First, a set of autoregressive (AR) models are learned from the dataset of
example image patches. The best fitted AR models to a given patch are adaptively selected to regularize the
image local structures. Second, the image non-local self-similarity is introduced as another regularization
term. In addition, the sparsity regularization parameter is adaptively estimated for better image restoration
performance. Extensive experiments on image deblurring and super-resolution validate that by using
adaptive sparse domain selection and adaptive regularization, the proposed method achieves much better

results than many state-of-the-art algorithms in terms of both PSNR and visual perception.
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I. Introduction

Image restoration (IR) aims to reconstruct a high quality image x from its degraded measurement y. IR is a
typical ill-posed inverse problem [1] and it can be generally modeled as

y=DHx+0v, @
where x is the unknown image to be estimated, H and D are degrading operators and v is additive noise.
When H and D are identities, the IR problem becomes denoising; when D is identity and H is a blurring
operator, IR becomes deblurring; when D is identity and H is a set of random projections, IR becomes
compressed sensing [2-4]; when D is a down-sampling operator and H is a blurring operator, IR becomes
(single image) super-resolution. As a fundamental problem in image processing, IR has been extensively
studied in the past three decades [5-20]. In this paper, we focus on deblurring and single image
super-resolution.

Due to the ill-posed nature of IR, the solution to Eq. (1) with an /-norm fidelity constraint, i.e.,

x=argmin|y - DHx||§, is generally not unique. To find a better solution, prior knowledge of natural images

can be used to regularize the IR problem. One of the most commonly used regularization models is the total

variation (TV) model [6-7]: x =argmin {||y —DHx||§ +/1-|Vx|1} , Where |Vx|; is the /;-norm of the first order

derivative of x and A is a constant. Since the TV model favors the piecewise constant image structures, it
tends to smooth out the fine details of an image. To better preserve the image edges, many algorithms have
been later developed to improve the TV models [17-19, 42, 45, 47].

The success of TV regularization validates the importance of good image prior models in solving the IR
problems. In wavelet based image denoising [21], researchers have found that the sparsity of wavelet
coefficients can serve as good prior. This reveals the fact that many types of signals, e.g., natural images, can
be sparsely represented (or coded) using a dictionary of atoms, such as DCT or wavelet bases. That is,

denote by @ the dictionary, we have x~@a and most of the coefficients in « are close to zero. With the

sparsity prior, the representation of x over @ can be estimated from its observation y by solving the
following l-minimization problem: & =arg min{||y—DHd>a||§ +/I-||a||0}, where the l-norm counts the

number of nonzero coefficients in vector & Once e« is obtained, x can then be estimated as x =®ea . The



lo-minimization is an NP-hard combinatorial search problem, and is usually solved by greedy algorithms [48,

60]. The /;-minimization, as the closest convex function to l-minimization, is then widely used as an

alternative approach to solving the sparse coding problem: @ =arg min{||y—DHq>a||§ +/1-||a||l} [60]. In

addition, recent studies showed that iteratively reweighting the /;-norm sparsity regularization term can lead
to better IR results [59]. Sparse representation has been successfully used in various image processing
applications [2-4, 13, 21-25, 32].

A critical issue in sparse representation modeling is the determination of dictionary @. Analytically
designed dictionaries, such as DCT, wavelet, curvelet and contourlets, share the advantages of fast
implementation; however, they lack the adaptivity to image local structures. Recently, there has been much
effort in learning dictionaries from example image patches [13-15, 26-31, 55], leading to state-of-the-art
results in image denoising and reconstruction. Many dictionary learning (DL) methods aim at learning a
universal and over-complete dictionary to represent various image structures. However, sparse
decomposition over a highly redundant dictionary is potentially unstable and tends to generate visual
artifacts [53-54]. In this paper we propose an adaptive sparse domain selection (ASDS) scheme for sparse
representation. By learning a set of compact sub-dictionaries from high quality example image patches. The
example image patches are clustered into many clusters. Since each cluster consists of many patches with
similar patterns, a compact sub-dictionary can be learned for each cluster. Particularly, for simplicity we use
the principal component analysis (PCA) technique to learn the sub-dictionaries. For an image patch to be
coded, the best sub-dictionary that is most relevant to the given patch is selected. Since the given patch can
be better represented by the adaptively selected sub-dictionary, the whole image can be more accurately
reconstructed than using a universal dictionary, which will be validated by our experiments.

Apart from the sparsity regularization, other regularization terms can also be introduced to further
increase the IR performance. In this paper, we propose to use the piecewise autoregressive (AR) models,
which are pre-learned from the training dataset, to characterize the local image structures. For each given
local patch, one or several AR models can be adaptively selected to regularize the solution space. On the
other hand, considering the fact that there are often many repetitive image structures in an image, we
introduce a non-local (NL) self-similarity constraint served as another regularization term, which is very

helpful in preserving edge sharpness and suppressing noise.



After introducing ASDS and adaptive regularizations (AReg) into the sparse representation based IR
framework, we present an efficient iterative shrinkage (I1S) algorithm to solve the /;-minimization problem.
In addition, we adaptively estimate the image local sparsity to adjust the sparsity regularization parameters.
Extensive experiments on image deblurring and super-resolution show that the proposed ASDS-AReg
approach can effectively reconstruct the image details, outperforming many state-of-the-art IR methods in
terms of both PSNR and visual perception.

The rest of the paper is organized as follows. Section Il introduces the related works. Section 11 presents
the ASDS-based sparse representation. Section IV describes the AReg modeling. Section V summarizes the

proposed algorithm. Section VI presents experimental results and Section VII concludes the paper.

II. Related Works

It has been found that natural images can be generally coded by structural primitives, e.g., edges and line
segments [61], and these primitives are qualitatively similar in form to simple cell receptive fields [62]. In
[63], Olshausen et al. proposed to represent a natural image using a small number of basis functions chosen
out of an over-complete code set. In recent years, such a sparse coding or sparse representation strategy has
been widely studied to solve inverse problems, partially due to the progress of l;-norm and /;-norm
minimization techniques [60].

Suppose that xeR" is the target signal to be coded, and @ =[g,..., ¢,]eR"™" is a given dictionary of
atoms (i.e., code set). The sparse coding of x over @is to find a sparse vector a=[;...;a,] (i.e., most of the

coefficients in a are close to zero) such that x~®@ea [49]. If the sparsity is measured as the /p-norm of «,

which counts the non-zero coefficients in a, the sparse coding problem becomes min||x—dia||§ s.t. ”a”o <T,

where T'is a scalar controlling the sparsity [55]. Alternatively, the sparse vector a can also be found by
~ . 2
& =argmin {|.x - @al; +4-|a], | )

where A is a constant. Since the /o-norm is non-convex, it is often replaced by either the standard /;-norm or
the weighted /;-norm to make the optimization problem convex [3, 57, 59, 60].
An important issue of the sparse representation modeling is the choice of dictionary @. Much effort has

been made in learning a redundant dictionary from a set of example image patches [13-15, 26-31, 55]. Given



a set of training image patches S=[si, ..., sy]Je R™", the goal of dictionary learning (DL) is to jointly

optimize the dictionary @ and the representation coefficient matrix A=[ex,...,ay] such that s, ~ @a, and

||“1-||p < T, where p =0 or 1. This can be formulated by the following minimization problem:
(d, 1) =arg I’QIAI'I IS - ¢A||i st fef, <7, vi, (3)

where ||-||~ is the Frobenius norm. The above minimization problem is non-convex even when p=1. To make
it tractable, approximation approaches, including MOD [56] and K-SVD [26], have been proposed to
alternatively optimizing @and A, leading to many state-of-the-art results in image processing [14-15, 31].
Various extensions and variants of the K-SVD algorithm [27, 29-31] have been proposed to learn a
universal and over-complete dictionary. However, the image contents can vary significantly across images.
One may argue that a well learned over-complete dictionary @ can sparsely code all the possible image
structures; nonetheless, for each given image patch, such a “universal” dictionary @ is neither optimal nor
efficient because many atoms in @ are irrelevant to the given local patch. These irrelevant atoms will not
only reduce the computational efficiency in sparse coding but also reduce the representation accuracy.
Regularization has been used in IR for a long time to incorporate the image prior information. The
widely used TV regularizations lack flexibilities in characterizing the local image structures and often
generate over-smoothed results. As a classic method, the autoregressive (AR) modeling has been

successfully used in image compression [33] and interpolation [34-35]. Recently the AR model was used for

adaptive regularization in compressive image recovery [40]: min ) |x, —Zﬂ["z st. y=Ax, where z is

the vector containing the neighboring pixels of pixel x; within the support of the AR model, and «; is the AR
parameter vector. In [40], the AR models are locally computed from an initially recovered image, and they
perform much better than the TV regularization in reconstructing the edge structures. However, the AR
models estimated from the initially recovered image may not be robust and tend to produce the “ghost”
visual artifacts. In this paper, we will propose a learning-based adaptive regularization, where the AR models
are learned from high-quality training images, to increase the AR modeling accuracy.

In recent years the non-local (NL) methods have led to promising results in various IR tasks, especially
in image denoising [36, 15, 39]. The mathematical framework of NL means filtering was well established by

Buades et al. [36]. The idea of NL methods is very simple: the patches that have similar patterns can be



spatially far from each other and thus we can collect them in the whole image. This NL self-similarity prior
was later employed in image deblurring [8, 20] and super-resolution [41]. In [15], the NL self-similarity
prior was combined with the sparse representation modeling, where the similar image patches are
simultaneously coded to improve the robustness of inverse reconstruction. In this work, we will also

introduce an NL self-similarity regularization term into our proposed IR framework.

III. Sparse Representation with Adaptive Sparse Domain Selection

In this section we propose an adaptive sparse domain selection (ASDS) scheme, which learns a series of
compact sub-dictionaries and assigns adaptively each local patch a sub-dictionary as the sparse domain.
With ASDS, a weighted /;-norm sparse representation model will be proposed for IR tasks. Suppose that
{D}, k=12,....K, is a set of K orthonormal sub-dictionaries. Let x be an image vector, and x;=Rx,
i=1,2,....N, be the " patch (size: /n x+/n ) vector of x, where R; is a matrix extracting patch x; from x. For

patch x; suppose that a sub-dictionary @, s selected for it. Then, x; can be approximated as
X, =@ a, || <T, via sparse coding. The whole image x can be reconstructed by averaging all the

reconstructed patches x,, which can be mathematically written as [22]

N

&:[ZN:RfRij Y(R®a). (4)

i=1
In Eq. (4), the matrix to be inverted is a diagonal matrix, and hence the calculation of Eq. (4) can be done in
a pixel-by-pixel manner [22]. Obviously, the image patches can be overlapped to better suppress noise [22,

15] and block artifacts. For the convenience of expression, we define the following operator “o”:

N

-1
}:@oaé[ZN:RiTRij Z(R,«T@k,-af)' (5)
i=1

i=1
where @ is the concatenation of all sub-dictionaries { @} and « is the concatenation of all a;.

Let y=DHx+v be the observed degraded image, our goal is to recover the original image x from y.

With ASDS and the definition in Eq. (5), the IR problem can be formulated as follows:
& =agmin{|y - DH® <, +4[a],}. (6)

Clearly, one key procedure in the proposed ASDS scheme is the determination of @, for each local patch.



To facilitate the sparsity-based IR, we propose to learn offline the sub-dictionaries { @}, and select online

from { @} the best fitted sub-dictionary to each patch x;.

A. Learning the sub-dictionaries

In order to learn a series of sub-dictionaries to code the various local image structures, we need to first
construct a dataset of local image patches for training. To this end, we collected a set of high-quality natural
images, and cropped from them a rich amount of image patches with size /n x+/n . A cropped image patch,
denoted by s;, will be involved in DL if its intensity variance FVar(s;) is greater than a threshold A, i.e.,
Var(s;))> A. This patch selection criterion is to exclude the smooth patches from training and guarantee that
only the meaningful patches with a certain amount of edge structures are involved in DL.

Suppose that M image patches $=[sy, s>, ..., s)/] are selected. We aim to learn K compact sub-dictionaries
{®} from § so that for each given local image patch, the most suitable sub-dictionary can be selected. To
this end, we cluster the dataset § into K clusters, and learn a sub-dictionary from each of the K clusters.
Apparently, the K clusters are expected to represent the K distinctive patterns in S. To generate perceptually
meaningful clusters, we perform the clustering in a feature space. In the hundreds of thousands patches
cropped from the training images, many patches are approximately the rotated version of the others. Hence
we do not need to explicitly make the training dataset invariant to rotation because it is naturally (nearly)
rotation invariant. Considering the fact that human visual system is sensitive to image edges, which convey
most of the semantic information of an image, we use the high-pass filtering output of each patch as the
feature for clustering. It allows us to focus on the edges and structures of image patches, and helps to
increase the accuracy of clustering. The high-pass filtering is often used in low-level statistical learning tasks
to enhance the meaningful features [50].

Denote by S, =[s!,s5,....s,] the high-pass filtered dataset of S. We adopt the K-means algorithm to

partition S, into K clusters {C,,C,,---,C,} and denote by g the centroid of cluster C;. Once S is

partitioned, dataset .S can then be clustered into K subsets S;, £=1,2,...K, and S, is a matrix of dimension
nxmy, where m, denotes the number of samples in S;.

Now the remaining problem is how to learn a sub-dictionary @, from the cluster S, such that all the
elements in S; can be faithfully represented by @,. Meanwhile, we hope that the representation of .S over @,
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is as sparse as possible. The design of @, can be intuitively formulated by the following objective function:
o ~ . 2
(B, 4) =argmin{[s, - @, A} + 2[4, (7)

where A, is the representation coefficient matrix of S, over @,. Eq. (7) is a joint optimization problem of @&
and Ay, and it can be solved by alternatively optimizing @.and A, like in the K-SVD algorithm [26].

However, we do not directly use Eq. (7) to learn the sub-dictionary @, based on the following
considerations. First, the /,-/; joint minimization in Eq. (7) requires much computational cost. Second and
more importantly, by using the objective function in Eq. (7) we often assume that the dictionary @; is
over-complete. Nonetheless, here S; is a sub-dataset after K-means clustering, which implies that not only
the number of elements in S} is limited, but also these elements tend to have similar patterns. Therefore, it is
not necessary to learn an over-complete dictionary @, from S,. In addition, a compact dictionary will
decrease much the computational cost of the sparse coding of a given image patch. With the above
considerations, we propose to learn a compact dictionary while trying to approximate Eq. (7). The principal
component analysis (PCA) is a good solution to this end.

PCA is a classical signal de-correlation and dimensionality reduction technique that is widely used in
pattern recognition and statistical signal processing [37]. In [38-39], PCA has been successfully used in
spatially adaptive image denoising by computing the local PCA transform of each image patch. In this paper
we apply PCA to each sub-dataset S, to compute the principal components, from which the dictionary @; is

constructed. Denote by €2, the co-variance matrix of dataset S;. By applying PCA to £2,, an orthogonal

transformation matrix P; can be obtained. If we set P, as the dictionary and let Z, = P[S,, we will then

have S, 'Pka”i =Hsk -PP'S, Hi =0. In other words, the approximation term in Eq. (7) will be exactly

zero, yet the corresponding sparsity regularization term ||Z;||; will have a certain amount because all the
representation coefficients in Z; are preserved.
To make a better balance between the /;-norm regularization term and /,-norm approximation term in Eq.

(7), we only extract the first » most important eigenvectors in P, to form a dictionary @, i.e.

@ =[p.p,,...p,]. Let A, =®]S, . Clearly, since not all the eigenvectors are used to form @, the

reconstruction error |S, -(15,,A,,||i in Eq. (7) will increase with the decrease of ». However, the term || A,



will decrease. Therefore, the optimal value of r, denoted by r,, can be determined by

r, =arg min{||Sk -D A, ; +A|4,

.} ®)
Finally, the sub-dictionary learned from sub-dataset Sy is @, = [pl,pz,...,pro ] .

Applying the above procedures to all the K sub-datasets .Sy, we could get K sub-dictionaries @&, which
will be used in the adaptive sparse domain selection process of each given image patch. In Fig. 1, we show
some example sub-dictionaries learned from a training dataset. The left column shows the centroids of some
sub-datasets after K-means clustering, and the right eight columns show the first eight atoms in the

sub-dictionaries learned from the corresponding sub-datasets.
Lk N
1%

CLA.

Fig. 1. Examples of learned sub-dictionaries. The left column shows the centriods of some sub-datasets after K-means
clustering, and the right eight columns show the first eight atoms of the learned sub-dictionaries from the corresponding
sub-datasets.

B. Adaptive selection of the sub-dictionary

In the previous subsection, we have learned a dictionary @, for each subset S;. Meanwhile, we have
computed the centroid g of each cluster C; associated with S;. Therefore, we have K pairs {@,, g}, with
which the ASDS of each given image patch can be accomplished.

In the proposed sparsity-based IR scheme, we assign adaptively a sub-dictionary to each local patch of x,
spanning the adaptive sparse domain. Since x is unknown beforehand, we need to have an initial estimation
of it. The initial estimation of x can be accomplished by taking wavelet bases as the dictionary and then
solving Eq. (6) with the iterated shrinkage algorithm in [10]. Denote by x the estimate of x, and denote by

x, a local patch of x. Recall that we have the centroid g of each cluster available, and hence we could

select the best fitted sub-dictionary to x, by comparing the high-pass filtered patch of x,, denoted by x”,



to the centroid . For example, we can select the dictionary for ici based on the minimum distance

between x! and g, i.e.
_ inlleh _
k, =arg mklonl, ”kuz' 9
However, directly calculating the distance between X! and g may not be robust enough because the

initial estimate x can be noisy. Here we propose to determine the sub-dictionary in the subspace of . Let

U= [,ul,/lz,...,pk] be the matrix containing all the centroids. By applying SVD to the co-variance matrix of
U, we can obtain the PCA transformation matrix of U. Let @. be the projection matrix composed by the first
several most significant eigenvectors. We compute the distance between x” and g in the subspace spanned
by @

k, =arg mkin‘

R AR (10)

Compared with Eq. (9), Eg. (10) can increase the robustness of adaptive dictionary selection.

By using Eq. (10), the k" sub-dictionary @, will be selected and assigned to patch X,. Then we can

update the estimation of x by minimizing Eq. (6) and letting x = @ o . With the updated estimate x, the
ASDS of x can be consequently updated. Such a process is iteratively implemented until the estimation x

converges.

C. Adaptively reweighted sparsity regularization
In Eq. (6), the parameter A is a constant to weight the /;-norm sparsity regularization term ||a,. In [59]

Candes et al. showed that the reweighted /;-norm sparsity can more closely resemble the /,-norm sparsity
than using a constant weight, and consequently improve the reconstruction of sparse signals. In this
sub-section, we propose a new method to estimate adaptively the image local sparsity, and then reweight the
[1-norm sparsity in the ASDS scheme.
The reweighted /;-norm sparsity regularized minimization with ASDS can be formulated as follows:
a=arg min {”J’ ~DH® - a||§ +i ” zy ‘ai,./‘} ’ (11)
i=1 j=1

where ¢;; is the coefficient associated with the /" atom of @, and 4; is the weight assigned to «;;. In [59],

10



Ai; is empirically computed as 4, ; =1/(] o?w. |+&), where o?,.yj is the estimate of ¢;; and ¢ is a small

constant. Here, we propose a more robust method for computing 4;; by formulating the sparsity estimation
as a Maximum a Posterior (MAP) estimation problem. Under the Bayesian framework, with the observation

y the MAP estimation of « is given by

a =argmax{log P(a| y)} =arg mtjn {~log P(y|a@)—log P(a)} . (12)

By assuming y is contaminated with additive Gaussian white noises of standard deviation o, we have:

1 1 2
P = exp(— -DH®o . 13
(vla) o Von p( 2Gzlly al,) (13)
The prior distribution P(a) is often characterized by an i.i.d. zero-mean Laplacian probability model:
N n 1 \/5
Pla)= ——exp(——|e, .|, 14
@=1T.IT. J20,, p( o, ‘“m‘) (14)

where o;; is the standard deviation of ¢;;. By plugging P(y|@) and P(e) into Eq. (12), we could readily derive

the desired weight in Eq. (11) as 4, ; = 2\/505 /o, ;. For numerical stability, we compute the weights by

2\20?
3, =202 (15)
o, t¢

where &, is an estimate of o;; and ¢ is a small constant.

Now let’s discuss how to estimate o;;. Denote by x, the estimate of x,, and by 5c’ 1=1,2,..., L, the

non-local similar patches to x,. (The determination of non-local similar patches to x, will be described in

Section 1V-C.) The representation coefficients of these similar patches over the selected sub-dictionary @,

is @ =@/ x;. Then we can estimate o;, by calculating the standard deviation of each element &, in & .

Compared with the reweighting method in [59], the proposed adaptive reweighting method is more robust
because it exploits the image nonlocal redundancy information. Based on our experimental experience, it
could lead to about 0.2dB improvement in average over the reweighting method in [59] for deblurring and
super-resolution under the proposed ASDS framework. The detailed algorithm to solve the reweighted

l1-norm sparsity regularized minimization in Eq. (11) will be presented in Section V.

11



IV. Spatially Adaptive Regularization

In Section I1l, we proposed to select adaptively a sub-dictionary to code the given image patch. The
proposed ASDS-based IR method can be further improved by introducing two types of adaptive
regularization (AReg) terms. A local area in a natural image can be viewed as a stationary process, which
can be well modeled by the autoregressive (AR) models. Here, we propose to learn a set of AR models from
the clustered high quality training image patches, and adaptively select one AR model to regularize the input
image patch. Besides the AR models, which exploit the image local correlation, we propose to use the
non-local similarity constraint as a complementary AReg term to the local AR models. With the fact that
there are often many repetitive image structures in natural images, the image non-local redundancies can be

very helpful in image enhancement.

A. Training the AR models

Recall that in Section I11, we have partitioned the whole training dataset into K sub-datasets S;. For each S
an AR model can be trained using all the sample patches inside it. Here we let the support of the AR model
be a square window, and the AR model aims to predict the central pixel of the window by using the
neighboring pixels. Considering that determining the best order of the AR model is not trivial, and a high
order AR model may cause data over-fitting, in our experiments a 3x3 window (i.e., AR model of order 8) is
used. The vector of AR model parameters, denoted by a;, of the k™ sub-dataset S, can be easily computed by

solving the following least square problem:

a, =argmin " (s, —a’q,)’, (16)

s; €S,
where s; is the central pixel of image patch s; and ¢; is the vector that consists of the neighboring pixels of s;
within the support of the AR model. By applying the AR model training process to each sub-dataset, we can

obtain a set of AR models {a1, a>, ..., ax} that will be used for adaptive regularization.

B. Adaptive selection of the AR model for regularization

The adaptive selection of the AR model for each patch x; is the same as the selection of sub-dictionary for x;

described in Section I11-B. With an estimation x, of x;, we compute its high-pass Gaussian filtering output

12



x!. Let k =arg m/in||¢cfc,.” -Dp, ||2 , and then the k" AR model a, will be assigned to patch x;. Denote by x;

the central pixel of patch x;, and by z; the vector containing the neighboring pixels of x; within patch x;. We
can expect that the prediction error of x; using a, and z should be small, i.e., “x,.—a,:xiuz should be

minimized. By incorporating this constraint into the ASDS based sparse representation model in Eq. (11), we

have a lifted objective function as follows:
N n
a=arg m{jn {”y —~DH® o a”i +zz/1” ‘ai’j‘ +y- Z Hxi - a,:)(i “2} , a7
i=l j=1 X;€X

where y is a constant balancing the contribution of the AR regularization term. For the convenience of

expression, we write the third term " Hx,. —a; %, “2 as (1 - A)x||§ , Where I is the identity matrix and

a

i

ifx; isanelementofy,, a, €a,

0, otherwise

AG, 7) ={
Then, Eg. (17) can be rewritten as

N n
a=arg main{||y—DH¢oa||§ +z /1,.4.‘al.'j‘Jr}/-”(I—A)x”z}. (18)
1

i=1 j=

C. Adaptive regularization by non-local similarity

The AR model based AReg exploits the local statistics in each image patch. On the other hand, there are
often many repetitive patterns throughout a natural image. Such non-local redundancy is very helpful to
improve the quality of reconstructed images. As a complementary AReg term to AR models, we further
introduce a non-local similarity regularization term into the sparsity-based IR framework.

For each local patch x;, we search for the similar patches to it in the whole image x (in practice, in a

large enough area around x,). A patch x' is selected as a similar patch to x; if ¢ =|| x, —X! |[3.<¢, where ¢
is a preset threshold, and x, and x| are the current estimates of x; and x, respectively. Or we can select
the patch x/ if it is within the first L (L=10 in our experiments) closest patches to x,. Let x; be the central

pixel of patch x;, and xf be the central pixel of patch x/. Then we can use the weighted average of xf ,

1

ie., Z;b,’xf , to predict x;, and the weight 5' assigned to x| issetas b =exp(~e /h)/c,, where i is a

13



controlling factor of the weight and c, =Zf:1exp(—ei’/h) is the normalization factor. Considering that

2

there is much non-local redundancy in natural images, we expect that the prediction error ”x[ —Zfﬁlbjxj “
- 2
should be small. Let b; be the column vector containing all the weights »' and B be the column vector

containing all xf . By incorporating the non-local similarity regularization term into the ASDS based sparse

representation in Eq. (11), we have:
N =n
a =arg mljn {”y —~DH® o a||§ +ZZ’1’1/ ‘a,h/,‘ +n- Z Hxi - bf/ﬁ”i} , (19)
i=1 j=1 X;ex

where 7 is a constant balancing the contribution of non-local regularization. Eq. (19) can be rewritten as
~ . 2 L 2
@ =argmin |ly-DH®oal,+> > 2, ‘O‘i,/‘ +1-|(1 - B)®a|” ¢, (20)
i=1 j=1

where I is the identity matrix and

b/, if x] is an element of B,, b/ € b,
0, otherwise

B(i,) ={

V. Summary of the Algorithm

By incorporating both the local AR regularization and the non-local similarity regularization into the ASDS
based sparse representation in Eq. (11), we have the following ASDS-AReg based sparse representation to
solve the IR problem:
A . 2 2 2 A&
@ =arg mm{||y—1)quooz||2 +y:|(I - A)®oal, +7-|(I - B)®od, +ZZ/@-,/‘O‘I-,/‘}- (21)
a =1l j=1
In Eq. (21), the first ,-norm term is the fidelity term, guaranteeing that the solution x= @oa can well
fit the observation y after degradation by operators H and D; the second /,-norm term is the local AR model
based adaptive regularization term, requiring that the estimated image is locally stationary; the third />-norm
term is the non-local similarity regularization term, which uses the non-local redundancy to enhance each
local patch; and the last weighted /;-norm term is the sparsity penalty term, requiring that the estimated

image should be sparse in the adaptively selected domain. Eq. (21) can be re-written as
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2

y DH

N n
a=argmin||0 || y-(I-A) |Poa +Zz/1f,j‘“z—,j‘- (22)
a 0 U(I-B) ) i=l j=1
By letting
y DH
y=|0|, K=|y-(I-A)]|, (23)
0 n-(I-B)
Eq. (22) can be re-written as
R . B N n
a=arg mm{”y—Kdi oa, +Y. DA, |a,.'j|} . (24)
a i=1 j=1

This is a reweighted /;-minimization problem, which can be effectively solved by the iterative shrinkage

algorithm [10]. We outline the iterative shrinkage algorithm for solving (24) in Algorithm 1.

Algorithm 1 for solving Eq. (24)

1. Initialization:
(a) By taking the wavelet domain as the sparse domain, we can compute an initial estimate,
denoted by x, of x by using the iterated wavelet shrinkage algorithm [10];
(b) With the initial estimate x , we select the sub-dictionary @_ and the AR model a, using Eq.

(10), and calculate the non-local weight b, for each local patch x;;
(c) Initialize 4 and B with the selected AR models and the non-local weights;

(d) Preset %, n, P, e and the maximal iteration number, denoted by Max_Iter;
(e) Set £=0.

A A o
2. Iterate on k until “x(k) —xt 2/Nge or k > Max_1Iter is satisfied.

(@) x*“D=x® L K" (5-Kx®) = ¥ +(Uy-Ux" —vx™) |, where U=(DH)"DH and
V=yI-A4)(I-A)+n*(I-B)' (I-B);

(b) Compute a“¥? =[®] RX“? ... @ R, X""'?], where N is the total number of image
patches;

(©) o™ =soft(al"?,7, ), where soft(-,z, ) isasoft thresholding function with thresholdz, ;;

(d) Compute x** =@ o™ using Eq. (5), which can be calculated by first reconstructing each
image patch with x, = (Dk’_af"”) and then averaging all the reconstructed image patches;

(e) If mod(k,P)=0, update the adaptive sparse domain of x and the matrices 4 and B using the

improved estimate x**V.

In Algorithm 1, e is a pre-specified scalar controlling the convergence of the iterative process, and

Max_Iter is the allowed maximum number of iterations. The thresholds z, , are locally computed as

7, =4 ;1r [10], where £ ; are calculated by Eq. (15) and r is chosen such that » > H(K(D)TKdiHZ. Since
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the dictionary @, varies across the image, the optimal determination of » for each local patch is difficult.

Here, we empirically set »=4.7 for all the patches. P is a preset integer, and we only update the

sub-dictionaries @, , the AR models a, and the weights b, in every P iterations to save computational

cost. With the updated a, and b,, 4 and B can be updated, and then the matrix ¥ can be updated.

VI. Experimental Results

A. Training datasets

Although image contents can vary a lot from image to image, it has been found that the micro-structures of
images can be represented by a small number of structural primitives (e.g., edges, line segments and other
elementary features), and these primitives are qualitatively similar in form to simple cell receptive fields
[61-63]. The human visual system employs a sparse coding strategy to represent images, i.e., coding a
natural image using a small number of basis functions chosen out of an over-complete code set. Therefore,
using the many patches extracted from several training images which are rich in edges and textures, we are
able to train the dictionaries which can represent well the natural images. To illustrate the robustness of the
proposed method to the training dataset, we use two different sets of training images in the experiments,
each set having 5 high quality images as shown in Fig. 2. We can see that these two sets of training images
are very different in contents. We use Var(s;))> A with A=16 to exclude the smooth image patches, and a total
amount of 727,615 patches of size 7x7 are randomly cropped from each set of training images. (Please refer
to Section VI-E for the discussion of patch size selection.)

As a clustering-based method, an important issue is the selection of the number of classes. However, the
optimal selection of this number is a non-trivial task, which is subject to the bias and variance tradeoff. If the
number of classes is too small, the boundaries between classes will be smoothed out and thus the
distinctiveness of the learned sub-dictionaries and AR models is decreased. On the other hand, a too large
number of the classes will make the learned sub-dictionaries and AR models less representative and less
reliable. Based on the above considerations and our experimental experience, we propose the following
simple method to find a good number of classes: we first partition the training dataset into 200 clusters, and
merge those classes that contain very few image patches (i.e., less than 300 patches) to their nearest

neighboring classes. More discussions and experiments on the selection of the number of classes will be
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made in Section VI-E.

Fig. 2. The two sets of high quality images used for training sub-dictionaries and AR models. The images in the first
row consist of the training dataset 1 and those in the second row consist of the training dataset 2.

B. Experimental settings
In the experiments of deblurring, two types of blur kernels, a Gaussian kernel of standard deviation 3 and a

9x9 uniform kernel, were used to simulate blurred images. Additive Gaussian white noises with standard

deviations /2 and 2 were then added to the blurred images, respectively. We compare the proposed
methods with five recently proposed image deblurring methods: the iterated wavelet shrinkage method [10],
the constrained TV deblurring method [42], the spatially weighted TV deblurring method [45], the l;-norm
sparsity based deblurring method [46], and the BM3D deblurring method [58]. In the proposed ASDS-AReg
Algorithm 1, we empirically set = 0.0775, n = 0.1414, and 7,,=4;; /4.7, where 4;; is adaptively computed
by Eqg. (15).

In the experiments of super-resolution, the degraded LR images were generated by first applying a
truncated 7x7 Gaussian kernel of standard deviation 1.6 to the original image and then down-sampling by a
factor of 3. We compare the proposed method with four state-of-the-art methods: the iterated wavelet
shrinkage method [10], the TV-regularization based method [47], the Softcuts method [43], and the sparse
representation based method [25]% Since the method in [25] does not handle the blurring of LR images, for
fair comparisons we used the iterative back-projection method [16] to deblur the HR images produced by
[25]. In the proposed ASDS-AReg based super-resolution, the parameters are set as follows. For the

noiseless LR images, we empirically set y=0.0894, n=0.2and r,, =0.18/5, ;, where &, , is the estimated

2 We thank the authors of [42-43], [45-46], [58] and [25] for providing their source codes, executable programs, or experimental
results.
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standard deviation of ¢;;. For the noisy LR images, we empirically set »=0.2828, »=0.5 and 7;/=4;, /16.6.

In both of the deblurring and super-resolution experiments, 7x7 patches (for HR image) with
5-pixel-width overlap between adjacent patches were used in the proposed methods. For color images, all
the test methods were applied to the luminance component only because human visual system is more
sensitive to luminance changes, and the bi-cubic interpolator was applied to the chromatic components. Here
we only report the PSNR and SSIM [44] results for the luminance component. To examine more
comprehensively the proposed approach, we give three results of the proposed method: the results by using
only ASDS (denoted by ASDS), by using ASDS plus AR regularization (denoted by ASDS-AR), and by

using ASDS with both AR and non-local similarity regularization (denoted by ASDS-AR-NL).

C. Experimental results on de-blurring

Fig. 3. Comparison of deblurred images (uniform blur kernel, 5,=+/2) on Parrot by the proposed methods. Top row:
Original, Degraded, ASDS-TD1 (PSNR=30.71dB, SSIM=0.8926), ASDS-TD2 (PSNR=30.90dB, SSIM=0.8941).
Bottom row: ASDS-AR-TD1 (PSNR=30.64dB, SSIM=0.8920), ASDS-AR-TD2 (PSNR=30.79dB, SSIM=0.8933),
ASDS-AR-NL-TD1 (PSNR=30.76dB, SSIM=0.8921), ASDS-AR-NL-TD2 (PSNR=30.92dB, SSIM=0.8939).
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To verify the effectiveness of ASDS and adaptive regularizations, and the robustness of them to the training
datasets, we first present the deblurring results on image Parrot by the proposed methods in Fig. 3. More
PSNR and SSIM results can be found in Table 1. From Fig. 3 and Table 1 we can see that the proposed
methods generate almost the same deblurring results with TD1 and TD2. We can also see that the ASDS
method is effective in deblurring. By combining the adaptive regularization terms, the deblurring results can
be further improved by eliminating the ringing artifacts around edges. Due to the page limit, we will only
show the results by ASDS-AR-NL-TD?2 in the following development.

The deblurring results by the competing methods are then compared in Figs. 4~6. One can see that there
are many noise residuals and artifacts around edges in the deblurred images by the iterated wavelet
shrinkage method [10]. The TV-based methods in [42] and [45] are effective in suppressing the noises;
however, they produce over-smoothed results and eliminate much image details. The /,-norm sparsity based
method of [46] is very effective in reconstructing smooth image areas; however, it fails to reconstruct fine
image edges. The BM3D method [58] is very competitive in recovering the image structures. However, it
tends to generate some “ghost” artifacts around the edges (e.g., the image Cameraman in Fig. 6). The
proposed method leads to the best visual quality. It can not only remove the blurring effects and noise, but
also reconstruct more and sharper image edges than other methods. The excellent edge preservation owes to
the adaptive sparse domain selection strategy and adaptive regularizations. The PSNR and SSIM results by
different methods are listed in Tables 1~4. For the experiments using uniform blur kernel, the average PSNR

improvements of ASDS-AR-NL-TD2 over the second best method (i.e., BM3D [58]) are 0.50 dB (when
6,=+/2) and 0.4 dB (wWhen &,=2), respectively. For the experiments using Gaussian blur kernel, the PSNR
gaps between all the competing methods become smaller, and the average PSNR improvements of
ASDS-AR-NL-TD2 over the BM3D method are 0.15 dB (when o,=+2) and 0.18 dB (when o,=2),

respectively. We can also see that the proposed ASDS-AR-NL method achieves the highest SSIM index.
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Fig. 4. Comparison of the deblurred images on Parrot by different methods (uniform blur kernel and o,=~/2 ). Top row:
Original, degraded, method [10] (PSNR=27.80dB, SSIM=0.8652) and method [42] (PSNR=28.80dB, SSIM=0.8704).
Bottom row: method [45] (PSNR=28.96dB, SSIM=0.8722), method [46] (PSNR=29.04dB, SSIM=0.8824), BM3D [58]
(PSNR=30.22dB, SSIM=0.8906), and proposed (PSNR=30.92dB, SSIM=0.8936).

2

Fig. 5. Comparison of the deblurred images on Barbara by different methods (uniform blur kernel and o;,=2). Top row:
Original, degraded, method [10] (PSNR=24.86dB, SSIM=0.6963) and method [42] (PSNR=25.12dB, SSIM=0.7031).
Bottom row: method [45] (PSNR=25.34dB, SSIM=0.7214), method [46] (PSNR=25.37dB, SSIM=0.7248), BM3D [58]
(PSNR=27.16dB, SSIM=0.7881) and proposed (PSNR=26.96dB, SSIM=0.7927).
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Fig. 6. Comparison of the deblurred images on Cameraman by different methods (uniform blur kernel and ¢,=2). Top
row: Original, degraded, method [10] (PSNR=24.80dB, SSIM=0.7837) and method [42] (PSNR=26.04dB,
SSIM=0.7772). Bottom row: method [45] (PSNR=26.53dB, SSIM=0.8273), method [46] (PSNR=25.96dB,
SSIM=0.8131), BM3D [58] (PSNR=26.53 dB, SSIM=0.8136) and proposed (PSNR=27.25 dB, SSIM=0.8408).

D. Experimental results on single image super-resolution

Fig. 7. The super-resolution results (scaling factor 3) on image Parrot by the proposed methods. Top row: Original, LR
image, ASDS-TD1 (PSNR=29.47dB, SSIM=0.9031) and ASDS-TD2 (PSNR=29.51dB, SSIM=0.9034). Bottom row:
ASDS-AR-TD1 (PSNR=29.61dB, SSIM=0.9036), ASDS-AR-TD2 (PSNR=29.63dB, SSIM=0.9038), ASDS-AR-NL-
TD1 (PSNR=29.97 dB, SSIM=0.9090) and ASDS-AR-NL-TD2 (PSNR=30.00dB, SSIM=0.9093).
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Fig. 8. Reconstructed HR images (scaling factor 3) of Girl by different methods. Top row: LR image, method [10]
(PSNR=32.93dB, SSIM=0.8102) and method [47] (PSNR=31.21dB, SSIM=0.7878). Bottom row: method [43]

(PSNR=31.94dB, SSIM=0.7704), method [25] (PSNR=32.51dB, SSIM=0.7912) and proposed (PSNR=33.53dB,
SSIM=0.8242).

Fig. 9. Reconstructed HR images (scaling factor 3) of Parrot by different methods. Top row: LR image, method [10]
(PSNR=28.78dB, SSIM=0.8845) and method [47] (PSNR=27.59dB, SSIM=0.8856). Bottom row: method [43]

(PSNR=27.71dB, SSIM=0.8682), method [25] (PSNR=27.98dB, SSIM=0.8665) and proposed (PSNR=30.00dB,
SSIM=0.9093).
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Fig. 10. Reconstructed HR images (scaling factor 3) of noisy Girl by different methods. Top row: LR image, method
[10] (PSNR=30.37dB, SSIM=0.7044) and method [47] (PSNR=29.77dB, SSIM=0.7258). Bottom row: method [43]
(PSNR=31.40 dB, SSIM=0.7480), method [25] (PSNR=30.70dB, SSIM=0.7088) and proposed (PSNR=31.80dB,
SSIM=0.7590).

Fig. 11. Reconstructed HR images (scaling factor 3) of noisy Parrot by different methods. Top row: LR image, method
[10] (PSNR=27.01dB, SSIM=0.7901) and method [47] (PSNR=26.77dB, SSIM=0.8084). Bottom row: method [43]
(PSNR=27.42 dB, SSIM=0.8458), method [25] (PSNR=26.82dB, SSIM=0.7769) and proposed (PSNR=28.72dB,
SSIM=0.8668).
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In this section we present experimental results of single image super-resolution. Again we first test the
robustness of the proposed method to the training dataset. Fig. 7 shows the reconstructed HR Parrot images
by the proposed methods. We can see that the proposed method with the two different training datasets
produces almost the same HR images. It can also be observed that the ASDS scheme can well reconstruct
the image, while there are still some ringing artifacts around the reconstructed edges. Such artifacts can be
reduced by coupling ASDS with the AR model based regularization, and the image quality can be further
improved by incorporating the non-local similarity regularization.

Next we compare the proposed methods with state-of-the-art methods in [10, 43, 25, 47]. The visual
comparisons are shown in Figs. 8~9. We see that the reconstructed HR images by method [10] have many
jaggy and ringing artifacts. The TV-regularization based method [47] is effective in suppressing the ringing
artifacts, but it generates piecewise constant block artifacts. The Softcuts method [43] produces very smooth
edges and fine structures, making the reconstructed image look unnatural. By sparsely coding the LR image
patches with the learned LR dictionary and recovering the HR image patches with the corresponding HR
dictionary, the sparsity-based method in [25] is very competitive in terms of visual quality. However, it is
difficult to learn a universal LR/HR dictionary pair that can represent various LR/HR structure pairs. It is
observed that the reconstructed edges by [25] are relatively smooth and some fine image structures are not
recovered. The proposed method generates the best visual quality. The reconstructed edges are much sharper
than all the other four competing methods, and more image fine structures are recovered.

Often in practice the LR image will be noise corrupted, which makes the super-resolution more
challenging. Therefore it is necessary to test the robustness of the super-resolution methods to noise. We
added Gaussian white noise (with standard deviation 5) to the LR images, and the reconstructed HR images
are shown in Figs. 10~11. We see that the method in [10] is sensitive to noise and there are serious
noise-caused artifacts around the edges. The TV-regularization based method [47] also generates many
noise-caused artifacts in the neighborhood of edges. The Softcuts method [43] results in over-smoothed HR
images. Since the sparse representation based method [25] is followed by a back-projection process to
remove the blurring effect, it is sensitive to noise and the performance degrades much in the noisy case. In
contrast, the proposed method shows good robustness to noise. Not only the noise is effectively suppressed,
but also the image fine edges are well reconstructed. This is mainly because the noise can be more

effectively removed and the edges can be better preserved in the adaptive sparse domain. From Tables 5 and
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6, we see that the average PSNR gains of ASDS-AR-NL-TD2 over the second best methods [10] (for the
noiseless case) and [43] (for the noisy case) are 1.13 dB and 0.77 dB, respectively. The average SSIM gains

over the methods [10] and [43] are 0.0348 and 0.021 for the noiseless and noisy cases, respectively.

E. Experimental results on a 1000-image dataset

Fig. 12. Some example images in the established 1000-image dataset.

To more comprehensively test the robustness of the proposed IR method, we performed extensive deblurring
and super-resolution experiments on a large dataset that contains 1000 natural images of various contents. To
establish this dataset, we randomly downloaded 822 high-quality natural images from the Flickr website

(http://www.flickr.com/), and selected 178 high-quality natural images from the Berkeley Segmentation

Database®. A 256x256 sub-image that is rich in edge and texture structures was cropped from each of these
1000 images to test our method. Fig. 12 shows some example images in this dataset.

For image deblurring, we compared the proposed method with the methods in [46] and [58], which
perform the 2" and the 3 best in our experiments in Section VI-D. The average PSNR and SSIM values of
the deblurred images by the test methods are shown in Table 7. To better illustrate the advantages of the
proposed method, we also drew the distributions of its PSNR gains over the two competing methods in Fig.
13. From Table 7 and Fig. 13, we can see that the proposed method constantly outperforms the competing
methods for the uniform blur kernel, and the average PSNR gain over the BM3D [58] is up to 0.85 dB
(when o,=+/2). Although the performance gaps between different methods become much smaller for the

non-truncated Gaussian blur kernel, it can still be observed that the proposed method mostly outperforms

% http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench
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BM3D [58] and [46], and the average PSNR gain over BM3D [58] is up to 0.19 dB (when o,=2). For image

super-resolution, we compared the proposed method with the two methods in [25] and [47]. The average

PSNR and SSIM values by the test methods are listed in Table 8, and the distributions of PSNR gain of our

method over [25] and [47] are shown in Fig. 14. From Table 8 and Fig. 14, we can see that the proposed

method performs constantly better than the competing methods.
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Fig. 13. The PSNR gain distributions of deblurring experiments. (a) Uniform blur kernel with o,=+/2; (b) Uniform blur
kernel with ¢,=2; (c) Gaussian blur kernel with &,=2; (d) Gaussian blur kernel with &,=2.

0.09 T T T 01 T T T T
PSMNR Gain over [25] PSNR Gain over [25]
0.08 — - — - PSNR Gain over [47] 0.09F — - — PSNR Gain over [47]
0.07f 1 0081 1
0061 i 007
006
= 005 4 £
= & oo0sf
2 004 b =3
& = oo}
003 T
0.03F
0.02 q 002k
001F g ool
0 0 he T e .
2 6 8 10 12 -1 1] 1 2 3 4 5 6 T 8
PSNR improvement (dB) PSNR improvement (dB)
(@ (b)

Fig. 14. The PSNR gain distributions of super-resolution experiments. (a) Noise level ¢,=0; (b) Noise level o;=5.

26



Fig. 15. Visual comparison of the deblurred images by the proposed method with different patch sizes. From left to
right: patch size of 3x3, patch size of 5x5, and patch size of 7x7.

With this large dataset, we tested the robustness of the proposed method to the number of classes in
learning the sub-dictionaries and AR models. Specifically, we trained the sub-dictionaries and AR models
with different numbers of classes, i.e., 100, 200 and 400, and applied them to the established 1000-image
dataset. Table 9 presents the average PSNR and SSIM values of the restored images. We can see that the
three different numbers of classes lead to very similar image deblurring and super-resolution performance.
This illustrates the robustness of the proposed method to the number of classes.

Another important issue of the proposed method is the size of image patch. Clearly, the patch size
cannot be big; otherwise, they will not be micro-structures and hence cannot be represented by a small
number of atoms. To evaluate the effects of the patch size on IR results, we trained the sub-dictionaries and
AR models with different patch sizes, i.e., 3x3, 5x5 and 7x7. Then we applied these sub-dictionaries and AR
models to the 10 test images and the constructed 1000-image database. The experimental results of
deblurring and super-resolution are presented in Tables 10~12, from which we can see that these different
patch sizes lead to similar PSNR and SSIM results. However, it can be found that the smaller patch sizes (i.e.,

3x3 and 5x5) tend to generate some artifacts in smooth regions, as shown in Fig. 15. Therefore, we adopt

7x7 as the image patch size in our implementation.

E Discussions on the computational cost

In Algorithm 1, the matrices U and V are sparse matrices, and can be pre-calculated after the initialization

of the AR models and the non-local weights. Hence, Step 2(a) can be executed fast. For image deblurring,
the calculation of Ux) can be implemented by FFT, which is faster than direct matrix calculation. Steps

2(b) and 2(d) require Nn* multiplications, where » is the number of pixels of each patch and N is the
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number of patches. In our implementation, N=N; /4, where N; is the number of pixels of the entire image.
Since each patch can be sparsely coded individually, Steps 2(b) and 2(d) can be executed in parallel to speed
up the algorithm. The update of sub-dictionaries and AR models requires N operations of nearest neighbor
search. We update them in every P iterations (P=100 in our implementation) to speed up Algorithm 1. As an
iterative shrinkage algorithm, the proposed Algorithm 1 converges in 700~1000 iterations in most cases.
For a 256x256 image, the proposed algorithm requires about 2~5 minutes for image deblurring and
super-resolution on an Intel Core2 Duo 2.79G PC under the Matlab R2010a programming environment. In
addition, several accelerating techniques, such as [51, 52], can be used to accelerate the convergence of the

proposed algorithm. Hence, the computational cost of the proposed method can be further reduced.

VII. Conclusion

We proposed a novel sparse representation based image deblurring and (single image) super-resolution
method using adaptive sparse domain selection (ASDS) and adaptive regularization (AReg). Considering the
fact that the optimal sparse domains of natural images can vary significantly across different images and
different image patches in a single image, we selected adaptively the dictionaries that were pre-learned from
a dataset of high quality example patches for each local patch. The ASDS improves significantly the
effectiveness of sparse modeling and consequently the results of image restoration. To further improve the
quality of reconstructed images, we introduced two AReg terms into the ASDS based image restoration
framework. A set of autoregressive (AR) models were learned from the training dataset and were used to
regularize the image local smoothness. The image non-local similarity was incorporated as another
regularization term to exploit the image non-local redundancies. An iterated shrinkage algorithm was
proposed to implement the proposed ASDS algorithm with AReg. The experimental results on natural
images showed that the proposed ASDS-AReg approach outperforms many state-of-the-art methods in both

PSNR and visual quality.
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Table 1. PSNR (dB) and SSIM results of deblurred images (uniform blur kernel, noise level ¢,=+/2).

ASDS- | ASDS- | ASDS- | ASDS- | ASDS-AR- | ASDS-AR-
Images | [10] [42] [45] [46] [58] TD1 TD2 | AR-TD1|AR-TD2| NL-TD1 | NL-TD2
Barb 2583 | 2559 | 26.11 | 2628 | 27.90 | 2660 | 2665 | 2693 | 26.99 27.63 27.70
arbar@ i 07492 | 0.7373 | 0.7580 | 0.7671 | 0.8171 | 0.7764 | 0.7709 | 0.7932 | 0.7893 0.8166 0.8192
Bl 23.09 | 2424 | 2438 | 2415 | 2477 | 2529 | 2550 | 2521 | 2540 25.32 25.48
e 1 06959 | 0.7588 | 0.7564 | 0.7530 | 0.7740 | 0.8014 | 0.8082 | 0.7989 | 0.8052 0.8003 0.8069
S 20.96 | 2131 | 21.65 | 21.32 | 22.67 | 2232 | 2238 | 2239 | 2245 2251 22.56
raw 1 04856 | 0.5415 | 0.5594 | 0.5322 | 0.6541 | 0.6594 | 0.6651 | 0.6563 | 0.6615 0.6459 0.6540
Boat 2880 | 2894 | 2944 | 2981 | 2990 | 2885 | 2894 | 2040 | 2948 30.73 30.76
oais I 0.8274 | 0.8331 | 0.8459 | 0.8496 | 0.8528 | 0.8076 | 0.8039 | 0.8286 | 0.8272 0.8665 0.8670
Parrors | 2780 | 2880 | 2896 | 29.04 | 30.22 [ 3071 [ 3090 | 30.64 | 30.79 30.76 30.92
arrots Wl 08652 | 0.8704 | 0.8722 | 0.8824 | 0.8906 | 0.8926 | 0.8941 | 0.8920 | 0.8933 0.8921 0.8939
Bab 21.06 | 21.16 | 21.33 | 21.21 | 2146 | 2143 | 2145 | 2156 | 2155 21.62 21.62
avoon I 04811 | 05095 | 0.5192 | 0.5126 | 0.5315 | 0.5881 | 0.5863 | 0.5878 | 0.5853 0.5754 0.5765
Hat 2075 | 3113 | 3088 | 3091 | 3085 | 3146 | 3167 | 3141 | 3158 31.43 31.65
a 0.8393 | 0.8624 | 0.8567 | 0.8591 | 0.8608 | 0.8702 | 0.8736 | 0.8692 | 0.8721 0.8689 0.8733
Penta- | 2469 | 2512 | 2557 | 2526 | 26.00 | 2558 | 2562 | 2588 | 25.89 26.41 26.46
gon 0.6452 | 0.6835 | 0.7020 | 0.6830 | 0.7210 | 0.7285 | 0.7290 | 0.7385 | 0.7380 0.7511 0.7539
Camera || 2573 | 2672 | 2738 | 26586 | 2724 | 2701 | 2714 | 2725 | 27.37 27.87 28.00
-man | 08161 | 0.8330 | 0.8443 | 0.8361 | 0.8308 | 0.7956 | 0.7836 | 0.8255 | 0.8202 0.8578 0.8605
P 2780 | 2844 | 2887 | 2875 | 2870 | 2824 | 2825 | 2864 | 28.68 20.46 29.51
€PPers || 0.8123 | 0.8131 | 0.8298 | 0.8274 | 0.8151 | 0.7749 | 0.7682 | 0.7992 | 0.7941 0.8357 0.8359
p 2556 | 26.15 | 2646 | 2636 | 2697 | 2675 | 2685 | 2693 | 27.02 27.37 27.47
verage || 07217 | 0.7443 | 0.7544 | 0.7500 | 0.7748 | 0.7695 | 0.7683 | 0.7789 | 0.7786 0.7910 0.7943

Table 2. PSNR (dB) and SSIM results of deblurred images (uniform blur kernel, noise level 5,=2).

e | o | | v | v | e Ao | N | A e
Barbara 24.86 25.12 25.34 25.37 27.16 26.33 26.35 26.45 26.48 26.89 26.96
0.6963 0.7031 0.7214 0.7248 0.7881 0.7756 0.7695 0.7784 0.7757 0.7899 0.7927
Bike 22.30 24.07 23.61 23.33 24.13 24.46 24.61 24.43 24.58 24.59 24.72
0.6391 | 0.7487 | 0.7142 | 0.7049 | 0.7446 | 0.7608 | 0.7670 | 0.7599 | 0.7656 0.7649 0.7692
Straw 20.39 21.07 21.00 20.81 21.98 21.78 21.78 21.79 21.80 21.81 21.88
0.4112 0.5300 0.4885 0.4727 0.5946 0.5991 0.6027 0.5970 0.6008 0.5850 0.5934
Boats 27.47 27.85 28.66 28.75 29.19 28.80 28.83 28.97 29.00 29.83 29.83
0.7811 | 0.7880 | 0.8201 | 0.8181 | 0.8335 | 0.8145 | 0.8124 | 0.8195 | 0.8187 0.8441 0.8435
Parrots 26.84 28.58 28.06 27.98 29.45 29.77 29.98 29.73 29.94 29.94 30.06
0.8432 | 0.8595 | 0.8573 | 0.8665 | 0.8806 | 0.8787 | 0.8802 | 0.8784 | 0.8798 0.8800 0.8807
Baboon 20.58 20.98 20.87 20.80 21.13 21.10 21.10 21.17 21.16 21.24 21.24
0.4048 0.4965 0.4528 0.4498 0.4932 0.5441 0.5429 0.5428 0.5410 0.5285 0.5326
Hat 28.92 30.79 30.28 30.15 30.36 30.71 30.89 30.69 30.86 30.80 30.99
0.8153 0.8524 0.8433 0.8420 0.8507 0.8522 0.8556 0.8516 0.8550 0.8545 0.8574
Penta- 23.88 24.59 24.86 2454 25.46 25.34 2531 25.42 25.39 25.74 25.75
gon 0.5776 0.6587 0.6516 0.6297 0.6885 0.7051 0.7042 0.7069 0.7066 0.7118 0.7146
Camera 24.80 26.04 26.53 25.96 26.53 26.67 26.81 26.69 26.86 27.11 27.25
-man 0.7837 0.7772 0.8273 0.8131 0.8136 0.8211 0.8156 0.8243 0.8238 0.8365 0.8408
Peppers 27.04 27.46 28.33 28.05 28.15 28.30 28.24 28.37 28.37 28.82 28.87
0.7889 | 0.7660 | 0.8144 | 0.8106 | 0.7999 | 0.7995 | 0.7904 | 0.8038 | 0.7988 0.8204 0.8209
Average 2471 25.66 25.75 25.57 26.35 26.33 26.39 26.37 26.44 26.68 26.75
0.6741 0.7180 0.7191 0.7132 0.7487 0.7551 0.7540 0.7562 0.7566 0.7615 0.7646
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Table 3. PSNR (dB) and SSIM results of deblurred images (Gaussian blur kernel, noise level 5,=+/2 ).

ASDS-T | ASDS-T | ASDS-A | ASDS-A | ASDS-AR- | ASDS-AR-
Images | [10] [42] [45] [46] [58] D1 D2 | R-TD1 | R-TD2 | NL-TD1 | NL-TD2
Barb 2365 | 2322 | 2319 | 2371 | 2377 | 2381 | 2381 | 2381 | 2381 23.86 23.86
arbara\l 06411 | 05971 | 05892 | 0.6460 | 0.6489 | 0.6560 | 0.6556 | 0.6566 | 0.6563 0.6609 0.6611
Bik 2178 | 21.90 | 2120 | 2220 | 2271 | 2259 | 2263 | 2259 | 2262 22.80 22.82
e 1 06085 | 06137 | 05515 | 0.6407 | 0.6774 | 0.6657 | 0.6693 | 0.6663 | 0.6688 | 0.6813 0.6830
s 2028 | 19.76 | 19.33 | 2033 | 21.02 | 20.76 | 2081 | 20.79 | 20.82 20.91 20.93
"aw 1 0.4005 | 0.3502 | 0.2749 | 0.4087 | 0.5003 | 0.4710 | 0.4754 | 0.4729 | 0.4773 0.4866 0.4894
Bour 26.19 | 2553 | 2477 | 2664 | 2699 | 2712 | 2714 | 2711 | 2713 27.27 27.31
oars 1 07308 | 0.7056 | 0.6688 | 0.7464 | 0.7486 | 0.7617 | 0.7633 | 0.7616 | 0.7625 | 0.7651 0.7677
Parross | 2640 | 2596 | 2521 | 2684 | 2772 | 2742 | 2750 | 27.45 | 27.52 27.67 27.70
arrots | 08321 | 0.8080 | 0.7949 | 0.8444 | 0.8580 | 0.8539 | 0.8538 | 0.8540 | 0.8540 0.8600 0.8598
Bab 2022 | 2001 | 19.85 | 2024 | 2034 | 2036 | 2035 | 2036 | 20.35 20.39 20.38
aboon H 03622 | 0.3396 | 0.3011 | 0.3673 | 0.3923 | 0.3908 | 0.3889 | 0.3916 | 0.3893 0.3976 0.3959
Hat 2811 | 2890 | 2829 | 2885 | 2887 | 2880 | 2892 | 2880 | 28.89 28.96 29.01
a 0.7916 | 0.8100 | 0.7924 | 0.8122 | 0.8119 | 0.8074 | 0.8104 | 0.8074 | 0.8099 | 0.8110 0.8134
Penta- || 2333 | 2248 | 2209 | 2339 | 2382 | 2389 | 2388 | 23.89 | 23.89 24.00 24.01
gon 0.5472 | 0.4881 | 0.4387 | 0.5540 | 0.5994 | 0.5974 | 0.5958 | 0.5978 | 0.5971 | 0.6086 0.6089
Camera || 23.08 | 2326 | 2259 | 2351 | 2377 | 2385 | 2390 | 23.83 | 23.89 24.03 24.05
-man | 07332 | 0.7483 | 0.7187 | 0.7521 | 0.7249 | 0.7603 | 0.7637 | 0.7599 | 0.7630 | 0.7619 0.7649
p 2596 | 2558 | 2494 | 2661 | 2665 | 2699 | 2701 | 2698 | 26.99 27.12 27.14
€PPers || 0.7666 | 0.7411 | 0.7236 | 0.7843 | 0.7626 | 0.7883 | 0.7900 | 0.7880 | 0.7898 0.7880 0.7902
p 2390 | 2366 | 2315 | 2423 | 2457 | 2456 | 2459 | 2456 | 2459 24.70 24.72
verage Il 06414 | 0.6202 | 05854 | 0.6556 | 0.6724 | 0.6752 | 0.6766 | 0.6756 | 0.6768 0.6821 0.6834
Table 4. PSNR (dB) and SSIM results of deblurred images (Gaussian blur kernel, noise level g,=2).
ASDS- | ASDS- | ASDS- | ASDS- | ASDS-AR- | ASDS-AR-
Images || [10] [42] [45] [46] 58] D1 TD2 | AR-TD1|AR-TD2| NL-TD1 | NL-TD2
Barb 2357 | 2319 | 2307 | 2362 | 2370 | 2372 | 2372 | 2373 | 2373 23.78 23.78
arbara f 06309 | 0.5933 | 05776 | 0.6351 | 0.6399 | 0.6464 | 0.6464 | 0.6468 | 0.6471 0.6520 0.6521
Bik 2158 | 21.88 | 2097 | 21.93 | 2253 | 2241 | 2245 | 2241 | 2245 22.66 22.69
e 1 05903 | 0.6125 | 0.5324 | 0.6178 | 0.6643 | 0.6506 | 0.6527 | 0.6513 | 0.6536 0.6685 0.6704
o 20.10 | 19.75 | 19.24 | 2010 | 20.81 2057 | 2060 | 2058 | 2062 20.72 20.75
raw I 03750 | 0.3499 | 0.2590 | 0.3781 | 0.4762 | 0.4471 | 0.4500 | 0.4484 | 0.4529 0.4664 0.4698
Boat 2587 | 2548 | 2463 | 2624 | 2671 | 2678 | 2682 | 2681 | 2681 26.98 26.96
oars 1 07157 | 0.7032 | 0.6602 | 0.7292 | 0.7359 | 0.7464 | 0.7488 | 0.7478 | 0.7487 0.7503 0.7521
Parvors | 2610 | 2592 | 2505 | 2638 | 2740 [ 27.08 | 27.14 | 27.13 [ 27.24 27.47 27.50
arrots | 08234 | 0.8053 | 0.7907 | 0.8337 | 0.8523 | 0.8443 | 0.8447 | 0.8452 | 0.8460 0.8536 0.8535
Bab 20.16 | 20.00 | 19.79 | 2017 | 2028 | 2028 | 2028 | 2029 | 20.28 20.32 20.31
aboon I 03497 | 0.3389 | 0.2905 | 0.3533 | 0.3826 | 0.3775 | 0.3758 | 0.3775 | 0.3762 0.3858 0.3839
Hat 2794 | 2886 | 2827 | 2859 | 2867 | 2859 | 2869 | 2859 | 28.69 28.80 28.87
a 0.7857 | 0.8084 | 0.7913 | 0.8043 | 0.8049 | 0.8009 | 0.8036 | 0.8009 | 0.8036 0.8056 0.8080
Penta- || 2313 | 2246 | 2189 | 2313 | 2365 | 2369 | 2369 | 2369 | 2370 23.80 23.81
gon 0.5267 | 0.4876 | 0.4200 | 0.5299 | 0.5843 | 0.5784 | 0.5770 | 0.5793 | 0.5783 0.5922 0.5917
Camera || 2293 | 2323 | 2236 | 2325 | 2360 | 2372 | 2376 | 2371 | 23.76 23.95 23.95
-man | 07256 | 0.7465 | 0.7130 | 0.7412 | 0.7198 | 0.7533 | 0.7568 | 0.7528 | 0.7564 0.7557 0.7583
p 2572 | 2550 | 2438 | 2624 | 2644 | 2670 | 2676 | 2671 | 26.76 26.91 26.93
ePpers |l 07570 | 0.7373 | 0.7034 | 0.7723 | 0.7555 | 0.7770 | 0.7800 | 0.7773 | 0.7804 0.7774 0.7799
4 2371 | 2363 | 2296 | 2397 | 2438 | 2436 | 2439 | 2437 | 24.40 24.54 24.56
verage Il 0.6280 | 0.6183 | 05738 | 0.6395 | 0.6616 | 0.6622 | 0.6636 | 0.6627 | 0.6643 0.6707 0.6720
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Table 5. The PSNR (dB) and SSIM results (luminance components) of reconstructed HR images (noise level 5,=0).

ASDS- | ASDS- | ASDS-AR[ASDS-AR | ASDS-AR | ASDS-AR
Images | [10] [43] [25] [47] D1 TD2 | -TD1 | -TD2 | -NL-TD1 | -NL-TD2
Girl 32.93 31.94 32.51 31.21 33.40 33.41 33.42 33.41 33.54 33.53

r 0.8102 | 07704 | 07912 | 07878 | 0.8213 | 08215 | 08218 | 0.8216 | 0.8242 | 0.8242
Parrot 28.78 27.71 27.98 27.59 29.47 29.51 20.61 29.63 29.97 30.00
arro 0.8845 0.8682 0.8665 0.8856 | 0.9031 0.9034 | 0.9036 0.9038 0.9090 0.9093
Bur 25.16 25.19 23.73 26.60 26.24 26.27 26.24 26.23 27.09 27.34
utterfly | o gasg 0.8623 0.7942 0.9036 | 0.8775 0.8779 0.8758 0.8753 0.8975 0.9047
I 24.59 24.34 24.35 24.58 25.94 25.97 25.93 25.95 26.78 26.80
eaves | 0.8310 0.8372 0.8170 0.8878 | 0.8847 0.8856 0.8835 0.8842 0.9050 0.9058
Parth 26.32 25.87 24.08 25.89 26.63 26.61 26.63 26.62 26.82 26.83
artihenon | g 7135 0.6791 0.6305 0.7163 | 0.7279 0.7278 0.7279 0.7277 0.7348 0.7349
i 28.16 27.50 27.76 27.38 28.80 28.82 28.82 28.84 29.19 29.19
ower 1 0.8120 0.7800 0.7929 0.8111 0.8351 0.8354 | 0.8352 0.8358 0.8480 0.8480
Hat 29.92 29.68 29.65 29.19 30.70 30.69 30.65 30.64 30.92 30.93

a 0.8438 | 0.8389 | 08362 | 08569 | 0.8653 | 08648 | 0.8643 | 0.8641 | 0.8707 | 0.8706

R 28.80 27.96 28.49 27.53 29.06 29.10 29.11 29.13 29.23 29.24
accoon | (7549 0.6904 0.7273 0.7076 | 0.7648 0.7658 0.7657 0.7664 0.7675 0.7677
Bik 23.48 23.31 23.20 23.61 24.10 24.11 24.08 24.07 24.48 24.62
tie 0.7438 0.7219 0.7188 0.7567 0.7760 0.7772 0.7752 0.7752 0.7948 0.7962
Plant 31.87 31.45 31.48 31.28 32.85 32.91 32.85 32.88 33.47 33.47
ants 0.8792 | 08617 | 0.8698 | 08784 | 0.8985 | 0.8996 | 0.8987 | 0.8995 | 0.9094 | 0.9095

P 28.03 27.49 27.69 27.49 28.72 28.74 28.73 28.74 29.15 29.16
verage | 08115 | 07910 | 07954 | 0.8190 | 0.8354 | 08359 | 0.8352 | 0.8354 | 0.8461 | 0.8463

Table 6. The PSNR (dB) and SSIM results (luminance components) of reconstructed HR images (noise level ¢,=5).

ASDS- | ASDS- |ASDS-AR|ASDS-AR | ASDS-AR | ASDS-AR
Images [10] [43] [25] [47] TD1 TD2 -TD1 -TD2 | -NL-TD1 | -NL-TD2
Noisv Girt | 3037 31.40 30.70 29.77 31.72 31.76 3172 31.75 31.79 31.80
oLy Gl 07044 | 07480 | 07088 | 0.7258 | 07583 | 0.7596 | 0.7584 | 0.7594 | 0.7593 | 0.7590
Noisy 27.01 27.42 26.82 26.77 28.81 28.91 28.74 28.83 28.66 28.72
Parrot | 07911 | 08458 | 07769 | 0.8084 | 0.8673 | 0.8689 | 0.8634 | 0.8676 | 0.8632 | 0.8668
Noisy 23.67 24.95 23.50 25.47 25.54 25.76 25.50 25.61 25.99 26.08
Butterfly | 07777 | 08427 | 07576 | 0.8502 | 0.8362 | 0.8435 | 0.8350 | 0.8388 | 0.8591 | 0.8612
Noisy 23.62 23.17 23.35 23.78 25.14 25.21 25.11 25.13 25.49 25.50
Leaves | 07751 | 07939 | 07467 | 08457 | 08457 | 0.8491 | 0.8444 | 08455 | 0.8633 | 0.8645
Noisy 25.31 25.65 23.89 25.24 26.06 26.09 26.06 26.08 26.09 26.10
Parthenon| 06163 | 06587 | 05847 | 06651 | 06826 | 0.6845 | 0.6816 | 0.6826 | 0.6807 | 0.6821
Noisy 26.61 27.16 26.51 26.45 27.58 27.55 27.64 27.65 27.67 27.69
Flower | 06991 | 07591 | 07020 | 07509 | 0.7683 | 07699 | 07710 | 07733 | 07738 | 0.7767
Noisy Ha | 2814 29.27 28.32 28.11 29.56 29.70 29.50 29.58 29.57 29.63
olsy Hat| 06944 | 0.8049 | 07282 | 07768 | 0.8086 | 0.8151 | 0.8075 | 0.8129 | 08127 | 0.8175
Noisy 27.05 27.60 27.20 26.73 27.98 28.01 27.99 28.01 28.01 28.01
Raccoon | 0.6434 | 06707 | 06418 | 06640 | 0.6886 | 0.6882 | 0.6880 | 06876 | 0.6840 | 0.6810
Noisv Bike| 2274 23.06 22.42 23.07 23.49 23.57 23.43 23.49 23.52 23.57
olsy Blke| 6672 0.6984 0.6459 0.7118 0.7201 0.7239 0.7182 0.7205 0.7205 0.7220
Noisy 29.93 30.80 29.51 29.67 31.01 31.03 30.95 30.99 31.09 31.10
Plants 0.7760 | 0.8343 | 07691 | 0.8028 | 0.8324 | 08342 | 08308 | 08327 | 0.8350 | 0.8363
P 26.49 27.05 26.34 26.52 27.69 27.76 27.66 27.71 27.79 27.82
verage | 07048 | 0.7657 0.7090 | 0.7604 | 07808 | 0.7837 | 0.7798 | 0.7821 | 0.7851 | 0.7867
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Table 7. Average PSNR and SSIM values of the deblurred images on the 1000-image dataset.

Uniform blur kernel

Uniform blur kernel

Gaussian blur kernel

Gaussian blur kernel

Method =2 6,=2 =2 c,=2
ASDS-AR-NL-TD2 29.36 (0.8397) 28.66 (0.8163) 26.22 (0.7335) 26.10 (0.7261)
[58] 28.51 (0.8139) 27.96 (0.7966) 26.09 (0.7297) 25.91 (0.7209)
[46] 28.26 (0.8081) 27.41 (0.7763) 25.63 (0.7072) 25.37 (0.6934)

Table 8. Average PSNR and SSIM results of the reconstructed

HR images on the 1000-image dataset.

Method

Noise level ;=0

Noise level ;=5

ASDS-AR-NL-TD2

27.53 (0.7975)

26.56 (0.7444)

[25]

26.26 (0.7444)

25.34 (0.6711)

[47]

26.09 (0.7705)

25.31 (0.7156)

Table 9. Average PSNR and SSIM results by the proposed ASDS-AR-NL-TD2 method with different numbers of
classes on the 1000-image dataset.

Number of class

€S

Deblurring with uniform blur

Super-resolution with noise level

kernel and o,=2 ,=0
100 29.29 (0.8379) 2751 (0.7971)
200 29.36 (0.8397) 27.52 (0.7974)
400 29.31 (0.8380) 27.53 (0.7975)

Table 10. The PSNR and SSIM results of deblurred images by the proposed ASDS-AR-NL-TD2 with different patch
sizes (uniform blurring kernel, ¢,=2).

I;‘,l.t ch Barbara Bike Straw Boats Parrots | Baboon Hat Penta- | Camer- Peppers | Average
ize gon aman
353 27.33 25.68 22.32 30.64 31.07 21.61 32.12 26.44 28.09 29.55 27.49
0.7936 0.8173 0.6320 0.8651 0.9024 0.5713 0.8816 0.7509 | 0.8455 | 0.8270 0.7887
5x5 27.59 25.54 22.44 30.81 31.04 21.61 31.84 26.48 28.11 29.63 27.51
0.8116 0.8089 0.6428 0.8689 0.8968 0.5751 0.8745 0.7549 | 0.8599 | 0.8339 0.7927
7%7 27.70 25.48 22.56 30.76 30.92 21.62 31.65 26.46 28.00 29.51 27.47
0.8192 0.8069 0.6540 0.8670 0.8939 0.5765 0.8733 0.7553 | 0.8605 | 0.8359 0.7943

Table 11. The PSNR and SSIM results of reconstructed HR images by the proposed ASDS-AR-NL-TD2 with different

patch sizes (noise level o;,=0).

Patch Size Girl Parrot | Butterfly | Leaves | Parthenon | Flower Hat Raccoon Bike Plants | Average

3x3 33.55 29.96 27.28 27.00 26.84 29.27 30.95 29.18 24.46 33.54 29.20
0.8251 | 0.9104 | 0.9055 0.9139 0.7366 0.8527 | 0.8739 | 0.7660 | 0.7961 | 0.9131 | 0.8493

55 33.56 30.09 27.39 27.00 26.90 29.25 31.10 29.22 24.53 33.59 29.26
0.8240 | 0.9121 | 0.9058 0.9118 0.7377 0.8500 | 0.8742 | 0.7664 | 0.7965 | 0.9116 | 0.8490

7%7 33.55 30.14 27.34 26.93 26.89 29.19 31.04 29.24 24.62 33.37 29.22
0.8204 | 0.9092 | 0.9047 0.9099 0.7357 0.8463 | 0.8716 | 0.7655 | 0.7962 | 0.9061 | 0.8464

Table 12. Average PSNR and SSIM results by the proposed ASDS-AR-NL-TD2 method with different patch sizes on

the 1000-image dataset.
. Deblurring with uniform blur Super-resolution with noise level
Patch size _
kernel and o,=+2 c,=0
3x3 29.60 (0.8466) 27.51 (0.7979)
5x5 29.56 (0.8450) 27.54 (0.7984)
7x7 29.36 (0.8397) 27.53 (0.7976)
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