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Abstract

In this paper, we address the issues of analyzing and classifying JPEG 2000 code-streams. An

original representation, called integral volume, is first proposed to compute local image features

progressively from the compressed code-stream, on any spatial image area, regardless of the code-

blocks borders. Then, a JPEG 2000 classifier is presented, that uses integral volumes to learn an

ensemble of randomized trees. Several classification tasks are performed on various JPEG 2000

image databases and results are in the same range as the ones obtained in the literature with non-

compressed versions of these databases. Finally, a cascade of such classifiers is considered, in order

to specifically address the image retrieval issue, i.e. bi-class problems characterized by a highly

skewed distribution. An efficient way to learn and optimize such cascade is proposed. We show

that staying in a JPEG 2000 framework, initially seen as a constraint to avoid heavy decoding

operations, is actually an advantage as it can benefit from the multi-resolution and multi-layer

paradigms inherently present in this compression standard. In particular, unlike other existing

cascaded retrieval systems, the features used along our cascade are increasingly discriminant and

lead therefore to a better complexity vs performance trade-off.
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I. Introduction

Today’s imaging applications have to deal with an ever-growing amount of digital data.

Management and exploitation of this information requires (1) an efficient and flexible representation

of the images, and (2) application-specific techniques exploiting this flexibility to guide and assist

the user in his search in the data space. Such techniques could be useful in any application that

involves (semi-)automatic image categorization or retrieval tasks, such as audiovisual archives

retrieval, computer-assisted medical diagnosis, remote sensing on satellite images, etc.

In this paper, we focus on a compressed scalable image representation, namely JPEG 2000, and

investigate how discriminant features can be extracted from such embedded code-stream to perform

image categorization and retrieval tasks. Being able to search for relevant images directly within

compressed bit-streams (or through a partial decompression) has an obvious advantage in terms

of computational load. Moreover, we show in this paper that JPEG 2000 is actually well suited for

image retrieval tasks. Indeed, its various scalability levels allow for true and efficient coarse-to-fine

searches among the bit-streams. Furthermore, the JPEG 2000 wavelet transformation has also a

strong discriminant power and is suited to analyze image characteristics like edges and textures.

Among the broad range of imaging applications involving classification or retrieval tasks, we

will focus on those where areas of interest are characterized by an ensemble of different textures.

Texture has to be understood here in the broad sense of a “set of local neighbourhood properties

of the gray levels of an image region” [1]. “Grays levels” is even too restrictive in our case as color

information (at least in the low frequencies) will also be exploited in the retrieval process. While

this choice might appear to exceedingly narrow the set of potential applications, we will show that

many objects can actually be characterized by an ensemble of textures. This is even truer if the

relative spatial positions of the textures composing an object are taken into account, as it will

be the case in the proposed system. Focusing on texture-based retrieval techniques, we will not

consider shape matching algorithms, like the ones presented (in a JPEG 2000 framework) in [2].

However, these algorithms could efficiently complement the proposed retrieval system and are, as

such, an interesting future research direction.

II. Overview

Figure 1 presents an overview of the proposed system. Its goal is to determine if an image, stored

in the JPEG 2000 format, is similar to a set of images of interest. Practically, for each image that

has to be analyzed, discriminant features are extracted from its JPEG 2000 code-stream. Several
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successive features sets are extracted, each one with an extraction cost slightly higher than the

previous one, but also with a potentially higher discriminant power. A first classifier uses the first

features set, and feeds a second classifier with the processed images that are likely to be positive.

The second classifier uses the two first features sets and passes the image to the third classifier if

needed and so on. If an image is very different from the image(s) of interest, it will be identified as

such very early in the procedure and will be quickly discarded. On the contrary, a relevant image

will pass the successive classifiers and reach the end of the cascade. By doing so, the amount of

data that has to be decoded from the JPEG 2000 code-stream is directly related to the relevance

of the image. We show in this paper that JPEG 2000 is particularly well suited for this kind of

coarse-to-fine classification.

J2K code-stream

Progressive decoding (as long as not rejected by a classifier)

Feature granularitycoarse fine

Features set 1 Features set 2 Features set n

Classifier 1
p1 ⩼ θ1

Classifier 2
p2 ⩼ θ2

Classifier n
pn ⩼ θn

. . .

. . .true

false

true true

false false

If this point is reached => negative sample

If this point 
is reached
=> positive 

sample

Contribution 1: 
integral volume 

feature extraction  

Contribution 2:
randomized tree
classifier design

Contribution 3:
cascade of classifiers

with optimized performance
vs complexity trade-off

Fig. 1. System overview. Starting from a JPEG 2000 image, discriminant features are progressively extracted from

it and feed a cascade of classifiers. As long as the image is not considered as negative by the cascade, each classifier

i will compute a probability pi that the image is positive and compare it to a threshold θi (i = 1, .., N).
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A. Contributions

Three main contributions are presented in this paper. We now introduce each of these ideas

briefly and describe them in details in subsequent sections.

The first contribution is a method to extract, process and store a hierarchy of features

from a JPEG 2000 code-stream. Both header-based [3] and wavelet-based [2] features are

considered. To store all the extracted JPEG 2000 features values, we extend the concept of integral

image first introduced in [4] and more recently made famous by Viola and Jones in [5]. We propose

to represent a JPEG 2000 code-stream with a chain of integral volumes. This representation draws

benefit from the JPEG 2000 scalability levels and allows for a very fast features computation on

any image area.

The second contribution is the combination of integral volumes mentioned above with an

ensemble of random decision trees [6] to build an efficient and robust JPEG 2000 image

classifier. Based on the work by Marée et al. [7], we take advantage of the integral volume

structure to generate random samples in the images. We show that chosen features lead to satisfying

classification results on several different image databases.

The last contribution is the tight integration of the JPEG 2000 scalability levels for designing a

cascade of JPEG 2000 image classifiers. Cascade of classifiers are well suited for image retrieval

tasks and object detection. When one has to dig into a compressed image database, the challenge is

to retrieve relevant areas while minimizing the amount of decompressed data. In this work, starting

from the coarse classification that can easily be obtained from header-based features, we use the

resolution and bit-depth scalability of JPEG 2000 to progressively extract more information and

refine the classification as we go deeper into the cascade. For a given image area, the amount of

data that will need to be entropy-decoded is therefore directly related to the relevance of this area

in the retrieval process. This idea is directly inspired from the work of Geman and Fleuret [8] and

from the one of Viola and Jones [5]. Concurrently to [9], we proposed in [10] to improve the Viola

and Jones cascade by taking into account the extraction cost of a feature. This leads us to an

interesting “complexity1 vs performances” trade-off when designing a cascade of classifiers.

1This complexity being computed as the total amount of data that has to be decompressed in the retrieval process.

January 27, 2011 DRAFT



5

B. Paper organization

The remainder of the paper is organized as follows. Section III first gives some JPEG 2000 key

elements and then details which features are used and how they are extracted from JPEG 2000

code-streams. In particular, the scalability of the extraction process is underlined. We also introduce

the concept of integral volume to store these features. In Section IV, integral volumes are combined

with random decision trees to set up a JPEG 2000 classifier. Experiments on several widely used

and publicly available datasets are presented, showing the discriminant power of our JPEG 2000

classifier. Then, in Section V, several of these classifiers are cascaded to address image retrieval

problems in a computationally efficient way. Experiments on two well known datasets (namely

the PONCE textures dataset [11] and the UKBENCH dataset [12]) are detailed to illustrate the

effectiveness of the cascade approach. Finally, Section VI summarizes the paper and gives future

research directions.

III. Scalable feature extraction

Numerous papers have been written on the use of JPEG 2000 code-streams for classification or

retrieval tasks. Each of them proposes a set of features that can be more or less easily extracted

from the code-stream and that is used in a classification process, most often based on some kind

of distance metric. As we shall see, the proposed approach uses features with similar discriminant

power than the ones proposed in the related literature. However, a significant contribution of our

work compared to the existing literature is that we take advantage of the JPEG 2000 scalability

to trade-off between the classification accuracy and the amount of data that has to be extracted

from the code-stream.

A. JPEG 2000 key elements

We now review the elements of the JPEG 2000 compression standard that are relevant to

understand the rest of the paper. Interested readers may refer to [13] for more details.

In short, JPEG 2000 is based on successive dyadic discrete wavelet decompositions of the image

components, whose subbands are partitioned into code-blocks that are coded independently. Each

code-block is entropy-coded into an embedded bitstream, i.e. into a stream that provides a

representation that is (close-to-)optimal in the rate-distortion sense when truncated to any desired

length. This implies in particular that wavelet coefficients are coded bit-plane by bit-plane, from

the Most Significant Bit (MSB) to the Least Significant Bit (LSB).
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Any JPEG 2000 code-stream is organized as a succession of packets, each packet containing data

referring to a certain resolution, a certain image component, a certain spatial zone, and a certain

range of bits inside the coefficients bit-depth (this last element is referred to as the SNR scalability).

It is therefore possible to decode a JPEG 2000 code-stream in many different ways, without having

to process all the packets. To obtain a low resolution version of the image for example, one has

simply to extract the related low resolution packets.

B. Feature types

Two kind of features can basically be extracted from a JPEG 2000 code-stream: the ones from

the packet headers that do not involve any partial decompression, and the ones based on the

wavelet coefficients that require an entropy-decoding step.

1) Header-based features: as mentioned above, a JPEG 2000 code-stream is made of a succession

of packets. Each packet has a header that contains relevant information about its content. In

particular, for a given code-block present in a packet, we can extract B, the number of bytes

used to entropically encode the image data contained in the code-block, and M , the maximum

number of significant bit-planes1 in the code-block. The former reflects the efficiency with which

the entropy coder did compress the wavelet coefficients from this code-block. As such, it can be

seen as a measure of the source entropy and gives therefore a good indication on the informational

content of the code-block [3]. The latter corresponds to the log2 of the maximum modulus of the

wavelet coefficients present in the code-block. In [14], Mallat showed that this maximum modulus

well describes the kind of singularity present in the image. It has been used for example in [15].

In terms of extraction complexity, these features are of great interest as they do not imply any

(partial) entropic decompression of the JPEG 2000 code-stream. In the following, we will consider

only the number of entropy-coded bytes B, as experiments have shown little improvement when

using both kind of features.

2) Wavelet-based features: research on wavelet-based retrieval techniques has been ongoing for

many years now. The spatial-frequency representation provided by the wavelet transform gives

important information on the kind of local singularities present in the image. In particular, textures

end edges are well discriminated based on the statistical properties of the wavelet coefficients

1A significant bit-plane is a bit-plane which either contains at least one non-zero bit or is below another significant

bit-plane
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distribution. [16] proposes to model this distribution with a Generalized Gaussian Density (GGD)

and hence, to characterize an image with the vector aggregating the 2 parameters of a GGD in each

subband. [17] follows the same approach using Gaussian Mixture Models instead of GGD. Like

in [16] and [17], we propose to characterize the probability distribution of the wavelet coefficients

by a set of parameters. Starting from a JPEG 2000 code-stream, the extraction process of these

parameters obviously implies an entropy-decoding step, as we have to get back to the wavelet

coefficients. Unlike [16] and [17], a very simple distribution approximation is used: it does not

require any computational overhead in addition to the decoding step and, more importantly, it can

be progressively refined during the decoding step. Let’s consider a code-block with M significant

bit-planes. As a bit-plane from this code-block is being decoded, new significant coefficients are

counted. For a given bit-plane k (k = 1, ...,M), the number Sk of new significant coefficients

corresponds to the amount of wavelet coefficients x in the code-block such that

2k−1 ≤ |x| < 2k.

As illustrated in Fig. 2, these Sk (k = 1, ...,M) values might be considered as the bin values of

a non-uniform histogram. As such, they correspond therefore to an approximation of the wavelet

coefficients distribution for the related code-block. In the following, we propose to use these bin

values corresponding to the decoded bit-planes as independent wavelet features.
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Fig. 2. Example of progressive building of the wavelet coefficients histogram, during JPEG 2000 decompression. Bin

k corresponds to the number of wavelet coefficients x such that 2k−1 ≤ |x| < 2k. S0 is the number of coefficients

equal to zero. (a) Before decoding the first (most significant) bit-plane, no information is available on the coefficients

distribution. (b) When decoding the five most significant bit-planes, the number of new significant coefficients is

counted for each bit-plane and gives the first five bin values. (c) Complete histogram (all bit-planes decoded).

The header and wavelet-based features described above will be used to feed the proposed image
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classifier. As the application may require to compare (portions of) images that do not necessarily

have the same amount of pixels, the values B and Sk are normalized by the total number N of

coefficients present in the sample, to define b and sk, respectively.

C. Scalable extraction

The feature extraction process can take advantage of the scalability inherently present in

JPEG 2000, namely the spatial, resolution and SNR scalability levels. It is indeed possible to

make a trade-off between the desired characterization accuracy and the feature extraction cost

it implies. Let’s consider a given spatial area in an image. The spatial scalability of JPEG 2000

allows to select the packets related to this area without having to process the remaining code-

stream. Then, a coarse characterization of the area content can be obtained by extracting the

header-based features, from the lowest to the highest resolution. If a more accurate description

of the image content is required, we can complement the header information with wavelet-based

features, at the cost of an higher computation load (as entropy-decoding operations are required).

The wavelet coefficient distribution is approximated, from the lowest to the highest resolution.

Moreover, for each resolution, this approximation is progressively refined as more bit-planes are

decoded (using the SNR scalability).

To illustrate the benefit that can be drawn from such scalable extraction, a texture classification

process is presented. Let’s consider 4 different classes of textures. Each class contains 40 items,

each one being a 640x480 grayscale image. Samples from each class are presented in Fig. 3a. All

images are JPEG 2000-compressed with 4 resolution levels, resolution 1 corresponding to the lowest

resolution (the LL-subband). There are three successive steps in this example of classification

process, each using a bit more information than the previous one.

In the first step of the classification process, only very cheap features are used, namely header-

based features. As we see on Fig 3b, this information is already sufficient to discriminate the“water”

class from the three other ones. For the second step, in addition to the header information, we

now assume that the 2 most significant bit-planes (7th and 8th) of resolution 1 and 2 have been

decoded. As shown in Fig. 3c, this new information allows to clearly separate the “glass2” samples

from the two remaining classes, although it was not possible to do so with header-based features

only. In the last step, the third most significant bit-plane (the 6th) from all resolutions is supposed

to be decoded. Fig 3d shows how the two last classes can be separated.
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Fig. 3. A scalable classification process. (a) Texture samples randomly selected from 4 different classes, one in each

row: water, glass1, glass2 and corduroy. Source : Ponce texture database [11]. (b) The first step uses only header

information and is able to discriminate the “water” class from the three other ones. (bi = normalized number of

entropy-coded bytes for resolution i). (c) In the second step, the two most significant bit-planes from resolution 1

and 2 have been decoded and allow to separate textures from class “glass2”. (sj,i = fraction of new sign. coeff. in bp

j, for res. i). (d) The third and final step allows to more clearly discriminate the two remaining classes, “glass1” and

“corduroy”.
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As we see, this scalable extraction perfectly fits with a classification process made of several

cascaded classifiers. This will be detailed in Section V and used in an image retrieval context.

D. Integral volume representation

Let’s summarize what we do have up to this point. Considering a code-block c of a JPEG 2000

compressed image, the relevant information that can be extracted about it is (i) bc, the normalized

number of bytes used to entropically encode code-block c, and (ii) sk,c, the fraction of code-block

coefficients that become significant in the bit-plane k (k = 1, ..,Mc). Each of these extracted values

gives a global information on the code-block. If the area of interest is made of several code-blocks,

these values are very simply aggregated.

A drawback of the features described above is that we have to stick to code-blocks borders when

selecting an area of interest. All code-blocks in a JPEG 2000 code-stream have indeed the same

size, which is typically around 32x32 or 64x64 pixels. At low resolution levels, such amount of pixels

can cover a very large spatial area, which can reveal itself to be very constraining if we want to

extract relevant information from a smaller spatial zone.

To solve this problem and extract features very rapidly, on any spatial area, independently from

code-blocks borders, we propose an intermediate representation of the image, called integral volume.

This representation is a direct extension of the integral image introduced in [4] and more recently

made famous in [5]. Starting from an image P where P (i, j) is the pixel value at coordinates (i, j),

the integral image IP is defined as

IP (i, j) =
∑

i′≤i,j′≤j

P (i′, j′) (1)

Having computed this integral image IP allows to very quickly compute the sum of all pixel values

in any rectangular area contained in P [5]. Let (ir, jr) denote the coordinates of the top-left corner

of a given rectangle r in P , and w and h the width and height of r. The sum of pixels SP,r in

rectangle r is simply given by

SP,r = IP (ir, jr) + IP (ir + w, jr + h)− IP (ir + w, jr)− IP (ir, jr + h) (2)

In this paper, we propose to use, for each bit-plane k from each code-block c, the integral image

concept described above, where the matrix of pixel values P has been replaced by the significance
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map σk,c(i, j):

σk,c(i, j) = 1 if c(i, j) ≥ 2k−1

= 0 otherwise.

where c(i, j) refers to the coefficient value at coordinates (i, j) in code-block c. By doing so, we

obtain a table T s
k,c such that each element T s

k,c(i, j) at column i and row j is the number of

significant coefficients in code-block c at bit-plane k, among all coefficients above and to the left

of element (i, j), inclusive:

T s
k,c(i, j) =

∑
i′≤i,j′≤j

σk,c(i′, j′) , for i = 1, ...,Wc and j = 1, ...,Hc

where Wc and Hc are respectively the width and height of code-block c.

Interestingly, computation of table T s
k,c perfectly fits with the entropy-decoding procedure of

bit-plane k. Indeed, the significance status of each coefficient of a code-block is a state variable

of the JPEG 2000 entropy decoder. As such, it is constantly maintained and updated during the

decoding procedure. Hence, once bit-plane k has been decoded, σk,c(i, j) is directly available and

T s
k,c(i, j) is obtained by the following recursive formula

T s
k,c(i, j) = T s

k,c(i− 1, j) + T s
k,c(i, j − 1)− T s

k,c(i− 1, j − 1) + σk,c(i, j).

Initial conditions are set based on the previously decoded adjacent code-blocks, as shown in Fig. 4.

Hence, we obtain an integral table T s
k,sb related to the whole subband sb.
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Fig. 4. Integral table T sc
k,c with adjacent code-blocks taken into account. Initial conditions are set to the border lines

values of the code-block currently decoded (black bold numbers in the figure).

By stacking the tables T s
k,sb for all bit-planes of subband sb, we obtain what we call an integral
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volume of this subband. Each element of such volume is simply given by

Vsb(i, j, k) = T s
k,sb(i, j) for i = 1, ...,Wsb (3)

j = 1, ...,Hsb

k = 1, ...,Msb

where Wsb and Hsb are respectively the width and height of subband sb. Msb is the maximum

number of bit-planes in the subband. Once computed, this integral volume allows to easily obtain

the normalized number sA,K of new significant coefficients in bit-plane range K (K = [k0; k1],

k0 ≤ k1), on any spatial area A, defined by its upper left corner (i0, j0) and its lower right corner

(i1, j1), inside the subband sb:

sA,K = (Vsb (i0, j0, k0) + Vsb (i1, j1, k0) (4)

−Vsb (i0, j1, k0)− Vsb (i1, j0, k0)

−Vsb (i0, j0, k1)− Vsb (i1, j1, k1)

+Vsb (i0, j1, k1) + Vsb (i1, j0, k1)) / (i1 − i0) . (j1 − j0) .

In order to have a single representation from which it would be possible to extract both wavelet

and header-based features, we use the same concept of integral table to store the bc values (defined

on page 10). Assuming that any coefficient belonging to code-block c is encoded using βc = Bc

Wc.Hc

bytes per coefficient, we define the integral table T b
c as

T b
c (i, j) = T b

c (i− 1, j) + T b
c (i, j − 1)− T b

c (i− 1, j − 1) + βc(i, j)

for i = 1, ...,Wc and j = 1, ...,Hc. Like T s
k,c, table T b

c can be extended to T b
sb related to the whole

subband. By adding table T b
sb on top of all tables T s

k,sb of the integral volume Vsb defined in Eq. 3,

the normalized number of bytes used to encode all coefficients in area A is given by:

bA = (Vsb(i0, j0,Msb + 1) + Vsb(i1, j1,Msb + 1) (5)

−Vsb(i0, j1,Msb + 1)− Vsb(i1, j0,Msb + 1)) / (i1 − i0) . (j1 − j0) .

Eventually, to increase the robustness to rotation changes, integral volumes from the 3 different

subbands of a same resolution level are merged by an averaging operation:

Vr(i, j, k) =
∑

sb Vsb(i, j, k)
3
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In conclusion, starting from any JPEG 2000 image, compressed with NL decomposition levels,

an intermediate representation called integral volume can be progressively built, as more data is

decompressed. It consists in several different volumes of size WrxHrx(Mr + 1) (r = 0, .., NL). With

this data structure available, one can easily get the normalized number of bytes bA,r used to encode

a spatial area A in resolution r, and the normalized number of new significant coefficients sA,K,r

for a range of bit-planes K inside resolution r of spatial area A .

IV. A JPEG2000 image classifier

In our work, we propose to combine an ensemble of random decision trees with our JPEG 2000

integral volume representation. Tree-based methods consist in a succession of answers to (binary)

questions that progressively divide (and classify) an initial set of items [18]. Randomization [19],

when applied to decision trees, can drastically reduce the variance and overfitting problems

generally affecting decision trees [6]. The design of our image classifier involves three successive

steps that we detail hereunder.

A. Method

1) Sampling: we define a sample as the basic element that will be classified by the ensemble

of random decision trees. An entire image could be considered as a single sample but it appears

that subsampling images has several advantages when dealing with classification tasks. The main

one is that it increases the robustness of the classifier: all samples from an image do not need

to be correctly classified to still make a good decision about the class of the image. Like in [7],

the subsampling operation consists in selecting square subwindows of random sizes and at random

positions. Thanks to the integral volume representation described above, the subsampling operation

only consists in randomly generating pairs of coordinates, each pair corresponding to the upper

left and lower right corners of a sample. Then, once a sample has been defined inside the image,

feature values bA,r or sA,K,r are extracted from it by specifying a resolution r, a bit-plane range

K and a spatial zone A inside the sample, as described at the end of previous section. Unlike [7],

there is no “fixed-size feature vector” characterizing each sample. Actually, there is virtually an

unlimited number of features that can be extracted from a given sample.

2) Learning: During the learning phase, samples from the learning set are used to train an

ensemble of extremely randomized trees [6] (Extra-Trees). In an ensemble of T Extra-Trees,

candidate splits are chosen completely at random. This means that both the tested feature and the
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cut point selected for thresholding, are chosen randomly. The split eventually chosen is either the

best one among K candidates, or the first one to reach a minimum score Scmin. The score measure is

based on the entropy reduction brought by the split. The splitting process is repeated recursively

until a node contains less than nmin samples. A leaf l from a tree t is then characterized by a

probability distribution pt(i|l) (i = 1, ..., nc), the probability that a sample reaching leaf l belongs

to the ith class among nc classes. This distribution is simply obtained by counting, for each class,

the training samples reaching this leaf.

3) Testing: During the test step, Ntest samples are extracted from each test image and are

propagated in the T trees. Each sample reaches a specific leaf in each tree. Once all Ntest samples

from the test image k have been propagated in the T trees, we obtain a set Lk = {lk} of reached

leaves on image k. The probability p(i|Lk) that image k belongs to class i is estimated by

p(i|Lk) =
1

Ntest

∑
lk∈Lk

∑T
t=1 pt(i|lk)

T

and the class c∗k predicted for test image k is simply

c∗k = arg max
ck∈[1;nc]

p(ck|Lk).

B. Experiments

Several experiments have been conducted to assess our image classifier and analyze the

discriminant power of the JPEG 2000 features introduced in Section III. It should be noted that

no complexity or speed considerations are envisioned in these experiments. These aspects are

investigated in Section V, where the JPEG 2000 scalability is exploited to achieve a coarse-to-fine

image classification.

Following parameters for the ensemble of random decision trees have been used (see Sec-

tion IV-A2 for the meaning of these parameters): T = 10, K = 30, nmin = 2 (which means that

the trees are fully grown), Scmin = 0.25. During the learning phase, a total of 100 000 samples

have been extracted from the learning images while during the test phase, 100 samples have been

computed in each test image to decide to which class this image belongs. We invite the reader to

refer to [6] for a deeper analysis of the influence of each of these parameters.

Six databases have been used: PONCE [11], ZUBUD [20], ETH-80 [21], COIL-100 [22],

CALTECH101 [23] and CALTECH256 [24]. These datasets, the experiments protocols and the

JPEG 2000 compression parameters are summarized in Appendix on page 28. For the COIL-100

dataset, two different protocols have been used. Table I compares our performances to other results.
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In particular, we focus on the system proposed in [7]. Our system mainly differs from [7] in the

fact that features are extracted from a compressed code-stream and not from the pixel-domain.

Consequently, the comparison to such system should give us a good indication on the analysis

capacity that JPEG 2000 can offer in a classification task.

TABLE I

Classification error rates achieved by the system extracting Random Subwindows (“RSw”) from the

uncompressed images (“Raw”), described in [7], and by our system. The best other result found in

the literature is indicated in the last column.

Raw + RSw Ours Others

PONCE 45.20% 11.20% -

ZUBUD 4.35% [7] 4.35% 0% [25]

ETH-80 25.49% [7] 19.02% 13.6% [21]

COIL-100 (1) 13.58% [7] 22.51% 24% [25]

COIL-100 (2) 0.5% [7] 0.17% 0.1% [25]

CALTECH101 62.9% 53.9% 18.7% [26]

CALTECH256 92.9% 88.7% 54.7% [26]

Compared to the system based on random subwindows extracted from uncompressed images,

the results obtained with our classifier (JPEG 2000 compression and integral volume extraction)

are always equal or better, except for “COIL-100 (1)” experiment. This tends to prove the higher

discriminant power of wavelet histogram bins compared to averaged pixel values. In particular, the

error-rates obtained for the PONCE dataset underline the higher ability of the proposed JPEG 2000

classifier to discriminate textures. Concerning the “COIL-100 (1)” experiment, the result illustrates

the lack of robustness of the proposed classifier in presence of viewpoint changes. Wavelet histogram

bins are more sensitive to a viewpoint change than average pixel values.

Compared to other results in the literature, the performances achieved by our system are always

close to the best result, except for the CALTECH datasets. This can be explained by the lack

of robustness of our features against the intra-class variability of CALTECH datasets. As long

as this intra-class variability is reasonable (for example each class being populated with pictures

of the same object with orientation and lightning changes), simple and easy-to-compute features

like in [7] and ours are sufficient to achieve good classification performance, while keeping a low

computational load (see Section V-B page 18 for a quantitative analysis of the computational
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efficiency of our system). When the intra-class variability gets higher (each class being populated

with pictures of different scenes representing the same semantic concept), like in CALTECH101

and even more in CALTECH256, more sophisticated sampling procedures and more discriminative

features are required. These could be based on the spatial pyramid matching algorithm proposed

in [27], the SVM-kNN algorithm in [28] or the combination of region-of-interest identification, shape

and appearance descriptors, and random forests, as proposed in [26]. It should be noted that such

more elaborated features could also be extracted from JPEG 2000 code-streams and would mainly

imply a computation overhead when processing integral volumes.

V. Coarse-to-fine image classification: a cascade of image classifiers

In this Section, we consider a typical image retrieval problem, for which there are only two

classes (positive and negative images) that are highly asymmetric (there are much more negative

images than positive ones). We exploit the JPEG 2000 scalability, to limit as much as possible the

amount of information that has to be partially decompressed when searching a large dataset.

A. Cascading classifiers

To take into account the class asymmetry, a natural idea that comes up is to first try to reject

the most obvious negative images rather than trying to find directly the few positive events. In this

way, we are left with our positive images disseminated in a much smaller amount of negative ones.

Of course, this subset of images is harder to discriminate but as it is much smaller, we can afford

to spend more computational load on each of its images. This simple idea has lead to the cascade

of classifiers concept [5], [8]. As shown in Fig. 1 on page 3, a cascade of classifiers is made of a

succession of stages, each of them being fed by the images identified as positive by the previous

stage. For a given image, each stage i will compute a probability pi that the image is positive and

compare it to a threshold θi. Formally, an image retrieval system has two objectives: maximize the

detection rate and minimize the false positive rate. Such cascade framework allows to relax the

latter one. Indeed, if a negative image is accepted, next stages still have the opportunity to reject

it. The succession of stages will then guarantee a small global false positive rate, by multiplying

the succession of moderate intermediate false positive rate.

The concept of cascading classifiers is not new and has already been investigated in the literature.

Among others, Viola and Jones proposed a cascade of boosted classifiers based on simple rectangle
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features for robust real-time object detection [5]. Each stage is a weighted sum of single-feature-

thresholding classifiers, trained through an AdaBoost process. In a more recent work [29], Brubaker

et al. questioned the relevance of single-feature-thresholding classifier and showed that the overall

performance could benefit from stronger weak classifiers like CART (Classification And Regression

Trees). In our work, we push this idea one step further by using an ensemble of random decision

trees for each stage. Such random decision tree is a stronger weak classifier than thresholding on

a single feature, but is also much easier and faster to build than a classic CART. Moreover, in our

implementation, we did not consider any boosting algorithm, which further reduces the complexity

of the learning phase.

Since most images are stored in a compressed format, investigating compressed image retrieval

techniques makes a lot of sense. The proposed system follows the general cascade concept

introduced above and integrates it in a JPEG 2000 framework. Using the resolution and SNR

scalability levels present in JPEG 2000, successive stages of our cascade are based on an increasing

amount of data extracted from the code-streams. The first stages exploit header information at

almost no cost to achieve a coarse classification of all images. Having discarded the most obvious

negative images, the next stages can afford a slightly more expensive (but also more accurate)

classification process on the remaining positive candidates, by decoding their most significant bit-

planes. Finally, the last stages will focus on the very best positive candidates and will try to reject

those negative images that are the most similar to positive ones. To do so, more (or even all) bit-

planes of these positive candidates are decoded so as to obtain the finest approximation of their

wavelet coefficients. As we see, the proposed system uses a true coarse-to-fine approach: for a

given image, the amount of data that will need to be extracted (and entropy-decoded) is directly

related to the relevance of this image in the retrieval process.

An important point to note about the proposed JPEG 2000 cascade is the increasing discriminant

power of the features sets used in successive stages. Indeed, most other cascade systems use the

same set of features to generate the succession of classifiers. In this latter case, the higher accuracy

of classifiers comes only from a harder training set.

Of course, using richer features implies an higher extraction cost. Hence, simultaneously to the

work in [9], we have proposed in [10] to incorporate the feature extraction cost in the global

cascade optimization. Indeed, the best cascade will be obtained through a global trade-off between

the number of stages, the thresholds used, and the kind and number of features involved. In [29],

the optimization of this trade-off is tightly coupled with the training phase. This allows to get
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very close from a global optimal solution as training and optimization are mutually updating each

other. However, it comes at a price of a high computational cost as training operations are included

in optimizing loops and must be repeated many times. In [30] and in the system proposed in this

work, the best thresholds are found in a separate process, after the cascade design. As we shall see

in the experiments, as the final adopted thresholds are not necessarily the ones used for training,

it obviously implies a sub-optimality, but not sufficiently important to justify the huge increase in

computational load caused by iterations.

B. Computational efficiency analysis

To show that the proposed scalable extraction process in the compressed domain is very efficient

in terms of computational load, we have compressed1 several natural images and analyzed their

average decoding time. Our system is implemented in C and uses the OpenJPEG library [31].

Fig. 5a shows the normalized averaged decoding time, according to the number of bit-planes and

the number of resolution levels decoded. A decoding time equal to 1 corresponds to the complete

decoding of the image. Note that the normalized time required to entropically decode all resolution

levels and all bit-planes does not reach 1 because the inverse Discrete Wavelet Transform has still

to be done after entropy decoding. As we can see, even if we add the time required to generate the

corresponding integral volume (see the dotted lines on the figure, “I.V.” in the legend) from which

the features will then be extracted, the global image processing time is still below the time required

to entirely decode the image. Compared to classical classification systems that would first require

to entirely decode the image, our proposal is therefore much faster. In Fig. 5b, we assume the

existence of a 3-stages cascade: (i) the first stage uses only header information, from all resolution

levels, (ii) in addition to header information, the second stage has access to the 3 most significant

bit-planes of each resolution level, (iii) eventually, the last stage computes features based on all

information: header information and complete decoded wavelet coefficients. For each stage, we sum

the time required to decompress the information needed by the stage, the time required to build

the corresponding integral volume and the time required to generate 100 random samples from

the image and 1000 features/sample. This global amount of time is representative of the complete

image processing that has to be done before classifying the image with the ensemble of random

1The same compression parameters as those from the previous experiments have been used. They are presented in

Appendix on page 28.
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trees corresponding to the stage. Our experiment clearly shows the benefit that can be drawn from

such cascade of classifiers. Moreover, as explained above, we propose to take into account this

computational cost when designing the cascade so as to be able to reach various complexity vs

performances trade-offs. In the following, we choose to measure the computational cost with the

amount of bits from the pixels of the original image that has to be decoded, as it has proved to

be representative enough of the complexity.
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Fig. 5. (a) Normalized image processing time according to the number of bit-planes. The lowest continuous curve

corresponds to the decoding of image headers only (horizontal line, as there is no bit-plane decoded). Subsequent

continuous curves correspond to the decoding of the image up to a certain resolution. Dotted curves cumulate the

image decoding time and the integral volume building time. (b) Normalized image processing time for each stage of

a given cascade.

C. Method

Practically, our image retrieval system is obtained in two successive steps: building and

optimization, as described below. Once the cascade has been built and optimized, it can eventually

be used to scan a test set in a computationally efficient way.

1) Building: During the building phase, a cascade of classifiers is generated, based on a given

learning set. In our approach, we fix a priori the number N of stages, together with the part

of the JPEG 2000 code-streams that will be available in each stage. This is done based on the

relative computational cost of the features. For each stage, an ensemble of random decision trees is

learned. This process is the same as the one described in Section IV, with the noticeable restriction
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that the number of classes is always 2. For the experiments described below, the 3-stages cascade

introduced in Section V-B has been used, i.e. a first stage with headers only, a second stage with

headers and the 3 most significant bit-planes of all resolutions, and a final stage with everything

available.

2) Optimizing: Once the cascade has been built, the optimization phase aims at finding a

threshold θ∗i,opt for each stage i of the cascade such that the set T∗opt = {θ∗i,opt} (i = 1, .., N)

leads to the best global complexity vs performance trade-off. To do so, we use an optimization set,

different from the learning set.

For a given set of thresholds Topt, the performances of a cascade are evaluated according to its

classification error and to its cost in terms of computational load. The classification error E is

given by

E(Topt) = 1− [λprec.P (Topt) + (1− λprec).R(Topt)] (6)

where P = TruePos
TruePos+FalsePos and R = TruePos

TruePos+FalseNeg are the global precision and recall values

obtained with the set Topt of thresholds, and λprec is fixed a priori and represents the relative

importance of the precision compared to the recall (0 ≤ λprec ≤ 1). Precision and recall are

preferred to the classical ROC curve because these measures are more suited for highly skewed

datasets, as explained in [32].

As explained in Section V-B, we propose to measure the computational cost by the fraction

of bits that need to be entropically decoded to make a decision on all images. For the sake of

simplicity, the cost of header information extraction is considered equal to the cost of decoding

one bit-plane. Practically, a cost factor ci is computed for each stage i. It represents the portion

of an image that will have to be decoded if it reaches stage i. The global cost is then given by

C(Topt) =
∑

i∈[1,N ],Topt,k>0

ni.(ci − ci′) (7)

where ni is the number of samples that enter stage i (i = 1, ..., N) and i′ refers to the closest

previous stage with a threshold > 0 (ci′ = 0 if there is no such stage). This is done because if θi,opt

is taken equal to 0 for a given stage i, it means that the optimization process has reached a better

result by skipping stage i and no cost is therefore counted for this step.

The global cascade inefficiency for a given set of thresholds Topt is then measured by the following

expression

I(Topt) = (1− λcost).E(Topt) + λcost.C(Topt) (8)

January 27, 2011 DRAFT



21

where λcost represents the relative importance of the computational cost compared to the

classification error (0 ≤ λcost ≤ 1). Consequently, the cascade optimization process consists in

finding a set of thresholds T∗opt such that

T∗opt = arg min
Topt∈RN

[0,1]

I(Topt) (9)

Eq. 8 shows that the optimization process is influenced by two parameters: λprec and λcost, that

balance the relative importance of cost, precision and recall. This formulation could be used in a

Lagrange-multiplier approach to solve a constrained optimization problem such as “Maximize the

detection rate under the constraints of a limited amount of false positive samples and a bounded

cost”. Such problem can be solved with the iterative algorithm presented in Alg. 1. Each iteration

is made of N steps, N being the number of stages in the cascade: during step i, the algorithm

seeks the threshold for stage i that will give the lowest inefficiency I, while all other thresholds are

fixed to their “up-to-this-point best” value. The number of iterations is limited by an upper bound

maxiter but can be smaller if the global performance gain between two successive iterations is

smaller than a given ∆stop. The initial set of thresholds is taken equal to the set used for learning.

The procedure Compute Inefficiency computes Equation 8 based on given values of λprec and

λcost, and on the set of thresholds Topt to be tested.

D. Experiments on the PONCE dataset

For these experiments, we have chosen a positive class among the 25 different kinds of textures

present in the database. Different choices of positive class have been tested but we only present

here results obtained for class 25 (“Fabric”) because achieved performances are representative of

the average performance reached with other classes. As explained above, each stage is an ensemble

of random decision trees. Following settings were used (see Section IV-A2): T = 50, K = 30,

nmin = 2 (which means that the trees are fully grown), Scmin = 0.25. During optimization, we

used following values for the parameters: ∆stop = 0, maxiter = 100, ∆T = 0.02. Concerning the

images sets, the database has first been divided in 3 parts: on the 40 images of each of the 25

classes, the first 13 were put in the learning set, the following 13 in the optimization set and the

last 14 in the test set. For each of the three sets, 4000 sub-images are extracted from the positive

images and 10 000 from the negative ones. During the learning phase, the same 4000 positive sub-

images are used to train each stage while the negative set is different for each stage. Moreover, to

be selected to train stage i, a negative sub-image has to successfully pass stage (i− 1).
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Algorithm 1 Find Best Thresholds

Require: following parameters and function:

• 0 ≤ λprec ≤ 1, 0 ≤ λcost ≤ 1, the coefficients balancing the relative importance of cost, precision and recall,

• N , the number of stages in the cascade,

• maxiter, the maximum number of iterations of this algorithm,

• ∆T , the difference between two successive tested values of threshold,

• ∆s, the performance gain between two successive iterations that will stop the optimization process,

• Tlearn, the set of thresholds used for learning the cascade stages,

• Compute Inefficiency, the function computing the global inefficiency of the cascade (see Eq 8).

Ensure: the optimized set of thresholds T∗
opt.

Topt ⇐ Tlearn

I ⇐ Compute Inefficiency(Topt, λprec, λcost)

I∗ ⇐ I ; T∗
opt ⇐ Topt ; ∆I ⇐ 1 ; n⇐ 1

while (∆I > ∆stop) and (n < maxiter) do

LastI ⇐ I∗

for i = 1 to N do

for Topt(i) = 0 to 1 with step ∆T do

I ⇐ Compute Inefficiency(Topt, λprec, λcost)

if I < I∗ then

I∗ ⇐ I ; T∗
opt ⇐ Topt

end if

end for

Topt ⇐ T∗
opt

end for

∆I ⇐ I∗ − LastI ; n⇐ n+ 1

end while

Once the cascade has been built and the thresholds optimized for a given pair of (λprec, λcost)

(or, equivalently, for a given set of constraints on cost and precision), the test set is used to analyze

the performances. Figure 6 compares various Precision-Recall curves. Each curve corresponds to

a certain upper bound on the global cascade cost, as indicated in the legend. Points belonging to

the same given curve are operating points, each fulfilling the cost constraint and corresponding to

a certain trade-off between precision and recall (i.e. a certain λprec value). This trade-off will be

set according to the considered application, depending on the relative importance of false-positive

error compared to false-negative error. The last curve indicated in the legend of Figure 6 is the one

corresponding to a single JPEG 2000 classifier (no cascade). In this case, the classifier is trained on
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the whole learning set and with all features directly available. As it can directly use features from

any bit-plane, the global cost is de facto equal to 1. Optimization therefore only consists in finding

the best trade-off between precision and recall, for a given λprec. Each such trade-off corresponds

to an operating point on the curve. Although not mentioned on the graph, it should be noted

that curves corresponding to cost-targets greater than 0.6 superimpose with the “cost ≤ 0.6” one.

Non-convexity observed at some places on the curves is due to the fact that thresholds for these

operating points have been computed on the optimization set while results are given here for the

test set.
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Fig. 6. Precision-recall curves. Comparison is made between different cost targets.

Based on the curves from Fig. 6, several observations can be made about the performances

obtained with our cascade, compared to a conventional single classifier approach.

Cost benefit. First of all, from a cost point of view, the benefit of the cascade is obvious: the

curve targeting a cost ≤ 0.6 is already very close from the one obtained without any cascade and

for which the cost is 1. This is made possible thanks to the first stages that avoid many negative

samples from being further decoded.

Stage skipping triggered by the optimization step. Another observation is that on each

curve (and particularly on “cost ≤ 0.2” and “cost ≤ 0.3”), we observe several “clusters” of operating
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points. Such cluster corresponds to some λprec values for which the optimization algorithm has

decided to use only some of the available stages, as indicated on the figure.

Better precision at low or moderate recall values. An interesting point to observe on

Figure 6 is the better performances obtained by the cascade for moderate recall values (i.e. detection

rates): when the cost-target is not too low (0.6 for instance), the cascade leads to a better precision

than the single classifier, for recall values up to 0.83. This can be explained by the following

arguments. When using a cascade, the whole classification problem is split in several successive

smaller problems. This succession of sub-problems will focus on increasingly difficult samples.

Although not identical, this operation is conceptually similar to a boosting process [33] in which

a classifier will be progressively forced to give more importance to ambiguous samples. It leads

to stronger classifiers and explains that, as long as targeted detection rates are not too high, the

cascade outperforms a single classifier that has to directly classify the whole set of samples with

a single ensemble of independent random decision trees. When targeted detection rates increase,

each stage of the cascade will have to guarantee a very small amount of false negative errors.

The first stages, that use a less discriminant features set than the last one, will therefore tend to

choose smaller thresholds and let a greater number of samples reach the last stage. Indeed, this will

increase the number of false positive errors but will guarantee a higher detection rate. This trend

will progressively make the cascade more similar to a single classifier. We can therefore expect a

decrease of the “boosting” effect described above and the cascade performances should get closer

from the single classifier results.

Sub-optimality at high recall values. Based on the explanation from the last paragraph, we

should expect that if the cost-constraint is completely relaxed, the obtained cascade will outperform

the single classifier at moderate detection rates and then get closer of (or even superimpose) the

single classifier curve for higher rates. However, we observe that the curve crosses the single classifier

curve and remains below it when the detection rate increases. This is due to the fact that the last

stage has not been trained to classify all entering samples but only those having successfully passed

the two first stages, set up with “normal” thresholds. If the cascade is subsequently degenerated to

its last stage by the optimization step, it will remain sub-optimal in comparison to a single classifier

whose training phase has been done on all samples. To verify this, we have conducted an additional

experiment and replaced our post-learning optimization step with an iterative process that includes

the training phase in the loop. Practically, we have repeated the building and optimization steps

described above, feeding the building step at iteration i with the optimized thresholds found at
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iteration (i− 1), until the difference between two successive values of the cascade inefficiency (see

Eq. 8) was not significant anymore. The number of iterations needed to converge was usually 4,

meaning that the computational load required to build and optimize the cascade was 4 times

bigger than with our proposed approach. As expected, for a global cost constraint of 0.6, the

sub-optimality described above disappeared (for high recall values, our cascade degenerates to an

optimally trained single classifier).

E. Experiments on the UKBENCH dataset

Finally, a last experiment has been run to assess the performances of our system on a large-scale

image retrieval problem. The popular UKBench dataset [12], a collection of 2 550 groups of four

color images each, has been used. All images are 640x480. Each group is a set of four pictures of the

same object with different orientations and lightning conditions. Following the standard procedure

used in the literature, we evaluated the performances of our system on this dataset by using each

image in the dataset as the image query and by computing the number of images from the same

group -including the query- that are retrieved among the four most similar images returned by our

cascade.

For the learning step, to avoid having to build a different cascade for each query, we have decided

to build the trees of each stage of the cascade completely at random, i.e. with K = 1 and Scmin = 0

(other settings being kept unchanged : T = 50, nmin = 2, see page 13 for the meaning of these

parameters). In this way, we were able to build the 3 stages of the cascade once for all. To do

so, we used a pool of 10 000 random samples, obtained by extracting 10 samples per image, from

1000 images randomly picked in the dataset. Based on the class asymmetry assumption, these

samples can confidently be considered as negative. For each image query, this “generic” cascade

was then updated by further developing the trees with 500 random samples extracted from the

query. For the optimization step, we again used a pool of 500 positive samples extracted from

the query, and 10 000 negative samples extracted from 1000 random images. These positive and

negative sets were taken different from the ones used for learning. In the proposed experiment,

we optimized the thresholds with a cost constraint of 0.4, meaning that no more than 40% of the

whole compressed data from the optimization set had to be decoded. Once the cascade has been

updated with the positive samples and the thresholds have been fixed by the optimization step,

the system is evaluated by testing each image of the database. To do so, for a given test image,

500 samples are extracted from it and injected in the first stage of the cascade. If the average
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probability to be positive is above threshold for stage 1, the 500 samples are transferred to stage

2 and so on.

TABLE II

Average scores obtained on the UKBench dataset. A score i means that on the four images from a

given object, an average of i images were in the top-4 similar images.

Average score Method description

[12] 3.07− 3.29 MSER + SIFT + k-means clustering

[34] 3.45 MSER + SIFT + randomized k-d trees

[35] 3.10 Totally randomized trees on raw images

Ours 3.09 Cascade of totally randomized trees on

J2K images (with cost constraint = 0.4)

Table II compares our system to the state-of-the-art results found in the literature. Our system

is similar to the one described in [35] and gets similar results. The two noticeable differences are

that we place ourselves in a JPEG 2000 framework and that we introduce a cascade paradigm that

lets us trade-off between complexity and performances. About this trade-off, an interesting point

to highlight is that while the cascade has been optimized with a cost constraint of 0.4, we get an

even better actual cost ratio on the test set of 0.18. This is due to a much higher class asymmetry

in the test set compared to the optimization set. Moreover, it is worth noting that the use of

totally randomized trees still provides good results, while implying a significantly less complex

learning step compared to randomized trees based on an entropy score (like in Section V-D).

This is an interesting perspective and will be further investigated in our future research. Slightly

better results are obtained with systems presented in [12], [34] that use (combinations of) more

discriminant features. It should be noted that such features could be used in our system, at the

price of a higher complexity, i.e. with a higher ratio of image processing time devoted to feature

extraction (see Fig. 5 page 19).

VI. Conclusion

In this paper, we have investigated techniques able to perform classification and retrieval tasks

based on JPEG 2000 code-streams. We have first studied how to extract relevant information from

such code-streams in order to generate an image characterization that could subsequently be used
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in a classification process. We showed that, thanks to the various scalability levels inherently

present in JPEG 2000, the quality of this characterization is directly related to the amount of

data processed (and partially decoded) by the classifier. In particular, a new way to store the

extracted feature values, called integral volumes, has been introduced and allows to very easily

obtain relevant information on any area in the image. We then assessed the performances that can

be expected when using JPEG 2000 features in various classification tasks based on random decision

trees. The results obtained were similar to the best results available in the literature on raw images

classification and categorization, as long as the intra-class variability of the dataset is not too high.

This proves that staying in a JPEG 2000 framework not only avoid heavy transcoding operations

and speed up image handling but allows also to get good classification performances. Eventually,

we combined several JPEG 2000 classifiers in a cascade suited for image retrieval operations. This

cascade has been designed so as to draw benefit from the JPEG 2000 scalability: in particular,

the amount of data that has to be extracted from a sample is directly related to the relevance of

this sample. Optimization of this cascade takes into account the feature extraction cost and makes

therefore a trade-off between complexity and performances. Results showed that performances

similar to a single classifier are obtained, for a cost which is about twice smaller, and that the use

of totally randomized trees (i.e. without choice of best split among several candidate splits) still

enables good performances.

Several interesting future research directions have already been identified on different aspects

of the presented system. Among them, one could cite (i) the study of a better way to combine

information from various subbands in order to increase the robustness to orientation changes, (ii)

the use of more discriminant (and, hence, more complex) features to improve results on datasets

with high intra-class variability, (iii) the improvement of the cascade optimization so as to get

better results at high recall values.

More globally, this work has to be seen as a step towards a user-centered online image retrieval

system. While experiments in this paper used offline computed samples sets, the goal is to be

eventually able to interact with the user and to progressively learn what he is looking for.
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Appendix A

Parameters for the single classifier experiments

A. Datasets and protocols

• PONCE [11]: dataset of 640x480 grayscale images of 25 different textures with 40 images per class (1000 images

in total). See Fig. 3a page 9 for a few samples. The learning set is made of 39 images from each of the 25 classes.

The remaining 25 images compose the test set. The final error rate is the average of 40 error rates, the ith rate

being obtained by using image i from each class for the test set.

• ZUBUD [20]: color images of 201 different buildings in Zürich. Each building in the training set is represented

with five 640x480 images (1005 images in total). The test set is made of 115 images of size 320x240, covering a

subset of the 201 different classes.

• ETH-80 [21]: collection of 3280 color images (256x256) divided in 8 distinct categories (apples, pears, tomatoes,

cows, dogs, horses, cups, cars). For each category, 10 different objects are provided. Each object is represented

with 41 different images from viewpoints equally spaced over the upper viewing hemisphere. The protocol used

is the same as the one used by Leibe and Schiele in [21], i.e. a leave-one-object-out cross-validation. The learning

set is made of all views of 79 objects (which means a set of 3239 images) and the test is operated on all 41 views

of the remaining object. Recognition is considered successful if the correct category label is applied to the test

image. Results are averaged over all 80 possible test objects.

• COIL-100 [22]: collection of 7200 color 128x128 images. There are 100 classes, each one representing a different

3D object. Each object is represented by 72 images at pose intervals of 5 degrees. Two different protocols were

used, like in [25]. Protocol 1 takes the pose at 0◦ of each object as the learning set (100 images in total) and

the remaining images as the test set (7100 images). Protocol 2 takes 18 images of each object (two images of

the same object being separated by 20◦) as the learning set (1800 images) and the remaining ones as the test

set (5400 images).

• CALTECH101 [23]: pictures of objects belonging to 101 categories. About 40 to 800 images per category. Most

categories have about 50 images. The size of each image is roughly 300 x 200 pixels. Following the standard

procedures, 30 images per class have been randomly selected to train the classifier. Then, the remaining images,

with a maximum of 50, have been used to test the system. The error rate corresponds to the amount of mis-

classified test images.

• CALTECH256 [24]: collection of all 30607 images, belonging to 256 different categories. Each category has

a minimum of 80 images and an average of 119 images. The protocol used is the same as the one used for

CALTECH101.

B. JPEG 2000 compression parameters

All images from the databases are first encoded with the JPEG 2000 algorithm using the OpenJPEG library [31].

No “fancy” option values were used during compression as we wanted our system to be able to work with a basic

JPEG 2000 codec. Main parameters are: 4 resolution levels (except for the COIL-100 database for which 3 levels were

used as the images were quite small), 5-3 DWT filter, code-blocks of size 32x32, no quality layers, lossless compression

(so as to assess the influence of every bit-plane in a classification task).
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