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Efficient Texture Image Retrieval Using

Copulas in a Bayesian Framework
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Abstract—In this article, we investigate a novel joint statistical
model for subband coefficient magnitudes of the Dual-Tree
Complex Wavelet transform which is then coupled to a Bayesian
framework for Content-Based Image Retrieval. The joint model
allows to capture the association among transform coefficients
of the same decomposition scale and different color channels.
It further facilitates to incorporate recent research work on
modeling marginal coefficient distributions. We demonstrate the
applicability of the novel model in the context of color texture
retrieval on four texture image databases and compare retrieval
performance to a collection of state-of-the-art approaches in the
field. Our experiments further include a thorough computational
analysis of the main building blocks, runtime measurements and
an analysis of storage requirements. Eventually, we identify a
model configuration with low storage requirements, competitive
retrieval accuracy and a runtime behavior which enables the
deployment even on large image databases.

Index Terms—Statistical Modeling, Copulas, Image Retrieval,
Complex Wavelet Transform;

I. MOTIVATION

C
ONTENT-Based Image Retrieval (CBIR) applications

have become increasingly popular in the last years. Two

potential reasons for that are the vastly growing amount of dig-

ital image data and the free access to public image repositories.

Both reasons are obviously connected to the dramatic price

decline in the digital camera marked. Systems which allow

searching, sorting or retrieval of visual content have turned out

to be essential in order to handle the vast amount of data. Since

the holy-grail of image retrieval, i.e. searching by formulating

semantic image queries, is still an open research problem [1],

people resort to the paradigm of searching by example. In such

a system, the user provides exemplary image content and gets

a collection of visually similar images in return. It is further

customary that there is an additional relevance feedback step at

the end of the query process, where the user can mark relevant

content and the system tries to incorporate the feedback to

refine future query results. In this article, we base our work

on the generic Bayesian CBIR formulation of Vasconcelos &

Lippman, introduced in [2]. A schematic illustration of the

main building blocks of this framework is shown in Fig. 1.

Since many images contain some sort of texture as part of

the visual content, a substantial branch of CBIR research is
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focused on texture characterization. Querying image content

on the basis of texture similarity can be either part of a

larger CBIR system, or a stand-alone system by itself. In

the latter case, we think of online quality assurance in the

manufacturing industry or real-time analysis of video frames

in medical applications for example. A very popular con-

cept in texture retrieval / classification research is to rely

on a statistical characterization of filter outputs [3]. It has

become common practice to extract features from transform

coefficients of the Discrete Wavelet Transform (DWT) [4],

[5], the Discrete Cosine Transform (DCT) [2], the Steerable

Pyramid [6], [7], Gabor wavelets [8]–[10] or complex wavelet

transforms [11]–[13]. A considerable amount of research work

has been devoted to the statistical modeling of DCT or DWT

subband coefficients, primarily focusing on the Generalized

Gaussian (GG) distribution [5], [14], [15]. Recently, the Gen-

eralized Gamma (GGamma) distribution [16] and the Refined

Histogram [17] have been proposed as reasonable alternatives.

In particular, the Refined Histogram approach is based on

the idea of modeling DWT coefficients by Product Benoulli

distributions [18], [19] which can be estimated very efficiently.

In addition to that, statistical inter- and intra-scale depen-

dencies of DWT coefficients have been extensively studied

[20], [21] and exploited for texture retrieval [22], estimation

and segmentation [23], [24], predominantly by means of

Hidden Markov Tree (HMT) models [25]. Recently, copula

based modeling approaches to capture coefficient associations

have gained considerable research interest [26]–[28] in the

community. The contribution of this work resides in this last-

mentioned research area.

To overcome the disadvantages of the real-valued DWT,

such as missing phase information, lack of shift-invariance

and lack of directional selectivity (see e.g. [29], [30]), complex

wavelet transform variants have been proposed as reasonable

alternatives. In this work, we consider one particular represen-

tative of this class, the Dual-Tree Complex Wavelet Transform

(DTCWT) [29], which largely eliminates all aforementioned

shortcomings at the cost of limited redundancy (i.e. four times

in 2-D). Nevertheless, literature on the statistical characteri-

zation of complex transform coefficients is very limited. In

summary, it can be stated that the Rayleigh, Weibull, or

(Generalized) Gamma distribution are proposed to model the

coefficient magnitudes [12], [31], [32], whereas inter-scale

phase relationships are studied in [33] and a wrapped Cauchy

or von Mises distribution is proposed to model the relative

phase distributions [34]. In a recent work, we proposed a

copula based modeling approach to capture the joint distri-

bution of complex coefficient magnitudes across subbands of

the same scale and different color channels and presented
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Fig. 1. Schematic illustration of the main building blocks of the Bayesian
CBIR framework of Vasconcelos & Lippman [2].

promising preliminary texture retrieval results [35], mainly

intended as a proof-of-concept study.

A crucial factor for the application of any CBIR system

is computational efficiency. In a classic retrieval scenario –

assuming that no hierarchical database model is in place –

runtime is dominated by the query process. In particular, the

time to process one image query is linear in the number of

database images. Any parameters or features of the database

images can be calculated at the time of storage. In the context

of the Bayesian CBIR framework of Fig. 1, the computational

bottleneck is the similarity measurement step. The two other

building blocks, i.e. the feature transformation and the feature

representation obviously contribute to the overall runtime, but

in case of large databases the computational effort is negligible

because we only need to compute the feature transformation

once per query. Depending on the similarity measure, the

feature representation might have to be computed once per

query as well. We remark that a completely different challenge

occurs when we consider the scenario of a limited set of

database images and frequent image queries, i.e. matching

video frames to a limited collection of templates. In this

scenario, all three building blocks may present potential per-

formance bottlenecks. In this work, however, we are only

concerned with the aforementioned classic retrieval scenario.

A. Contribution

We investigate a novel, copula based statistical model for

Dual-Tree Complex Wavelet Transform coefficient magnitudes

which is (i) capable of capturing the association structure

among transform coefficients of the same scale and different

color channels and (ii) incorporates recent results [31], [36]

on modeling marginal transform coefficient distributions. We

substantiate the claims of previous texture retrieval research

[28], [35] that Gaussian and Student t copulas are capable

of capturing coefficient associations by presenting the first

Goodness-of-Fit results in this context. In addition to that we

establish a connection to the Bayesian, Minimum Probability

of Error (MPE), image retrieval formulation of Vasconcelos

& Lippman [2]. Our objective is to move beyond previous

proof-of-concept studies and particularly address the trade-off

between retrieval rate and computational performance. In our

point of view, the most prominent barrier for the widespread

use of joint statistical models is the resulting complexity of

the similarity measurement step. This study identifies a viable

retrieval approach based on a Gaussian copula with Weibull

margins.

Our experimental retrieval results on four texture image

databases demonstrate (i) the superiority of copula based

coefficient modeling compared to the exclusive use of marginal

coefficient models (ii) that it is actually possible to achieve

competitive runtime performance with respect to a collection

of state-of-the-art approaches in the field. In consideration of

a recent opinion article by Vandewalle et al. [37] on repro-

ducible research, the full source code will become available at

http://www.wavelab.at/sources to reproduce the experimental

results.

B. Organization

The remainder of this article is structured as follows: in

Section II, we briefly recapitulate the cornerstones of the MPE

image retrieval formulation and then introduce the copula

based modeling approach which includes a discussion on

estimation and Goodness-of-Fit issues. In Section III, we in-

vestigate the computational requirements and present a simple

strategy to enhance runtime performance. Section IV presents

experimental retrieval results as well as a runtime study and an

analysis of storage requirements. Finally, Section V concludes

the paper with a discussion of the main points.

II. COPULA-DRIVEN IMAGE RETRIEVAL

A. Minimum Probability of Error Retrieval

In [2], [38], Vasconcelos & Lippman first introduced a

Bayesian formulation of CBIR, also referred to as Minimum

Probability of Error (MPE) retrieval. An image I is considered

to consist of a number of pixel observations x ∈ X residing

in the observation space X . We assume that each image

of the database belongs to one of M image classes, Y
denotes a random variable with realizations in {1, . . . , M} and
pY is the corresponding probability mass function (p.m.f.).

The first building block of the CBIR system is the feature

transformation stage which is a mapping t : X → Z from

the space of observations to the so called feature space

Z . The key issue here is to represent the image content

in a domain which is more suitable for further processing.

Accordingly, z = t(x) denotes a feature vector. The second

building block is a probabilistic model describing how the

feature vectors populate the feature space with respect to their

class membership. The final part of the CBIR system is the

retrieval function g : Z → {1, . . . , M}. In [2], the authors

argue that the ulterior objective for designing this function

is to minimize the probability of retrieval error. Given that

the function ω : Z → {1, . . . , M} returns the true class

membership of a feature vector z, the objective is to minimize

P(g(z) 6= y|ω(z) = y). From statistical classification theory

(see e.g. [39]) we know that the function minimizing this

criteria is the Bayes classifier

g(z) = argmax
y

pY |Z(y|z). (1)



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, MONTH 2010 3

Following the formulation of [2], each image belongs to its

own class with equal prior probability, i.e. ∀y ∈ {1, . . . , M} :
pY (y) = 1/M. This is a reasonable simplification in CBIR,

since it is hard to establish a-priori probabilities of database

images. Hence, applying the Bayes rule to Eq. (1) leads to

the Maximum-Likelihood (ML) selection criterion for image

retrieval, i.e.

g(z) = arg max
y

pZ|Y (z|y) (2)

which is substantially easier to handle than Eq. (1). We only

have to compute the class-conditional likelihood pZ|Y (z|y)
instead of the posterior probability pY |Z(y|z). Consequently,
the class-conditional probability density function (p.d.f.) pZ|Y
constitutes the feature representation in our context. In any

practical scenario pZ|Y has to be estimated from a collection

of feature vectors z1, . . . , zN and the actual retrieval pro-

cess will be based on a collection of query feature vectors

z∗1, . . . , z
∗
K extracted from the query image I∗. As we will

later see, it is computationally beneficial to choose K smaller

than N . To allow convenient and computationally tractable

estimation of pZ|Y , we assume that the feature vectors are

i.i.d. and conditionally independent given their true class

membership. In further consequence, this allows to write the

ML selection rule as

g(z∗1, . . . , z
∗
K) = argmax

y

K∑
k=1

log pZ|Y (z∗k|y). (3)

Since each image belongs to its own class, we will omit

Y in the notation Z|Y from now on and instead indicate

that a feature representation belongs to image Ir by marking

the model parameter (vector) Θ(r). In the following sections,

we are concerned with the development of a suitable feature

representation pZ(z;Θ).

B. Copula Based Statistical Subband Modeling

In the previous section, we introduced the three major

building blocks of the MPE retrieval framework. For the choice

of feature representation, we rely on previous research [31],

[36] where we have successfully employed the DTCWT [40]

in the context of image retrieval. Basically, a J-scale DTCWT

leads to six complex detail subbands per decomposition level,

capturing image details oriented along ±15◦,±45◦ and ±75◦.
Since we propose a novel joint model for DTCWT coefficient

magnitudes, we are primarily concerned with the feature rep-

resentation and the actual retrieval part of the MPE framework.

As the first issue of this section, we tackle the question

whether we do actually need a joint statistical model for

DTCWT coefficient magnitudes. In [31] for example, we relied

on the assumption of total coefficient independency which

enabled computationally efficient image retrieval. However,

due to the fact that the DTCWT is a redundant transform

(i.e. four-times redundant in 2-D), we have good reason to

believe that a joint statistical model of coefficient magni-

tudes across scales and color channels will further enhance

retrieval results. In fact, several authors have demonstrated

that incorporating the association structure among transform

coefficients considerably improved overall retrieval results [7],
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Fig. 2. Chi-Plots to illustrate the different types of association which can
be observed between pairs of DTCWT coefficient magnitudes from different
subbands and different color channels (on DTCWT decomposition level two).

[22], [41]. To get an impression about the pairwise association

structure among coefficient magnitudes of different subbands

we rely on a graphical tool commonly referred to as a Chi-

Plot [42]. When considering two arbitrary subbands on one

scale, the basic idea of a Chi-Plot is to transform pairs of

coefficients in such a way that the resulting pairs (residing

in the interval [−1, 1] × [−1, 1]) reveal the structure of as-

sociation. Consequently, a Chi-Plot can be considered as an

extension of the classic scatter plot which is a customary

tool to visualize possible dependencies. Nevertheless, scatter

plots have the inherent disadvantage that it is hard to identify

independent observations since the human visual system has

problems to quantify the degree of randomness. In a Chi-

Plot, however, departures from independency manifest them-

selves as deviations from the central region of the plot. A

so called tolerance band is usually defined to allow slight

scattering caused by sampling variability. Our implementation

follows the algorithmic description given in [42]–[44], with

the tolerance band enclosed by horizontal lines at ±cp/
√

N ,

where cp = 1.78 and N denotes the number of observation

tuples. In our Chi-Plots, the tolerance band is indicated as

a gray-shaded region. Fig. 2 shows a set of exemplary Chi-

Plots for pairs of DTCWT coefficient magnitudes from dif-

ferent subbands and color channels. The plots are chosen to

visualize the most prominent types of association which can

be observed for many DTCWT decomposed texture images.

The strong deviation from the tolerance band, especially in

the top two plots, further substantiates our conjecture that a

statistical model which is capable of capturing the association

structure may substantially improve the performance of any

processing step which relies on a statistical characterization

of the transform coefficients.

As the second topic of this section, we deal with the issue of

incorporating existing information about the marginal distribu-

tions of the transform coefficient magnitudes. From previous

research work [31], [32], [36] we know that the coefficient
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magnitudes can be fairly-well modeled by either Weibull,

Gamma or Generalized Gamma distributions. Obviously, we

favor a joint statistical model which is capable of exploiting

this information. We further do not want to constrain the joint

model to only allow marginal distributions from the same

distributional family (e.g. Gaussian). An elegant way to tackle

both objectives at the same time is to exploit the mathematical

construct of copulas. For a thorough theoretical introduction,

we refer the reader to the classic textbooks by Joe [45] and

Nelsen [46]. We only recapitulate the cornerstones of copula

modeling next. Basically, a copula is a B-dimensional distri-

bution function C : [0, 1]B → [0, 1] with uniform marginals

satisfying certain regularity conditions. In [47], Sklar showed

that given a B-dimensional random vector Z = (Z1, . . . , ZB)
with distribution function FZ and marginal distribution func-

tions FZ1 , . . . , FZB , there exists a B-dimensional copula C
such that

FZ(z) = C(FZ1 (z1), . . . , FZB (zB)), z ∈ RB. (4)

This theorem exploits the fact that every random variable can

be transformed to a uniform random variable by applying the

Probability Integral Transform (PIT) [48], i.e. the mapping

RB → [0, 1]B, z = (z1, . . . , zB) 7→ u = (u1, . . . , uB) with

ui = FZi (zi) and u ∼ U([0, 1]B). In other words, a copula

can be considered as the distribution function of the PIT

transformed margins. Since we will only consider random

vectors Z with continuous and strictly increasing marginal

distribution functions, the copula C is uniquely determined on

[0, 1]B. As a corollary of Sklar’s theorem [46], it follows that

given a B-dimensional distribution function FZ with margins

FZ1 , . . . , FZB and copula C we have the relation

C(u) = FZ(F−1
Z1

(u1), . . . , F−1
ZB

(uB)) (5)

where the F−1
Zi

denote the quantile functions. This corollary

substantially simplifies the process of finding a suitable statis-

tical model for multivariate observations because the process

of modeling the marginal distribution functions is completely

decoupled from the process of modeling the association struc-

ture. As a consequence, this immediately allows to incorporate

the knowledge we already have about the margins.

C. Copula Type & Estimation

We select two members of the family of elliptical copulas to

capture the association structure among transform coefficients:

the Gaussian copula and the Student t copula. Elliptical

copulas arise from the family of elliptical distributions. In fact,

they are the copulas of elliptical distributions and inherit all

their properties such as simple generation of random numbers

or well-known parameter estimation procedures for example.

The copula of the multivariate Gaussian distribution with

linear correlation matrix R (i.e. diag R = 1) is defined as

C(u; R) = Φ(Φ−1(u1), . . . , Φ−1(uB)) (6)

where Φ denotes the standard multivariate Gaussian distri-

bution function and Φ−1 denotes the quantile function of

the standardized univariate Gaussian distribution. In the same

manner, the Student t copula is defined as

C(u; R, ν) = TR,ν(t−1
ν (u1), . . . , t−1

ν (uB)) (7)

where TR,ν denotes the standard multivariate Student t distri-

bution, R is defined as above, ν > 0 denotes the degrees of

freedom and t−1
ν denotes the quantile function of the univariate

Student t distribution. Since we will need the p.d.f.s pZ of the

copula based models in Section III, we recapitulate that the

p.d.f. can be deduced from

pZ(z) =
∂BFZ(z)

∂z1, . . . , ∂zB
=

∂BC(u)
∂z1, . . . , ∂zB

(8)

which eventually leads to

pZ(z) =
∂BC(u)

∂u1, . . . , ∂uB

B∏
i=1

∂ui

∂zi
= c(u)

B∏
i=1

pZi(zi) (9)

since ∂ui/∂zi = ∂FZi(zi)/∂zi = pZi(zi). Hence, the p.d.f.

of a copula based feature representation can be conveniently

written as the product of the copula p.d.f. and the margin

p.d.f.s. Based on the fact that the Gaussian copula and the

Student t copula are the copulas of a multivariate Gaussian and

multivariate Student t distribution, resp., it is straightforward

to deduce the corresponding copula p.d.f.s. Considering Eq.

(9), we just need to extract the term c(u) from the p.d.f. pZ

of the multivariate Gaussian or multivariate Student t distri-

bution. Given that Z follows a standard B-variate Gaussian

distribution with location vector zero and correlation matrix

R, we manipulate the p.d.f.

pZ(z; R) =
1

(2π)
B
2 |R| 12 exp

(
−1

2
zT R−1z

)
(10)

to get

c(u; R) = |R|− 1
2 exp

(
−1

2
ξT (R−1 − 1)ξ

)
(11)

with ξ = (Φ−1(u1) · · · Φ−1(uB)). In a similar manner, we

can determine the p.d.f. of the Student t copula. Given that Z
follows a B-variate Student t distribution with location vector

zero, correlation matrix R and ν > 0 degrees of freedom, we

manipulate the p.d.f.

pZ(z; R, ν) =
Γ
(

ν+B
2

)
Γ(ν

2 )(νB)
B
2 |R| 12

(
1 +

1
ν

zT R−1z

)− ν+B
2

(12)

to obtain

c(u; R, ν) =

|R|−1/2 Γ
(

ν+B
2

) [
Γ
(

ν
2

)]B[
Γ
(

ν+1
2

)]B Γ
(

ν
2

)
(
1 + 1

ν ξT R−1ξ
)− ν+B

2

∏B
i=1

(
1 + ξ2

i

ν

)− ν+1
2

(13)

with ξ = (t−1
ν (u1) · · · t−1

ν (uB)).
Regarding parameter estimation of the joint copula based

model pZ(z;Θ), we point out that it is computationally expen-

sive and numerically cumbersome to simultaneously estimate

the parameters of the marginal distributions and the copula

parameters (denoted as the exact ML approach). Instead, we
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follow a commonly-used two-step procedure termed the In-

ference Functions from Margins (IFM) method, introduced by

Joe [45]. The IFM approach is based on a simple decoupling of

the estimation procedure: given that we have an i.i.d. sample

z1, . . . , zN , we first estimate the parameters θ1, . . . , θB of

the margins (see [5], [49] for GG estimation and [36], [50]

for Weibull / Gamma estimation details). Second, we use the

obtained estimates θ̂j to perform the PIT on each zi and then

estimate the copula parameters in a ML sense, i.e.

Λ̂ = argmax
Λ

N∑
i=1

log c(FZ1(zi1; θ̂1), . . . , FZB (ziB; θ̂B);Λ)

(14)

where Λ = {R} (Gaussian) or Λ = {ν, R} (Student t),
respectively. In case of the Gaussian copula, the ML estimate

of R is simply the sample correlation matrix of ξ̂1, . . . , ξ̂N

which can easily be shown by taking the first partial derivative

w.r.t. R of the log-likelihood function corresponding to Eq.

(11) and setting the resulting term to zero. Unfortunately,

the ML estimates of the Student t parameters R and ν do

not have such an explicit expression and must be determined

by a numerical optimization algorithm. In this work we rely

on MATLAB’s copulafit routine to estimate ν and R.

Basically, the estimation algorithm employs numerical func-

tion minimization to find a minimum of the negative log-

likelihood function corresponding to Eq. (13) w.r.t. ν. During
this minimization procedure, R is iteratively estimated using

an algorithm proposed in a working paper by Bouyé et al.

[51].

D. Quantifying the Goodness-of-Fit

To the best of our knowledge, there exists no commonly-

accepted or recommended method to test the Goodness-of-Fit

(GoF) of a copula model. Nevertheless, several approaches

have been proposed recently in literature (see Genest et al.

[52] or Berg [53] and references therein). The variety of ideas

ranges from the reduction of the multivariate GoF problem

to an univariate one (using the PIT), to parametric bootstrap

procedures [54] or even the exploitation of positive definite

bilinear forms [55]. In [35], we chose a pragmatic and straight-

forward approach, originally suggested by Genest and Favre

[56], as a first step towards model selection. We plot pairs

of original DTCWT transform coefficient magnitudes against

random samples from fitted copula models. Two examples of

such a plot are shown in Fig. 3 where we fit a Gaussian

and a Student t copula with Weibull margins to two different

subband combinations of the DTCWT decomposed Bark.0008

texture image of the VisTex [57] database. The first row of Fig.

3 show a scatter plot of the original coefficient magnitudes,

while rows two and three show 500 synthetically generated

samples form the fitted copula models. The synthetic samples

are generated by sampling from the copula and then trans-

forming the uniform margins to Weibull margins by means of

the Weibull quantile function.

However, the large number of possible subband combina-

tions limits the applicability of this approach to a preliminary

visual inspections of model fit. To overcome this shortcoming,
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Fig. 3. Scatter plots of (a) original DTCWT transform coefficient magnitudes
compared against 500 samples drawn from fitted (b) Student t and (c)
Gaussian copulas with Weibull margins.

we further experimented with the Akaike Information Criterion

(AIC) [58] and the Bayes Information Criterion (BIC) [59]

which both take into account the log-likelihood of the data

under the given model and penalize additional parameters to

avoid overfitting issues. Nevertheless, AIC and BIC are not

adequate tools to address the problem of model selection in

a hypothesis testing sense. They are rather useful as a means

of selecting among possible candidate models without caring

whether the models can actually describe the underlying data.

To re-evaluate our selection of the Student t copula in [35],

we implement a GoF test recently proposed by Genest et al.

[52], [60]. The test is based on the computation of the Cramér-

von-Mises statistic∫
[0,1]B

CB(u)2dCB(u) with CB =
√

N(CB − CΛB
)

(15)

where CB denotes the empirical copula [46] and CΛB
denotes

the estimated parametric copula under the null-hypothesis (i.e.

either Gaussian or Student t). Regarding the actual implemen-

tation of the GoF test, we adhere to the parametric bootstrap

algorithm [61] given in Appendix A of [52]. We choose 1000
bootstrap samples for our test. The null-hypothesis is rejected

whenever the estimated p-value is lower than the significance

level of 5%. Due to the fact that the parametric bootstrap
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TABLE I
PERCENTAGE OF REJECTED NULL-HYPOTHESES OF A CHI-SQUARE GOF

TEST FOR THREE MARGINAL DTCWT DISTRIBUTION MODELS.

Database Level
Margin Model

Weibull Gamma GGamma

VisTex (full)
1 11.68 8.87 11.12
2 14.37 13.48 8.05
3 14.81 14.91 9.45

ALOT
1 29.93 28.94 25.89
2 25.20 26.52 13.13
3 20.66 23.01 8.80

STex
1 19.90 12.93 24.01
2 19.63 15.79 12.61
3 18.70 17.68 10.06

procedure involves computation of CΛB , cf. Eq. (15), we

run into considerable computational problems since the test

requires to compute multivariate Gaussian or multivariate

Student t probabilities. This in turn requires computationally

intensive multi-dimensional numerical integration for which

we use the specifically-tailored algorithms presented by Genz

[62] and Genz & Bretz [63]. As a consequence of the intensive

computational demands, we limit our GoF study to 200 exam-

ple textures of the VisTex (full) (see Section IV-A) database

to get an impression of model fit. We select the subbands

of DTCWT decomposition level three. Since we have three

color channels and six subbands per scale, the joint statistical

model is 18-dimensional. The rejection rates are 38.50% for

the Student t copula and 35.50% for the Gaussian copula.

Hence, we conjecture that both models are equally capable

of capturing the association structure. In Section III, we will

however see that the Gaussian copula is far more attractive

from a computational point of view.

Nevertheless, the absolute rejection rates raise the question

whether these rates are tolerable in the first place. Actually,

it is hard to give a concrete answer to that question, since

the rejection rate is strongly influenced by the power of the

test and the significance level. Since we are dealing with

a 18-dimensional dataset, the fact that test power increases

with dimensionality leads to expect that the GoF test is quite

conservative. Consequently, chances are high that the null-

hypothesis gets rejected only because of minor deviations from

the assumed model. In view of that, a rejection rate of 30−40%
seems tolerable after all.

In order to evaluate the GoF of potential parametric mar-

gin models, i.e. Weibull, Gamma, Generalized Gamma, we

perform Chi-Square GoF tests at the 5% significance level

using all images of three texture databases (see Section IV-A).

The bin width to compute the Chi-Square test statistic is

chosen according to the standard setting used by the NIST

software DATAPLOT [64], where the bin width is defined

as 0.3s, s denoting the sample standard deviation. In case

of empty edge bins, the bins are combined with the next

non-empty bin. Since the number of transform coefficients

between two successive DTCWT decomposition levels differs

by a factor of four, we uniformly sample 256 coefficients

(without replacement) from each subband to achieve the same

test power. This is reasonable, since we know that increasing

the sample size likewise increases the power of a hypothesis

test. In case we omit this step, we would presumably blur

the test results by risking higher rejection rates at the first

decomposition levels. The exact test setup for one texture

image is as follows: we decompose each (RGB) color channel

separately by a three-scale DTCWT and then conduct the GoF

test for the transform coefficient magnitudes of each of the

54 subbands. Table I lists the corresponding rejection rates

per decomposition level. Based on these figures, we make

the following observations: First, rejection rates are similar

over the decomposition levels when considering the Weibull

and Gamma distribution separately. Second, all three models

seem equally capable of capturing the marginal coefficient

statistics. We further observe that in case of the Generalized

Gamma distribution, the rejection rates are less similar. We

attribute this effect to numerical estimation issues related to

the small (i.e. 256) number of coefficients that are used to

estimate the three distribution parameters. Considering the fact

that the Generalized Gamma distribution is computationally

unhandy and does not significantly stand out with respect to

the rejection rates, we restrict our choice of parametric margin

model to the Weibull and Gamma distribution.

E. Wedding Copula Modeling and MPE Retrieval

For texture retrieval, we consider all available subbands

of a specific decomposition level. In case of color images,

a feature vector z contains B = 18 components, where

each component is a transform coefficient magnitude zi =
|xi|, xi ∈ C from one subband, i.e. z = (z1, . . . , zB). A

concrete example of a copula based feature representation

is a Gaussian copula with Weibull margins. Although it is

reasonable to incorporate as much information as we can into

the feature representation of each image, we run into problems

when it comes to similarity measurement. In previous work

[5], [16], [31], [65], it was shown that assuming independency

among transform coefficients allowed to derive closed-form

expressions for the Kullback-Leibler (KL) divergence between

two feature representations. In case of copula based models

however, no such closed-form expressions exist and we have

to rely on alternative strategies. A first pragmatic approach we

employed in [35] is to exploit the Monte-Carlo approximation

of the KL divergence. Unfortunately, this approach has two

inherent disadvantages: first, due to the dependency on random

number generation, the KL divergence will differ to a certain

extent (depending on the sample size) each time we compute

the similarity between two feature representations. Second,

the approach is computationally expensive since we need to

estimate the joint statistical model for each query image,

draw a random sample and compute the likelihood. A more

reasonable way to perform the similarity measurement step

is to employ the ML selection rule of the Bayesian CBIR

framework, see Eq. (3). This is a natural choice, since it

neither requires sampling nor parameter estimation of the

query image’s feature representation. Given a collection of

query feature vectors z∗1, . . . , z∗K , the ML selection rule can

be written as

g(z∗1, . . . , z
∗
K) = arg max

r∈{1,...,L}

K∑
i=1

log pZ(z∗i ;Θ
(r)) (16)
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Query Feature Vectors
z∗1, . . . ,z

∗
K (z∗i ∈ RB)

∑K
i=1 log c(FZ1(z

∗
i1), . . . , FZB

(z∗iB);Λ(r)) +
∑K

i=1

∑B
j=1 log pZj

(z∗ij ;θ
(r)
j )

(S1) uij := FZj
(z∗ij ;θ

(r)
j )

(S2) log pZj
(z∗ij ;θ

(r)
j )

(S3) ξij := φ−1(uij) or ξij := t−1
ν (uij)

(S4) log c(ui1, . . . , uiB ;Λ(r))

(K ×B times)

(K ×B times)

(K ×B times)

(K times)

Log-Likelihood Computation

Fig. 4. Computational steps to compute the (log)-likelihood of a collection
of query feature vectors under a copula based model form the database. The
steps have to be repeated L times (i.e. for all models) to obtain the final
retrieval result for query image I∗.

where Θ(r) denotes the parameter collection of the copula

based feature representation of candidate image Ir.

III. COMPUTATIONAL ANALYSIS

In MPE image retrieval, computation of the ML selection

criterion is the key element to achieve competitive runtime

performance. In particular, ML selection requires to evaluate

the log-likelihood of a collection of query feature vectors

under all L candidate models in the database. In the context

of copula based feature representations, we can split the log-

likelihood evaluation process into four parts, illustrated in Fig.

4 (assuming K query feature vectors). All four parts have to be

carefully analyzed with respect to the computational require-

ments, since they present potential performance bottlenecks.

The runtime measurements presented in this sections were

performed using a C/C++ implementation of the ML selection

rule on a 32-bit Intel Core2 Duo system clocked at 2.6 GHz

with 4 GB of memory. The code was compiled using GCC

4.2 with options -O2 -march=native -ffast-math.

First, we discuss the issue of computing the logarithm of the

Gamma / Weibull / GG p.d.f. and c.d.f., respectively, which

covers steps (S1) and (S2) in Fig. 4. We include the GG

distribution here, since we will present experimental retrieval

results with a copula based feature representation of DWT

coefficients using GG margins in Section IV as well. In case

of the Weibull distribution with shape parameter α > 0 and

scale parameter β > 0, both the p.d.f. and c.d.f. have a closed-

form expression. The logarithm of the p.d.f. is

log pZ(z; α, β) = log α− log β + (α− 1) log(z)
− (α− 1) log(β)− zαβ−α (17)

whereas the corresponding c.d.f. has the form

FZ(z; α, β) = 1− exp
{
−
(
− z

β

)α}
. (18)

We remark that only the terms (α − 1) log(z) and zα in Eq.

(17) need to be calculated K×B times, all other terms can be

pre-computed at the time of storage of the model, since they

do not depend on the query image data. In case of the Gamma

distribution with shape parameter α > 0 and scale parameter

β > 0, the logarithm of the p.d.f. takes the form

log pZ(z; α, β) = (α− 1) log(z)− z

β

− α log(β)− log Γ(α)
(19)

and the c.d.f. is given by

FZ(z; α, β) =
γ(β, z/α)

Γ(α)
(20)

where γ(·, ·) denotes the (lower) incomplete Gamma function

[66]. Evidently, evaluation of the p.d.f. and c.d.f. is computa-

tionally more involved. Although most terms of Eq. (19) can

be pre-computed, evaluation of the c.d.f. requires to compute

the incomplete Gamma function. In our experiments, we use

gammp implementation of [67] to compute Eq. (20). Last, the

logarithm of the GG p.d.f. with shape parameter β > 0 and

scale parameter α > 0 is given as [68]

log pZ(z; α, β) = log(β)− log(2α)

− log Γ(1/β)−
( z

α

)β (21)

and the corresponding c.d.f. has the inconvenient form

FZ(z; α, β) =


1
2Γ
(

1
β ,
(− z

α

)β)Γ
(

α
β

)−1

if z ≤ 0

1− 1
2Γ
(

1
β ,
(

z
α

)β)Γ
(

α
β

)−1

if z > 0
(22)

where Γ(·, ·) denotes the (upper) incomplete Gamma function

[66]. Similar to the Gamma distribution, evaluation of the

c.d.f. is the numerically complex step. In particular, we exploit

the Γ(·, ·) implementation gammq of [67] to compute the GG

c.d.f. A direct runtime comparison of Eqs. (18), (20) and (22)

reveals that calculation of the Weibull c.d.f. is approximately

ten times faster than calculation of the GG and Gamma c.d.f.,

although this gap could possibly be closed by using a lookup-

table approach to compute the Gamma functions.

Next, we turn to the computational effort required to eval-

uate of the Student t and Gaussian quantile functions, t−1
ν

and Φ−1 which covers step (S3) in Fig. 4. In the Gaussian

case, computation of Φ−1 can be accomplished using the

inverse error function [66], i.e. Φ−1(u) =
√

2 erf−1(2u) or

by employing some fast approximation such as the Acklam

algorithm1 which uses two rational minimax approximations,

one in the central region and one in the tails. We implement

this approach for our experiments. In case of the Student

t quantile functions, the situation is more complicated. For

certain integer values of ν (e.g. ν = 1, 2), t−1
ν has an explicit

expression. In general however, the fact that ν ∈ R (ν > 0)
makes the evaluation of t−1

ν less convenient. In our implemen-

tation, we use the GSL2 routine gsl_cdf_tdist_P which

computes the functional inverse of the Student t c.d.f. using the
regularized Beta function [66]. Runtime measurements reveal

a relative runtime difference of a factor ≈ 50 in favor of the

Gaussian quantile function implementation.

1See http://home.online.no/∼pjacklam/notes/invnorm/.
2GNU Scientific Library, available at http://www.gnu.org/software/gsl/.
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Finally, we address the effort to evaluate the logarithm of

the Student t and Gaussian copula p.d.f.s, thus covering step

(S4) in Fig. 4. When we consider the p.d.f. of the Gaussian

copula, the only term in Eq. (11) we need to compute for each

query feature vector is the quadratic form

−1
2
ξT (R−1 − 1)ξ. (23)

Obviously, R−1 can be pre-computed at the time of model

storage. Since we compute the inverse by means of a Cholesky

decomposition, i.e. R = AAT , it is convenient to store the

inverse of the lower triangular matrix A instead of R−1. Given

that y = A−1ξ, we can thus reformulate (23) as

−1
2

B∑
i=1

(y2
i − ξ2

i ). (24)

In case of the Student t copula, the terms we need to compute

for each query feature vector are(
1 +

1
ν

ξT R−1ξ

) ν+B
2

=

(
1 +

1
ν

B∑
i=1

y2
i

) ν+B
2

(25)

and

−
(

ν + B

2

) B∑
i=1

log
(

1 +
ξ2
i

ν

)
(26)

given that y is defined as above. Again, runtime measurements

show that p.d.f. evaluation of the Gaussian copula is by a factor

of ≈ 3 faster than p.d.f. evaluation of the Student t copula.

In consideration of the computational requirements to deter-

mine the log-likelihood function of the copula based feature

representations, it is desirable to keep the number of query

feature vectors K at a minimum. Similar to the query feature

vector extraction strategy presented by Vasconcelos & Lipp-

man in [2], we suggest a coefficient reduction step by random

(uniform) sampling the subband coefficients, thereby reducing

the data rate (and consequently the number of query feature

vectors) by a factor of 1/n. The speedup (cf. Fig. 6) will be

proportional to the data reduction rate and considerably reduce

the runtime of the ML selection process, however, reducing the

number of coefficients might also negatively affect the retrieval

rate (see Fig. 5). We will investigate this issue in the following

section.

IV. EXPERIMENTS

Our experimental section covers two major issues: First,

we evaluate whether the copula based subband models lead

to competitive texture retrieval performance on four publicly-

available databases in comparison to four state-of-the-art ap-

proaches in the field. Second, we address runtime as well as

storage requirement issues and discuss the impact of the query

feature vector reduction strategy.

A. Image Databases

We choose the Amsterdam Library of Textures (ALOT)

[69], the MIT Vision Texture Database (VisTex) [57] and a

novel texture image database3 (Salzburg Textures, abbreviated

as STex), captured by the authors under real-world conditions

in the area around Salzburg/Austria for our experiments.

In case of the ALOT database, we only select the textures

captured under the c1l1 capture condition4. Regarding the

VisTex images, we use the original 512× 512 pixel versions

of the textures available from the MIT Vision Texture website.

There are 167 textures available from which we extract the

same 40 image subset which appeared in various recent publi-

cations (see, e.g. [5], [16], [31], [70]). The full VisTex database

will be denoted as VisTex (full), whereas the small subset

will be denoted as VisTex (small). According to information

on the website, VisTex images were captured under real-world

conditions without studio lightning. Finally, the STex database

consists of 476 images of different textures captured in the

area around Salzburg / Austria using three cameras: a Canon

IXUS 70, a Canon EOS 450D and a Nikon D40. Similar to

the VisTex database, our image set is intended to resemble a

real-life scenario.

B. Evaluation Criterion

To evaluate the performance of the retrieval system, we

have to define a measure of retrieval correctness. We follow

the common approach of counting the number of correct

images among the top O retrieved images for each query,

see [5], [71]–[73]. To state this measure in a more for-

mal way, let P1, . . . ,PM denote the M parent images and

let I1, . . . , IL denote the texture images in the repository,

obtained by splitting the original 512 × 512 pixel images

into S = 16 non-overlapping 128 × 128 pixel blocks, i.e.

L = S × M . Further, we define a parent indicator function

p : {1, . . . , L}2 → {0, 1} as

p(i, j) :=

{
1, if Ii and Ij are splits of the same parent

0, else
(27)

and let Rj := {r(j)
1 , . . . , r

(j)
L |r(j)

1 ≤ r
(j)
2 ≤ · · · ≤ r

(j)
L } denote

the index set of the sorted similarity values for the query image

Ij to all L candidate images (including the query itself). The

percentage of correctly retrieved images for an arbitrary query

image Ij at the operating point of O retrieved images can be

calculated as

s
(j)
O =

1
S

O+1∑
i=1

p(j, r(j)
i ) (28)

where the upper limit of the sum, O +1, accounts for the fact
that the query image is not excluded from the set Rj . This of

course assumes that the query is naturally defined to be most

similar to itself (which is always the case in our setup). The

final retrieval rate tO of the CBIR system at operating point

O – calculated on the basis that each database image is used

as a query once – can then be determined by

tO =
1

SL

L∑
j=1

O+1∑
i=1

p(j, r(j)
i ). (29)

3Available at http://www.wavelab.at/sources/.
4Depicted at http://staff.science.uva.nl/∼mark/ALOT/.
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Based on this evaluation setup, it is possible to construct

Receiver Operating Characteristic (ROC) curves by plotting

O against tO. This allows to study the retrieval behavior as

we increase the number of retrieved images (cf. Fig. 7). For

practical purposes, reasonable values of O seem to be in the

range of 16 to 40 images. As it is pointed out by Picard et al.

[71], showing that a ROC curve of an approach lies above

the ROC curve of another approach is a reasonable way to

demonstrate a performance increase.

C. Comparison with State-of-the-Art Methods

To evaluate the competitiveness of the copula based subband

models for texture image retrieval, we compare against a set

of state-of-the art approaches which all basically follow the

MPE paradigm of [2] (see Section II-A). The approaches can

be grouped into two categories: those which are capable of

handling color information innately and those which were

originally proposed as grayscale-only approaches and thus re-

quire an artificial color extension. The first two approaches we

briefly describe next are representatives of the first category,

while the remaining three approaches are representatives of

the second category.

First, we choose the original Embedded Multiresolution

Mixture (EMM) model approach of Vasconcelos & Lippman

[2] with eight mixture components and diagonal covariance

matrices. Mixture model parameters are estimated by the

classic EM algorithm [74] initialized by a modification (see

[1]) of Gray’s codeword splitting procedure [75]. The images

are first converted to the YBR color model and a 8 × 8
window is shifted over the image by two pixel increments (in

both directions) to obtain 48 DCT coefficients / window as

feature vectors for parameter estimation (i.e. the first 16 DCT

coefficients of each color channel are interleaved according to

the pattern YBRYBR. . .). To extract query feature vectors, a

non-overlapping 8×8 block DCT is used instead which finally

gives 256 query feature vectors.

As a second approach, we implement a multivariate DWT

coefficient modeling approach, presented by Verdoolaege et al.

[70]. The authors propose a joint model for DWT coefficients

based on the multivariate Power Exponential (abbreviated

as multiv. Power. Exp.) distribution to capture dependencies

of coefficients across color channels. The geodesic distance

on the statistical manifold of multivariate Power Exponential

distributions is then used as a similarity measure for retrieval.

The distribution parameters are estimated by means of moment

matching, as originally suggested by Gomez et al. [76].

Third, we implement the work of Do & Vetterli presented in

[5]. The authors propose to model DWT coefficients by means

of GG distributions and use a closed-form expression for the

KL divergence during the retrieval process. The distribution

parameters are estimated by means of the Newton-Raphson

procedure proposed in the appendix of [5] (initialized by

moment estimates, see [15]). To handle color images, we

implement the straightforward extension to treat each color

channel separately and finally sum up the KL divergences.

This is also the extension we use for the following two

approaches.

Fourthly, we test against an approach we presented in

[31], [36]. The basic idea is similar to the work of Do &

Vetterli [5], except that we employ the DTCWT for feature

transformation and model the complex transform coefficient

magnitudes by Weibull distributions to obtain a suitable feature

representation. Parameters are estimated by means of ML

estimation (initialized by moment estimates) [50] and the KL

divergence minimization criterion is used during the actual

retrieval process. As a matter of fact, this approach can

be considered as a lightweight version of the proposal we

present in this work, since coefficient associations are not

incorporated.

As a final approach, we implement another extension to

the work of Do & Vetterli [5], presented by Choy et al.

[16]. The authors argue that the (three-parameter) Generalized

Gamma distribution (GGamma) should be used to model DWT

coefficient magnitudes and derive a closed-form expression to

the KL divergence which is exploited to measure similarities

during the retrieval process. Parameter estimation is accom-

plished in a ML sense by means of a globally-convergent

algorithm proposed by Song [77].

For all approaches based on the DWT or DTCWT, the

number of decomposition levels is set to three (as in [5],

[70] for instance). Kingsbury’s Q-Shift (14, 14)-tap filters are

used for DTCWT decomposition levels greater than two in

combination with (13, 19)-tap near-orthogonal filters for level

one [78]. In case of the DWT we use CDF 7/9 filters.

Regarding the configuration of the copula based subband

models, we test all combinations of Gaussian and Student t
copulas with Weibull and Gamma margins. Further, we present

experimental results for a Gaussian / Student t copula using

GG margins as a multivariate extension of the work of Do

& Vetterli [5]. This strategy has already been proposed by

Stitou et al. [28], however, with the similarity measurement

part based on a normalized l1 norm between feature vectors

composed of the copula and marginal distribution parameters.

We prefer the ML selection criterion for retrieval, since ML

selection has a thorough theoretical foundation, while the

normalized l1 distance is a rather arbitrary choice.

D. Retrieval Rate

In Table II, we summarize the retrieval rates at the operating

point of O = 16 retrieved images for all four texture image

databases. In addition, we list whether the retrieval results of

the top approach per database (marked bold) show statistically

significant differences to the results of the other approaches

of the same database. For that purpose, we employ a paired

sign-test at the 5% significance level. We choose this test,

since it is a non-parametric test and it is further considered

to be the only valid test to assess statistical significance in

information retrieval experiments [79]. In case of a paired t-

test for instance, we could not guarantee that the Normality

assumption for the underlying population is met. In our setup,

the test design is as follows: First, we determine the average

retrieval rate per parent image Pj (at O = 16 obviously),

since we want to test on a per parent texture basis. These

rates are computed by calculating the arithmetic mean over the
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retrieval rates of the S = 16 query images corresponding to

Pj . Next, given M such rates for approach A and B, denoted

by pA
1 , . . . , pA

M and pB
1 , . . . , pB

M , resp., the test statistic counts

the number of times the difference pA
i − pB

i , i = 1, . . . , M is

positive or negative. In case the null-hypothesis of no statisti-

cally significant difference between A and B is true, the test

statistic follows a binomial distribution. This eventually allows

to determine a p-value. A rejection of the null-hypothesis is

indicated by a superscript ’∗’ in Table II, next to the retrieval

rate t16 for each approach.

Regarding the effectiveness of joint statistical modeling in

general, we note that the copula based approaches as well

as the multiv. Power Exp. / Geodesic approach [70] show

consistently higher retrieval rates than their relatives based

on marginal subband models (e.g. used in [5], [16], [31]).

We further observe that approaches based on the Student t
copula exhibit very similar rates to approaches based on the

Gaussian copula. This observation reflects the GoF test results

of Section II-D and substantiates the claim that both copu-

las are equally capable of capturing coefficient associations.

Regarding the choice of marginal distribution for the copula

based feature representations, the situation is similar. Neither

the Gamma nor the Weibull model particularly stand out with

respect to the retrieval rate which again reflects the GoF test

results of Table I. Nevertheless, from a computational point

of view, the results are appealing since the least computa-

tionally expensive copula based feature representation (i.e. the

Gaussian copula with Weibull margins) proves to be a good

choice in practice. It even exhibits the highest retrieval rate

on ALOT and is ranked among the top approaches on the

remaining three databases. In fact, there is no incentive to

use the Student t copula and the Gamma distribution here.

Regarding the performance of the remaining approaches, we

note that two competitors stick out particularly: First, it evident

that the original Bayesian CBIR approach of Vasconcelos &

Lippman (i.e. EMM / ML) – which is not specifically tailored

for texture retrieval – is ranked among the top two results

on the three large databases and ranked fourth on VisTex

(small). Second, the multiv. Power Exp. / Geodesic approach

of Verdoolaege et al. [70] exhibits similar performance, being

ranked among the top two approaches on VisTex (small),

ALOT, STex and ranked fourth on VisTex (full). Henceforth,

we refer to these approaches as the two major competitors to

our proposal.

As an interesting observation, we highlight that the analyt-

ically complex Generalized Gamma feature representation of

Choy et al. [16] consistently exhibits slightly lower retrieval

rates than the GG based feature representation of Do & Vetterli

[5]. In some sense, the situation is similar to the discussion

regarding the choice of copula, where we could not provide

a convincing argument in favor of the more complex model.

Even the objection that ML estimation is more complex in

case of the GG distribution – as it is argued by Choy et al.

– is not convincing, since Song [80] proposed a fast, globally

convergent and computationally inexpensive Newton-Raphson

iteration which is completely free of any kind of Gamma

function.

In order to have a comparison to two non-parametric ap-

TABLE II
RANKING AND RETRIEVAL RATE (O = 16) ON EACH DATABASE.

Database Approach t16 [%]

VisTex (small)
40 Images

Multivar. Power Exp. / Geodesic [70] 91.2
Gaussian Copula Weibull / ML 89.5
Gaussian Copula Gamma / ML 89.1
EMM / ML [2] 88.9
Student t Copula GG / ML 88.9
Student t Copula Gamma / ML 88.9
Gaussian Copula GG / ML 87.5∗
Student t Copula Weibull / ML 86.9∗
DTCWT Weibull / KL [31] 84.0∗
DWT GG / KL [5] 82.0∗
DWT GGamma / KL [16] 81.0∗

VisTex (full)
165 Images

Multivar. Power Exp. / Geodesic [70] 69.3
EMM / ML [2] 67.7
Student t Copula Gamma / ML 63.8∗
Student t Copula GG / ML 63.2∗
Gaussian Copula Weibull / ML 63.0∗
Student t Copula Weibull / ML 62.4∗
Gaussian Copula Gamma / ML 61.9∗
Gaussian Copula GG / ML 61.0∗
DTCWT Weibull / KL [31] 55.4∗
DWT GG / KL [5] 53.2∗
DWT GGamma / KL [16] 53.1∗

ALOT
250 Images

Gaussian Copula Weibull / ML 54.1
EMM / ML [2] 53.0
Student t Copula GG / ML 50.8∗
Multivar. Power Exp. / Geodesic [70] 49.3∗
Gaussian Copula GG / ML 49.0∗
Student t Copula Gamma / ML 47.5∗
Gaussian Copula Gamma / ML 46.9∗
Student t Copula Weibull / ML 46.7∗
DWT GG / KL [5] 42.3∗
DWT GGamma / KL [16] 40.7∗
DTCWT Weibull / KL [31] 40.6∗

STex
476 Images

EMM / ML [2] 73.7
Multivar. Power Exp. / Geodesic [70] 71.3∗
Gaussian Copula Weibull / ML 70.6∗
Gaussian Copula Gamma / ML 69.4∗
Student t Copula GG / ML 65.6∗
Gaussian Copula GG / ML 65.2∗
Student t Copula Gamma / ML 64.3∗
Student t Copula Weibull / ML 63.1∗
DTCWT Weibull / KL [31] 58.8∗
DWT GGamma / KL [16] 52.9∗
DWT GG / KL [5] 49.3∗

proaches as well, we implement the popular Local Binary Pat-

tern (LBP) approach of [81] and the Multiresolution Histogram

(MRH) approach proposed in [82]. In case of the LBPs, we use

a standard 3×3 pixel neighborhood and employ the Histogram

Intersection [83] metric to compute the similarity between

two LBP feature representations. For the MRH approach,

we use four pyramid levels of the Burt-Adelson pyramid, a

Gaussian kernel for histogram smoothing and a fixed bin-width

for the intensity resolution of the histograms (fixed to eight

bit). As suggested in [82], the l1 norm is used to measure

the similarity between two MRH feature representations. For

both approaches, the extension to cope with color images (i.e.

RGB in our case) is straightforward by means of histogram

concatenation. At the operating point of O = 16 retrieved

images, the LBP approach exhibits 86.14% on VisTex (small),

59.19% on VisTex (full), 42.60% on ALOT and 58.77%
on STex. The MRH approach exhibits 78.82% on VisTex

(small), 49.61% on VisTex (full), 42.14% on ALOT and

49.94% on STex. We conclude that without any additional
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effort to tune the performance of both approaches, they show

up in the bottom half of the (per database) ranking listed

in Table II. Nevertheless, we point out that computing the

Histogram Intersection or the l1 norm is substantially less

expensive in terms of arithmetic operations than computing

any of the similarity measures we use for the probabilistic

feature representations.

E. Runtime Measurements & Storage Requirements

In this section, we take a closer look at the absolute

retrieval runtime and storage requirements for the approaches

of Section IV-C. All similarity measures, i.e. the ML selection

criterion, the KL divergences and the geodesic distance, are

implemented in C++. Numerical functions are provided by

the GSL library and Numerical Recipes [67] as indicated in

Section III. For matrix computation, we employ the Eigen

template library for linear algebra5. We tried to achieve

approximately the same level of optimization for all implemen-

tations: First, terms which occur repeatedly in an expression

are calculated only once. Second, any matrix inversions or

determinant calculations are performed offline, in case there is

no dependency on the query image data. Third, all operations

such as log or log Γ that are independent of the query image

data are computed once per query, and not for each query

feature vector. We remark that these computations could be

performed offline as well and then stored with the feature

representation. Nevertheless, we omit this additional optimiza-

tion step in order not to distort the pure storage requirements.

We measure the average runtime of one image query to

1024 candidate images on a 32-bit Intel Core2 Duo system

at 2.6 GHz with 4 GB of memory. Table III lists runtime

numbers in milliseconds as well as the storage requirements

for one feature representation of each approach (in bytes)

using 64-bit double precision values (IEEE 754-1985). Note

that the indicated runtime does not include computation of

the feature transformation (and feature representation in case

of [5], [16], [31], [70]) for the query image. Regarding the

calculation of the exact storage requirements, we note that in

case of symmetric N × N matrices, we only need to store

(N ×N + N)/2 matrix components. Further, in case of [1],

the covariance matrices of the Gaussian mixture model have

diagonal form and in case of [70], the scatter matrix is a 27×27
block-diagonal matrix with symmetric block matrices of size

3× 3.
The KL similarity functions exhibit by far the fastest

runtime in Table III, yet the retrieval rate results are ranked

at the bottom for each database (cf. Table II). Computa-

tion of the log-likelihood under the Student t copula based

feature representations is computationally more demanding

than computation of the log-likelihood under the Gaussian

copula based feature representations, without a substantial

improvement in retrieval rate. EMM / ML [1], the multiv.

Power Exp. / Geodesic [70] and the proposed Gaussian Copula

Weibull / ML approach show similar runtime for the computa-

tion of the similarity function but model storage requirements

differ drastically. While the multiv. Power Exp. / Geodesic

5Available at http://eigen.tuxfamily.org.
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Fig. 6. Runtime reduction due to random (uniform) subsampling to K = N/n

query feature vectors (best viewed in color).

approach is quite efficient in terms of storage requirements

due to the block-diagonal form of the scatter matrix, the

EMM / ML approach requires to store the mixture model com-

ponent weights, the location vectors as well as the diagonal

elements of the covariance matrices. Taking into account the

dimensionality of the feature vectors (i.e. 48-dimensional), this

leads to the highest storage requirements of our experiments.

The Gaussian Copula Weibull / ML approach is ranked in

the middle of the field with the same storage requirements as

the DTCWT Weibull / KL approach including the additional

18× 18 correlation matrix.

As noted in Section III, runtime of the MPE retrieval

methods based on the ML selection rule can be improved by

reducing the number of query feature vectors by a factor of 1/n

via uniform random sampling. In Fig. 6, we plot the runtime to

perform one image query to 1024 candidates (in milliseconds)

on a logarithmic scale as a function of the subsampling factor

n = 1, 2, 4, 8, 16. As expected, the runtime reduces almost

linearly with the number of query feature vectors K = N/n.

The associated reduction in retrieval rate is depicted in Fig.

5. We highlight that for n = 4, the accuracy of the top 16
retrieved images is reduced only by about 2 % points while

saving 75 % of the runtime. Retrieval rate of EMM / ML seems

to be least affected by subsampling. Note that subsampling

reduces the number of query feature vectors, not the storage

requirements of the feature representations stated in Table III.

Since the DWT GG / KL approach of Do & Vetterli [5] is

commonly-used as a reference in many texture retrieval studies

(possibly due to the availability of source code), we include

its performance numbers in Fig. 5 and all subsequent figures

as a base line as well.

ROC curve plots for the Gaussian Copula Weibull / ML

approach including its two major competitors are shown

in Fig. 7 for four texture image databases. Note that the

ordinate scaling is different for each database. EMM / ML,

the Gaussian Copula Weibull / ML and the multivar. Power

Exp. / Geodesic schemes score within 5 % points in terms

of retrieval rate, but with different rankings depending on the

database tested. On the larger STex database (476 images),

DWT GG / KL is outperformed by 20 % points over the entire
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TABLE III
FEATURE REPRESENTATION (BYTES) AND RUNTIME COMPARISON (IN MS)

Approach Feature Rep. Runtime (ms)

DWT GG / KL [5] 432 10.9
Multivar. Power Exp. / Geodesic [70] 432 391.4
Gaussian Copula GG / ML 504 1975.4
Student t Copula GG / ML 512 13800.7
DWT GGamma / KL [16] 648 11.2
DTCWT Weibull / KL [31] 864 18.2
Gaussian Copula Weibull / ML 1656 272.4
Gaussian Copula Gamma / ML 1656 1770.5
Student t Copula Weibull / ML 1664 6948.5
Student t Copula Gamma / ML 1664 13834.5
EMM / ML [2] 6208 384.2

operation range. Based on these results, we conclude that it

is imperative to perform extensive tests on several databases

to allow quantitative statements about retrieval performance.

Testing on just one database might substantially blur the

overall impression and lead to false conclusions.

V. DISCUSSION & CONCLUDING REMARKS

Summarizing the results of the experimental section, we

conclude that joint statistical modeling of DWT / DTCWT

coefficients improves retrieval performance over assuming

complete independency among coefficients. We compared

several copula based subband models with prior research based

on marginal subband models only. Further, we note that overly

complex margin models such as the Generalized Gamma

distribution do not necessarily improve retrieval rate, possibly

due to model parameter estimation issues. This is also true

in the context of copula based modeling, since the versatile

Student t copula did not show any significant improvements

compared to the Gaussian copula.

The results of our study lead to the conclusion that a texture

retrieval approach should not only be characterized by its

retrieval accuracy but also by its runtime behavior. In this light,

the proposed Gaussian copula with Weibull margins approach

stands out from the other copula based proposals which exhibit

comparable retrieval rates and similar storage requirements but

lack competitive runtime behavior.

The first major competitor from the collection of compara-

tive approaches, the EMM / ML approach, has higher storage

requirements for the feature representation and comparable

runtime and retrieval performance. However, when reducing

the number of query feature vectors, the retrieval rate is more

robust at higher subsampling factors (cf. Figs. 5 and 6, n > 4).
Taking the effort for model parameter estimation into account,

we highlight that the EMM / ML approach is based on an

EM algorithm (which requires a reasonable initialization),

while estimation of the Gaussian copula with Weibull margins

only requires to compute a sample correlation matrix and to

estimate the Weibull distribution parameters. The latter step

can be realized very efficiently by using moment estimates

for instance.

The second major competitor, the multiv. Power

Exp. / Geodesic approach, is more efficient in terms of

storage requirements and exhibits comparable runtime and

retrieval performance. However, each new query image

requires computation of the feature transformation (i.e. DWT)

and feature representation (i.e. estimation of the model

parameters). Both, ML and moment estimates are particularly

tedious to compute due to the analytically intractable form

of the multivariate probability density function. In this

context, we like to remind that the ML selection criterion

of the MPE framework only requires to compute the feature

transformation followed by inserting the query feature vectors

into the candidate models of the database. Colloquially

speaking, these two retrieval paradigms amount to moving

a large amount of data (with possible reduction by sub-

sampling) and evaluating the log-likelihood under a given

parametric model versus boiling down the data to a handy

feature representation and evaluation of a suitable similarity

measure, e.g. KL divergence or geodesic distance.

It is further worth noting why we omitted comparative tests

against some of the approaches mentioned in Section I, such

as the Refined Histogram technique [17] or a Hidden Markov

Tree based approach. First, the Refined Histogram technique

is particularly designed to enhance runtime behavior of the

GG based margin-only approach of Do & Vetterli [5]. This is

accomplished by wedding the modeling results of [19] with

the idea of measuring Kullback-Leibler divergences. Since the

retrieval rates presented in [17] are only slightly better than

the DWT GG / KL approach, we omitted a comparison in
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Fig. 7. ROC curve plots for the Gaussian copula with Weibull margins / ML approach vs. the two major competitors, EMM / ML [2] and multivar. Power
Exp. / Geodesic [70], as well as the reference approach DWT GG / ML [5] (best viewed in color).

our experimental study. Regarding the family of HMT based

retrieval strategies, we point out that we initially performed

experiments with the Contourlet HMT approach proposed

in [41]. This seems a reasonable choice, since the Contourlet

transform is closer to the DTCWT in terms of directional

selectivity compared to the DWT. However, it turned out

the retrieval improvements, at least on VisTex (small), were

minor (i.e. ∼ 2%) with respect to [5] and the computational

complexity increased to a level comparable with the Student t
copula with Gamma margins which performs ∼ 7% better

than the baseline (cf. Table II). The disadvantageous runtime

behavior can be attributed to the Monte-Carlo approximation

of the Kullback-Leibler divergence between two HMTs which

we used to measure image similarity (as recommended in

[41]). Weighing the considerable runtime demands against the

small improvements in retrieval rate, lead to the decision not

to include this approach in our experiments either.

As a final remark, we state that the margin-only approaches,

i.e. DTCWT Weibull / KL, DWT GGamma / KL and DWT

GG / KL, excel in efficient computation of the retrieval step

due to simple, closed form expressions of the KL divergence,

however retrieval rate is clearly inferior to any of the joint

statistical models.
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