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Contextual and Variational Contrast Enhancement
Turgay Celik and Tardi TjahjadiSenior Member, IEEE

Abstract

This paper proposes an algorithm which enhances the contrast of an input image using inter-pixel contextual information.

The algorithm uses a two-dimensional (2D) histogram of the input image constructed using mutual relationship between each

pixel and its neighbouring pixels. A smooth 2D target histogram is obtained by minimizing the sum of Frobenius norms of the

differences from the input histogram, and the uniformly distributed histogram. The enhancement is achieved by mappingthe

diagonal elements of the input histogram to the diagonal elements of the target histogram. Experimental results show that the

algorithm produces better or comparable enhanced images than four state-of-the-art algorithms.

Index Terms

Contrast enhancement, histogram equalization, image quality enhancement, face recognition.

I. I NTRODUCTION

Contrast enhancement is used to either increase the contrast of an image with low dynamic range or to bring out image

details that would otherwise be hidden [1]. The enhanced image looks subjectively better than the original image as the grey

level differences (i.e., the contrast) among objects and background are increased.

The conventional approach to enhance the contrast in an image is to manipulate the grey-level of individual pixels. Global

histogram equalization (GHE) [1] uses an input-to-output mapping derived from the cumulative distribution function (CDF) of

the image histogram. Although GHE utilizes the available grey scale of the image, it tends to over-enhance the image if there

are large peaks in the histogram, resulting in a harsh and noisy appearance of the enhanced image. It does not always produce

satisfactory enhancement for images with large spatial variation in contrast. Local histogram equalization (LHE) algorithms

have been developed, e.g., [2], [3], to address the aforementioned problems. These algorithms use a small window that slides

over every image pixel sequentially and the histogram of pixels within the current position of the window is equalized. LHE

sometimes over-enhances some portion of the image and any noise, and may produce undesirable checkerboard effects.

Other algorithms that focus on improving GHE [4]–[9] can achieve satisfactory contrast enhancement, but the variationin

the grey-level distribution may result in image degradation [10]. Dynamic histogram specification (DHS) [10] uses the desired

histogram, generated dynamically from the input image, to modify the input image histogram. In order to retain the features

in the input image histogram, DHS extracts the differentialinformation from the input image histogram and incorporates

additional parameters to control the enhancement such as the image original and the resultant gain control values. However,

the degree of enhancement that can be achieved is not significant. In order to address the artefacts due to over-enhancement

and saturation of grey levels of GHE, the original image histogram is modified by weighting and thresholding before the

histogram equalization in [9]. The weighting and thresholding are performed by clamping the original image histogram at an
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upper threshold and at a lower threshold, and transforming all the values between these thresholds using a normalized power

law function with an index. We refer the algorithm as weighted thresholded histogram equalization (WTHE). WTHE provides

satisfactory enhancement with the carefully selected default parameter setting.

One group of algorithms decompose an input image into different subbands so as to modify, globally or locally, the magnitude

of the desired frequency components of the image data using multiscale analysis [11]–[14]. These algorithms enable the

simultaneous global and local contrast enhancement by transforming the appropriate subbands and in the appropriate scales.

For example, the centre-surround Retinex algorithm [11] achieves lightness and colour constancy in images. However, the

enhanced image may include “halo” artefacts, especially along boundaries between large uniform regions. A “greying out” can

also occur resulting in the image of the scene tending to middle grey.

Optimisation methods have also been used for contrast enhancement. Convex optimisation is used in flattest histogram

specification with accurate brightness preservation (FHSABP) [15] to transform the input image histogram into the flattest

histogram, subject to a mean brightness constraint. This isfollowed by applying an exact histogram specification algorithm

to preserve the image brightness. FHSABP behaves very similar to GHE when the grey levels of the input image are equally

distributed. Since it is designed to preserve the average brightness, FHSABP may produce low contrast results when the average

brightness is either too low or too high. Contrast enhancement in histogram modification framework (HMF) [16] minimizesa

cost function to compute a target histogram. The cost function is composed of penalty terms of minimum histogram deviation

from the original and uniform histograms, and histogram smoothness. Furthermore, the edge information is embedded into the

cost function to weight pixels around region boundaries to address noise and black/white stretching [16]. In order to design a

parameter free contrast enhancement algorithm, genetic algorithm (GA) is employed in [17] to find a target histogram which

maximizes a contrast measure based on edge information. We refer this algorithm as contrast enhancement based on GA

(CEBGA). CEBGA suffers from the drawbacks of GA based algorithms, namely dependency on initialization and convergence

to a local optimum. Furthermore, the convergence time is proportional to the number of distinct grey levels in the input image.

All the above approaches use a 1-dimensional (1D) histogram. Other than HMF [16], they do not take into account the

contextual information content in the image. HMF [16] uses the image edge information to weight the 1D histogram.

We propose a contextual and variational contrast enhancement algorithm (CVC) to improve the visual quality of input images

as follows. Images with low-contrast are improved in terms of an increase in dynamic range. Images with sufficiently high

contrast are also improved but not as much. The colour quality are improved in terms of colour consistency, higher contrast

between foreground and background objects, larger dynamicrange and more image details are visible. The enhancement process

is based on the observation that contrast can be improved by increasing the grey-level differences between the pixels ofan

input image and their neighbours. Furthermore, for the purpose of image equalization, grey-level differences should be equally

distributed over the entire input image. To realise these observations, a 2D histogram of the input image is constructedand

modified with a priori probability which assigns higher probability to the high grey-level differences, and vice versa.In 2D

histogram, for each grey-level in the input image, the distribution of other grey-levels in the neighbourhood of the corresponding

pixel is computed. A smooth 2D target histogram is obtained by minimizing the sum of Frobenius norms of the differences

from the 2D input histogram, and the 2D uniformly distributed histogram. The contrast enhancement is achieved by mapping

the diagonal elements of the 2D input histogram to the diagonal elements of the 2D target histogram.

The paper is organized as follows. Section II presents the proposed CVC. Section III presents the subjective and quantitative

comparisons of CVC with four state-of-the-art enhancementtechniques. Section IV concludes the paper.
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(a) (b)

Fig. 1. The input image (a) and its 2D histogram (b) using7 × 7 neighbourhood. For display purpose,hx (m, n) is shown in logarithmic scale.

II. PROPOSEDALGORITHM (CVC)

A. Grey-Scale Image Enhancement

Consider an input image,X = {x (i, j)
∣

∣ 1 ≤ i ≤ H, 1 ≤ j ≤ W}, of sizeH × W pixels, wherex (i, j) ∈ [0, Z+] and

assume thatX has a dynamic range of[xd, xu] wherex (i, j) ∈ [xd, xu]. The objective of CVC is to generate an enhanced

image,Y = {y (i, j)
∣

∣ 1 ≤ i ≤ H, 1 ≤ j ≤ W}, which has a better visual quality thanX. The dynamic range ofY can be

stretched or compressed into the interval[yd, yu], wherey (i, j) ∈ [yd, yu], yd < yu and{yd, yu} ∈ [0, Z+]. In this work, the

enhanced image utilizes the entire dynamic range, e.g., foran 8-bit imageyd = 0, andyu = 28 − 1 = 255.

Let X = {x1, x2, . . . , xK} be the sorted set of all possibleK grey-levels that can occur in an input imageX where

x1 < x2 < . . . < xK , whereK = 256 for an 8-bit image. The 2D histogram of the input imageX is computed as

Hx =
{

hx (m, n)
∣

∣ 1 ≤ m ≤ K, 1 ≤ n ≤ K
}

, (1)

wherehx (m, n) ∈ [0, Z+] is the number of occurrences of thenth grey-level (xn) in the neighbourhood of themth grey-level

(xm). Different types of neighbourhood can be employed, however for a typical implementation of CVCw×w neighbourhood

around each pixel is considered. For example, Fig. 1 shows the input image and its 2D histogram using7× 7 neighbourhood.

The image has more bright regions than dark regions, thus itshistogram has larger values located at higher grey-values.In

homogeneous regions, the neighbours of each pixel have verysimilar grey-levels which result in higher peaks at diagonal or

near-diagonal elements of the histogram.

For an improved contrast there should be larger grey-level differences between the pixel under consideration and its

neighbours. Thus, the 2D histogram is modified according to

hx (m, n) = hx (m, n)hp (xm, xn) (2)

and

hp (xm, xn) = (|xm − xn| + 1) / (xK − x1 + 1) , (3)

where hp (xm, xn) ∈ [0, 1] assigns a weight to the occurrences of(xm, xn) which is proportional to the modulus of the

grey-level difference betweenxm andxn. The 2D histogram shown in Fig. 1(b) is updated as shown in Fig. 2(b) using the

hp (xm, xn) shown in Fig. 2(a). It is clear from Fig. 2(a) thathp (xm, xn) assigns higher weights to the components according

to their distance from the diagonal elements. Thus,hp (xm, xn) enhances larger differences which results in greater contrast

in the overall image.
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(a) (b)

Fig. 2. Updating the 2D histogram shown in Fig. 1(b): (a)hp (xm, xn) computed using Eq. (3); and (b) Updated 2D histogramhx (m, n) using Eq. (2).

For display purpose,hx (m, n) is shown in logarithmic scale.

The updated 2D histogramHx is normalized according to

hx (m, n) = hx (m, n)
/

K
∑

i=1

K
∑

j=1

hx (i, j) (4)

to give a CDF

Px =







Px (m) =

m
∑

i=1

m
∑

j=1

hx (i, j)
∣

∣ m = 1, . . . , K







. (5)

Let Y = {y1, y2, . . . , yK} be the sorted set of all possibleK grey-levels that can occur in output imageY wherey1 < y2 <

. . . < yK . In order to map the elements ofX to the elements ofY, it is necessary to determine aK × K target histogram

Ht and its CDFPt. In order to equally enhance every possible occurrence of grey-levels of the input image pixels and their

neighbours,Ht can be selected as a 2D uniformly distributed histogram

Hu =

{

hu (m′, n′) =
1

K2

∣

∣1 ≤ m′ ≤ K, 1 ≤ n′ ≤ K

}

. (6)

However, such a selection does not consider the contribution of the 2D input histogram. Instead,Ht should have a minimum

distance from the input histogram, i.e.,

Ht = argmin
H

‖H− Hx‖, (7)

where‖·‖ computes the norm. Motivated by the maximum entropy principle, Ht should also have a minimum distance from

the uniformly distributed histogram, i.e.,

Ht = argmin
H

‖H− Hu‖. (8)

Furthermore, in order to satisfy a smooth mapping,Ht should have minimum deviations between its components, i.e.,

Ht = argmin
H

‖HD‖, (9)

whereD ∈ R
K×K is a K × K bidiagonal difference matrix

D =























d −d 0 · · · 0 0 0

0 d −d · · · 0 0 0
...

...
...

...
...

...

0 0 0 · · · 0 d −d

0 0 0 · · · 0 0 d























, (10)

whered is a constant which is set to 1. The matrix multiplication in Eq. (9) results in a matrix which holds differences between

the horizontal elements of the matrixH. The vertical elements can also be considered, however the enhancement result will

not change significantly.
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In order to determine the target histogramHt, all the conditions are combined into the following optimization function

f (H) = α ‖H− Hx‖ + β ‖H− Hu‖ + γ ‖DH‖ , (11)

whereα, β and γ are weighting factors for the contributions from differentconditions, and{α, β, γ} ∈ (0, 1]. The target

histogram is obtained by minimizingf (H) according to

Ht = argmin
H

f (H). (12)

The closed form solution to minimizing Eq. (12) is obtained by replacing the norm operation with square of the Frobenius

norm (also known as Euclidean norm) which is defined as the square root of the sum of the absolute squares of its elements.

Hence, the minimization off (H) with respect toH is

f (H) = α ‖H− Hx‖
2
F + β ‖H− Hu‖

2
F + γ ‖DH‖2

F

or equivalently

f (H) = α tr
(

(H− Hx) (H− Hx)
T
)

+

β tr
(

(H− Hu) (H− Hu)
T
)

+

γ tr
(

HD (HD)
T
)

,

(13)

where tr(A) is trace of the matrixA and T is the transpose operator. The target histogramHt is obtained by solving

∇Hf (H) = 0, (14)

where∇H is theK × K Jacobian matrix, and0 is theK × K zero matrix. Using the properties of matrix trace, the target

histogram is derived from Eq. (14) (see the appendix for the detailed derivation) as

Ht =
(

(α + β) I + γDDT
)−1

(αHx + βHu) (15)

= R−1 (αHx + βHu) = S (αHx + βHu) ,

whereR is a K × K tridiagonal matrix in the form of

R =
(

−d2γ
)























r0 1 0 · · · 0 0 0

1 r0 1 · · · 0 0 0
...

...
...

...
...

...

0 0 0 · · · 1 r0 1

0 0 0 · · · 0 1 1 + r0























, (16)

where r0 =
(

2γd2 + α + β
)

/
(

−d2γ
)

. The inverse of a generalized tridiagonal matrix can be computed recursively [18].

SinceR is a special case of the generalized tridiagonal matrix, letting R−1 = S =
{

s (m, n)
∣

∣ 1 ≤ m ≤ K, 1 ≤ n ≤ K
}

givess (m, n) of the inverse matrixS as follows

s (m, n) =



















(−1)m+n

(−d2γ)
θ(m−1)φ(n+1)

θ(K) , m < n

1
(−d2γ)

θ(m−1)φ(m+1)
θ(K) , m = n

(−1)m+n

(−d2γ)
θ(n−1)φ(m+1)

θ(K) , m > n,

(17)

where fork = 1 . . .K

θ (k) =







r0θ (k − 1) − θ (k − 2) , k < K

(1 + r0) θ (k − 1) − θ (k − 2) , k = K,
(18)
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Fig. 3. Enhancing the input image in Fig. 1 (a) using CVC withα = β = γ = 1/3: (a) Enhanced output image; (b) Input (X ) to output (Y) grey-level

data mapping; and (c) The 2D target histogramHt.

and fork = K . . . 1

φ (k) =







(1 + r0)φ (k + 1) − φ (k + 2) , k = K

r0φ (k + 1) − φ (k + 2) , k < K.
(19)

For Eq. (17) the initial conditions ofθ (−1) = 0, θ (0) = 1, φ (K + 1) = 1, andφ (K + 2) = 0 are used. Since{α, β, γ} ∈

(0, 1], the inverse matrixS always exists.

The 2D target histogramHt is normalized to give the target probability distribution function

ht (m
′, n′) = ht (m

′, n′)
/

K
∑

i=1

K
∑

j=1

ht (i, j). (20)

The target CDF ofht (m
′, n′) is defined as

Pt =







Pt (m
′) =

m′

∑

i=1

m′

∑

j=1

ht (i, j)
∣

∣ m′ = 1, . . . , K







. (21)

In order to enhance the image, the grey-levels of the input image are transformed to the output grey-levels for a given output

range of [yd, yu] using the CDFsPx (m) and Pt (m
′). The input grey-levelxm is mapped to the output grey-levelym′ by

finding an indexm′ for a given indexm according to

m′ = argmin
i∈{1,2,...,K}

|Px (m) − Pt (i)|. (22)

Using Eq. (22), each distinct grey-level of the input imageX is transformed to a corresponding output grey-level to create an

enhanced output imageY. The resultant enhanced image is shown in Fig. 3(a) for[yd, yu] = [0, 255] with the input to output

grey-level data mapping shown in Fig. 3(b) and the 2D target histogramHt shown in Fig. 3(c) forα = β = γ = 1/3. CVC

increases the image brightness while keeping the high contrast between object regions.

B. Colour Image Enhancement

One approach to extend the contrast enhancement to colour images is to apply the algorithm to their luminance component

(Y) only and preserve the chrominance components. Another is to multiply the chrominance values with the ratio of their input

and output luminance values to preserve the hue. The former approach is employed in this paper. TheYUV colour space [1] is

selected because the conversion betweenRGB andYUV colour spaces is linear which considerably reduces the computational

complexity for contrast enhancement in colour images. Fig.4 shows the enhancement of theBaboon colour image. It shows

that the contrast of the input image has been increased whilethe details of the input image are retained.

III. E XPERIMENTAL RESULTS

A. Dataset and Quantitative Measures

We use standard test images from the datasets in [19]–[21] toevaluate and compare CVC, both qualitatively and quantitatively,

with our implementations of WTHE [9], FHSABP [15], the weighted histogram approximation of HMF [16], and CEBGA
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Fig. 4. Enhancing the input imageBaboon using CVC withα = β = γ = 1/3: (a) Input image; (b) Enhanced image; (c) Input (X ) to output (Y) grey-level

data mapping; and (d) The 2D target histogramHt.

[17]. The tests of significance of the quantitative measuresare performed on 500 natural images of Berkeley dataset [21]. The

parameter of HMF is set by maximizing its performance for a given input image in terms of visual quality and quantitative

measures. For CVC, we usew × w = 7 × 7 neighbourhood around each pixel andα = β = γ = 1/3.

It is not easy to assess image enhancement since it is difficult to quantify an improved perception of an image. Nevertheless,

in practice it is desirable to have both quantitative and subjective assessments. We use absolute mean brightness error(AMBE)

[6], discrete entropy (DE) [22] and measure of enhancement (EME) [12], [13] as quantitative measures. For colour images,

the contrast enhancement is quantified by computing these measures on their luminance channel only.

For an input imageX and output imageY, the absolute mean brightness error (AMBE) is defined as

AMBE (X,Y) =
∣

∣MB (X) − MB (Y)
∣

∣, (23)

whereMB (X) andMB (Y) are the mean brightness ofX andY, respectively. The lower the value ofAMBE the better is

the preservation of the original image brightness.

The discrete entropy (DE) of an imageX is

DE (X) = −

255
∑

i=0

p (xi) log p (xi) , (24)

wherep (xi) is the probability of pixel intensityxi which is estimated from the normalized histogram. A higher value ofDE

indicates the image has richer details.

Let the input image be divided intok1k2 non-overlapping sub-blocksXi,j of sizew1 × w2. EME is computed as

EME (X) =
1

k1k2

k1
∑

i=1

k2
∑

j=1

20 ln
max (Xi,j)

min (Xi,j)
, (25)

wheremax (Xi,j) and min (Xi,j) are the maximum and minimum grey levels in blockXi,j , respectively. A different block

size (i.e.,w1 × w2) results in differentEME value, and we usew1 × w2 = 8 × 8. High contrast sub-blocks give a highEME

value, while for homogeneous sub-blocks theEME value should be close to zero. It is worth to note thatEME is highly

sensitive to noise. For example, if the algorithm produces an output image which introduces noise over homogeneous regions

of the image, then although the output image will not look natural its correspondingEME value will be high. However, for a

contrast enhancement algorithm it is, at least, expected that EME (Y) > EME (X).

B. Qualitative Assessment

1) Grey-Scale Images: Some example contrast enhancement results for grey-scale images are shown in Fig. 5 and Fig. 6.

The input to output grey-level mapping functions resulted from different algorithms are shown in Fig. 7(a)-(b).

For theTank image [19] shown in Fig. 5(a), the mean brightness values is 127, thus although FHSABP has increased the

contrast between different regions of the input image, the contrast within each region of the image is considerably reduced, and

thus most of the texture of the tank is not identifiable. FHSABP maps the grey-level range of[12, 109] to [0, 30], and thus a
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Test imageTank. (a) Original image (DE=3.50,EME=6.56). Enhanced images generated by: (b) WTHE (AMBE=47.63,DE=3.50,EME=14.18); (c)

FHSABP (AMBE=5.51,DE=3.39, EME=32.18); (d) HMF (AMBE=16.78,DE=3.45, EME=17.27); (e) CEBGA (AMBE=51.76,DE=2.97, EME=10.10); and

(f) CVC (AMBE=22.09,DE=3.49,EME=14.42).

darkening effect on the tank region is easily noticed. WTHE and HMF provide similar high contrast images but the photometric

difference between the tank and its shadow is not high enough. The similarity is confirmed by their mapping functions. CEBGA

provides satisfactory contrast enhancement while retaining an overall natural look. Its performance is similar to WTHE and

HMF except for lower grey-levels where it provides brighteroutput, and for higher grey-levels it provides darker output. CVC

improves the overall contrast while preserving the image details. It is easy to identify the texture of the ground as wellas the

tank.

For theCameraman image [19] in Fig. 6(a) the mean brightness value is 119. FHSABP maps input range of[7, 15] to [0, 33].

Due to the low-range to higher-range mapping, it is easy to identify the details of the coat. However, there are degradation

on the sky and cameraman’s face. WTHE behaves similarly to FHSABP as it produces a similar shaped mapping function.

The degradations on the sky and cameraman’s face are not as severe as in the result by FHSABP, however the details of the

coat cannot be recognized easily. HMF improves the contrastsignificantly with slight degradation on the sky, but it is hard to

identify the details on the coat. This is mainly due to the mapping of [7, 15] to [0, 14]. Due to the high contrast between the
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Test imageCameraman. (a) Original image (DE=4.86,EME=16.49). Enhanced images generated by: (b) WTHE (AMBE=10.42,DE=4.80,EME=22.05);

(c) FHSABP (AMBE=0.83,DE=4.68,EME=23.78); (d) HMF (AMBE=2.84,DE=4.73,EME=20.93); (e) CEBGA (AMBE=0.68,DE=4.47,EME=24.17); and

(f) CVC (AMBE=9.47,DE=4.81,EME=18.91).
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Fig. 7. Mapping functions of enhanced images where NC refersto no-change mapping: (a) Fig. 5; (b) Fig. 6; (c) Fig. 8; (d) Fig. 9; and (e) Fig. 10.

coat and the background, CEBGA only achieves a slight enhancement. This is confirmed by its mapping function being almost

parallel to the no-change mapping function. CVC produces increased contrast, the details of the coat are easily identified, and

the enhanced image is free of any degradation.

2) Colour Images: Some example contrast enhancement results for colour images are shown in Fig. 8 to Fig. 10. The input

to output grey-level mapping functions on the luminance channel of the colour images resulted from different algorithms are

shown in Fig. 7(c)-(e).
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Test imageFishingboat. (a) Original image (DE=4.78,EME=12.59). Enhanced images generated by: (b) WTHE (AMBE=18.64,DE=4.98,EME=17.30);

(c) FHSABP (AMBE=1.48,DE=4.56,EME=21.45); (d) HMF (AMBE=1.00,DE=4.73,EME=13.72); (e) CEBGA (AMBE=3.39,DE=4.48,EME=15.95); and

(f) CVC (AMBE=9.30,DE=4.73,EME=15.37).

For theFishingboat image [20] in Fig. 8(a) with mean brightness value of 114, FHSABP darkens some areas of sky, sea

and dock, and brightens the parts of boat and dock. There are loss of details in the darkened and brightened regions. WTHE

produces a natural looking enhanced image but the dock region near the boat is darkened which makes it difficult to see the

columns of the dock. Since the mapping functions of HMF and CEBGA are both similar to the no-change mapping they

produce only a slight increase in contrast. CVC increases both the contrast and the average brightness to improve the overall

image quality with clearer details, e.g., on the dock.

For theMountain image [20] in Fig. 9(a) the mean brightness value is 128.5. WTHE and FHSABP cause the trees to be too

dark for their details to be visible by mapping the input grey-level range of[0, 50] to output grey-level ranges of[0, 10], and

[0, 4], respectively. The high to low range mapping causes loss of details for regions of trees. Due to the mapping functions

being almost parallel to the no-change mapping function HMFand CEBGA increase the overall contrast slightly. CVC increases

both the contrast and the average brightness to improve the overall image quality. The details in the image are also clearer.

Finally, theCessna image [21] in Fig. 10(a) with mean brightness value of 163 shows a Cessna plane against a bright blue

sky partly covered with white clouds. The image consists of very bright and dark regions which make it challenging for a

contrast enhancement algorithm. WTHE darkens the Cessna plane making it difficult for its details to be observed. FHSABP

produces an enhancement better than WTHE, but a slight darkening effect can be observed on the plane. HMF produces

satisfactory enhancement but over darkens the part of blue sky at the top of the enhanced image. CEBGA and CVC produce

satisfactory results.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Test imageMountain. (a) Original image (DE=5.15,EME=18.27). Enhanced images generated by: (b) WTHE (AMBE=7.82,DE=5.35,EME=28.37);

(c) FHSABP (AMBE=1.40,DE=4.99,EME=31.02); (d) HMF (AMBE=1.01,DE=5.15,EME=20.87); (e) CEBGA (AMBE=5.30,DE=4.56,EME=21.09); and

(f) CVC (AMBE=1.84,DE=5.11,EME=25.72).

TABLE I

THE p-VALUES OF HYPOTHESESEQ. (26), EQ. (27) AND EQ. (28) RESULTED FROMKS-TEST FOR DIFFERENT ALGORITHMS.

Hypothesis WTHE FHSABP HMF CEBGA CVC

Eq. (26) 0.000000 0.988538 0.000001 0.000003 0.077420

Eq. (27) 0.000000 0.000000 0.046678 0.000000 0.403103

Eq. (28) 0.997970 0.905217 0.848223 0.253143 0.997970

C. Quantitative Assessment

In order to evaluate the performance of the five algorithms for a wide range of images, they are applied to 500 test images of

Berkeley image dataset [21]. Sets ofMB, DE andEME are computed from the original and enhanced images. The values from

the original images are sorted in ascending order and the images are indexed accordingly (see Fig. 11). The sets computedon

all enhanced images{Yi}∀i resulted from an algorithm are compared with the sets computed on all original images{Xi}∀i

to statistically determine if the algorithm satisfies an expected measurement criterion. Two hypotheses are proposed for each

criterion: null hypothesisH0 and alternative hypothesisH1. The non-parametric two-sample Kolmogorov-Smirnov test (KS-

test) [23] is used to reject one of the hypotheses. The KS-test tries to quantify the logical relation(=, >, <) between two

datasets by assigning ap-value and has the advantage of making no assumption about the distribution of the data. Thep-value

gives the probability of obtaining a test statistic at leastas extreme as would be observed under the null hypothesis [23]. Thus

the higher thep-value, the stronger the null hypothesis is. Using thep-value together with the significance level of %95,H0

is rejected in favour ofH1 if p-value< 0.05.

In order to keep the visual correspondence between originaland enhanced images in terms of brightness, the mean brightness
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(a) (b)

(c) (d)

(e) (f)

Fig. 10. Test imageCessna. (a) Original image (DE=4.97,EME=4.82). Enhanced images generated by: (b) WTHE (AMBE=29.21,DE=4.90,EME=8.78);

(c) FHSABP (AMBE=0.31,DE=4.81,EME=8.00); (d) HMF (AMBE=4.31,DE=4.85,EME=7.76); (e) CEBGA (AMBE=0.51,DE=4.59,EME=5.44); and (f)

CVC (AMBE=1.59,DE=4.92,EME=6.29).

values of original and enhanced images should be proportional. TheMB values of original and enhanced images shown in the

first column of Fig. 11 reveal that FHSABP, HMF, CEBGA and CVC produce enhanced images which have mean brightness

values proportional to that of the original images. The closest match between mean brightness values of original and enhanced

images being achieved by FHSABP and followed by CVC. In orderto support the observations from Fig. 11, tests of significance

are performed for each algorithm. With regard to brightnesspreservation, for a given test imageXi and its corresponding

enhanced imageYi resulted from one of the algorithms, one expects thatMB (Xi) should be close toMB (Yi). Thus we

check whether the set of mean brightnesses of the input images {MB (Xi)}∀i and the set of mean brightnesses of the output

images{MB (Yi)}∀i are similar. The null hypothesisH0 proposes that the algorithm produces a mean brightness which is

close to the mean brightness value of the original image, while the alternative hypothesisH1 proposes otherwise, i.e.,

H0 : the mean brightness is preserved;

H1 : the mean brightness is not preserved.
(26)

The above hypotheses are tested for each algorithm using theKS-test and the resultingp-values are shown in Table I. According

to confidence level of 95%, only FHSABP and CVC do not rejectH0 of Eq. (26), while the others reject it in favour ofH1.

Thus, only FHSABP and CVC statistically produce enhanced images which have similar mean brigthness values with that of

the original images.

The discrete entropyDE measures the information content in an image. Thus an enhancement algorithm should preserve

DE. TheDE values of original and enhanced images shown in the second column of Fig. 11 reveal that CVC achieves the best

DE preservation and followed by HMF. In order to test if an algorithm achievesDE preservation, the sets{DE (Xi)}∀i and

{DE (Yi)}∀i resulted from original and enhanced images, respectively,are used. For each algorithm the KS-test is applied to
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Fig. 11. Quantitative performance results on 500 colour images from Berkeley dataset [21]: the first, second, third, fourth, and fifth rows correspond

respectively to WTHE, FHSABP, HMF, CEBGA and CVC. The measurements from the original images are coded in red, while thosefrom the images

enhanced using different algorithms are coded in black.

the following hypotheses:

H0 : the discrete entropy is preserved;

H1 : the discrete entropy is not preserved.
(27)

The resultingp-values are shown in Table I. Except for CVC, all algorithms rejectH0 in favour of H1, i.e., statistically only

CVC preserves the image contents.

The EME values are shown in the third column of Fig. 11. Although a high EME does not always mean a good and natural

enhancement, it is at least expected that theEME of an enhanced image is higher than that of its original image. For each

algorithm the KS-test is applied to the following hypotheses:

H0 : the contrast is improved;

H1 : the contrast is not improved.
(28)

The null hypothesisH0 proposes that an enhanced image has a higher contrast than that of the original image, i.e.,

{EME (Yi) ≥ EME (Xi)}∀i. The resultingp-values are shown in Table I. According to 95% confidence level, all algorithms

do not rejectH0. Thus, statistically all algorithms produce higher contrast enhanced images. Thep-values also indicate that

WTHE and CVC equally provide the best performances while CEBGA the worst.
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Fig. 12. Quantitative measurement results asAMBE, DE, andEME of the enhancedBaboon images using CVC for different values ofw, α, β andγ. (row

1) Varying α andβ with w = 7, γ = 1/3. (row 2) Varyingα andγ with w = 7, β = 1/3. (row 3) Varyingβ andγ with w = 7, α = 1/3. (row 4) Varying

α andw with β = 1/3, γ = 1/3. (row 5) Varyingβ andw with α = 1/3, γ = 1/3. (row 6) Varyingγ andw with α = 1/3, β = 1/3.

D. The Effect of Different Parameter Settings

The w × w spatial support of the neighbourhood around each pixel,α, β, andγ are the tuning parameters of CVC. The

results presented in Section III-B and Section III-C are forthe default setting ofw = 7, α = β = γ = 1/3. Although the

default setting provides satisfactory results, further improvement can be achieved by varying the parameters. To demonstrate

the effects of varying the parameters, theBaboon image shown in Fig. 4(a) is enhanced for different values ofw, α, β and

γ. In order to see the effects of the parameters on the performance of the enhancement using the quantitative measures, two

parameters are set to their default values while the other two parameters are varied.

The resulting quantitative measures are shown in Fig. 12. Anincrease in the value ofα results in lowerAMBE, higherDE

and lowerEME, and vice versa. The higher the value ofα, the more contribution from the 2D input histogramHx which

results in an enhanced image which is similar to the input image. This similarity lowers the value ofAMBE, preserves the

overall content which results in higherDE, however it also lowers theEME since there will be not much difference between the

input and output images. The increase in the value ofβ increases the contribution of the 2D uniformly distributedhistogram
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Fig. 13. (a) Contrast enhanced images resulted from applying different algorithms on sample images from ORL face database [24]: the first, second, third,

fourth, fifth, and sixth rows correspond respectively to theoriginal images and images enhanced by WTHE, FHSABP, HMF, CEBGA and CVC. (b) Face

recognition on ORL face database [24] using 2DPCA [25] on images enhanced by different algorithms.

Hu, thus the resultant image will have a higher contrast. This will result in high value ofEME, however due to decreased

similarity between input and output images, the value ofAMBE increases and the value ofDE decreases. The change inγ does

not change the values ofAMBE, DE andEME significantly, sinceγ contributes to the smoothness of the 2D target histogram.

The plots forAMBE, DE, andEME suggest that CVC achieves better enhancement with a largerw ×w local support. This is

as expected since a larger value ofw results in a better representation of contextual information.

E. The Effect of Contrast Enhancement on Object Recognition

Contrast enhancement is often applied as a pre-processing for object recognition. However, the performance of a contrast

enhancement algorithm affects the object recognition process. To demonstrate the effects, face is selected as an object, and face

recognition is performed on images of the ORL face database [24] enhanced by different methods. The face recognition task

is achieved as follows. For each subject in the database, a set of training images is stored. The training database is represented

by a set of eigenvectors which are computed using 2DPCA. Eachtraining image is projected onto the eigenvectors, and a

set of projection vectors is stored for each subject. The query face is identified according to the minimum Euclidean distance

between its projection vectors and the projection vectors of the subjects in database. The number of eigenvectors determines

the face recognition rate.

The ORL face database [24] contains images of 40 subjects, each providing 10 different images. All images are grey-scale

and normalized to a resolution of112×92 pixels. An enhanced sample image of each of 10 subjects usingdifferent algorithms

are shown in Fig. 13(a). For each subject in the database, fiveimages are used for training and the remaining five images for

query (testing) images. Thus, the total number of training samples and testing samples are both 200. The recognition results in

Fig. 13(b) show that the face recognition is consistently best on images enhanced by CVC. This indicates that not only CVC

improves the contrast, it also preserves the overall content of the image.

F. Computational Complexity

The computational complexities of the different algorithms except CEBGA are analysed for an input image of sizeH ×W

pixels withK distinct grey levels. The analysis is performed only for grey-scale images as it is assumed that the same procedure

of processing only the intensity channel of colour image is followed by the all algorithms when a colour image is processed.

Since CEBGA employs GA to perform evolutionary contrast enhancement, it is difficult to perform such an analysis. However,

it is empirically observed that CEBGA demands the highest computational time.
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TABLE II

COMPUTATIONAL TIME COMPLEXITY ANALYSIS OF CONTRAST ENHANCEMENT ALGORITHMS FOR AN INPUT IMAGE OF SIZEH × W PIXELS WITH K

DISTINCT GREY LEVELS. KEY TO PROCESS LABELS: A - COMPUTES1D/2D HISTOGRAM; B - UPDATES HISTOGRAM; C - COMPUTES MAPPING

FUNCTION; AND D - GENERATES OUTPUT IMAGE.

Algorithm

Process WTHE FHSABP HMF CVC

A O

`

HW

´

O

`

HW

´

O

`

HW

´

O

`

HW(w
2
−1)

´

B O

`

K

´

– O

`

K

´

O

`

K
2
´

C O

`

K

´

O

`

HW+K

´

O

`

K

´

O

`

K
3+K

2
´

D O

`

HW

´

O

`

HW

´

O

`

HW

´

O

`

HW

´

Total O

`

2HW+2K

´

O

`

3HW+K

´

O

`

2HW+2K

´

O

`

HWw
2
+K

3
+2K

2
´

The computational time complexity analysis of different algorithms are summarised in Table II. The computational time

complexity of CVC is higher than WTHE, FHSABP and HMF, but lower than CEBGA. Although CVC demands higher

computation time, it can be easily implemented on a moderateprocessor with high computational efficiency.

IV. CONCLUSIONS

In this paper, we proposed an enhancement algorithm, CVC, which employs contextual data modelling using 2D histogram of

an input image to perform non-linear data mapping for generating visually pleasing enhancement on different types of images.

CVC can be applied to both grey-level and colour images usingthe default setting of the tuning parameters. Performance

comparisons with state-of-the-art enhancement algorithms show that CVC achieves satisfactory image equalization even under

diverse illumination conditions.

By achieving high discrete entropy preservation between the input and output images, CVC preserves the overall contentof

an input image while providing sufficient contrast enhancement. This is mainly because CVC employs contextual information

between pixels and their neighbours. Since the conservation of the entropy is utmost important for several applications which

require enhancement as a preprocessing, such as face recognition, CVC can be applied for such a requirement. It is also shown

that the recognition results on images enhanced by CVC is higher than those enhanced by the other enhancement algorithms

considered in this work.

Using the tests of significance on 500 natural images from Berkeley dataset, it is shown that CVC achieves brightness

preservation, discrete entropy preservation, and contrast improvement under 95% confidence level.

APPENDIX

The following properties of matrix trace are used in the derivation of Eq. (15) where matrices and scalars are shown in

bold and italic fonts, respectively: tr(A) = tr
(

AT
)

, tr (kB) = ktr (B), tr (AB) = tr (BA), tr (A + B) = tr (A) + tr (B),

∇Atr (AB) = BT, and∇Atr
(

ABATC
)

= CAB + CTABT.
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∇Hf (H) = ∇H

[

α tr
(

(H − Hx) (H − Hx)
T
)

+

β tr
(

(H− Hu) (H− Hu)
T
)

+

γ tr
(

HD (HD)
T
)]

= α∇H tr
(

(H − Hx) (H − Hx)
T
)

+

β∇H tr
(

(H − Hu) (H − Hu)
T
)

+

γ∇H tr
(

HD(HD)
T
)

.

The term tr
(

(H− Hx) (H − Hx)
T
)

is expanded as

tr
(

(H− Hx) (H− Hx)
T
)

= tr
(

HHT − HHT
x − HxH

T + HxH
T
x

)

= tr
(

HHT
)

− tr
(

HHT
x

)

− tr
(

HxH
T
)

+ tr
(

HxH
T
x

)

= tr
(

HHT
)

− 2tr
(

HHT
x

)

+ tr
(

HxH
T
x

)

,

where tr
(

HHT
x

)

= tr
(

HxH
T
)

. Hence,

∇Htr
(

(H − Hx) (H − Hx)
T
)

= ∇H

[

tr
(

HHT
)

− 2tr
(

HHT
x

)

+ tr
(

HxH
T
x

)]

= ∇Htr
(

HHT
)

− 2∇Htr
(

HHT
x

)

+ ∇Htr
(

HxH
T
x

)

= 2H− 2Hx + 0.

Thus∇Htr
(

(H − Hu) (H − Hu)
T
)

= 2H − 2Hu + 0. Similarly, one can expand∇H tr
(

HD(HD)
T
)

as

∇H tr
(

HD(HD)
T
)

= ∇H tr
(

HDDTHT
)

= ∇H tr
(

HDDTHTI
)

= IHDDT + ITH
(

DDT
)T

= HDDT + HDDT = 2HDDT.

Hence,

∇Hf (H) = 2α (H− Hx) + 2β (H − Hu) + 2γHDDT

= 2
[(

(α + β) I + γDDT
)

H − αHx − βHu
]

,

where I is identity matrix. The solution is obtained by setting∇Hf (H) = 0 which yields to H =
(

(α + β) I + γDDT
)−1

(αHx + βHu).
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