
Two Efficient Label-Equivalence-Based Connected-Component 
Labeling Algorithms for 3-D Binary Images

Lifeng He,
Shaanxi University of Science and Technology, Shaanxi 710021, China, and also with Aichi 
Prefectural University, Nagakute, Aichi 480-1198, Japan

Yuyan Chao, and
Graduate School of Environmental Management, Nagoya Sangyo University, Aichi 488-8711, 
Japan, and also with the College of Mechanical and Electrical Engineering, Shaanxi University of 
Science and Technology, Shaanxi, China

Kenji Suzuki [Senior Member, IEEE]
Department of Radiology, Division of the Biological Sciences, The University of Chicago, 
Chicago, IL 60637 USA

Lifeng He: helifeng@ist.aichi-pu.ac.jp; Yuyan Chao: chao@nagoya-su.ac.jp; Kenji Suzuki: suzuki@uchicago.edu

Abstract

Whenever one wants to distinguish, recognize, and/or measure objects (connected components) in 

binary images, labeling is required. This paper presents two efficient label-equivalence-based 

connected-component labeling algorithms for 3-D binary images. One is voxel based and the other 

is run based. For the voxel-based one, we present an efficient method of deciding the order for 

checking voxels in the mask. For the run-based one, instead of assigning each foreground voxel, 

we assign each run a provisional label. Moreover, we use run data to label foreground voxels 

without scanning any background voxel in the second scan. Experimental results have 

demonstrated that our voxel-based algorithm is efficient for 3-D binary images with complicated 

connected components, that our run-based one is efficient for those with simple connected 

components, and that both are much more efficient than conventional 3-D labeling algorithms.

Index Terms

Connected component; label equivalence; labeling algorithm; run; 3-D binary image

I. Introduction

Labeling connected components in a binary image is one of the most fundamental operations 

in pattern analysis and recognition, computer vision, image understanding, and machine 

intelligence [7]. A connected component (an object) in a binary image is a set of foreground 

elements such that for any two elements u and υ in the set, there is at least a connected path 

© 2011 IEEE

NIH Public Access
Author Manuscript
IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

Published in final edited form as:
IEEE Trans Image Process. 2011 August ; 20(8): 2122–2134. doi:10.1109/TIP.2011.2114352.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



p1, …, pn between u and υ such that p1 = u, pn = υ, and for all 1 ≤ i ≤ n − 1, pi and pi+1 are 

neighboring foreground elements belonging to the set.

This notion can be extended to nonbinary images by changing the property of elements that 

consist of the set, for example, a gray level, a color, a group of gray levels, or a group of 

colors. Connected-component labeling is defined as assigning to all elements of each 

connected component a unique label, i.e., the value of each element of a connected 

component is the same and is unique to that of any other connected component.

Many algorithms have been proposed for labeling 2-D images. For ordinary computer 

architectures and pixel-based representation images, there are two classes of labeling 

algorithms.

1. Label-equivalence-based algorithms: These algorithms process an image in the 

raster-scan direction more than once. In the first scan, a provisional label is 

assigned to each foreground pixel. All provisional labels assigned to the same 

connected component are called equivalent labels, and the relationships between 

equivalent labels are called label equivalences. Any label equivalence is recorded 

as soon as it is found. After the first scan and resolving of all label equivalences, 

which means finding a representative label for each group of equivalent labels, 

each foreground pixel is relabeled by the representative label for the provisional 

label assigned to the pixel in the first scan. There are multiscan algorithms [8], a 

four-scan algorithm [20], and two-scan algorithms [9], [10], [12], [16], [17] in this 

class.

2. Searching-and-propagation-based algorithms: These algorithms first search an 

unlabeled foreground pixel, assign a new label to it, and then propagate the label to 

all foreground pixels connected to the pixel in later processing [2], [4].

As image acquisition and manipulation technologies have advanced, 3-D images have been 

widely used in various image-processing and analysis fields [15], [28], such as medical 

image analysis and computer-aided diagnosis of medical images [5], [6], [18], [21], [22], 

[27], as well as computer graphics. Labeling of connected components in 3-D binary images 

is demanded in many cases, for example, for calculating the volume of an organ, and the 

volume or shape of a lesion, such as a cancer, polyp, or nodule.

Labeling of connected components in 3-D binary images has been studied from the 1980s. 

Lumia et al. [12] and Shirai [19] proposed label-equivalence-based two-scan labeling 

algorithms by using an equivalent-label table for recording label equivalences and that for 

resolving label equivalences, respectively. Thurfjell et al. [23] proposed a label-equivalence-

based multiscan algorithm, where label equivalences are recorded and resolved through a 

translation table. On the other hand, Udupa and Ajjanagadde [25] and Borgefors et al. [3] 

proposed searching-and-propagation-based algorithms for 3-D images. Recently, Hu et al. 

[11] proposed two iterative-recursion-based labeling algorithms. The experimental results 

demonstrated in the paper show that the two algorithms were more efficient than other 

conventional algorithms. The authors claimed that their algorithms were more efficient than 

label-equivalence-based algorithms.

He et al. Page 2

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



This paper presents two label-equivalence-based labeling algorithms for 3-D binary images. 

One is voxel based, extended from the two-scan algorithm proposed in [10] for labeling 2-D 

binary images, where an efficient method for deciding the order for checking voxels in the 

mask is proposed. The other is run based, extended from the run-based two-scan algorithm 

proposed in [9] for labeling 2-D binary images, and improved by assigning provisional 

labels to runs (rather than foreground voxels) and also using run data for only labeling 

(processing) foreground voxels in the second scan (thus, no background voxel is processed 

in the second scan). The experimental results demonstrated that our voxel-based algorithm is 

efficient for images with complicated connected components, and the run-based one is 

efficient for images with simple connected components.

For convenience, we assume that the foreground pixels (voxels) and background pixels 

(voxels) in a given image are represented by 1 and 0, respectively. As in most labeling 

algorithms, we assume that all pixels (voxels) on the edges of an image are background 

pixels (voxels).

II. Label-Equivalence-Based Two-Scan Labeling Algorithms for 2-D Binary 

Images

For an N × M-size 2-D binary image, we use p(x, y) to denote the pixel at (x, y) in the image, 

where 1 ≤ x ≤ N and 1 ≤ y ≤ M. The label assigned to p(x, y) is denoted as label(x, y). 

Moreover, we only consider 8-connectivity for connected components.

Label-equivalence-based two-scan labeling algorithms complete labeling in two scans by 

processing pixels one by one in the raster-scan direction. They need to perform three tasks: 

1) assigning to each foreground pixel a provisional label and recording label equivalences, 

where a data structure is used to record each label equivalence whenever found; 2) resolving 

label equivalences, which means to find a unique representative label for every group of 

equivalent labels; and 3) relabeling foreground pixels, i.e., replace the provisional label 

assigned to each pixel by its representative label. These algorithms can be divided into two 

classes: pixel- and run-based algorithms.

The first task in pixel-based algorithms is completed by use of the mask shown in Fig. 1 in 

the first scan, which consists of the four processed neighbor pixels of the current pixel. For 

each current foreground pixel p(x, y), if there is no foreground pixel in the mask, this means 

that p(x, y) does not connect with any processed foreground pixels, i.e., at this point, p(x, y) 

belongs to a connected component consisting of itself only, p(x, y) is assigned a new 

provisional label, and no label equivalence needs to be recorded. Otherwise, i.e., if there are 

some foreground pixels in the mask, it is obvious that all foreground pixels in the mask 

belong to the same connected component; thus, all provisional labels assigned to the 

foreground pixels in the mask are equivalent labels. The algorithms proposed in [12], [16], 

and [17] check all pixels in the mask, assign the minimum label in the mask to p(x, y), and 

record all different labels in the mask as equivalent labels. On the other hand, the algorithm 

presented in [10] checks pixels in the mask in the optimal order derived by case analysis, 

assigns the label first found in the mask to p(x, y), and records different provisional labels in 

the mask as equivalent labels only if they become equivalent due to the existence of p(x, y).

He et al. Page 3

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



There are mainly three methods for the recording of label equivalences and resolving label 

equivalences. One is using a 2-D equivalent-label table EqLabel(u, υ) [12], [16], [17], which 

is initialized to be 0 for all u and υ, to record label equivalences. If provisional labels a and b 

are found to be equivalent, then EqLabel(a, b) is set to 1. After the first scan, all groups of 

equivalent labels can be found by analysis of the equivalent-label table. The main problem 

of this method is that the size of the equivalent table is very large, proportional to the square 

of the number of provisional labels in an image; thus, the square of the size of the image,1 

and thus the complexity of the analysis of the equivalent label, is also proportional to the 

square of the size of the image.

Another method is using binary trees to record label equivalences and using a union-find 

algorithm [14], [24] to resolve label equivalences. Label equivalences can be resolved 

partially during the first scan, but a final processing must be made to complete the work 

after the first scan.

The third method is using equivalent-label sets and a representative-label table to record and 

resolve label equivalences [10]. In this method, at any point in the first scan, all equivalent 

labels belonging to a connected component found so far are combined in an equivalent-label 

set, where the smallest label is referred to as the representative label. The corresponding 

relationship of a provisional label and its representative label is recorded in a representative 

table. For convenience, we use S(t) for the set of provisional labels with t as the 

representative label, and r_label[a] to represent the representative label of provisional label 

a. In this way, for any provisional label l in provisional label set S(t), we have r_label[l] = t. 

On the other hand, if r_label[u] = υ, then we know that provisional label u belongs to 

equivalent-label set S(υ).

As we have known, when the current foreground pixel is assigned a new provisional label, 

say, NewLabel, it means that the current foreground pixel does not connect with any 

foreground pixel that has been scanned before. In other words, up to now, all we know is 

that the current foreground pixel belongs to a connected component consisting of itself only. 

Thus, the equivalent-label set corresponding to the connected component is established as 

S(NewLabel) = {NewLabel}, and the representative label of NewLabel is set to itself, i.e., 

r_label[NewLabel] ← NewLabel. During the first scan, whenever two different provisional 

labels, a and b, are found to be equivalent, the label equivalence could be resolved as 

follows: suppose that u and υ belong to equivalent-label sets S(m) and S(n), respectively, 

where r_label[u] = m and r_label[υ] = n. Then, all provisional labels in S(m) and S(n) are 

known to be equivalent. Therefore, S(m) and S(n) should be considered to be combined 

together. If m and n are equal, this means that u and υ belong to the same equivalent-label 

set; thus, nothing has to be done. On the other hand, if m < n, then S(n) is combined into 

S(m), i.e., for each label w in S(n), we set its representative label to m by r_label[w] ← m; 

otherwise, i.e., m > n, S(m) is combined into S(n), i.e., for each label w in S(m), we set its 

representative label to n by r_label[w] ← n. The pseudocode of this processing, denoted as 

resolve(u,υ), can be summarized as follows:

1For an N × M binary image, the largest number of provisional labels is N × M/4.

He et al. Page 4

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



m ← r_label[u];

n ← r_label[υ];

if (m < n)

 S(m) ← S(m) ∪ S(n);

 for each label w ∈ S(n)

  r_label[w] ← m;

 end of for

else if (m > n)

 S(n) ← S(m) ∪ S(n);

 for each label w ∈ S(m)

  r_label[w] ← n;

 end of for

end of if

With this method 1) we do not need to calculate the minimum label in the mask, and the 

average time for checking the pixels in the mask is 2.75, which is less than four times that 

are required by other pixel- and label-equivalence-based two-scan algorithms (because all of 

these algorithms assign the minimum label in the mask to the current foreground pixel, and 

they need to check all 4 pixels in the mask) [10], and 2) any label equivalence will be 

resolved as soon as it is found in the first scan; therefore, when the first scan is finished, all 

label equivalences are resolved, i.e., all label equivalences are combined into equivalent-

label sets with unique representative labels.

After label equivalences are resolved, the task (3) can be completed by scanning of the 

image just once again. For example, in the algorithm proposed in [10], this task can be 

finished as follows:

for (x = 2; x < N; x ← x + 1)

 for (y = 2; y < M; y ← y + 1)

  label(x, y) ← r_label[label(x, y)];

 end of for

end of for

According to the experimental results shown in [10], the third method is superior to the 

other two methods for various types of images. For convenience, we denote the algorithm 

proposed in [10] as the fast connected-component labeling (FCL) algorithm.

On the other hand, the algorithm proposed in [9] is a run-based labeling algorithm, where a 

run means a block of contiguous foreground pixels in a row. The run data can be obtained 

easily in the first scan. Unlike pixel-based algorithms, which resolve label equivalences 

between foreground pixels, this algorithm resolves label equivalences between runs. For 

convenience, we use r(s, e) to denote a run starting from p(s, t) and ending at p(e, t). Thus, 

for the current run r(s, e) being processed in the raster scan, during the processed runs, a run 

r(u, υ) that lies in the row immediately above the current row such that it contains one of p[s 

− N − l], p[s − N], …, p[e − N + 1] (see Fig.2), i.e., u ≤ e − N + 1 and υ ≥ s − N − 1, is 8-

neighbored with the current run. The method for recording and resolving the label 

equivalences used in this algorithm is exactly the same as in the FCL algorithm.

He et al. Page 5

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



In the first scan, from i = 0, this algorithm scans pixels one by one in the given image in the 

raster-scan direction. When a new run r(s, e) is found, the run data are recorded. At the same 

time, the range eight-connected with the current run in the row immediately above is 

detected. If there is no run eight-neighbored with the current run, the current run belongs to 

a new connected component not being found so far. All pixels in the current run are assigned 

a new label l, which is initialized to be 1, the provisional label set corresponding to the 

connected component, i.e., the current run, is established as S(l) = {l}, and the representative 

label of l is set to itself, i.e., r[l] ← l. Then, l increases by 1 for consecutive processing.

On the other hand, if there are runs, e.g., r1, …, rn, eight-neighbored to r(s, e) in the range, 

then r1, …, rn, and r(s, e) belong to the same connected component. Suppose that l1, …, ln 

are the provisional labels assigned to r1, …, rn, respectively, and S(u1), …, S(un) are the 

equivalent-label sets containing l1, …, ln, respectively; then all provisional labels in S(u1), 

…, S(un) are equivalent labels. Therefore, S(u1), …, S(un) are merged into S(u), where u is 

the minimum label among u1, …, and un. Moreover, all foreground pixels in the current run 

r(s, e) are assigned the provisional label l1. Moreover, after processing of r(s, e), all data of 

runs that end before or at p[e − N] are removed because such runs cannot be connected with 

any coming run and therefore are useless for further connectivity detection.

Because this algorithm resolves connectivity between runs, for an image, the number of 

provisional labels assigned by this algorithm might be much smaller than that assigned by 

other conventional label-equivalence-based labeling algorithms. This will reduce the 

computation cost required for resolving label equivalences. Therefore, it is very efficient for 

images with a large average length of runs.

III. Proposed Two Labeling Algorithms for 3-D Binary Images

For a U × V × W-size 3-D binary image, we use υ(x, y, z) to denote the voxel at (x, y, z) in 

the image, where 1 ≤ x ≤ U, 1 ≤ y ≤ V, and 1 ≤ z ≤ W. The label assigned to υ(x, y, z) is 

denoted as label(x, y, z).

For 3-D binary images, there are 6-connectivity (i.e., face connectivity), 18-connectivity, 

(i.e., edge and face connectivity), and 26-connectivity (vertex, edge, and face connectivity). 

Because 6-connectivity and 18-connectivity are subcases of 26-connectivity, we will 

consider only 26-connectivity in this paper.

A. Proposed Voxel- and Label-Equivalence-Based Labeling Algorithms

Similarly to the case for labeling 2-D binary images, when using a label-equivalence-based 

labeling algorithm for labeling 3-D binary images, we need to do three tasks: 1) assign a 

provisional label to each foreground voxel and find label equivalences in the first scan; 2) 

record and resolve label equivalences; and 3) relabel foreground voxels.

The tasks of recording and resolving label equivalences, as well as relabeling are not 

essentially different for any dimension of an image, but the task for assigning a provisional 

label to each foreground voxel and finding label equivalences in the first scan depends on 

the dimension of images. As introduced in Section II, the method of using equivalent label 

He et al. Page 6

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



sets and a representative label table for recording and resolving label equivalences proposed 

in [9] and [10] is the most efficient approach to the best of our knowledge; therefore, we 

employ this method in our algorithm. Thus, assigning a provisional label to each foreground 

voxel, and finding and resolving label equivalences, will be done simultaneously in the first 

scan. For convenience, we call this task the assigning-finding--resolving task-.

Similar to label-equivalence-based labeling algorithms for 2-D binary images, when 

processing a foreground voxel to complete the assigning--finding--resolving task, we need 

to check the processed voxels neighboring the foreground voxel. The mask for this purpose 

consists of the 13 processed voxels neighboring the current foreground voxel, as shown in 

Fig. 3.

For the current foreground voxel, because all foreground voxels in the mask and the 

foreground voxel belong to the same connected component, and because all provisional 

labels assigned to voxels of a connected component will be replaced by the same 

representative label after resolving equivalent provisional labels, we can assign any 

provisional label in the mask (if any) to the current foreground voxel. If we suppose that the 

probability of a voxel being a foreground voxel is the same for all voxels in the mask, then 

the order for checking the voxels in the mask has no influence on the efficiency of assigning 

provisional labels. On the other hand, the efficiency of finding label equivalences in the 

mask depends substantially on the order for checking the voxels in the mask.

Let us consider the configuration in the mask shown in Fig. 4 for the current foreground 

voxel υ(x, y, z), where υ2, υ9, and υ13 are foreground voxels and υ1, υ3 − υ8, and υ10 − υ12 

are background voxels. For convenience, we use li to denote the provisional label assigned 

to υi, and li = 0 if υi is a background voxel.

If we check the voxels in the mask in the order υ1 → υ2 → ⋯ → υ13, denoted as Order 1, 

we will first check υ1. Because υ1 is a background voxel, we go to check υ2. Because υ2 is a 

foreground voxel, we assign the provisional label assigned to υ2, i.e., l2, to υ(x, y, z). Then, 

we need to find all foreground voxels in the mask that are not connected with each other 

without the existence of υ(x, y, z), i.e., we should check those voxels in the mask that are not 

26 neighbors of υ2, i.e., υ4, υ7, υ10, υ11, υ12, and υ13 [see Fig. 4(b)]. Because υ4, υ7, υ10, 

υ11, and υ12 are background voxels, we need to do nothing. When we check voxel υ13, we 

find that it is a foreground voxel; therefore, we should consider the label equivalence 

between l2 and l13. The condition that the label equivalence between l2 and l13 should be 

recorded is that voxel υ9 is a background voxel. Because υ9 is a foreground voxel, nothing 

further needs to be done.

On the other hand, if we check the voxels in the mask from υ9, denoted as Order 2, we find 

that υ9 is a foreground voxel; then, we assign provisional label l9 to υ(x, y, z). Because υ9 

connects with all voxels in the mask as well as υ(x, y, z), all label equivalences in the mask 

must have been resolved. Therefore, nothing further needs to be done.

As discussed earlier, by Order 1, we should check nine voxels in the mask, but by Order 2, 

we need to check only one voxel. Therefore, for processing a foreground voxel, the order for 

checking voxels in the mask is a key factor for efficiency.

He et al. Page 7

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



For 2-D binary images, He et al.[10] proposed an efficient checking order for the assigning--

finding task by using the Karnaugh map to analyze the 24 = 16 configurations in the mask. 

However, for 3-D binary images, because there are 213 = 8192 configurations in the mask, it 

is impossible to use the same method for finding the optimal processing order. On the other 

hand, there are 13! = 6227020800 possible orders for checking voxels in the mask. 

Therefore, it is also impossible to test all orders for finding the optimal one.

Because at any point in the first scan, all label equivalences between the provisional labels 

assigned to the processed foreground voxels have been recorded, when processing the 

current foreground voxel, for finding the new label equivalences in the mask caused by the 

occurrence of the current foreground voxel, we need to consider only the label equivalences 

between different connected parts in the mask. In other words, we need not consider the 

label equivalences between the provisional labels assigned to each connected part in the 

mask. For this reason, under the condition that the probability of each voxel in the mask 

being a foreground voxel is the same, checking the voxels in the mask in the order of the 

numbers of their neighbor voxels will be efficient because the greater the number of the 

neighbor voxels of a voxel in the mask, the less the number of the voxels that need to be 

checked.

The number of the neighbor voxels of each voxel in the mask is shown in Table I.

According to the earlier discussion and Table I, the order of checking voxels in the mask 

should be υ9 → υ3, υ6 → υ1, υ8 → υ10 → υ2, υ5, υ12 → υ4, υ7 → υ11 → υ13.

By the aforementioned order, for processing the current foreground voxel υ, we first check 

voxel υ9. If υ9 is a foreground voxel, we assign l9 to υ(x, y, z). Because υ9 connects with all 

other voxels in the mask, no new label equivalence needs to be recorded. The assigning--

finding task can be terminated here.

Thus, when υ9 is a foreground voxel, the procedure for processing the current foreground 

voxel, denoted as process (υ9), is as follows:

On the other hand, if υ9 is a background voxel, we check voxel υ3. If υ3 is a foreground 

voxel, we assign provisional label l3 to υ(x, y, z), and then check whether there is any label 

equivalence between the provisional labels assigned to the connected part consisting of υ3 as 

well as its neighbor foreground voxels and other foreground voxels in the mask caused by 

the existence of the current foreground voxel. In other words, we do not need to check the 

neighbor voxels of υ3, i.e., υ1, υ2, υ4, υ5, υ6, υ7, υ8, and υ10, but we need to check voxels 

υ11, υ12, and υ13.

There is also an order problem with checking υ11, υ12, and υ13 (a group of voxels). For 

exactly the same reason given earlier, we decide the order based on the number of the 

neighbor voxels of each voxel in the group. Because the number of the neighbor voxels of 

both υ11 and υ13 is 1 and that of υ12 is two, we check υ12 first, and then υ11 and υ13. As 

He et al. Page 8

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



shown in Fig. 5(b), the condition that υ12 becomes connected with υ3 only due to the 

existence of the current foreground voxel is the situation, where υ8 and υ10 are background 

voxels. Thus, if both υ8 and υ10 are background voxels, we should record the label 

equivalence between l3 and l12. If υ12 is a background voxel, we need to check whether 

there is a label equivalence between l3 and l11, as well as between l3 and l13, respectively. If 

υ11 is a background voxel, nothing needs to be done. Otherwise, i.e., if υ11 is a foreground 

voxel, as shown in Fig. 5(c), the condition for recording a label equivalence between l3 and 

l11 is that υ8 is a background voxel. In a similar way, if υ13 is a background voxel, nothing 

needs to be done. Otherwise, i.e., if l13 is a foreground voxel, as shown in Fig. 5(d), the 

condition for recording label equivalence between l3 and l13 is that υ10 is a background 

voxel.

Based on the aforementioned discussion, when υ9 is a background voxel and υ3 is a 

foreground voxel, the processing procedure, denoted as process(υ3), can be summarized as 

follows:

l(x, y, z) ← l3;

if (l12 > 0 & l8 = 0 & l10 = 0)

 resolve(l3, l12);

else

 if (l11 > 0 & l8 = 0)

  resolve(l3, l11);

 end of if

 if (l13 > 0 & l10 = 0)

  resolve(l3, l13);

 end of if

end of if

where li is 0 if υi is a background voxel.

Notice that, by process(υ3), all label equivalences in the mask will be found and resolved; 

therefore, after process(υ3), the assigning--finding--resolving task can be terminated.

On the other hand, if υ3 is also a background voxel, we check voxel υ6 and make an analysis 

similar to that described above. For each υi being checked, if it is a foreground voxel, the 

processing procedure process(υi) can be derived in a similar way.

Lastly, if all voxels in the checking order are background voxels, this means that the current 

foreground voxel does not connect with any foreground voxel processed up to now, i.e., the 

current foreground voxel belongs to a new connected component consisting of itself only. 

The current foreground voxel is assigned a new provisional label, say, NewLabel, which is 

initialized by 0 at the beginning of the first scan. The equivalent-label set for the new 

connected component is established by S(NewLabel) ← {NewLabel}, and the representative 

label of NewLabel is set to itself, i.e., r_label[NewLabel] = NewLabel. Then, NewLabel 

increases by 1 for consecutive processing. The process, denoted to be process(0), can be 

summarized as follows:

He et al. Page 9

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



When the first scan is finished, all label equivalences have been resolved, and all equivalent 

labels will have a unique representative label. Thus, similar to the label-equivalence-based 

labeling algorithms for 2-D binary images, by setting r_label[0] = 0 in advance, replacing 

each label with its representative label in our algorithm, denoted as label-replacing, can be 

completed in the second scan as follows:

r_label[0] ← 0;

for (u = 2; u < U; u ← u + 1)

 for (υ = 2; υ < V; υ ← υ + 1)

  for (w = 2; w < W; w ← w + 1)

   l(u, υ, w) ← r_label[l(u, υ, w)];

  end of for

 end of for

 end of for

In the premise that the probability of each voxel in the mask to be a foreground voxel is the 

same, the proposed order for checking voxels in the mask is optimal.

For any case such that υ9 in the mask shown in Fig. 3 is a foreground voxel, checking υ9 

first as in our method makes us only need to check one voxel (υ9 itself), while checking any 

other voxel first will make us check at least two voxels.

If υ9 is a background voxel, our method will then check υ6. We show that when υ6 and some 

other voxels in the mask are foreground voxels simultaneously, checking υ6 first will be 

more efficient than checking any of those voxels.

For example, we consider the case, where υ6 and υ8 are foreground voxels. Our method 

checks υ6 first, then goes to check υ12. If υ12 is a foreground voxel, it terminates. Here, the 

number of times for checking voxels is 2. Otherwise, i.e., υ12 is a background voxel, it will 

go to check υ11 and υ13. The number of times for checking voxels is 4. Thus, the average 

number of times for checking voxels is (2 + 4)/2 = 3.

On the other hand, if we check υ8 first, because υ8 is a neighbor voxel of υ1, υ2, υ3, υ5, υ6, 

υ11, and υ12, we need not check any of them. The remains of voxels for checking are υ4, υ7, 

υ10, and υ13. It is not difficult to find that among them; checking υ10 first will be most 

efficient. If υ10 is a foreground voxel, we terminate there. The number of times for checking 

voxels is 2. Otherwise, we should check υ13 and υ7. The number of times for checking 

voxels is 4. Moreover, if υ7 is a background voxel, we should further check υ4. In this case, 

the number of times for checking voxels is 5. Thus, the average number of times for 

checking voxels is at least (2 + (4 + 5)/2)/2 = 3.25.

He et al. Page 10

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Therefore, in the case, where υ6 and υ8 are foreground voxels, checking υ6 first will be more 

efficient than checking υ8 first.

Other cases can be shown in a similar way. Thus, we showed that our proposed order for 

checking voxels in the mask is optimal.

B. Proposed Run- and Label-Equivalence-Based Labeling Algorithms

We extend and improve the run- and label-equivalence-based two-scan labeling algorithms 

for 2-D binary images proposed in [9] to label 3-D binary images.

For convenience, we use r(s, e, y, z) to denote a run starting from υ(s, y, z) and ending at υ(e, 

y, z). Moreover, we use row(u, υ) to denote the row with y-coordinate u and z-coordinate υ. 

For the current run r(s, e, y, z), its processed 26-connected range is the area from υ(s − 1, y − 

1, z) to υ(e + 1, y − 1, z), υ(s − 1, y − 1, z − 1) to υ(e + 1, y − 1, z − 1), υ(s − 1, y, z − 1) to 

υ(e + 1, y, z − l), and υ(s − 1, y + 1, z − 1) to υ(e + 1, y + 1, z − 1), as shown in Fig. 6. A 

processed run r(u, υ, m, n) is a 26-connected run of the current run if it contains at least a 

foreground voxel in the processed 26-connected range of the current run.

For the current run, if there is no processed 26-connected run, we assign a new provisional 

label to it. Otherwise, i.e., if there are some 26-connected runs, r1, r2, …, rn. Let l1, l2, …, ln 

be the provisional labels corresponding to r1, r2, …, rn, respectively. Then, r1, r2, …, rn and 

the current run belong to the same connected component; thus, l1, l2, …, ln are equivalent 

labels. We assign l1 to the current run, and we then resolve the label equivalences between l1 

and l2, …, ln, respectively.

Similar to the proposed voxel-based algorithm introduced earlier, recording and resolving 

label equivalences can be done in exactly the same way as in the algorithms proposed in [9] 

and [10].

Because all foreground voxels of a run belong to the same connected component, by 

labeling, they should be assigned the same label finally. Therefore, instead of assigning a 

provisional label to each voxel, as in the previous algorithm proposed in [9], we can assign a 

provisional label to each run. After all label equivalences between runs are resolved, all runs 

belonging to a connected component will have the same representative label. Then, by use 

of the recorded run data, we can assign to each foreground voxel in a run the representative 

label corresponding directly to the run. Thus, we improved the previous algorithm proposed 

in [9] in two ways: 1) the previous algorithm assigns a provisional label to each foreground 

pixel, while we assign a provisional label to each run. For images with large average length 

of runs, our algorithm will be very efficient. 2) In the second scan, the previous algorithm 

scans all pixels for relabeling foreground pixels, whereas our algorithm scans only 

foreground voxels (i.e., without scanning any background voxel). Thus, for images with low 

densities, our algorithm will be very efficient.

IV. Complexity of Our Algorithms

To complete labeling, our voxel-based algorithm performs the following procedures:

He et al. Page 11

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



1. assigning provisional labels to foreground voxels during the first scan;

2. creating equivalent-label sets and setting representative labels for all new 

provisional labels;

3. resolving label equivalences;

4. replacing the provisional labels of foreground voxels with their representative 

labels during the second scan.

For a U × V × W-voxel image, both the maximum number of provisional labels and the 

maximum number of connected components have the order of O(U × V × W). Accordingly, 

the order of the maximum number of label equivalences among provisional labels is also 

O(U × V × W). By our voxel-based algorithm, procedures 1 and 4 are proportional to the 

number of foreground voxels, and procedure 2 is proportional to the number of provisional 

labels, either has the order O(U × V × W).

For procedure 3, when resolving a label equivalence between two provisional labels, we 

need to combine an equivalent-label set, say, S(u1) = {u1,…, um}, into another equivalent-

label set, say, S(υ1) = {υ1,…, υn}, where S(i) denotes the equivalent-label set with i as its 

representative label and u1 > υ1. To realize this, for each x ∈ {u1,…, um}, we need to set its 

representative label to υ1. The order of the operation is O (m).

For a Q-voxel connected component with R provisional labels, we consider the following 

two special cases: 1) when the maximum time of the operation happens; and 2) when the 

connected component has the maximum number of provisional labels, i.e., when R is a 

maximum.

In case 1, the maximum time of the operation should be 1 +2+3+⋯+(R−1), and the order is 

O(R2). A typical connected component with five provisional labels for this case is shown in 

Fig. 10(a). In such cases, the number of voxels of a connected component has the order 

O(R2). Thus, O(Q) = O(R2).

In case 2, the maximum number of provisional labels for a Q-voxel connected component 

has the order O(Q). A typical nine-voxel connected component for this case is shown in Fig. 

7(b). In such cases, the time of the operation should be 1 + 1 + ⋯ + 1 = (Q − l)/2, the order 

of which is O(Q).

In both cases 1 and 2, the order of the operation for a Q-voxel connected component is 

O(Q). Therefore, the order of the operation for labeling a U × V × W image should be O(U × 

V × W).

Because the order of every procedure for labeling a U × V × W image is O(U × V × W), the 

order of our voxel-based algorithm is O(U × V × W).

Our run-based algorithm also consists of four procedures:

1. finding runs, recording run data, and assigning provisional labels to runs during the 

first scan;

He et al. Page 12

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



2. creating equivalent-label sets and setting representative labels for all new 

provisional labels;

3. resolving label equivalences;

4. assigning each foreground voxel the representative label of the run containing the 

voxel.

For a U × V × W-voxel image, the number of runs will be smaller than or equal to the 

number of foreground voxels, and the number of provisional labels assigned by our run-

based algorithm will be smaller than or equal to that assigned by our voxel-based algorithm; 

thus, the number of label equivalences in the case when we use our run-based algorithm will 

be smaller than or equal to that when we use our voxel-based algorithm.

Accordingly, each of the procedures 1--4 has the order O(U × V × W). Thus, the order of our 

run-based algorithm should also be O(U × V × W).

V. Experimental Results

Because recording and resolving label equivalences in our proposed two algorithms can be 

done in exactly the same way for those in the algorithm proposed in [9] and that proposed in 

[10], our voxel-based algorithm, denoted as Ours-1 algorithm, can easily be implemented in 

a similar way, as is done for the two algorithms mentioned. Because the maximum 

provisional labels for a U × V × W-size 3-D binary image is U × V × W/27, the data structure 

for equivalent-label sets and the representative label table in our algorithm can be realized 

by use of three U × V × W/27-size arrays, i.e., r_label[ ], next_label[ ], and last_label[ ], 

where next_label[i] indicates the next label of i in the equivalent-label set S(r_label[i]), and 

last_label[j] means the last label in the equivalent-label set S(j). Moreover, next_label[l] = 

−1 means that there is no next label after label l, i.e., l is the last label in the corresponding 

equivalent-label set.

Thus, when a new label, NewLabel, is assigned to a foreground voxel, a new equivalent-

label set S(NewLabel) = {NewLabel} is established, and the corresponding data in the data 

structure are set as follows:

When an equivalent-label set S(i) is combined into another equivalent-label set S(j), where i 

< j, the corresponding data in the data structure, changes as follows:

m ← i;

while(m ≠ −1)

 r_label[m] ← j;

 m ← next_label[m];

end of while

next_label[last_label[j]] ← i;

He et al. Page 13

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



last_label[j] ← last_label[i];

For implementing our proposed run-based algorithm, denoted as Ours-2 algorithm, except 

for the three U × V × W/27-size arrays for r_label[ ], next_label[ ], and last_label[ ], 

respectively, we also need three U × V × W/2-size arrays for recording the starting points, 

end points, provisional labels of runs,2 and a U × V/2-size array for recording the number of 

runs.

Hu et al. proposed two iterative-recursion-based 3-D labeling methods [11]: one uses 

iterative recursion to label all foreground voxels directly, and the other uses iterative 

recursion to label the boundary foreground voxels and a one-pass process to label 

nonboundary foreground voxels, which is an extension of the contour-tracing 2-D labeling 

algorithm proposed in [4].

Although, for labeling connected components, recursion takes less time, it consumes more 

memory. Memory overflow often takes place when a recursion-based algorithm is used for 

labeling a 3-D binary image. Iteration is introduced to avoid memory overflow for large 

images. Iteration and recursion are combined as follows: Marking an unlabeled foreground 

voxel found by the raster scan as selected by changing the voxel’s label from 1 to 2; for each 

selected foreground voxel υ, assigning to υ a label l (which is initialized to be 3); then 

iteration is executed for assigning label l to the foreground voxels connected with υ within a 

local cuboid with υ in the center; each foreground voxel on the border of the local cuboid is 

made as selected, and subsequent iterations on the selected foreground voxels are 

recursively called. After all selected foreground voxels are processed, l increases by 1 for 

consecutive processing, and then the raster scan continues to find the next unlabeled 

foreground voxel (if any), which is processed in the same way, and so on.

According to the experimental results shown in [11], the larger the size of a local cuboid, the 

lesser the memory consumed, but more execution time is needed. Moreover, with a local 

cuboid of the same size, the second method runs faster and uses less memory than does the 

first one. Therefore, we will only consider the second method in this section. For 

convenience, instead of using a local cuboid, we will use a local cube. We denote the 

algorithm with a size i × i × i of the local cube as CTLi. Thus, the CTL0 is the fastest one. 

Because the experimental results also showed that the two algorithms were much more 

efficient than other conventional 3-D labeling algorithms, we will only compare our 

algorithms with the CTL0 in this section.

All three algorithms were implemented with the C language on a PC-based workstation 

(Intel Pentium Duo 930 3.0 GHz + 3.0 GHz CPUs, 2-GB Memory, Mandriva Linux OS), 

and compiled by the GNU C complier (version 4.2.3) with the option −O3. All execution 

times shown in this section were obtained by use of one core.

We first compared the algorithms with uniform noise images. Five sets of 41 uniform noise 

images with five different sizes (128 × 128 × 128, 327 × 327 × 327, 408 × 408 × 408, 465 × 

465 × 465, and 512 × 512 × 512 voxels) were generated by thresholding of the images 

2The maximum number of runs in an U×V×W-size image is U×V×W/2.

He et al. Page 14

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



containing uniform random noise ranging from 0 to 1000, with 41 different threshold values 

from 0 to 1000 in steps of 25. Because connected components in such noise images have 

complicated geometrical shapes and complex connectivity, severe evaluations of labeling 

algorithms can be performed with these images.

We used all noise images for testing the linearity of the computation of the algorithms. For 

each size of the noise images, the maximum and average execution times are shown in Fig. 

8(a) and (b), respectively. As we can see from Fig. 8, all three algorithms have the ideal 

linear characteristic against image sizes.

512 × 512 × 512-sized noise images were used for testing the execution time versus the 

density of images. The results are shown in Fig. 9.

We also used 512×512×512 noise images to compare voxel-based algorithm with two 

natural extensions of the algorithm proposed in [10], denoted as Ours-1* algorithm and 

Ours-1** algorithm, respectively, and our run-based algorithm with the natural extension of 

the one proposed in [9], denoted as Ours-2* algorithm.

The Ours-1* algorithm checks voxels in the mask with a randomly selected order υ7 → υ3 

→ υ11 → υ9 → υ2 → υ6 → υ13 → υ10 → υ4 → υ1 → υ8 → υ5 → υ12, the Ours-1** 

algorithm does with another randomly selected order υ12 → υ1 → υ8 → υ5 → υ13 → υ7 → 

υ11 → υ2 → υ9 → υ10 → υ4 → υ6.

The results are shown in Fig. 10.

From Fig. 10, we can find that, for all noise images, both of our proposed algorithms are 

more efficient than the algorithms naturally extended from the previous algorithms. On an 

average, for all images, the Ours-1 algorithm is 24.2% faster than the Ours-1* algorithm and 

37.3% faster than the Ours-1** algorithm, and the Ours-2 algorithm is 14.0% faster than the 

Ours-2* algorithm. Especially, for the last ten high-density images, the Ours-1 algorithm is 

39.8% faster than the Ours-1* algorithm and 91.0% faster than the Ours-1** algorithm, and 

for the first five and the last five images, Ours-2 algorithm is 37.3% faster than the Ours-2* 

algorithm.

The reason that the Ours-1 algorithm is much better than the Ours-1* algorithm and the 

Ours-1** algorithm for high-density images is that, for a high-density image, the possibility 

that the voxel υ9 is a foreground voxel will be large. In this case, the Ours-1 algorithm only 

need to check the voxel υ9, but the Ours-1* algorithm might need to check υ7, υ11, υ2, and 

υ13, and the Ours-1** algorithm might need to check υ12, υ1, υ8, υ5, υ13, υ7 etc, where the 

Ours-1** algorithm might check more voxels than does the Ours-1* algorithm.

On the other hand, for high-density images, the average length of runs in the image will be 

large, i.e., the number of runs will be much smaller than the number of foreground voxels. 

Because the Ours-2 algorithm assigns to each run a provisional label, whereas the Ours-2* 

algorithm assigns to each foreground voxel a provisional label, the number of operations for 

assigning provisional labels by the Ours-2 algorithm will be much smaller than that by the 

Ours-2* algorithm. For low-density images, the number of foreground voxels will be small. 

He et al. Page 15

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Because, in the second scan, the Ours-2 algorithm only scans foreground voxels, whereas 

the Ours-2* algorithm scans all voxels, the number of operations for scanning voxels in the 

second scan by the Ours-2 algorithm will be much smaller than that by the Ours-2* 

algorithm. Therefore, the Ours-2 algorithm is much better than the Ours-2* algorithm for 

high-density and low-density images.

Second, we compared the algorithms on overlapped-cube image set. This set is composed of 

images with a random distribution of 50 square cubes of foreground voxels, where overlap 

of cubes is allowed, with cube size ranging from 5 × 5 × 5 to 100 × 100 × 100 in steps of 5, 

10 000 different images for each cube size. The densities of these images range from 0.46% 

to 80.01%.

The overlapped-cube images were used for testing the execution time versus the cube size. 

The results are shown in Fig. 11, where the running time for each cube size is the average of 

the running times on the 10 000 different images corresponding to that size. Notice that 

there are two vertical axes in Fig. 11: the left one is for the Ours-1 algorithm and the Ours-2 

algorithm, and the right one for the CTL0 algorithm.

Moreover, similarly, as in [11], a 3-D magnetic resonance (MR) image was downloaded 

from the Montreal Neurological Institute website (http://www.bic.mni.mcgill.ca/brainweb) 

with a noise level of 5%, and an intensity inhomogeneity level of 20%. The size of the 

image was 181 × 217 × 181, and the gray-level range from 0 to 255. Twenty-four binary 

images were derived by thresholding the image with a threshold changing from 10 to 120 in 

steps of 10. A sagittal slice of the image and its binary image with a threshold of 45 is 

shown in Fig. 12(a) and (b), respectively. The testing results are shown in Table II.

Lastly, a 256 × 256 × 552 size 3-D binary image of abdominal CT was used for testing. An 

axial slice of the 3-D binary image is shown in Fig. 13. The running times of the Ours-1 

algorithm, the Ours-2 algorithm, and the Hu-algorithm were 0.344, 0.571, and 2.893 s, 

respectively.

VI. Comparison of Ours-1 Algorithm, Ours-2 Algorithm, and CTL0 Algorithm

The original CTL algorithm proposed in [4] for the labeling of 2-D binary images is a one-

scan algorithm. However, the CTL0 algorithm for 3-D binary images is a two-scan 

algorithm.

1. In the first scan, the CTL0 algorithm differentiates contour voxels from other 

foreground voxels (i.e., inner foreground voxels) by setting each contour voxel to 

2.

2. In the second scan, for each unlabeled foreground voxel υ(x, y, z), if υ(x, y, z) = 2 

and label(x − 1, y, z) = 0, i.e., υ(x, y, z) is an outside contour voxel, it assigns υ(x, y, 

z) a new label, i.e., label(x, y, z) ← NewLabel, where NewLabel is initialized to be 

3, and then propagates the label to all outside contour voxels that are connected to 

υ(x, y, z) by use of recursive operation; else, if υ(x, y, z) = 2 and label(x − 1, y, z) > 

2, i.e., υ(x, y, z) is an inside contour voxel, it assigns to υ(x, y, z) the label of label(x 

− 1, y, z), i.e., label(x, y, z) ← label(x − 1, y, z), and then propagates the label to all 

He et al. Page 16

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.bic.mni.mcgill.ca/brainweb


inside contour voxels that are connected to υ(x, y, z) by using the recursive 

operation; else, if υ(x, y, z) = 1, i.e., υ(x, y, z) is an inner foreground voxel, it 

merely assigns to υ(x, y, z) the label of label(x − 1, y, z), i.e., label(x, y, z) ← 

label(x − 1, y, z).

Because all labeling algorithms do nothing for background voxels, the performance of an 

algorithm will depend on the methods for processing foreground voxels.

For Ours-1 algorithm, for a foreground voxel with all of its neighbor voxels being 

background voxels, it checks 13 voxels in the mask. For a foreground voxel with all of its 

neighbour voxels being foreground voxels, it checks only one voxel (υ9 in the mask shown 

in Fig. 3). In both cases, it does not need to resolve any label equivalence. For the other 

cases, the number of voxels checked by Ours-1 algorithm will vary between 2 and 12, and 

some label equivalences will need to be resolve, depending on the configuration of its 

neighbor foreground voxels. Therefore, the efficiency of the Ours-1 algorithm will depend 

on the complexity of connected components in images.

For Ours-2 algorithm, for any run, it needs to check the four row in the corresponding 26-

connected range. Because it accesses background voxels only once, it will be efficient for 

low-density images. Moreover, because it assigns provisional labels to runs, it will be also 

efficient for images with large average lengths of runs (in such cases, the number of runs 

will be much smaller than that of foreground voxels). On the other hand, because Ours-2 

algorithm needs to record the run data, for images with small average lengths of runs (in 

such cases, the number of runs is near to that of foreground voxels), it will take much time 

than Ours-1 algorithm for labeling.

On the other hand, for any foreground voxel, the CTL0 algorithm needs to check all 26 

neighbor voxels. Therefore, the total number of times for it to check neighbor voxels will 

increase with the density of an image.

The aforementioned analyses are consistent with the experimental results given in Section 

V. From Fig. 9, we can find that the execution times of the CTL0 algorithm are almost 

proportional to the density of an image, whereas the execution times of the Ours-1 algorithm 

depend on the complexity of the connected components in an image.3 On the other hand, the 

Ours-2 algorithm is very efficient for low-density images (where the number of background 

voxels is large) and high-density images (where the average length of runs is large). 

However, for images with complex connected components, it takes much more time for 

labeling than the Ours-1 algorithm.

From Fig. 11, for all overlapped-cube images, we can find that both the Ours-1 and the 

Ours-2 algorithms are much more efficient than the CTL0 algorithm. Moreover, the Ours-2 

algorithm is more efficient than the Ours-1 algorithm, where the average length of runs is 

larger than or equal to 5, especially when the length of the sides of cubes becomes large.

3For noise images, with the increase of the density of an image from 0 to 0.5, the complexity of connected components also increases, 
and when the density of an image exceeds 0.5, the complexity of connected components decreases with the increase in density, i.e., 
the maximum complexity of connected components occurs in images with densities around 0.5.

He et al. Page 17

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



For the 3-D magnetic resonance MR head images, from Table II, the execution time of the 

CTL0 algorithm is positively correlated with the density of an image, whereas the execution 

times of the Ours-1 and Ours-2 algorithms vary only little for different densities. Moreover, 

because, in such images, when the average length of the runs is small, the density is small, 

and when the density is large, the average length of the runs is large; the Ours-2 algorithm is 

more efficient than the Ours-1 algorithm.

Another main problem of the CTL0 algorithm is the overflow of stack [4]. Although the 

CTL0 algorithm can reduce the requirement on stack memory by increasing the local cube 

size, this will decrease its efficiency. In other words, there is a tradeoff between execution 

time and memory. On the other hand, the memory space necessary for the Ours-1 and 

Ours-2 algorithms is U × V × W/9 and 29 × U × V × W/18, respectively.

VII. Concluding Remarks

In this paper, we proposed two label-equivalence-based labeling algorithms for 3-D binary 

images. One is a voxel-based algorithm, which checks the neighbors of the current voxel in 

optical order and is efficient for images with complicated connected components. The other 

is a run-based algorithm, which assigns provisional labels to runs rather than voxels, as in 

conventional label-equivalence-based labeling algorithms; it processes background voxels 

only once, and it is efficient for images with low density or a large average length of runs. 

Both of the proposed algorithms are linearity to image sizes, and much more efficient than 

those naturally extended from the related algorithms for 2-D binary images. Experimental 

results demonstrated that the proposed two algorithms were much more efficient than 

conventional labeling algorithms for 3-D binary images.

Even with our proposed algorithms, it takes seconds for labeling 512 × 512 × 512 3D binary 

images. Therefore, the hardware implementations [26] and/or parallel implementations [1], 

[13] of our algorithms should be considered. For example, we can divide a large 3-D binary 

image into some small subimages, and process all subimages in parallel; then, we combine 

the results for all subimages together by resolving the label equivalences on their interfaces.

Acknowledgments

The authors would like to thank the anonymous referees for their valuable comments that improved this paper 
greatly. They are grateful to Prof. S. Acton, the Editor, for his kind cooperation and help, and also to E. F. Lanzl for 
proofreading this paper.

This work was supported by the Kayamori Foundation of Informational Science Advancement, Japan, by the Hibi 
Research Grant, Japan, by the Aritficial Intelligence Research Promotion Foundation, Japan, and by the National 
Institutes of Health, Bethesda, MD, under Grant R01CA120549, Grant S10 RR021039, and Grant P30 CA14599. 
The associate editor coordinating the review of this manuscript and approving it for publication was Dr. S. T. 
Acton.

References

1. Alnuweiri HM, Prasanna VK. Parallel architectures and algorithms for image component labeling. 
IEEE Trans Pattern Anal Mach Intell. Oct; 1992 14(10):1014–1034.

2. Ballard, DH. Computer Vision. Englewood Cliff, NJ: Prentice-Hall; 1982. 

He et al. Page 18

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



3. Borgefors, G.; Nystrom, I.; Baja, GSD. Connected components in 3D neighbourhoods. Proc 10th 
Scand Conf Image Anal; 1997. p. 567-572.

4. Chang F, Chen CJ, Lu CJ. A linear-time component-labeling algorithm using contour tracing 
technique. Comput Vis Image Understand. 2004; 93:206–220.

5. Crum WR, Camara O, Hill DLG. Generalized overlap measures for evaluation and validation in 
medical image analysis. IEEE Trans Med Imag. Nov; 2006 25(11):1451–1461.

6. Finnis KW, Starreveld YP, Parrent AG, Sadikot AF, Peters TM. Three-dimensional database of 
subcortical electrophysiology for image-guided stereotactic functional neurosurgery. IEEE Trans 
Med Imag. Jan; 2003 22(1):93–104.

7. Gonzalez, RC.; Woods, RE. Digital Image Processing. Reading MA: Addison-Wesley; 1992. 

8. Haralick, RM. Real Time/Parallel Computing Image Analysis. New York: Plenum; 1981. Some 
neighborhood operations; p. 11-35.

9. He L, Chao Y, Suzuki K. A run-based two-scan labeling algorithm. IEEE Trans Image Process. 
May; 2008 17(5):749–756. [PubMed: 18390379] 

10. He L, Chao Y, Suzuki K, Wu K. Fast connected-component labeling. Pattern Recognit. 2009; 
42(9):1977–1987.

11. Hu Q, Qian G, Nowinski WL. Fast connected-component labeling in three-dimensional binary 
images based on iterative recursion. Comput Vis Image Understand. 2005; 99:414–434.

12. Lumia R, Shapiro L, Zungia O. A new connected components algorithm for virtual memory 
computers. Comput Vis Graph Image Process. 1983; 22(2):287–300.

13. Manohar M, Ramapriyan HK. Connected component labeling of binary images on a mesh 
connected massively parallel processor. Comput Vis Graph Image Process. 1989; 45(2):133–149.

14. Mehlhorn, K. Data Structures and Algorithm 1: Sorting and Searching. Berlin, Germany: Springer-
Verlag; 1984. 

15. Queirolo C, Silva L, Bellon O, Segundo M. 3D face recognition using simulated annealing and the 
surface interpenetration measure. IEEE Trans Pattern Anal Mach Intell. Feb; 2010 32(2):206–219. 
[PubMed: 20075453] 

16. Rosenfeld A, Pfalts JL. Sequential operations in digital picture processing. J ACM. Oct; 1966 
13(4):471–494.

17. Rosenfeld A. Connectivity in digital pictures. J ACM. Jan; 1970 17(1):146–160.

18. Rosenhahn B, Brox T, Weickert J. Three-dimensional shape knowledge for joint image 
segmentation and pose tracking. Int J Comput Vis. 2007; 73(3):243–262.

19. Shirai, Y. Three-Dimensional Computer Vision. New York: Springer-Verlag; 1987. Labeling 
connected regions; p. 86-89.

20. Suzuki K, Horiba I, Sugie N. Linear-time connected-component labeling based on sequential local 
operations. Comput Vis Image Understand. 2003; 89:1–23.

21. Suzuki K, Yoshida H, Nappi J, Dachman AH. Massive-training artificial neural network 
(MTANN) for reduction of false positives in computer-aided detection of polyps: Suppression of 
rectal tubes. Med Phys. 2006; 33:3814–3824. [PubMed: 17089846] 

22. Suzuki K, Yoshida H, Nappi J, Armato SG III, Dachman AH. Mixture of expert 3D massive-
training ANNs for reduction of multiple types of false positives in CAD for detection of polyps in 
CT colonography. Med Phys. 2008; 35:694–703. [PubMed: 18383691] 

23. Thurfjell L, Bengtsson E, Nordin B. A new three-dimensional connected components labeling 
algorithm with simultaneous object feature extraction capability. J CVGIP: Graph Models Image 
Process. 54(4):357–364.

24. Tarjan RE. Efficiency of a good but not linear set union algorithm. J ACM. 1975; 22(2):215–225.

25. Udupa J, Ajjanagadde VG. Boundary and object labelling in three-dimensional images. Comput 
Vis Graph Image Process. 1990; 51(3):355–369.

26. Yang, XD. Design of fast connected components hardware. Proc IEEE Conf Comput Vis Pattern 
Recognit; Ann Arbor, MI. Jun. 1988; p. 937-944.

27. Yoshida H, Nappi J. Three-dimensional computer-aided diagnosis scheme for detection of colonic 
polyps. IEEE Trans Med Imag. Dec; 2001 20(12):1261–1274.

He et al. Page 19

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



28. Young, TY. Handbook of Pattern Recognition and Image Processing. Vol. 2. Orlando, FL: 
Academic; 1994. 

Biographies

Lifeng He received the B.E. degree from Northwest Institute of Light Industry, Shaanxi, 

China, in 1982, the second B.E. degree from Xian Jiaotong University, Shaanxi, in 1986, 

and the M.S. and the Ph.D. degrees in artificial intelligence and computer science from 

Nagoya Institute of Technology, Aichi, Japan, in 1994 and 1997, respectively.

He is currently an Associate Professor at Aichi Prefectural University, Aichi, and a Guest 

Professor at Shaanxi University of Science and Technology, Shaanxi. From September 2006 

to May 2007, he was a Research Associate at The University of Chicago. His research 

interests include intelligent image processing, computer vision, medical image processing, 

automated reasoning, and artificial intelligence.

Yuyan Chao received the B.E. degree from North-west Institute of Light Industry, Shaanxi, 

China, in 1984, and the M.S. and the Ph.D. degrees from Nagoya University, Nagoya, Japan, 

in 1997 and 2000, respectively.

From 2000 to 2002, she was a special foreign Researcher of Japan Society for the Promotion 

of Science at Nagoya Institute of Technology, Aichi, Japan. She is currently a Professor at 

Nagoya Sangyo University, Aichi, and a Guest Professor at Shaanxi University of Science 

and Technology, Shaanxi. Her research interests include image processing, graphic 

understanding, computer-aided design, and automated reasoning.

He et al. Page 20

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Kenji Suzuki received the B.S. (magna cum laude) and M.S. (summa cum laude) degrees in 

electrical and electronic engineering from Meijo University, Nagoya, Japan, in 1991 and 

1993, respectively, and the Ph.D. degree (by published work) in information engineering 

from Nagoya University, Nagoya, Japan, in 2001.

From 1993 to 1997, he was a Researcher with the Research and Development Center, 

Hitachi Medical Corporation. From 1997 to 2001, he was a faculty member with the Faculty 

of Information Science and Technology, Aichi Prefectural University, Aichi, Japan. In 2001, 

he was a Research Associate with the Kurt Rossmann Laboratories for Radiologic Image 

Research, Department of Radiology, Division of the Biological Sciences, The University of 

Chicago, where he became a Research Associate (Instructor) in 2003, and Research 

Associate (Assistant Professor) in 2004, and since 2006, has been an Assistant Professor in 

the Department of Radiology, the Committee of Medical Physics, and the Cancer Research 

Center. He is the author or coauthor of more than 100 scientific papers (including 45 peer-

reviewed journal papers) in the field of medical image analysis, machine learning, computer 

vision, and pattern recognition.

Dr. Suzuki has been a referee for more than 15 journals, including IEEE Transactions on 

Medical Imaging, IEEE Transactions on Biomedical Engineering, IEEE Transactions on 

Information Technology in Biomedicine, IEEE Transaction on Image Processing, IEEE 

Transaction on Signal Processing, IEEE Transaction on Systems, Man and Cybernetics, and 

Image and Vision Computing. He has received awards for his research, including the Paul C. 

Hodges Award from The University of Chicago, in 2002, a Certificate of Merit Award from 

the Radiological Society of North America (RSNA), in 2003, a Research Trainee Prize from 

the RSNA, in 2004, a Young Investigator Award from the Cancer Research Foundation, in 

2005, Honorable Mention Poster Award at the SPIE International Symposium on Medical 

Imaging, in 2006, and a Certificate of Merit Award from RSNA, in 2006. He was elected as 

a Senior Member of the IEEE in 2004. He is a member of the Institute of Electronics, 

Information and Communication Engineers, Institute of Electrical Engineers of Japan, 

Information Processing Society of Japan, Japanese Neural Network Society, and Japanese 

Circulation Society.

He et al. Page 21

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1. 
Mask for labeling 2-D binary images with 8-connectivity.

He et al. Page 22

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2. 
Range for checking the processed eight-connected runs of the current run r(s, e).

He et al. Page 23

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 3. 
Mask with 26-connectivity for 3-D binary images.

He et al. Page 24

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 4. 
Configuration in the mask for a foreground voxel.

He et al. Page 25

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 5. 
Status where υ3 is a foreground voxel.

He et al. Page 26

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 6. 
Processed 26-connected range of the current run r(s, e, y, z).

He et al. Page 27

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 7. 
Two typical connected components.

He et al. Page 28

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 8. 
Execution time on different-sized noise images: (a) Maximum execution time. (b) Average 

execution time.

He et al. Page 29

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 9. 
Execution time versus the density of images.

He et al. Page 30

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 10. 
Execution time on 512 × 512 × 512 noise images.

He et al. Page 31

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 11. 
Execution time versus the cube size.

He et al. Page 32

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 12. 
Sagittal slice of a 3-D MR image (a) and its corresponding binary image (b).

He et al. Page 33

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 13. 
Axial slice of a 3-D binary image of abdominal CT.

He et al. Page 34

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

He et al. Page 35

T
A

B
L

E
 I

N
um

be
r 

of
 N

ei
gh

bo
ri

ng
 V

ox
el

s 
to

 a
 V

ox
el

 in
 th

e 
M

as
k

υ
1

υ
2

υ
3

υ
4

υ
5

υ
6

υ
7

υ
8

υ
9

υ
10

υ
11

υ
12

υ
13

8
6

9
5

6
9

5
8

12
7

4
6

3

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

He et al. Page 36

T
A

B
L

E
 II

E
xe

cu
tio

n 
T

im
es

 (
in

 S
ec

on
ds

) 
of

 D
if

fe
re

nt
 M

et
ho

ds
 o

n 
3-

D
 M

R
 I

m
ag

es

T
D

A
L

#C
C

H
u

O
ur

s-
1

O
ur

s-
2

12
0

2.
41

4
3.

6
23

43
0.

36
3

0.
18

8
0.

10
2

11
0

3.
46

3
4.

4
14

30
0.

43
8

0.
19

7
0.

10
8

10
0

4.
58

6
5.

1
13

21
0.

51
7

0.
21

5
0.

10
9

90
5.

90
0

6.
1

10
58

0.
61

3
0.

21
3

0.
11

0

80
7.

22
3

7.
4

73
7

0.
69

8
0.

21
5

0.
11

8

70
8.

33
3

9.
0

53
6

0.
76

2
0.

21
7

0.
11

0

60
9.

23
2

10
.6

28
6

0.
81

2
0.

21
7

0.
11

0

50
10

.1
52

12
.0

20
1

0.
86

7
0.

21
7

0.
10

9

40
11

.2
56

13
.9

27
0

0.
93

5
0.

20
8

0.
10

9

30
12

.6
00

15
.4

36
72

1.
00

4
0.

20
2

0.
11

0

20
15

.2
72

11
.7

94
05

1.
21

9
0.

20
7

0.
11

6

10
20

.6
52

15
.8

4
1.

54
3

0.
22

1
0.

11
6

T
: t

hr
es

ho
ld

; D
: d

en
si

ty
; A

L
: a

ve
ra

ge
 le

ng
th

 o
f 

ru
ns

; #
C

C
: n

um
be

r 
of

 c
on

ne
ct

ed
 c

om
po

ne
nt

s.

IEEE Trans Image Process. Author manuscript; available in PMC 2015 January 05.


