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Contextual and Variational Contrast Enhancement

Turgay Celik and Tardi Tjahjadsenior Member, |IEEE

Abstract

This paper proposes an algorithm which enhances the comifa input image using inter-pixel contextual informatio
The algorithm uses a two-dimensional (2D) histogram of thgui image constructed using mutual relationship betwesh e
pixel and its neighbouring pixels. A smooth 2D target histmg is obtained by minimizing the sum of Frobenius norms ef th
differences from the input histogram, and the uniformlytritisited histogram. The enhancement is achieved by mapiiag
diagonal elements of the input histogram to the diagonaherfgs of the target histogram. Experimental results shaw e
algorithm produces better or comparable enhanced imagesftur state-of-the-art algorithms.

Index Terms

Contrast enhancement, histogram equalization, imagetyj@hancement, face recognition.

I. INTRODUCTION

Contrast enhancement is used to either increase the coofras image with low dynamic range or to bring out image
details that would otherwise be hidden [1]. The enhancedjéraoks subjectively better than the original image as tley g
level differences (i.e., the contrast) among objects argkdraund are increased.

The conventional approach to enhance the contrast in aneinsap manipulate the grey-level of individual pixels. Gibb
histogram equalization (GHE) [1] uses an input-to-outpapping derived from the cumulative distribution functi€®@OF) of
the image histogram. Although GHE utilizes the availableygscale of the image, it tends to over-enhance the imageiéth
are large peaks in the histogram, resulting in a harsh arsy ragipearance of the enhanced image. It does not alwaysqaodu
satisfactory enhancement for images with large spatidhtian in contrast. Local histogram equalization (LHE) aithms
have been developed, e.g., [2], [3], to address the aforéomexdl problems. These algorithms use a small window thdes!
over every image pixel sequentially and the histogram oélgixvithin the current position of the window is equalizedHE
sometimes over-enhances some portion of the image and asw, mmd may produce undesirable checkerboard effects.

Other algorithms that focus on improving GHE [4]-[9] can iaek satisfactory contrast enhancement, but the varidation
the grey-level distribution may result in image degrada{it0]. Dynamic histogram specification (DHS) [10] uses tlesickd
histogram, generated dynamically from the input image, talify the input image histogram. In order to retain the feasu
in the input image histogram, DHS extracts the differenitidbrmation from the input image histogram and incorpcsate
additional parameters to control the enhancement sucheasnihge original and the resultant gain control values. Hewe
the degree of enhancement that can be achieved is not sagmifion order to address the artefacts due to over-enhamteme
and saturation of grey levels of GHE, the original image dgsam is modified by weighting and thresholding before the
histogram equalization in [9]. The weighting and threshaidare performed by clamping the original image histograrara
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upper threshold and at a lower threshold, and transformiintpe values between these thresholds using a normalizegpo
law function with an index. We refer the algorithm as weighteresholded histogram equalization (WTHE). WTHE proside

satisfactory enhancement with the carefully selectedultef@rameter setting.

One group of algorithms decompose an input image into @iffesubbands so as to modify, globally or locally, the mamglst
of the desired frequency components of the image data usitjsoale analysis [11]-[14]. These algorithms enable the
simultaneous global and local contrast enhancement bgftraning the appropriate subbands and in the appropriatesc
For example, the centre-surround Retinex algorithm [1Hiexes lightness and colour constancy in images. Howeker, t
enhanced image may include “halo” artefacts, especiatiggaboundaries between large uniform regions. A “greyintj oan

also occur resulting in the image of the scene tending to aidcky.

Optimisation methods have also been used for contrast eeh@nt. Convex optimisation is used in flattest histogram
specification with accurate brightness preservation (FBIBA[15] to transform the input image histogram into the dsitt
histogram, subject to a mean brightness constraint. Thisliewed by applying an exact histogram specification alttjon
to preserve the image brightness. FHSABP behaves veryasitoilGHE when the grey levels of the input image are equally
distributed. Since it is designed to preserve the averagatbess, FHSABP may produce low contrast results whenwbmge
brightness is either too low or too high. Contrast enhanegrimehistogram modification framework (HMF) [16] minimizes
cost function to compute a target histogram. The cost fands composed of penalty terms of minimum histogram dewiati
from the original and uniform histograms, and histogram atiness. Furthermore, the edge information is embeddedtiet
cost function to weight pixels around region boundariesddrass noise and black/white stretching [16]. In order tsiglea
parameter free contrast enhancement algorithm, genegticitdm (GA) is employed in [17] to find a target histogram wahhi
maximizes a contrast measure based on edge information.eWe this algorithm as contrast enhancement based on GA
(CEBGA). CEBGA suffers from the drawbacks of GA based altpons, namely dependency on initialization and convergence

to a local optimum. Furthermore, the convergence time ip@nional to the number of distinct grey levels in the inpugge.

All the above approaches use a 1-dimensional (1D) histogftimer than HMF [16], they do not take into account the

contextual information content in the image. HMF [16] udes image edge information to weight the 1D histogram.

We propose a contextual and variational contrast enhanmtteatgorithm (CVC) to improve the visual quality of input iges
as follows. Images with low-contrast are improved in termhsm increase in dynamic range. Images with sufficiently high
contrast are also improved but not as much. The colour guali improved in terms of colour consistency, higher cattra
between foreground and background objects, larger dynamge and more image details are visible. The enhanceneregs
is based on the observation that contrast can be improveddrgdsing the grey-level differences between the pixelarnof
input image and their neighbours. Furthermore, for the pseof image equalization, grey-level differences shoel@gually
distributed over the entire input image. To realise thessenlations, a 2D histogram of the input image is construated
modified with a priori probability which assigns higher patiility to the high grey-level differences, and vice versa2D
histogram, for each grey-level in the input image, the itigtion of other grey-levels in the neighbourhood of theresponding
pixel is computed. A smooth 2D target histogram is obtaingdriinimizing the sum of Frobenius norms of the differences
from the 2D input histogram, and the 2D uniformly distritditeistogram. The contrast enhancement is achieved by mgappin

the diagonal elements of the 2D input histogram to the diabelements of the 2D target histogram.

The paper is organized as follows. Section Il presents tbpgsed CVC. Section lll presents the subjective and queintt

comparisons of CVC with four state-of-the-art enhancentectiniques. Section IV concludes the paper.



a0
20

(a) (b)

Fig. 1. The input image (a) and its 2D histogram (b) usihg 7 neighbourhood. For display purpodg, (m, n) is shown in logarithmic scale.

[I. PROPOSEDALGORITHM (CVC)

A. Grey-Scale Image Enhancement

Consider an input imageX = {z (i,j) | 1 <i < H,1 < j < W}, of size H x W pixels, wherez (i, j) € [0,Z"] and
assume thaX has a dynamic range 6t4, z,,] wherex (i, j) € [zq4,z,]. The objective of CVC is to generate an enhanced
image,Y = {y (i,5) | 1<i< H,1 <j<W}, which has a better visual quality thdd. The dynamic range oY can be
stretched or compressed into the interfeal, y,.], wherey (4, j) € [ya, Yul, ¥a < yu and{yq,y.} € [0,Z*]. In this work, the
enhanced image utilizes the entire dynamic range, e.garfd-bit imagey, = 0, andy, = 2% — 1 = 255.

Let X = {z1,22,...,2x} be the sorted set of all possiblE grey-levels that can occur in an input imade where

T <we < ...<xx,WhereK = 256 for an 8-bit image. The 2D histogram of the input ima§es computed as
Hx:{hx(m,n)}1§m§K,1§n§K}, Q)

wherehy (m,n) € [0,Z1] is the number of occurrences of th& grey-level () in the neighbourhood of thex™ grey-level
(z,,). Different types of neighbourhood can be employed, howewea typical implementation of CV@ x w neighbourhood
around each pixel is considered. For example, Fig. 1 shoevinhut image and its 2D histogram usifigk 7 neighbourhood.
The image has more bright regions than dark regions, thusistegram has larger values located at higher grey-valnes.
homogeneous regions, the neighbours of each pixel havesimilar grey-levels which result in higher peaks at diadamra
near-diagonal elements of the histogram.

For an improved contrast there should be larger grey-leifidrdnces between the pixel under consideration and its

neighbours. Thus, the 2D histogram is modified according to
hX (’)’)’L, ’)’L) = hX (m7 ’)’L) hp (me, IEn) (2)

and

hp (m, xn) = (|Tm — 20| +1) / (xx — 21+ 1), 3)

where hy (zn,, z,) € [0,1] assigns a weight to the occurrences(of,,z,) which is proportional to the modulus of the
grey-level difference between,, andx,,. The 2D histogram shown in Fig. 1(b) is updated as shown in &) using the

hp (zm, z,) shown in Fig. 2(a). It is clear from Fig. 2(a) thay (z.,., ) assigns higher weights to the components according
to their distance from the diagonal elements. ThHysz.., z,,) enhances larger differences which results in greater asntr

in the overall image.
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Fig. 2. Updating the 2D histogram shown in Fig. 1(b): fg)(zm,z») computed using Eq. (3); and (b) Updated 2D histograa{m, n) using Eq. (2).

For display purposehx (m,n) is shown in logarithmic scale.

log(h,(m,n))

The updated 2D histograiy is normalized according to

K K
hx (m,n) = hy (m,n)/ ZZhX (i,7) 4
i=1 j=1
to give a CDF
Pe=1Q B(m)=>" he(i,j) |[m=1,... K5 (5)
i=1 j=1
LetY = {y1, 49, ...,yx } be the sorted set of all possihlé grey-levels that can occur in output ima§ewherey; < y2 <

... < yx.In order to map the elements &f to the elements o}, it is necessary to determinefd x K target histogram
H; and its CDFP. In order to equally enhance every possible occurrence ef-lgvels of the input image pixels and their
neighboursH; can be selected as a 2D uniformly distributed histogram
1
Hu_{hu(m’,n’)_ﬁpgm’g[(,lgn’gK}. (6)

However, such a selection does not consider the contribatidhe 2D input histogram. Instea#l; should have a minimum

distance from the input histogram, i.e.,
H; = argmin||H — Hy||, @)
H

where||-|| computes the norm. Motivated by the maximum entropy prieciH; should also have a minimum distance from

the uniformly distributed histogram, i.e.,
H; = argmin|H — H||. (8)
H

Furthermore, in order to satisfy a smooth mappiHg,should have minimum deviations between its components, i.e
H; = argmin||HD||, 9)
H

whereD € RE*K is a K x K bidiagonal difference matrix

d —-d 0 -~ 00 0
0 d —d - 00 0
D=1: = S (10)
0 0 0 - 0 d —d
(0 0 0 - 00 d

whered is a constant which is set to 1. The matrix multiplication . E9) results in a matrix which holds differences between
the horizontal elements of the matd. The vertical elements can also be considered, howeverrthaneement result will

not change significantly.



In order to determine the target histogrdf, all the conditions are combined into the following optiatibn function
f(H) =o|H-Hy|| + 3 |H - Hy|| +v|DH], (11)

wherea, 8 and v are weighting factors for the contributions from differergnditions, and{«, 3,v} € (0,1]. The target
histogram is obtained by minimizing (H) according to

H; = argminf (H). (12)
H

The closed form solution to minimizing Eq. (12) is obtainedreplacing the norm operation with square of the Frobenius
norm (also known as Euclidean norm) which is defined as tharsgwot of the sum of the absolute squares of its elements.

Hence, the minimization of (H) with respect toH is
f (H) = a|[H — Hy|[7 + 5|/H — Hy|[7 + 7 [DH|;

or equivalently
f(H) = atr((H-H)H-H))+
gt ((H-H,)H-H)")+ (13)
Y r (HD (HD)T) ,

where tr(A) is trace of the matrixA and T is the transpose operator. The target histoddars obtained by solving
Vuf(H) =0, (14)

whereVy is the K x K Jacobian matrix, an@ is the K x K zero matrix. Using the properties of matrix trace, the targe

histogram is derived from Eq. (14) (see the appendix for tetaitd derivation) as

((a+B)T+~+DD") " (aHy + SHy) (15)

R~ (aHy + fHy) = S (oHy + fH,),

H;

whereR is a K x K tridiagonal matrix in the form of

(%o 10 -0 0 0 |
1 7 1 -0 0 0
R=(-d>y)| ¢ @ Co : ; (16)
0 0 0 - 1 1y 1
000 0 - 0 1 14w |

wherery = (2vd2 +a+ 6) / (—d%). The inverse of a generalized tridiagonal matrix can be ageg recursively [18].
SinceR is a special case of the generalized tridiagonal matrixinptR ' = S = {s(m,n) [1<m < K,1<n<K}
gives s (m, n) of the inverse matriXS as follows

(=D™F " f(m—=1)p(n+1)

—a) ok)  + msn
_ O(m—1)¢p(m+1) .
s(m,n) = (7;27) ( 9()1(() ,  m=n 17)
(=)™ §(n—1)p(m+1)
=) k) 0 Mo
where fork=1... K
rof (k—1)— 0 (k—2), k<K
6 (k) = 00 ( ) —0( ) (18)

(14+7r0)0(k-1)-0(k-2), k=K,
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Fig. 3. Enhancing the input image in Fig. 1 (a) using CVC with= 8 = v = 1/3: (a) Enhanced output image; (b) Input’( to output (V) grey-level
data mapping; and (c) The 2D target histogrifn

and fork=K...1

¢(k)_{ (Itro)d(k+1)—d(k+2), k=K 1)

rop (k+1)— ¢ (k+2), k< K.
For Eqg. (17) the initial conditions of (—1) =0, 0(0) =1, ¢ (K +1) =1, and¢ (K + 2) = 0 are used. Sincéa, 5,7} €
(0, 1], the inverse matriXS always exists.
The 2D target histograril, is normalized to give the target probability distributiaim€tion

he(m/,n') = he(m/,n/ /ZthZ] (20)

=1 j=1

The target CDF ofy (m/,n’) is defined as

P ii N 3% @1)

In order to enhance the image, the grey-levels of the inpagirare transformed to the output grey-levels for a givepuut
range of[y4, y.] using the CDFsP (m) and P; (m’). The input grey-level:,, is mapped to the output grey-level,, by
finding an indexm’ for a given indexm according to

/

m' = argmin |P(m)— B (i)]. (22)
i€{1,2,...,K}

Using Eq. (22), each distinct grey-level of the input im&jas transformed to a corresponding output grey-level toteraa
enhanced output imag¥. The resultant enhanced image is shown in Fig. 3(aJd@ry.] = [0, 255] with the input to output
grey-level data mapping shown in Fig. 3(b) and the 2D targgtbgramH; shown in Fig. 3(c) fora = 5 =~y =1/3. CVC

increases the image brightness while keeping the high asmiretween object regions.

B. Colour Image Enhancement

One approach to extend the contrast enhancement to colagesris to apply the algorithm to their luminance component
(Y) only and preserve the chrominance components. Anotherrisultiply the chrominance values with the ratio of theirunp
and output luminance values to preserve the hue. The forpmpach is employed in this paper. THEV colour space [1] is
selected because the conversion betwe8B and YUV colour spaces is linear which considerably reduces the atatipnal
complexity for contrast enhancement in colour images. &#ighows the enhancement of tBaboon colour image. It shows

that the contrast of the input image has been increased wigleletails of the input image are retained.

IIl. EXPERIMENTAL RESULTS
A. Dataset and Quantitative Measures

We use standard test images from the datasets in [19]-[21fioate and compare CVC, both qualitatively and quaivigtist
with our implementations of WTHE [9], FHSABP [15], the wetgd histogram approximation of HMF [16], and CEBGA



Fig. 4. Enhancing the input imadgaboon using CVC witha = 3 = v = 1/3: (a) Input image; (b) Enhanced image; (c) Inpat)(to output (V') grey-level
data mapping; and (d) The 2D target histogrifa

[17]. The tests of significance of the quantitative measaresperformed on 500 natural images of Berkeley dataset T21§
parameter of HMF is set by maximizing its performance for egiinput image in terms of visual quality and quantitative
measures. For CVC, we usex w = 7 x 7 neighbourhood around each pixel and= g = v =1/3.

It is not easy to assess image enhancement since it is difficquantify an improved perception of an image. Nevergle
in practice it is desirable to have both quantitative andexitlve assessments. We use absolute mean brightnesgAvtBE)
[6], discrete entropyE) [22] and measure of enhancemeBME) [12], [13] as quantitative measures. For colour images,
the contrast enhancement is quantified by computing thessunes on their luminance channel only.

For an input imageX and output imagéy, the absolute mean brightness errAMBE) is defined as
AMBE (X,Y) = |MB(X) - MB(Y)|, (23)

where M B (X) and M B (Y) are the mean brightness & andY, respectively. The lower the value 8MBE the better is
the preservation of the original image brightness.

The discrete entropyDE) of an imageX is

255
DE(X) = — ZP (i) logp (zi) , (24)
i=0

wherep (z;) is the probability of pixel intensity:; which is estimated from the normalized histogram. A highalug of DE
indicates the image has richer details.

Let the input image be divided intl k; non-overlapping sub-blockX; ; of sizew; x w,. EME is computed as

k1 k2 ]

1 max (X ;)
EME (X) = v Z > 201n (X, ) (25)

i=1 j=1

wheremax (X; ;) andmin (X; ;) are the maximum and minimum grey levels in blaXk ;, respectively. A different block
size (i.e.,w; x we) results in differenEME value, and we use; x ws = 8 x 8. High contrast sub-blocks give a hifME
value, while for homogeneous sub-blocks tB®IE value should be close to zero. It is worth to note tBME is highly
sensitive to noise. For example, if the algorithm produdgesatput image which introduces noise over homogeneousnsgi
of the image, then although the output image will not lookunaitits correspondingEME value will be high. However, for a

contrast enhancement algorithm it is, at least, expectedARA/ E (Y) > EM E (X).

B. Qualitative Assessment

1) Grey-Scale Images: Some example contrast enhancement results for grey-soalges are shown in Fig. 5 and Fig. 6.
The input to output grey-level mapping functions resultearf different algorithms are shown in Fig. 7(a)-(b).

For theTank image [19] shown in Fig. 5(a), the mean brightness value®# thus although FHSABP has increased the
contrast between different regions of the input image, thrrast within each region of the image is considerably ceduand

thus most of the texture of the tank is not identifiable. FH®ABaps the grey-level range ff2, 109] to [0, 30], and thus a



Fig. 5. Test imagélank. (a) Original image PE=3.50,EME=6.56). Enhanced images generated by: (b) WTAMBE=47.63,DE=3.50, EME=14.18); (c)
FHSABP (AMBE=5.51, DE=3.39, EME=32.18); (d) HMF AMBE=16.78,DE=3.45, EME=17.27); (¢) CEBGA AMBE=51.76,DE=2.97, EME=10.10); and
(f) CVC (AMBE=22.09,DE=3.49,EME=14.42).

darkening effect on the tank region is easily noticed. WTHHE BIMF provide similar high contrast images but the photaimet
difference between the tank and its shadow is not high endtlgdsimilarity is confirmed by their mapping functions. CEB
provides satisfactory contrast enhancement while retgimin overall natural look. Its performance is similar to WH ldnd
HMF except for lower grey-levels where it provides brighdetput, and for higher grey-levels it provides darker otit@yvC
improves the overall contrast while preserving the imageilie It is easy to identify the texture of the ground as veslithe

tank.

For theCameraman image [19] in Fig. 6(a) the mean brightness value is 119. FBBaps input range d¥, 15] to [0, 33].
Due to the low-range to higher-range mapping, it is easy émtifly the details of the coat. However, there are degradati
on the sky and cameraman’s face. WTHE behaves similarly t8ABP as it produces a similar shaped mapping function.
The degradations on the sky and cameraman’s face are nover® s in the result by FHSABP, however the details of the
coat cannot be recognized easily. HMF improves the consigaificantly with slight degradation on the sky, but it isrthdo

identify the details on the coat. This is mainly due to the piag of [7,15] to [0, 14]. Due to the high contrast between the



Fig. 6. Testimag€ameraman. (a) Original imageDE=4.86,EME=16.49). Enhanced images generated by: (b) WTAEEBE=10.42,DE=4.80,EME=22.05);

(c) FHSABP AMBE=0.83,DE=4.68, EME=23.78); (d) HMF AMBE=2.84, DE=4.73, EME=20.93); (¢) CEBGA AMBE=0.68, DE=4.47, EME=24.17); and
(f) CVC (AMBE=9.47, DE=4.81, EME=18.91).

50 == 50| 50| B 50
200 200 - 200| 200| < 200
g H H H H
3 150 3 150] 3 150 3 150 3 150]
> > “NC > > -NC > -NC
9 3 ) 3 3
100 5100| —WTHE 3100| 3100| —WTHE 5100] —WTHE
= > - FHSABP > > - FHSABP| = - FHSABP|
-HMF -HMF HMF
50 50 —CEBGA 50 50 —CEBGA 50 —CEBGA
ot o —cve e o —cvc o —cvc
50 100 150 200 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250 50 100 150 200 250
x (grey level) x (grey level) x (grey level) x (grey level) x (grey level)

(@) (b) (©) (d) (e)

Fig. 7. Mapping functions of enhanced images where NC reaterso-change mapping: (a) Fig. 5; (b) Fig. 6; (c) Fig. 8; (d).F; and (e) Fig. 10.

coat and the background, CEBGA only achieves a slight erdmaant. This is confirmed by its mapping function being almost

parallel to the no-change mapping function. CVC producesesimsed contrast, the details of the coat are easily id=htiéind
the enhanced image is free of any degradation.

2) Colour Images. Some example contrast enhancement results for colour Brexgeshown in Fig. 8 to Fig. 10. The input

to output grey-level mapping functions on the luminancencigh of the colour images resulted from different algorighame
shown in Fig. 7(c)-(e).
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Fig. 8. Testimagéishingboat. (a) Original imageE=4.78, EME=12.59). Enhanced images generated by: (b) WTAHMBE=18.64,DE=4.98,EME=17.30);
(c) FHSABP AMBE=1.48,DE=4.56,EME=21.45); (d) HMF AMBE=1.00,DE=4.73,EME=13.72); (¢) CEBGA AMBE=3.39, DE=4.48, EME=15.95); and
(f) CVC (AMBE=9.30,DE=4.73,EME=15.37).

For the Fishingboat image [20] in Fig. 8(a) with mean brightness value of 114, ABB darkens some areas of sky, sea
and dock, and brightens the parts of boat and dock. Thereoasedf details in the darkened and brightened regions. WTHE
produces a natural looking enhanced image but the dockneaggar the boat is darkened which makes it difficult to see the
columns of the dock. Since the mapping functions of HMF andBGE are both similar to the no-change mapping they
produce only a slight increase in contrast. CVC increasdis the contrast and the average brightness to improve thelbve

image quality with clearer details, e.g., on the dock.

For theMountain image [20] in Fig. 9(a) the mean brightness value is 128.5H&Bnd FHSABP cause the trees to be too
dark for their details to be visible by mapping the input gleyel range of|0, 50] to output grey-level ranges ¢, 10], and
[0, 4], respectively. The high to low range mapping causes los=ts#ild for regions of trees. Due to the mapping functions
being almost parallel to the no-change mapping function Hivis CEBGA increase the overall contrast slightly. CVC iases

both the contrast and the average brightness to improvevialbimage quality. The details in the image are also elear

Finally, theCessna image [21] in Fig. 10(a) with mean brightness value of 163xsha Cessna plane against a bright blue
sky partly covered with white clouds. The image consists efyvbright and dark regions which make it challenging for a
contrast enhancement algorithm. WTHE darkens the Cessme phaking it difficult for its details to be observed. FHSABP
produces an enhancement better than WTHE, but a slight miackesffect can be observed on the plane. HMF produces
satisfactory enhancement but over darkens the part of lBlyatsthe top of the enhanced image. CEBGA and CVC produce

satisfactory results.
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Fig. 9. Test imagévlountain. (a) Original image DE=5.15,EME=18.27). Enhanced images generated by: (b) WTAMBE=7.82,DE=5.35,EME=28.37);
(c) FHSABP AMBE=1.40,DE=4.99, EME=31.02); (d) HMF AMBE=1.01,DE=5.15,EME=20.87); (¢) CEBGA AMBE=5.30,DE=4.56, EME=21.09); and
(f) CVC (AMBE=1.84,DE=5.11,EME=25.72).

TABLE |
THE p-VALUES OF HYPOTHESESEQ. (26), Q. (27) AND EQ. (28) RESULTED FROMKS-TEST FOR DIFFERENT ALGORITHMS

‘Hypothesi# WTHE ‘FHSABP‘ HMF ‘CEBGA‘ cvC ‘

Eqg. (26) | 0.000000 0.988538 0.000001 0.000003 0.077420
Eq. (27) |0.000000 0.000000Q 0.046678 0.000000 0.403103
Eq. (28) [ 0.997970 0.905217) 0.848223 0.253143 0.997970

C. Quantitative Assessment

In order to evaluate the performance of the five algorithmsafeaide range of images, they are applied to 500 test images of
Berkeley image dataset [21]. SetsMB, DE andEME are computed from the original and enhanced images. Thevélam
the original images are sorted in ascending order and thgamare indexed accordingly (see Fig. 11). The sets computed
all enhanced imagefY, },,, resulted from an algorithm are compared with the sets coeapah all original image$X;},,
to statistically determine if the algorithm satisfies anentpd measurement criterion. Two hypotheses are proposezhth
criterion: null hypothesigi, and alternative hypothesd;. The non-parametric two-sample Kolmogorov-Smirnov té&$-(
test) [23] is used to reject one of the hypotheses. The KiStties to quantify the logical relatiof=, >, <) between two
datasets by assigningpavalue and has the advantage of making no assumption abedidtribution of the data. Thevalue
gives the probability of obtaining a test statistic at leastEextreme as would be observed under the null hypothedisTRGs
the higher thep-value, the stronger the null hypothesis is. Using thealue together with the significance level of %93,
is rejected in favour of; if p-value < 0.05.

In order to keep the visual correspondence between origimhkenhanced images in terms of brightness, the mean begghtn
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Fig. 10. Test image&Cessna. (a) Original image DE=4.97, EME=4.82). Enhanced images generated by: (b) WTHEBE=29.21,DE=4.90, EME=8.78);
(c) FHSABP AMBE=0.31,DE=4.81,EME=8.00); (d) HMF AMBE=4.31,DE=4.85,EME=7.76); (€) CEBGA AMBE=0.51,DE=4.59,EME=5.44); and (f)
CVC (AMBE=1.59,DE=4.92, EME=6.29).

values of original and enhanced images should be propaitidhe MB values of original and enhanced images shown in the
first column of Fig. 11 reveal that FHSABP, HMF, CEBGA and CVfdguce enhanced images which have mean brightness
values proportional to that of the original images. The eftsnatch between mean brightness values of original anaheed
images being achieved by FHSABP and followed by CVC. In otdasupport the observations from Fig. 11, tests of signifiean
are performed for each algorithm. With regard to brightngsservation, for a given test imag@€; and its corresponding
enhanced imag®’; resulted from one of the algorithms, one expects thaB (X;) should be close td/ B (Y;). Thus we
check whether the set of mean brightnesses of the input sn@geB (X;)},,; and the set of mean brightnesses of the output
images{M B (Y;)},, are similar. The null hypothesiH,, proposes that the algorithm produces a mean brightnessvisic

close to the mean brightness value of the original imagelewthe alternative hypothesig; proposes otherwise, i.e.,

Hy : the mean brightness is preseryed (26)
H, : the mean brightness is not preserved

The above hypotheses are tested for each algorithm usiigSttest and the resultingrvalues are shown in Table I. According
to confidence level of 95%, only FHSABP and CVC do not rejfgtof Eq. (26), while the others reject it in favour éf;.
Thus, only FHSABP and CVC statistically produce enhanceai@s which have similar mean brigthness values with that of
the original images.

The discrete entropPE measures the information content in an image. Thus an erhaamt algorithm should preserve
DE. The DE values of original and enhanced images shown in the secdathonof Fig. 11 reveal that CVC achieves the best
DE preservation and followed by HMF. In order to test if an aitjon achievesDE preservation, the setsDFE (X;)},, and

{DE(Y;)},, resulted from original and enhanced images, respectiaetyused. For each algorithm the KS-test is applied to
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Fig. 11. Quantitative performance results on 500 colourgiesafrom Berkeley dataset [21]: the first, second, thirdrtfguand fifth rows correspond
respectively to WTHE, FHSABP, HMF, CEBGA and CVC. The measuents from the original images are coded in red, while tHos® the images
enhanced using different algorithms are coded in black.

the following hypotheses:

Hy : the discrete entropy is preseryed 27)
H, : the discrete entropy is not preserved
The resultingp-values are shown in Table I. Except for CVC, all algorithragect H in favour of Hy, i.e., statistically only

CVC preserves the image contents.

The EME values are shown in the third column of Fig. 11. Although ahHif/E does not always mean a good and natural
enhancement, it is at least expected that EME of an enhanced image is higher than that of its original im&ge each

algorithm the KS-test is applied to the following hypothese

Hy : the contrast is improved (28)
H; : the contrast is not improved
The null hypothesisH, proposes that an enhanced image has a higher contrast tharofthhe original image, i.e.,
{EME(Y;) > EME (X;)};- The resulting>-values are shown in Table I. According to 95% confidencel J@fealgorithms

do not rejectH,. Thus, statistically all algorithms produce higher costranhanced images. Thevalues also indicate that

WTHE and CVC equally provide the best performances while GEBhe worst.
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Fig. 12. Quantitative measurement resultsAMBE, DE, and EME of the enhancedaboon images using CVC for different values af, «, 5 and~. (row
1) Varying a and 8 with w = 7, v = 1/3. (row 2) Varyinga: and~ with w = 7, 8 = 1/3. (row 3) Varying3 and~ with w = 7, « = 1/3. (row 4) Varying
a andw with 8 =1/3, v = 1/3. (row 5) Varying 8 andw with & = 1/3, v = 1/3. (row 6) Varyingy andw with « = 1/3, 3 =1/3.

D. The Effect of Different Parameter Settings

The w x w spatial support of the neighbourhood around each pixgl3, and~ are the tuning parameters of CVC. The
results presented in Section IlI-B and Section 1lI-C are tfoe default setting ofv = 7, « = 8 = v = 1/3. Although the
default setting provides satisfactory results, furthepriovement can be achieved by varying the parameters. To misrate
the effects of varying the parameters, tBaboon image shown in Fig. 4(a) is enhanced for different valuesvpty, 5 and
~. In order to see the effects of the parameters on the perfarenaf the enhancement using the quantitative measures, two
parameters are set to their default values while the otherpmrameters are varied.

The resulting quantitative measures are shown in Fig. 12in8rease in the value af results in lowerAMBE, higherDE
and lowerEME, and vice versa. The higher the value @fthe more contribution from the 2D input histogrdy which
results in an enhanced image which is similar to the inputgend his similarity lowers the value AAMBE, preserves the
overall content which results in highBxE, however it also lowers thEME since there will be not much difference between the

input and output images. The increase in the valug afcreases the contribution of the 2D uniformly distributd@dtogram
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Fig. 13. (a) Contrast enhanced images resulted from agplifierent algorithms on sample images from ORL face daatja4]: the first, second, third,
fourth, fifth, and sixth rows correspond respectively to thiginal images and images enhanced by WTHE, FHSABP, HMB@A and CVC. (b) Face
recognition on ORL face database [24] using 2DPCA [25] ongesaenhanced by different algorithms.

H,, thus the resultant image will have a higher contrast. Thisrasult in high value ofEME, however due to decreased
similarity between input and output images, the valuAMIBE increases and the value DE decreases. The changeijrdoes

not change the values &éMBE, DE and EME significantly, sincey contributes to the smoothness of the 2D target histogram.
The plots forAMBE, DE, andEME suggest that CVC achieves better enhancement with a largew local support. This is

as expected since a larger valuewfesults in a better representation of contextual inforomati

E. The Effect of Contrast Enhancement on Object Recognition

Contrast enhancement is often applied as a pre-processirgpfect recognition. However, the performance of a catra
enhancement algorithm affects the object recognitiongeecTo demonstrate the effects, face is selected as an,@bjddace
recognition is performed on images of the ORL face datab2épgnhanced by different methods. The face recognitiok tas
is achieved as follows. For each subject in the database,af s@aining images is stored. The training database isesgrted
by a set of eigenvectors which are computed using 2DPCA. Eaihing image is projected onto the eigenvectors, and a
set of projection vectors is stored for each subject. Thayfaee is identified according to the minimum Euclidean atise
between its projection vectors and the projection vectbith® subjects in database. The number of eigenvectorsniietes
the face recognition rate.

The ORL face database [24] contains images of 40 subjeath, maviding 10 different images. All images are grey-scale
and normalized to a resolution o12 x 92 pixels. An enhanced sample image of each of 10 subjects diffiegent algorithms
are shown in Fig. 13(a). For each subject in the databaseinfizges are used for training and the remaining five images for
query (testing) images. Thus, the total number of trainengples and testing samples are both 200. The recognitioltgés
Fig. 13(b) show that the face recognition is consistentlst lmn images enhanced by CVC. This indicates that not only CVC

improves the contrast, it also preserves the overall comiethe image.

F. Computational Complexity

The computational complexities of the different algorihexcept CEBGA are analysed for an input image of gize W
pixels with K distinct grey levels. The analysis is performed only forygseale images as it is assumed that the same procedure
of processing only the intensity channel of colour imageoitofved by the all algorithms when a colour image is procésse
Since CEBGA employs GA to perform evolutionary contrastardement, it is difficult to perform such an analysis. Howgve

it is empirically observed that CEBGA demands the highestpatational time.
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TABLE Il
COMPUTATIONAL TIME COMPLEXITY ANALYSIS OF CONTRAST ENHANCEMENT ALGORITHMS FOR AN INPUT IMAGE OF SIZEH X W PIXELS WITH K
DISTINCT GREY LEVELS. KEY TO PROCESS LABELSA - COMPUTES1D/2D HISTOGRAM; B - UPDATES HISTOGRAM C - COMPUTES MAPPING
FUNCTION; AND D - GENERATES OUTPUT IMAGE

Algorithm
Process WTHE ‘ FHSABP ‘ HMF ‘ CcvC
A o(aw) o(HW) o(aw) o(BEW (w?-1))
B o(k) - o(k) o(k?)
(o} o(k) O(HW+K) o(x) o (K34 K?)
D o(aw) o(HW) o(aw) o(HW)

‘Total ‘o (2HW +2K) ‘o (3HW +K) ‘o (2HW +2K) ‘o (EWw? + K3 42K?)

The computational time complexity analysis of differemyaithms are summarised in Table Il. The computational time
complexity of CVC is higher than WTHE, FHSABP and HMF, but Emwthan CEBGA. Although CVC demands higher

computation time, it can be easily implemented on a modgrateessor with high computational efficiency.

IV. CONCLUSIONS

In this paper, we proposed an enhancement algorithm, CVi{chvmploys contextual data modelling using 2D histogram of
an input image to perform non-linear data mapping for gdiregavisually pleasing enhancement on different types aiges.
CVC can be applied to both grey-level and colour images usiirmgdefault setting of the tuning parameters. Performance

comparisons with state-of-the-art enhancement algostiinow that CVC achieves satisfactory image equalizatien ender
diverse illumination conditions.

By achieving high discrete entropy preservation betweenrtput and output images, CVC preserves the overall cownfent
an input image while providing sufficient contrast enhaneemThis is mainly because CVC employs contextual infoiomat
between pixels and their neighbours. Since the conservafithe entropy is utmost important for several applicatiarhich
require enhancement as a preprocessing, such as face itengd@VC can be applied for such a requirement. It is alsonsh

that the recognition results on images enhanced by CVC isehithan those enhanced by the other enhancement algorithms
considered in this work.

Using the tests of significance on 500 natural images fronkddey dataset, it is shown that CVC achieves brightness

preservation, discrete entropy preservation, and cdnitrggovement under 95% confidence level.

APPENDIX

The following properties of matrix trace are used in the \dgion of Eq. (15) where matrices and scalars are shown in
bold and italic fonts, respectively: tA) = tr (AT), tr(kB) = ktr(B), tr(AB) = tr(BA), tr (A +B) = tr(A) + tr(B),
Vatr (AB) = BT, andVatr (ABATC) = CAB + CTAB'.
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Vaf(H) = Vu|otr((H-H)H-H))+
g (| -H,) H-H)")+
o tr (HD (HD) )}
= avgtr ((H — H,) (H — HX)T) +
BV tr ((H —H,) (H - HU)T) +
AV tr (HD (HD)T) .

The term tr((H —H,)(H- HX)T) is expanded as

tr ((H - Hy) (H - Hy)")

=tr (HH' - HH] - H,H" + H,H)

=tr (HH") — tr (HH]) — tr (HL,H") + tr (HcH])
tr (HHT) — 2tr (HHY) + tr (HxHJ) ,

where tr(HHy) = tr (H,HT). Hence,

Vatr ((H - Hy) (H - Hy)")

= Vg [tr (HHT) — 2tr (HH]) + tr (H,H])]

= Vutr (HH") — 2Vytr (HH]) + Vatr (HH])
=2H — 2H, + 0.

Thus Vgtr ((H —Hy) (H- HU)T) = 2H — 2H,, + 0. Similarly, one can expanWg tr (HD (HD)T) as
Vu tr (HDDTH")

= Vu tr (HDD'H'T)

~ IHDD' +I'H (DD")’

= HDD' + HDD' = 2HDD".

Vi tr (HD (HD)T)

Hence,
Vaf(H) = 2a(H-H,) +26(H-H,)+2yHDD'
= 2[((a+B)I++DD")H - aH, — fH,],
where I is identity matrix. The solution is obtained by settinggf(H) = 0 which yields to H =

((a+B)T+~DDT) ™" (aH, + FH,).
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