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Image Coding Using Depth Blurring for
Aesthetically Acceptable Distortion

Timothy Popkin, Andrea Cavallaro and David Hands

Abstract—We introduce the concept of depth-based blurring
to achieve an aesthetically acceptable distortion when reducing
the bitrate in image coding. The proposed depth-based blurring
is a prefiltering that reduces high frequency components by
mimicking the limited depth of field effect that occurs in cameras.
To cope with the challenge of avoiding intensity leakage at
the boundaries of objects when blurring at different depth
levels, we introduce a selective blurring algorithm that simulates
occlusion effects as occur in natural blurring. The proposed
algorithm can handle any number of blurring and occlusion
levels. Subjective experiments show that the proposed algorithm
outperforms foveation filtering, which is the dominant approach
for bitrate reduction by space-variant prefiltering.

Index Terms—Image coding, depth of field, foveated image
coding, space-variant image processing.

I. INTRODUCTION

OVEATED [1] and region-of-interest [2] coding tech-

niques employ a spatially non-uniform bitrate, resolution
or quality across an image or video frame. These techniques,
referred to here as space-variant coding techniques, exploit
the spatial variation in visual importance (saliency) of regions
across the scene and the eccentricity-dependent resolution
of the human eye. Foveated coding works by applying an
eccentricity-dependent resolution or quality (e.g., using space-
variant filtering [3]), aiming for the distortion of the encoding
to be perceptually minimal or invisible [4], [S] by matching
the density of photoreceptor cells, which is highest at the focal
center [6].

As foveated coding requires knowledge of points or regions
of interest, whether from eye tracking (gaze-contingent) [7]
or estimated (e.g., saliency detection [8]), this might be
problematic, as the selection of these priority regions remains
an open problem [8]. If the estimated points of interest are
wrong, the distortion becomes noticeable. For this reason,
we aim at a different space-variant coding approach that,
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unlike foveated coding, does not aim for perceptually minimal
or invisible distortion, but for distortion of a style that is
visually tolerable even when noticed. In other words, we aim
for aesthetically acceptable distortion, by emulating natural
depth of field effects which viewers are accustomed to as a
photographic style which they associate with quality, and using
this as a prefiltering stage of an image encoder. An important
idea here is that if viewers look away from the predicted point
of interest (as is possible when eye tracking is not employed),
they might judge the degradation more favourably than with
foveation filtering. This approach, referred to herein as depth
blurred coding, has the double benefit of not only providing
what might aesthetically be regarded as an enhancement, but
also of allowing bitrate reduction due to the increased average
blur level (degree of blur) across the view [9]. Moreover, in
contrast with the difficulty of estimating human fixation points
(for foveation), the proposed approach uses depth information,
which is becoming increasingly available, thus allowing it to
be employed in a number of possible scenarios. For example,
a stereo camera pair can be used in conjunction with a stereo—
correspondence technique [10] to extract a map of disparity
(i.e., reciprocal of depth). A depth map can also be estimated
from scene structure estimation techniques [11], [12] or using
depth from motion. Most significantly, a low-resolution time-
of-flight camera might be fixed to a high-resolution normal
camera, which may be used to enhance the resolution of the
depth map [13]. The use of time-of-flight cameras is becoming
increasingly widespread [14]. Furthermore, in the simplest
case, depth blurring can take a region-of-interest approach, by
applying a two-level depth map (Fig. 1) generated for example
by background—foreground segmentation [15] or by an object
detector such as face detector [16].

In this paper, we propose a novel method' for applying re-
alistic depth of field effects to images that simulates occlusion
effects as occur at the boundaries of objects. The proposed
approach can handle a depth map which is continuous (up
to blur level quantization granularity), with a cost of order
O(N log(N)?) for an N-pixel image. We also introduce a
method-of-adjustment [17] approach for measuring perceived
overall image quality in terms of equivalent JPEG quality. We
evaluate the proposed depth blurring algorithm, providing sub-
jective evidence to support our hypothesis that depth-blurred
coding outperforms the dominant approach to space-variant
coding, namely foveated coding, for equivalent blur levels and
bitrates. We argue that the relative ease of obtaining a depth

TThe working code of the proposed method is available for download at
ftp://motinas.elec.qmul.ac.uk/pub/code/tim/db_download.zip and in conjunc-
tion with this paper at http://ieeexplore.ieee.org.
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Fig. 1. Depth/disparity map examples. Left: Arz disparity map, from
Middlebury dataset [22], [23]; right: two-level segmentation of Foreman.

map, when compared with the difficulty of predicting human
fixation to a sufficient level of certainty for foveation, makes
depth-blurring a preferable space-variant coding approach for
the non-gaze-contingent scenario.

The remainder of this paper is organized as follows: Section
IT presents the proposed depth blurring approach. Section
IIT describes the methodology used for subjective evaluation.
Section IV discusses the results. Finally, Section V concludes
the paper.

II. DEPTH BLURRING
A. Challenges in synthetic depth blurring

In this subsection, we discuss the two main challenges
in depth blurring, namely the proper treatment of occlusion
effects and the computational complexity.

Techniques for synthesizing depth of field can be classed
as either multipass approaches or postfiltering. In multipass
approaches, high-accuracy techniques such as ray tracing are
repeated from slightly different directions and averaged [18].
Although high quality, multipass approaches generally involve
heavy computational cost. In postfiltering, the rendering output
itself is subjected retrospectively to synthetic depth blurring
[19]. Postfiltering approaches can in turn be grouped into
gather or scatter methods. Techniques which employ the
gather method approximate depth blurring by taking the local
average of pixel values around the desired location. This
inherently leads to intensity leaks [19] as the intensity from
sharp source pixels is spread over surrounding background that
they should not influence. Approaches that employ the scatter
method spread the intensity of each source pixel over an area.
However, due to speed, scatter methods are not regarded as
the choice for real-time depth blurring [20].

Depth blurring has been used in a coding scenario, employ-
ing eye tracking in combination with foveation [21]. This work
relied on the eye tracking and did not test the plausibility of re-
moving the eccentricity-dependent foveation aspect altogether
along with any assumptions about where the viewer will look.
It employs Gaussian pyramid blurring for resolution-reduction
purposes, aiming for minimally perceivable distortion rather
than photorealistic blurring that is aesthetically acceptable on
close inspection as proposed herein.

One key aspect of the style of depth blurring that a human
viewer is accustomed to seeing in photographs is the effect
that occurs around the boundaries of objects that occlude
further-away objects in the scene. This occlusive aspect of the
blurring is necessary because, for example, when a sharply-
focussed object is in front of a blurred distant object, the
blur of the distant object stops abruptly at the edge of the
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Fig. 2. Examples of occlusive effects in depth blurring. Left: near object
in focus; right: far object in focus. In the left diagram, the light from the
far (blurred) object is spread over a region which is occluded sharply at the
image of the near object. In the right diagram, the light from the near (blurred)
object is unaffected by anything beyond it.
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Fig. 3. Examples of occlusion effects using the proposed algorithm on a
synthetic image. Left, top to bottom: raw image, blur map (black: unblurred)
and occlusion map (white: more occlusive); the blur map and occlusion map
may come directly from a depth map. Middle: blurred with occlusion. Right:
the same blurring except with occlusion effects switched off. The spread of
the background blur over the foreground boundary can be seen in the non-
occlusive case, but not in the occlusive case.
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nearer object, with no part of the blur overlapping any part
of the nearer object. However, when a blurred object is in
front of some sharply-focussed background, the edges of the
blur of the nearer object spread over the background. This is
because the blur goes in all directions and some of the blur will
overlap the background (Fig. 2). Our proposed approach caters
for this occlusive effect, taking occlusion information from
an occlusion map in addition to the blur map. An ordinary,
unocclusive selective blurring technique would cause every
blurred pixel to be spread over its neighbors regardless of
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Fig. 4. Block diagram of the overall approach that receives as input a depth
map (or equivalent information) and a chosen depth of interest. The Occlusive
Selective Blurring block is the core algorithm, as described in section II-B.

whether they are considered nearer to or further from the
camera. Examples of occlusive and unocclusive blurring are
shown in Fig. 3, where the spread of the background blur over
the foreground boundary can be seen in the non-occlusive case,
but not in the occlusive case.

B. The blurring algorithm

Fig. 4 summarizes the proposed approach. Given a depth
map (generated for example by a time-of-flight or stereo
camera, or by a segmentation algorithm), a desired bitrate
and overall blur level (e.g. from the rate-control mechanism
of an encoder) and a depth of interest chosen to be in
sharp focus (such as by taking the nearest-to-camera depth
or the depth at a point of interest selected using saliency
detection), the proposed depth blurring algorithm takes as
inputs a color image C, a continuously-varying (to one pixel-
width quantization granularity) blur map B and an occlusion
map 2, all defined over a W x H image domain D={(z,y) :
ze{l,.. ., W}hye{l,..,H}}.

The occlusion map gives, in arbitrary units, the occlusion
level of each point, thereby providing a ranking of which pixels
should or should not be overlapped by the blur regions of
which other pixels. Therefore it may be taken directly as the
negative of the depth map, so that more occlusive (nearer-to-
camera) points have a higher occlusion level. The blur map
is taken from the depth map such that the chosen depth will
be in sharp focus (zero blur) and the other depths will have
gradually increasing blur away from this depth; e.g., each blur
level b(x) (at location x € D) may be taken as

b(x) =

1 1
‘ D

dx)  d,

for depth d(x), sharp-focus depth d, and constant k chosen
to obtain a desired overall blur level. In practice, we obtain
each B(x) by rounding b(x) to the nearest integer to avoid the
subpixel interpolation of C that would otherwise be necessary.

Note that here, disparity values (1/d(x)) from a stereo—
correspondence technique can be used directly and that the ac-
curacy of each blur level will be proportional to the accuracy of
the disparity value. Therefore, although stereo—correspondence
techniques have difficulty with distinguishing far-away depths
due to parallax, this is not an issue for blur map generation
as these far-away depths have very similar blur levels. The
depth-blurred coding approach can alternatively be adapted to
an ordinary single-camera scenario by the use of single-image
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Fig. 5. Block diagram of the top level of the proposed occlusive selective
blurring algorithm. For simplicity, the “pixel spreading” is shown as being
applied to the whole color image, whereas in reality it is applied separately
to each of the three color planes (R,G,B).

depth segmentation, or depth-from-motion techniques if video
is available.

The proposed algorithm has an O(N log(N)?) cost and it
can handle a depth map which is continuous, up to blur level
quantization granularity. We spread the intensities of each
pixel uniformly over a square area of variable size, subject
to sharp occlusions by any nearer pixel. Then, we apply an
adjustment factor to compensate for the fact that this pixel
spreading will unnaturally darken or brighten the image in
regions where the blur level is not constant. For n=1,2,3, each
occlusively selectively blurred color plane CJ is computed
(using adjustment factor 1/U’(x)) as follows:

Ch(x) = Pu(x)/U'(x), 2)
where P, is the occlusively pixel-spreaded version of original
color plane C,, under the given blur map and occlusion
map, and U’ is the equivalent when applied to a pure white
image, U. The terms pixel-spreading and blurring will be used
hereonwards to describe the creation of the unadjusted result
and the final, adjusted result, respectively. The top level (the
“blurring” stage) of the proposed algorithm is illustrated in
Fig. 5.

A key aspect of the proposed algorithm is the concept of
a corner of the spread of a given pixel under the blurring.
Given a color plane G, and a blur map B, the intensity G(x)
at location x will, neglecting image boundary issues, be spread
over a square area of width 2B(x) + 1, with center x.

Considering the pixel at x = (z,y), the image, Px, of the
spread of this sole pixel will be given, for every image location

x' = (z',y'), by

Px(xl7y/) = (3)

0 otherwise

where v:%. Px can also be expressed as a cumulative

sum, as follows:

Pula'y) = D Pila".y"), )
://gi/



TO APPEAR IN IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. ?, ? 2011 4

Occlusion level 1

Tnput image

-

Blur map
in- Pixcel-
e spreaded
Spread | K8 5 Lookup | ‘image
—— | for each - by
occlusion| Occlusion level 3 occlusion
Occlusion map level level
L]
EF—

Fig. 6. Block diagram illustrating the concept of corners in the pixel-
spreading. For each occlusion level, there is conceptually a differential image
(second column from left), whose cumulative sum gives a pixel-spreaded
image (third column from left), and from these, the overall occlusively
pixel-spreaded image can be formed by looking up each output pixel from
the appropriate cumulative sum according to its individual occlusion level.
However, in practice, separate full-image cumulative summations (denoted
above by “X”) are not performed, as the occlusive sum look-up structure
allows the selected output pixels to be computed on their own, without full
cumulative sums.

for all x"=(z',y’), where image Py is defined as follows:

v if X’ = ¢ (x,B(x))
—v if X’ = ¢2(x, B(x))

PL(x") =< —v if X" =c(x,B(x)) (5)
v if X = e22(x, B(x))

0 otherwise

for all possible x”. Functions ¢'*, ¢'2, ¢! and c¢2? can be
thought of as giving the four corners of the spread of the pixel
at x. The horizontal components, c!!, ¢2, ¢# and c??, and
vertical components, cl!, cl2, c2' and c2?, of these functions
are defined as

z—b ifx>b
¢ (x,b) = c2(x,b) = ) (6)
! ! 1 otherwise
y—>0 ify>0>
11 b) = 2t b — 7
&' (%,0) = ! (x,0) 1 otherwise @
c2(x,b) =c?(x,0) = x+b+1 (8)
c2(x,b) =c?(x,b) = y+b+1 )

for every possible location x=(x,y) and blur level b.
The overall pixel-spreaded color plane, P, as produced by
the Occlusive Pixel Spreader, may be defined as

Px) = > Pux) (10)
QIS0 x)
= DD P, (11)

< eD:
y! <y’ Q(x)>Q(x")

forall x'=(2/,y’) € D, where D is the set of image locations,
as before, and PL(x") is as defined in Eq. 5. This selective
cumulative sum is conceptually represented in Fig. 6, which
illustrates the meaning of the corners of a spread and how they
are used.

image Pixel Occlusive
Spread | corner Sum Occlusive| pixel-
Corner | list Look-up Sum  |spreaded

blur map List Ty Structure Extractor |——=°
Array Creator
Creator

occlusionmap 4 4

Fig. 7. Block diagram of the Occlusive Pixel Spreader (see Eq. 10). The

blocks correspond to the three main blocks of the spread operation. The
leftmost block creates a two-dimensional array of the corners of the spread
of each pixel (see Eqs (6)-(9) and Fig. 6). The workings of the middle and
rightmost blocks are given by the createstruct and extractsum operations of
Alg. 1.

Algorithm 1: Handling occlusive sum look-up structures

Operation S = createstruct(L)
Input: 2-D array L of corner lists.
1: for each m € {0, ..., [log, (H)]} do

2: Set h=2™.

3 for each Y € {1,...,|H/h]} do

4 Set T' = null.

5: for each z € {1,..., W} do

6: for each y € {Yh—(h-1),....,Yh} do
7: for each pair (v,w) € L(z,y) do
8 Set T =treeadd(T,v,w).

9: end for

10: end for

11 Set S(m,Y,z)=T.

12: end for

13: end for

14: end for

Output: summation structure .S.

Operation L = extractsum(S, )
Input: summation structure .S, occlusion map §2.
1: for each pixel location (x,y) € D do

2: Set s=0, m=0 and ¢y’ =y.

3: repeat

4: if 3/ is odd then

5: Set s +=treeget(S(m,y’, x), Ax,y)).
6: end if )

7: Set y'=|%| and m+=1.

8: until 3’ =0.

9: Set P(z,y) = s.

10: end for
Output: pixel-spreaded color plane P.

Fig. 8.  Operations createstruct and extractsum. L gives at each image
location a list of color intensity values (v) and occlusion (w) levels for all
pixel-spread corners at that location. Operation T' = freeadd(T,v,w) adds
pair (v,w) to the tree as illustrated by Fig. 9. Operation treeget looks up
the sum of all intensity values in the tree from the given node upwards that
have a higher occlusion level. D is the set of locations in the W x H image
domain, and [ | and | | denote integer upward and downward rounding.

The O(N?) cost that would be required by the naive
approach of independently computing the spreading at each
occlusion level is reduced to the order of O(log(N)2N) by
using the method described in the next subsection.
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Fig. 9. An illustrative example of using the treeadd operation (see Alg. 1).
Each stage in the diagram illustrates the addition of a new list item to the tree.
Hollow circles and dotted arrows represent newly added nodes and pointers.
The occlusion levels are represented here in binary, whereas the values to be

stored and summed are represented in decimal. The letter “x” may be digit 0

or 1; for example, “001xxx” represents the range 001000 to 001111.

C. Implementation

The method used for computing the occlusive pixel—
spreading of the proposed depth-blurring algorithm is illus-
trated in Fig. 7.

Firstly, the corner list array is created as follows. For
each pixel location x in the original image, the intensity
9=G(x) and blur level b=B(x) are read. The spreaded in-
tensity v=m is paired with occlusion level w=0(x). The
pair (v,w) is appended to four lists, associated with the four
corner points c'(x,b), c'*(x,b), c2'(x,b) and c?2(x,b) (see
Egs (6)-(9)), except for corner points which lie outside the
image doman D, which are ignored.

The look-up structure is the key part of the algorithm, and
is the part which reduces the complexity of the occlusive se-
lective blurring from O(N?) to O(log(N)2N). The structure
takes as inputs the location of a pixel (by row and column)
and an occlusion level, and outputs the sum of all the entries
with a higher occlusion level in the corner list array in the
rectangle bounded by that pixel and the top-left pixel of the
image. This is created firstly by partitioning the image domain
into a hierarchy of groups of adjacent rows of pixel locations,

|4

(a) ' (b)

Fig. 10. Examples of occlusive selective blurring applied to Tsukuba head
and lamp image and disparity map [10]. The depth map was simply taken as
the reciprocal of the disparity map; then, each blur level is computed according
to Eq. (1), with k£ chosen each time to attain a desired maximum blur level.
(a) Lamp in focus. (b) Cans in focus. Max blur levels (i.e., max spread, in
pixels, in any direction): top: 3; middle: 5; bottom: 10.

with sets of 1 row at the bottom level of the hierarchy, then
sets of 2 adjacent rows at the next level, then sets of 4 adjacent
rows, then sets of 8 adjacent rows, etc. For each level of the
hierarchy, and each row group, a one-dimensional array (one
location for each horizontal position) of trees is constructed
(by createstruct in Alg. 1), each of which can be used to
efficiently look up the sum of all values in that row group to the
left of the given column. These trees are referred to herein as
occlusive sum look-up trees. The look-up tree for each location
in each of these one-dimensional arrays can be considered to
hold an array of partial sums, one for each occlusion level.

The final block (Occlusive Sum Extractor) reads the oc-
clusive sum look-up structure for every pixel in the image.
To calculate the cumulative occlusive sum for a given row,
column and occlusion level, the appropriate partial sums from
the appropriate row groups are separately extracted then added
together (as in extractsum in Alg. 1).

The workings of the occlusive sum look-up tree are illus-
trated in Fig. 9. Each tree node T, at the root of its own subtree,
may be regarded as a pointer to a tuple, (V, Ry, L7, Ur),
where V1 € R is the graylevel (or color component) total for
the subtree, R C R is the smallest contiguous subset of R
which spans all w (occlusion) values covered by the subtree,
and Lp and Ur are pointers to the lower and upper branch
nodes which (optionally) sprout from node 7. The occlusive
sum look-up tree has the following properties: (1) When an
addition or removal is made to the tree, an unaltered copy of
how the tree was before may be retained at no extra cost, and at
each stage of the algorithm, all non-new nodes are shared with
the previously constructed trees. (2) The number of operations
required to add a new occlusion level-value pair to a tree is of
order O(log(M)), where M is the maximum absolute value
of any integer occlusion level. (3) The amount of additional
storage space required each time a new occlusion level-value
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Fig. 11.

i

Visual example of the effects of employing low-quality input blur maps. Top row, left to right: (1) unadultered blur map (black = unblurred; max

blur = 2 pixel widths); (2) resolution-reduced blur map (by a factor of 4); (3) resolution-reduced and noise-degraded blur map (resolution reduced a factor
of 4 and Gaussian noise added of s.d. 0.1). Bottom row: synthetically blurred images using low-pass filtered versions of the given blur maps (using 15x 15
uniform weighted average). The occlusion map applied in each case was the inverse of the filtered blur map.

pair is added is O(log(M)). (4) The number of operations
required to look up a sum value for a given occlusion level is
O(log(M)).

The asymptotic complexity of the cost of applying the algo-
rithm to an N-pixel image (N=H W) with N occlusion levels
is dominated by the createstruct and extractsum operations
(see Alg. 1). These operations involve, for each pixel location,
O(log(H)) calls to treeadd or treeget, each of which is of
order O(log(HW)). Each call to either createstruct or extract-
sum will therefore be O(HW log(H)log(HW)). Thus the
Occlusive Pixel Spreader (see Figs 5 and 7) and the top-level
Occlusive Selective Blurrer are O(HW log(H)log(HW))
operations. Hence, assuming a fixed aspect ratio as N gets
larger, the total cost is of order O(log(NN)2N). This compares
with the O(N?) cost that would be required by the naive
approach of independently computing the spreading at each
occlusion level as illustrated in Fig. 6, assuming the worst
case scenario of a different occlusion level for every pixel.

Fig. 10 shows the results of applying the proposed occlusive
selective blurring technique to a raw image and disparity map.
Fig. 11 compares blurring using low-resolution and noisy
blur maps. It can be observed that the visible degradation to
the blurred image is more affected by the blur map’s noise
degradation than resolution reduction. The level of visual
quality of the output depends on how well the depth map
matches the perceived depths of each part of the scene. The
method will in fact fail when either the resulting depth-
blurred image appears to be degraded (i.e., when the image
has noticeable distortion other than realistic depth-of-field) or
if the wrong objects are in sharp focus, which is equally a
problem for foveation filtering.

Fig. 12 compares the output of the proposed technique

to real-world depth of field effects as caused by the lens
of a camera. Note that if the level of blur already present
is sufficient for sourcing the depth map from a depth-from-
defocus technique [24], the in-focus depth should be chosen
as the existing focal plane, so that the synthetic blurring will
enhance the photographer’s original choice of depth of interest.

III. EVALUATION METHOD

This section describes the evaluation method to assess the
relative merits of two styles of space-variant blurring, namely
depth and foveation blurring. These two styles of blurring are
evaluated in an image coding context as a preprocessing stage
prior to a JPEG codec.

A. Subjective testing

Two types of test are performed, namely a single stimulus
test and a method-of-adjustment [17] test. The first type of test,
which we refer to as SSCQS, is a single-stimulus modified ver-
sion of Variant I of the Double-Stimulus Continuous Quality
Scale (DSCQS) method [25], producing a score for each image
in the range 0 to 100. These tests deliberately avoid showing
any image under test alongside its reference image.

The method-of-adjustment test is designed to address the
problem of the DSCQS adjectives (excellent/good/fair/poor/
bad). This test performs JPEG coding of the unblurred test
image in real time to produce, for each image, an equivalent
distortion as judged by the subject. Each subject is instructed
as follows: “The right-hand picture is associated with a
vertically-sliding scale that will change the picture’s quality
when you move it. You are asked to move this sliding scale
up or down until it is your opinion that both pictures have the
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Fig. 12.  Visual comparison between the output of the proposed approach
and true depth of field as cause by a camera lens. Top: input image. Upper
middle: manually-created input blur map (black: unblurred), the inverse of
which was used as the occlusion map. Lower middle: emulated depth of field
using the proposed approach, with average blur set to 3 (i.e., spread of 3 pixel
widths in each direction). Bottom: real depth of field created by the lens of
a camera (a Canon EOS 500D with 50mm lens, set at F2.8).

same overall quality.” In order to represent this quality on a
meaningful scale, we record the compression ratio of each im-
age, in logarithmic form to reduce sensitivity to outliers when
processing results, as opposed to using the compression ratio

directly. We therefore store log(b2/b1) where by represents the
bitrate of the (preblurred) image under test and bs is the bitrate
of the equivalent-quality unblurred JPEG-encoded image.

As required for DSCQS Variant I, each test image (or pair of
images in the case of method-of-adjustment tests) is displayed
to the subject until he chooses to proceed to the next test. The
ordering of images is randomized, with the constraint that no
two images from the same raw image are shown in succession.
No subject spent more than 30 minutes in a complete test
session.

B. Blurring

Our foveation method assumes an established contrast
threshold formula [26], which provides a model of the di-
rectional variation of eye sensitivity. Specifically, we used
the cutoff frequency interpretation of Wang, Lu & Bovik [4],
whereby, for all e,

o 621n(1/CTO)
1€ = el +eza

where f.(e) is the spatial cutoff frequency (in cycles per unit
angle) for a given retinal eccentricity, e (that is, the angle,
relative to the observer’s eye, between a given point and the
point of focus), and es, o and CTy were constants defined
as follows: ez = 2.3°, a = 0.106° /cycle and CTy = 1/64.
The viewing direction is assumed to be head-on and angles are
taken directly from pixel co-ordinates using a fixed conversion
factor based on a viewing angle of one pixel width at the
nearest point of the image to the viewer. The conversion
from f.(e) values into a blur map is done by calculating the
corresponding 1/ f.(e) values and scaling them proportionally,
such that the desired mean blur level is attained. This is so
that the imposed blurring will be the same at each location
relative to the eye’s local resolution.

In order to provide a fair comparison, both blurring schemes
are implemented using the proposed algorithm, with the only
differences being the blur maps and occlusion maps used. The
blur maps used for the depth blurring are created in a manner
such that, firstly, the chosen point of interest is in focus and,
secondly, the histogram of the number of pixels incurring
each blur level is exactly the same as for the foveation
blurring. Therefore it can only be the spatial distribution and
nature of the blurring, rather than the amount of blurring, that
determined the outcome of these experiments. The histogram
of the depth blurring is created by taking the depth map and
ranking image locations in order of how close their depth
values are to that of the chosen point of interest. The blur levels
are then assigned in order of blurring, such that the point of
interest is the sharpest in focus. When the depth values alone
are not sufficient to define the ordering of the pixels (that is,
when the same depth value is shared by more than one pixel),
the order is resolved according to their distances from the point
of interest.

12)

C. Experimental setup

Six publicly available images were chosen for the experi-
ments. Three of them, Cones (450x375) Dolls (463 x370) and
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TABLE I
SSCQS AND METHOD-OF-ADJUSTMENT TEST SCORES

Normalized SSCQS Method-of-adjustment

Raw |Blur| Rate score (0-100) score (cmpr ratio)
image |level | (bpp) || Fovea- | Depth- | Comparison || Fovea- | Depth- | Comparison
ted |blurred|Mean| C.I. ted |blurred| Mean| C.L

(mean) | (mean) (mean) | (mean)

3104 ||48.42| 42.82 |-5.61|5.10|| 1.121 | 1.141 |1.019(1.113
0.3 [[25.13] 22.91 [-2.22(4.73 || 1.254 | 1.253 [1.000|1.089
Cones| 5 | 0.4 [[43.11 46.07 | 2.96 |5.45{| 0.982 | 1.120 {1.141|1.081
0.5 [[51.53] 54.63 | 3.10 | 6.17 || 0.880 | 0.859 [0.976]1.117
10 | 0.4 [/29.00 | 43.85 [14.85(4.14 (| 0.873 | 1.014 [1.162]|1.156
3 | 04 [|43.00| 42.27 [-0.73|3.91 || 1.159 | 1.207 {1.042|1.107
0.3 []22.32] 22.26 [-0.06|4.11 || 1.153 | 1.191 [1.033]1.065
Dolls | 5 | 0.4 ||39.56 | 44.47 | 491 |5.06| 1.015 | 1.062 |1.046|1.062
0.5 || 50.48| 57.86 | 7.38 [4.96 || 0.899 | 1.018 |1.133]1.138
10 | 0.4 || 24.83 | 36.87 (12.03|5.16 || 0.862 | 0.963 [1.118]|1.083
3 104 [[53.03| 56.71 | 3.68 |5.28 || 1.036 | 1.074 |1.036|1.100
0.3 [[33.53 ] 33.63 | 0.09 [4.51 ] 1.087 | 1.211 |1.114|1.104
Art | 5 | 0.4 [[50.16 | 55.00 | 4.84 |3.97 || 1.009 | 1.032 [1.023|1.075
0.5 || 56.07 | 66.71 [10.64|5.05 [ 0.902 | 0.940 [1.043]1.099
10 | 0.4 || 32.50 | 46.44 [13.94|5.11 (| 0.857 | 0.956 [1.116|1.110
3104 []62.97| 62.41 [-0.56|4.28 || 0.999 | 1.037 |1.038|1.081
0.3 [[34.72] 36.38 | 1.66 |5.29 | 1.094 | 1.122 [1.026]1.041
Akiyo| 5 | 0.4 || 61.52] 62.44 | 0.93 [3.38 || 1.019 | 0.936 |0.918{1.078
0.5 []68.26] 69.32 | 1.06 | 3.80 || 0.824 | 0.824 [1.000|1.090
10 | 0.4 [[24.90| 32.29 | 7.39 [ 4.88 || 0.750 | 0.747 {0.995]|1.040
3 |04 [|40.03| 38.60 [-1.43|3.85]|| 1.087 | 1.131 |1.040|1.051
Fore- 0.3 || 19.18 ] 21.21 | 2.03 |2.85| 1.235 | 1.247 [1.010]1.056
man | 5 | 0.4 ||39.31]41.69 | 2.38 [4.13]| 1.082 | 1.068 |0.987]1.049
0.5 [[45.66| 50.55 | 4.90 |5.58 (] 0.911 | 0.912 [1.001]|1.067
10 | 0.4 [[22.48] 25.39 | 2.91 |3.88 ] 0.946 | 0.958 [1.013]1.064
3 104 []32.86] 38.66 | 5.79 |4.84 || 1.087 | 1.139 [1.048|1.073
0.3 || 17.22] 17.70 | 0.49 [4.05] 1.242 | 1.277 [1.028]1.043
Silent| 5 | 0.4 || 33.14 | 40.59 | 7.45 [4.45]|| 1.117| 1.199 |1.073[1.091
0.5 || 52.83] 57.67 | 4.83 [4.94 | 1.068 | 1.156 [1.082]1.084
10 | 0.4 || 21.68 | 28.97 | 7.29 | 4.74 || 0.926 | 1.006 [1.086|1.085

Art (463x370), were from the Middlebury Stereovision test set
[22], [23] (with continuously-varying disparity maps). Each of
the remaining three was the first frame of the well-known
Akiyo, Foreman and Silent video sequences (all 352x288)
(with a two-level background-foreground depth map, with the
human as foreground). For each test image, we selected a
fixation point on a face, as commonly done in the assessment
of foveation techniques (e.g., [5], [27], [28]). The use of a
single fixation point reflects a number of foveated coding
publications [5], [7], [29], [30].

We used the Sun Microsystems Standard JPEG Image
Writer (v. 0.5) and focussed on a range of bitrates in the region
of 0.5 bits per pixel (bpp) or less. We investigated three blur
levels: 3, 5 and 10 pixel widths. These levels are the average
of the b values applied when spreading a pixel over an area of
width 2b+ 1. Each b value was rounded to the nearest integer
value before being used, so that inter-pixel interpolation will
never be necessary. For the middle blur level, three fixed
bitrates were applied: 0.3, 0.4 and 0.5 bpp; for the others, only
0.4 bpp were applied. All images were shown to the subject
at native screen resolution. We used an LCD monitor with
a resolution of 0.264 mm per pixel and assumed a viewing
distance of 40 cm (£10 cm). A specially-devised graphical
user interface displayed the images under test, located centrally
on the screen with mid-gray background. The slider bar for
user input was located vertically on the rightmost part of the
screen. User input was provided by an optical mouse located

TABLE I
MEAN PER-SUBJECT SCORE COMPARISONS ACROSS IMAGES

Normalized Method-of-
Blur | Rate SSCQS results | adjustment results
Level | (bpp) | Cones, [ Akiyo, | Cones, | Akiyo,
Dolls | Foreman | Dolls | Foreman
& Art | & Silent | & Art | & Silent
3 0.4 -0.89 1.27 1.032 1.042
0.3 -0.73 1.39 1.049 1.021
5 0.4 4.24 3.58 1.07 0.993
0.5 7.04 3.6 1.051 1.028
10 0.4 13.61 5.86 1.132 1.031
[Overall mean: [ 4.65 [ 3.14 [ 1067 | 1.023 ]

on a desk in front of the subject, above which the monitor was
held at eye level by an adjustable stand.

Forty-three non-expert subjects performed both types of
tests for a selection of test images, blur levels and bitrates.
Precautions were taken to ensure subjects were ignorant of any
processing that had been applied to the images. All subjects
had normal or corrected to normal vision. In both types of test,
each subject was asked to assess overall quality; the subject
was asked to think in terms of his preference in choosing an
image as the backdrop of his computer desktop.

All the results of both tests types were passed through the
recommended screening for DSCQS tests [25]. For the results
we will discuss in Section IV, no observers needed to be
rejected.

IV. DISCUSSION

Table I shows the mean scores of both test types for both
styles of preblurring. In each case, a higher score is better
than a lower score. The SSCQS scores were normalized so
that each subject had the same mean and standard deviation
as the overall mean and standard deviation across subjects;
following this, all statistics were computed using the rec-
ommended DSCQS formulae [25]. For SSCQS, the statistics
were computed on the scores directly. For the method-of-
adjustment tests, the statistics were computed on the log
compression ratios; however, to add meaning to these figures,
their antilogarithms are displayed (i.e., compression ratios
instead of log compression ratios); therefore mean here is the
geoemetric mean for the method-of-adjustment results (but the
normal, arithmetic mean for the SSCQS results). Comparison
figures between the equivalent results for foveated and depth-
based blurred images are also given; for the SSCQS results
these are the mean score differences (positive = “depth-based
is better”) whereas for the method-of-adjustment results they
are relative ratios (greater than one = “depth-based is better”).
For the SSCQS results, the half-widths of the 95% confi-
dence intervals are given (i.e., true = estimate* CI), while the
multiplicative equivalents of these are given for the method-
of-adjustment results (i.e., true = estimate ¥ CI). Statistically
significant results (where the comparison values lie outside
the confidence intervals) are highlighted in bold font.

The average of the compression ratios across the test images
was 1.016 for the foveated images, and 1.060 for the depth-
blurred images. That is, the average foveated JPEG image was
as good as as the equivalent unblurred JPEG image with 1.6%
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Fig. 13. Test images in the case of mean blur level 10 and 0.4 bpp encoding. Rows 1 and 2, left to right: Cones, Dolls and Art. Rows 3 and 4, left to right:
Akiyo, Foreman and Silent. Rows 1 and 3 employ foveation-preblurring, and rows 2 and 4 give the equivalent depth-preblurred images. The point of interest is
the right eye of the face or face-like object in each image (the central doll in the case of Dolls). The depth-preblurred images in row 2 were generated using
multi-level disparity maps from the Middlebury test set (see Fig. 1, left, and Fig. 17). The depth-preblurred images in row 4 were generated using two-level
depth maps which separate the foreground (person) from the background (see Fig. 1, right).

more bits, and the average depth-preblurred JPEG image was
as good as the equivalent unblurred JPEG image with 6.0%
more bits.

Table II shows the averages of comparison values across
subjects and images. All test images for the maximum blur

level (10) are shown in Fig. 13.

Overall, 14 out of 30 images gave statistically significant
results in at least one of the two types of test. Of these, 12
results indicated an average preference for the depth blurring
over the foveation blurring. The Foreman image yielded no sta-
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Fig. 14.  Sample zoomed-in extracts from different variants of the Cones
image. Preblurring: top: foveated; bottom: depth-based. Blur levels, left to
right: 3, 5 and 10. All encoded at 0.4 bpp. The pseudorandom JPEG artifacts
around the eye can be seen to be worse for the depth-based blurring in the
case of blur level 3 but worse for the foveation in the case of blur level 10,
explaining the statistically significant negative and positive score differences
for these images.

tistically significant results whatsoever for any of its variants.
This is understandable as, for this image, the visual differences
between the two types of blurring are not easy to distinguish
even when side by side (see Fig. 13). For this image, the
area classed as foreground (the face) occupied a large portion
(roughly 30%) of the image, and within this area, both types
of blurring were identical, due to the preservation of blur-level
histograms (see section III-B). Two results only (the SSCQS
test for the minimum-blur Cones image and the method-of-
adjustment test for the 0.4 bpp mid-blur Akiyo image) gave
statistically significant results favouring the foveation blurring
over the depth blurring. These can be explained by fact that
at low blur levels and bitrates, the JPEG compression artifacts
can have visual dominance over the blurring effects, and the
question of which type of blurring has better perceived quality
can become obscured by chance differences in the appearances
of compression artifacts (see Fig. 14).

Of the statistically significant results, 9 were from the
Middlebury test set images and 5 were from the images with
two-level depth maps. This is reflected in higher cross-image
mean score differences of 4.65 compared with 3.14 for the
SSCQS tests and 1.067 compared with 1.023 for the method-
of-adjustment tests (see Table II). In terms of bitrate, this
means that, on average, the depth-preblurred images were as
good as the 6.7%-higher bitrate foveated equivalents in the
case of the Middlebury test set images, and as good as the
2.3%-higher bitrate foveated equivalents in the case of the
other test images.

The results show a clear preference for the higher blurring
level of ten pixel-widths, for which the method-of-adjustment
tests gave statistically significant results for all three Mid-
dlebury test set images, and for which the SSCQS tests
gave statistically significant results for all images other than
Foreman.

Fig. 15.
(blur 5, 0.4 bpp), Akiyo (blur 10, 0.4 bpp) and Silent (blur 5, 0.4 bpp). Top
row: foveation preblurring; bottom row: depth-based preblurring. All these
images yielded statistically significant results in at least one of the two test
types, all in favour of depth-based blurring.

Zoomed-in portions of sample test images of (left to right) Cones

?

Fig. 16. Zoomed-in portions of Dolls, with foveation preblurring (top) and
depth-based preblurring (bottom), with (left to right) blur levels 3, 5 and 10
and JPEG bitrates 0.4 bpp, 0.5 bpp and 0.4 bpp.

Fig. 15 shows sample extracts from test images that ex-
hibited statistically significant positive results. In each case,
the distribution of blurring as provided by the depth blurring
achieves a more satisfying image than the foveation. For
example, for Silent, the foveation causes an undesirable level
of blurring of the necklace, whereas the depth blurring causes
slightly greater blurring of the background, which is more
acceptable to the viewer. Fig. 16 shows sample extracts from
different variants of the Dolls image. Statistically significant
results were obtained for the images with blur levels 5 and 10,
but not for blur level 3, for which the JPEG artifacts dominated
over the visible differences in blurring.

A further point of note is the robustness of the proposed
algorithm in the case of small patches of missing information
from the disparity map. The occlusive effects of the algorithm
causes all blurring in these regions to be completely contained
within the regions, thus making them barely noticeable due to
their small size. Examples of such missing information can be
seen in Fig. 17, in the form of small visible patches of black
(representing zero disparity, which is interpreted as maximum
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Examples of disparity maps associated with the test images. It is
possible to notice the errors in the form of black patches.

Fig. 17.

distance from the camera). For these patches, no artifacts are
apparent in the corresponding depth-blurred images.

To summarize, the proposed depth blurring approach was
found to be significantly preferable to the foveation filtering
for 12 out of 30 test images for at least one of two types of
subjective tests; a converse preference was found for only 2
out of 30 test images. On an equivalent JPEG quality scale,
the depth-preblurred images were as good as the 6.7%-higher
bitrate foveated equivalents in the case of test images for which
we used a high-detail disparity map, and as good as the 2.3%-
higher bitrate foveated equivalents in the case of images with
background-foreground depth maps.

V. CONCLUSIONS

We have presented a novel selective blurring algorithm
that provides a simulation of limited depth of field, with the
desirable properties of aiming to mimic naturally-occurring
occlusion effects and of being able to handle a continuous
range of blurring and occlusion levels. The algorithms has
only an O((log N)?N) cost for an N-pixel image. We have
demonstrated the algorithm in the context of space-variant
prefiltering for bitrate reduction, with the argument that when
human fixation has to be estimated because eye tracking is
unavailable, blurring of this style will generally be visually
more acceptable than the equivalent level of foveation blurring.
The approach is particular appealing now given the increasing
availability of cameras providing depth information (e.g.,
stereo or time-of-flight cameras or set-top boxes with software
for 2D to 3D video conversion).

As future work, we will develop our approach to work
with circular point spread functions and to cater for partial
occlusion, by applying a gradual occlusion of the blur of far
objects when the boundaries of nearer objects are themselves
blurred.
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