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Abstract—In this paper, we present a theoretical analysis
of the distortion in multi-layer coding structures. Specifically,
we analyze the prediction structure used to achieve temporal,
spatial, and quality scalability of scalable video coding (SVC),
and show that the average peak-signal-to-noise (PSNR) of SVC
is a weighted combination of the bit rates assigned to all
the streams. Our analysis utilizes the end user’s preference
for certain resolutions. We also propose a rate-distortion (R-
D) optimization algorithm, and compare its performance with
that of a state-of-the-art scalable bit allocation algorithm. The
reported experiment results demonstrate that the R-D algorithm
significantly outperforms the compared approach in terms of the
average PSNR.

I. INTRODUCTION

Scalable video coding (SVC) facilitates the encoding of a
bitstream containing representations with lower spatial resolu-
tions, frame rates, and quality, which are designed to meet the
requirements of the heterogeneous display and computational
capabilities of the target devices. A client with restricted re-
sources (display resolution, processing power and bandwidth)
can only decode a part of the delivered bitstream. Thus,
SVC can be used in wide range of multicast applications,
such as Internet and wireless applications, where scalability
is necessary in order to deal with the variable transmission
conditions to the end users. Another benefit of SVC is that it
can adapt to a network-aware environment on-the-fly [1], [2]
when feedback is provided by the network and the end users.

H.264/SVC is a state-of-the art SVC codec that significantly
reduces the gap in rate-distortion (R-D) efficiency between
state-of-the art signal layer coding and scalable coding [3],
[4]. The performance of SVC depends to a large extent on the
settings of several parameters [5]. The quantization parameters
(QP ), the ratio of the I , P , and B frames, and the target
bit rate have the most influence on the performance. In this
paper, we study the multiple-layer bit rate allocation problem
in SVC, also known as the optimal quantization parameter
(QP ) assignment to each layer in SVC. With the objective of
simplifying the analysis without affecting its generality, we fix
the values of several SVC coding parameters. Specifically, we
assume that the motion vectors have been acquired already.
In addition, we use the hierarchical B-frame structure for
temporal scalability and inter-layer residual prediction for
spatial and coarse-grain quality scalability [4].
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The optimal bit allocation of a rate-constrained encoder
control system is usually derived by applying the Lagrangian
technique [6]. In contrast to single-layer video coding, SVC
requires that all users are served simultaneously in a single
bitstream. Thus, the data items in an SVC bitstream are
highly correlated to each other. This inter-dependency can
cause a coding error in one layer to propagate to other layers
and thereby complicate the bit allocation process. Another
factor that affects bit allocation under SVC is the end user’s
preference. For example, the bit allocation scheme for users
subscribing to the highest resolution should be different from
that for users subscribing to the lowest resolution, since
the latter only uses the base layer information. Hence, the
preferences for some resolutions should also be considered
by the bit allocation scheme. However, incorporating users’
preferences into the bit allocation process implies that the
preference information should be acquired by the encoder
through a feedback mechanism. This is usually considered a
disadvantage in a broadcasting environment.

Ramchandran, Ortega, and Vitterli [7] studied bit allocation
in a multi-layer coding environment. They model the distortion
in all layers as a weighted average of the distortions of the
layers, and then use R-D optimization based on the Lagrangian
technique to optimize the weighted distortion. In [8], Schwartz
and Wiegand propose an encoder control mechanism that
jointly optimizes the coding parameters of the base layer and
enhancement layers under H.264/SVC. Their algorithm also
utilizes a weighted combination of the distortions of all the
layers to balance the coding efficiency of different layers.
Although the above approaches demonstrate the correlation be-
tween the coding performance and the values of the weighting
factors, analyses of the derivation of the weighting factors are
not provided. Recently, Koziri and Eleftheriadis [9] presented
an interesting approach that models the distortion dependency
between layers as a stochastic process for joint optimization of
scalable coding. However, their analysis is limited to Gaussian
sources and spatial dependency.

In this paper, we propose a theoretical analysis of the
weighting factor approach for joint optimization of scalable
coding. We analyze the effect of a coding error in one layer
on the other layers in terms of the residual prediction of
temporal, spatial, and quality scalability under SVC. Then,
we demonstrate that the weighting factor of a layer i is a
function of all the layers affected by the coding error in
layer i, and the end user’s preference for subscribing to the
affected layers. Based on the analysis, we derive the main
result, namely, the average PSNR can be represented as the
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weighted combination of the bit rate assigned to each layer,
where the coefficient is the weighting factor. We also propose
an R-D optimization algorithm. Experiments on H.264/SVC
JSVM 9.18 [10] demonstrate that the algorithm achieves a
significant improvement over the state-of-the-art method [8],
[7] in terms of the average PSNR.

The remainder of this paper is organized as follows. In the
next section, we consider several issues that are relevant to bit
allocation under SVC. In Section III, we analyze the coding
error of the predicting frames and the predicted frame in two
adjacent layers; and in Section IV, we extend the derived result
to all the frames in adjacent layers. In Section V, we derive
the R-D function of SVC; and in Section VI, we present our
algorithm for solving the optimal bit allocation problem in
SVC. We discuss a number of implementation issues and the
experimental results in Section VII; and then summarize our
conclusions in Section VIII.

II. ASPECTS OF THE SVC BIT-ALLOCATION PROBLEM

In this section, we discuss three important aspects of the
SVC bit-allocation method for a scalable video codec, namely,
the R-D model, the measurement of the source coder’s perfor-
mance, and the structure of data dependency under SVC.

A. The rate-distortion model

In our analysis, we use He and Mitra’s ρ-domain source
model [11], which relates the number of zeros to the rate-
distortion function of quantized DCT coefficients. Let ρ denote
the percentage of zeros in the quantized DCT coefficients.
In the model, the rate R is linearly dependent on ρ and the
distortion D is exponentially dependent on ρ. The relations
are shown in the following equations in which α and θ are
parameters and σ is the picture variance:

R(ρ) = θ(1− ρ), (1)
D(ρ) = σ2e−α(1−ρ), (2)

where D represents the mean-square-error (MSE). Substituting
Equation (1) into Equation (2), we obtain the result such that

D(R) = σ2e−Rγ , (3)

and γ = α/θ. The parameter γ is propositional to dPSNR
dR :

PSNR = 10 log10 255
2 − 10 log10 e lnD (4)

= 10 log10
2552

σ2
+ (10 log10 e)γR. (5)

Equation (5) is obtained by substituting Equation (2) into
Equation (4). He and Mitra’s model assumes that γ is a
constant; however, if γ is a constant, then, according to
Equation (5), the PSNR and R are linearly related. This model
is usually correct at high bit rates, but not so exact at low bit
rates. Thus, we assume that the value of γ changes slowly
with respect to R and can be approximated as a constant at
high bit rates.

B. Quality measurement of SVC

To assess the performance of the multi-layer structure,
we use the model proposed in [12]. Suppose there are
N subscribers, from 1 to N , and the video quality they
receive is measured by the peak-signal-to-noise ratio, i.e.,
PSNR1, PSNR2, PSNR3, ..., PSNRN , respectively. We
also introduce the parameter ψi to denote the preference of
subscriber i in the system. Then, the overall quality of the N
subscriber system is

∑N
i=1 ψiPSNRi.

A scalable codec supports several spatial, temporal, and
quality resolutions. Let S, T and R represent the sets of
spatial, temporal, and quality resolutions, respectively; and let
[s, t, r] denote a particular resolution with s ∈ S, t ∈ T ,
and r ∈ R. In addition, let q(i) denote the resolution
that subscriber i requests. Based on the subscribers to the
resolution [s, t, r], we have

QN =

N∑
i=1

ψiPSNRq(i)

=
∑

s∈S,t∈T,r∈R

PSNR[s,t,r]

∑
q(i)=[s,t,r]

ψi. (6)

If we normalize QN by dividing it by the preferences of all
subscribers; i.e.,

N∑
i=1

ψi =
∑

s∈S,t∈T,r∈R

∑
q(i)=[s,t,r]

ψi, (7)

we obtain the average PSNR:

¯PSNR =
∑

s∈S,t∈T,r∈R

µ[s,t,r]PSNR[s,t,r], (8)

where the preference factor of the [s, t, r] resolution is

µ[s,t,r] =

∑
q(i)=[s,t,r] ψi∑

s∈S,t∈T,r∈R

∑
q(i)=[s,t,r] ψi

, (9)

which represents the proportion of preferences for the res-
olution [s, t, r]. If we replace the PSNR in Equation(8) by
10 log10

2552

D and use the facts that 0 ≤ µ[s,t,r] ≤ 1 and∑
s∈S,t∈T,r∈R µ[s,t,r] = 1, we obtain

¯PSNR = 10 log10 255
2 − 10 log10

∏
s∈S,t∈T,r∈R

D
µ[s,t,r]

[s,t,r] .

(10)

Equation (10) indicates that the maximization of the average
PSNR can be obtained by minimizing∏

s∈S,t∈T,r∈R

D
µ[s,t,r]

[s,t,r] . (11)

C. Layer dependency and the sequence of approximations

To achieve high quality scalability, SVC usually encodes
data into different layers of granularity. Recall that S, T and
R represent the spatial, temporal, and quality layer identifiers
respectively; and let (s, l, r) denote a particular stream in
which the spatial layer identifer s ∈ S, the temporal level
identifer l ∈ T , and the quality layer identifier r ∈ R. In this
paper, we do not distinguish between layers and resolutions.
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However, temporal layer l and temporal level l have different
meanings [4]. Specifically, temporal layer l contains all the
frames in temporal levels 0, 1, · · · , l; and temporal level l only
contains the frames in that level.

The data dependency structure can be represented by a
directed graph G = (V,E) with a vertex set V and an edge set
E = V ×V . A directed edge u⃗v indicates that the edge is from
vertex u to vertex v, but not from v to u. In SVC, a stream
is represented by a vertex and the dependency between two
streams is represented by an edge between their corresponding
vertices. A directed edge from the stream (s, l, r) to the stream
(s′, l′, r′) indicates that the data in (s′, l′, r′) is predicted based
on the data in (s, l, r). We assume that the elements in S,
T , and R can be enumerated as S = {0, 1, · · · , |S| − 1},
T = {0, 1, · · · , |T | − 1}, and R = {1, · · · , |R|}.

In addition, we assume that SVC has the following predic-
tion structure. The data in the stream (s, l, r) can be used to
predict the data in streams (s + 1, l, r) (spatial prediction),
(s, l, r + 1) (quality prediction), and (s, l + 1, r) (temporal
prediction), provided that s+1 < S, r ≤ R, and l+1 < T . If
the edge is defined accordingly, the directed graph is a directed
acyclic graph that does not have cycles and any vertex (s, l, r)
can be reached from (0, 0, 1). In H.264/SVC, the coarse-grain
quality prediction has a particular structure, as shown in Figure
1. The data in the stream (s, l, r) with r < |R| predicts that
in the stream (s, l, r + 1); meanwhile, the data in the stream
(s, l, |R|) predicts that of stream (s+ 1, l, 1).

We use Ii,(s,l,∞) to indicate that the input frame i is of spa-
tial resolution s, is in temporal level l. The coarsest approxima-
tion of Ii,(s,t,∞) is Ii,(s,t,1), which is the reconstructed frame
with one quality layer, and the next coarsest approximation is
Ii,(s,t,2), reconstructed with the first two quality layers, and so
on. Thus, from coarse to fine, the sequence of approximation
of Ii,(s,l,∞) is Ii,(s,l,1), Ii,(s,l,2), · · · . To derive the coding error
of the input frame Ii,(s,l,∞), we need to examine the error that
occurs in each prediction stage in Figure 1 and its propagation
to the other prediction stages.

III. PREDICTION RESIDUALS AND DISTORTION
PROPAGATION

In this section, we derive the prediction residuals of different
types of data predictions, as well as the relations between the
distortion of the predicted frame in one stream and that of the
predicting frames in another stream.

A. Prediction residuals

In the derivations, we use a column vector to represent a
frame, and assume that the motion vectors have been obtained.
If ∆i,(s,l,r) represents the coding error between Ii,(s,l,∞) and
Ii,(s,l,r), we have

Ii,(s,l,r) = Ii,(s,l,∞) −∆i,(s,l,r), (12)

where Ii,(s,l,r) is the reconstructed frame at the quality layer r.
Note that ∆i,(s,l,r) decreases as the quality layer r increases.
Notations

In SVC, an input frame is subjected to temporal prediction,
spatial prediction, and quality prediction. Thus, the notation

used to represent an object must specify the prediction se-
quence applied to obtain the object. We use the following
notations to represent objects:

1. Xr,t
i,(s,l) denotes an object X associated with frame

i of spatial resolution s and temporal level l. The
object is derived by applying temporal prediction to
the input frame Ii,(s,l,∞) with the predicting frames
of quality resolution r. For example, if X = I ,
then Ir,ti,(s,l) is the predicted frame of Ii,(s,l,∞) when
Ii,(s,l,∞) is temporally predicted with the predicting
frames of quality resolution r. If X = ∆, where ∆
is the prediction residual, then ∆r,t

i,(s,l) denotes the
residual obtained after applying temporal prediction
to Ii,(s,l,∞) with the predicting frames of quality
resolution r. Similarly, if X = C and C is a constant,
then Cr,t

i,(s,l) denotes the derived constant obtained in
a similar way.

2. Xr,s
i,(s,l) denotes an object X associated with frame

i of spatial resolution s and temporal level l. The
object is derived by applying temporal and spatial
prediction to the input frame Ii,(s,l,∞) with the
predicting frames of quality resolution r. If X = I ,
then Ir,si,(s,l) is the predicted frame of Ii,(s,l,∞) when
Ii,(s,l,∞) is temporally and spatially predicted with
the predicting frames of quality resolution r. If
X = ∆, where ∆ is the prediction residual, then
∆r,s

i,(s,l) is the residual obtained after temporal and
spatial prediction of Ii,(s,l,∞) with the predicting
frames of quality resolution r. Similarly, if X = C
and C is a constant, then Cr,s

i,(s,l) denotes the derived
constant.

3. Xr,q
i,(s,l) denotes an object X obtained by applying

temporal prediction and quality prediction to the
input frame Ii,(s,l,∞) with the predicting frames of
quality resolution r. If X = I , then Ir,qi,(s,l) is the
resulting predicted frame of Ii,(s,l,∞); and if X = ∆,
where ∆ is the residual, then ∆r,q

i,(s,l) is the resulting
residual. Similarly, if X = C and C is a constant,
then Cr,q

i,(s,l) is the derived constant.

Following Equation (12), the residuals ∆r,t
i,(s,l), ∆r,s

i,(s,l), and
∆r,q

i,(s,l) can be represented as Ii,(s,l,∞) − Ir,ti,(s,l), Ii,(s,l,∞) −
Ir,si,(s,l), and Ii,(s,l,∞) − Ir,qi,(s,l), respectively.

A. Temporal prediction

In SVC, temporal scalability with dyadic temporal levels
can be implemented effectively by a hierarchical prediction
structure. In temporal prediction, the macroblocks of the input
frame Ii,(s,l,∞) can be either INTER- or INTRA- predicted.
The INTER macroblocks are predicted by the corresponding
reconstructed frames, Ii−m,(s,l−1,r) and Ii+m,(s,l−1,r), with
l ≥ 1. Let Ar,t

i,(s,l) denote the pixels predicted in INTRA
macroblocks; then, Ir,ti,(s,l), as defined in Notation 1 is obtained
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by

∆r,t
i,(s,l)

= Ii,(s,l,∞) −
{Pi,i−mIi−m,(s,l−1,r) + Pi,i+mIi+m,(s,l−1,r)} −
Ar,t

i,(s,l) (13)

= (Ii,(s,l,∞) − Pi,i−mIi−m,(s,l−1,∞)

−Pi,i+mIi+m,(s,l−1,∞) −Ar,t
i,(s,l)) +

(Pi,i−m∆i−m,(s,l−1,r) + Pi,i+m∆i+m,(s,l−1,r))

(14)
= Cr,t

i,(s,l) +

(Pi,i−m∆i−m,(s,l−1,r) + Pi,i+m∆i+m,(s,l−1,r)),

(15)

where P is the matrix representation of the motion compensa-
tion prediction method for INTER macroblocks, and Cr,t

i,(s,l)
is the constant error, as defined in Notation 1. The second term
in Equation (15) represents the propagation of the residuals
∆i−m,(s,l−1,r) and ∆i+m,(s,l−1,r) of the reconstructed predict-
ing frames in the previous temporal level. If we assume that
the first and second terms in Equation (15) are uncorrelated,
then we have

σ2
i,(s,l,r) = var(Cr,t

i,(s,r)) +

var(Pi,i−m∆i−m,(s,l−1,r) + Pi,i+m∆i+m,(s,l−1,r)).

(16)

Note that σ2
i,(s,l,r) is the variance, which is used as part of the

distortion calculation by the ρ-domain source model shown in
Equation (3).
B. Spatial prediction

Although spatial prediction is sometimes referred to as
INTRA prediction, in this paper, it means prediction based on
the information about the video at a lower spatial resolution.
Spatial prediction of the INTER macroblocks is achieved by
inter-layer spatial residual prediction, which predicts a tempo-
ral residual by up-sampling the corresponding reconstructed
temporal residual in the previous spatial resolution. We use the
matrix U to denote an up-sampling method applied to mac-
roblocks in a frame. If a macroblock is not INTER-predicted,
it can be predicted by either INTRA prediction or inter-
layer intra prediction. Since INTRA-predicted macroblocks
have been considered, we only need to take the inter-layer
intra predicted macroblocks into account. Let Ar,s

i,(s,l) denote
the predicted pixels in the macroblocks to which inter-layer
intra-prediction is applied. The residual ∆1,s

i,(s,l), as defined in
Notation 2, can be derived with s ≥ 1 as follows:

∆1,s
i,(s,l) = ∆1,t

i,(s,l)−U(Ii,(s−1,l,|R|)−I
|R|,q
i,(s−1,l))−A

r,s
i,(s,l), (17)

where the first term is the temporal residual in Equation (15);
and the second term is the up-sampled reconstructed residual
of the macroblocks, where inter-layer residual prediction is
applied in frame i in (s−1, l, |R|). This equation indicates that
the residual ∆1,t

i,(s,l) is being predicted. Substituting Equation

(12) for Ii,(s−1,l,|R|) and Equation (15) for ∆1,t
i,(s,l), we obtain

∆1,s
i,(s,l)

= (C1,t
i,(s,l) +

(Pi,i−m∆i−m,(s,l−1,1) + Pi,i+m∆i+m,(s,l−1,1))

−Ar,s
i,(s,l))−

U(Ii,(s−1,l,∞) −∆i,(s−1,l,|R|) − I
|R|,q
i,(s−1,l)) (18)

= (C1,t
i,(s,l) − U(∆

|R|,q
i,(s−1,l))−Ar,s

i,(s,l)) +

(Pi,i−m∆i−m,(s,l−1,1) + Pi,i+m∆i+m,(s,l−1,1))

+U(∆i,(s−1,l,|R|)) (19)

= C1,s
i,(s,l) +

(Pi,i−m∆i−m,(s,l−1,1) + Pi,i+m∆i+m,(s,l−1,1)) +

U(∆i,(s−1,l,|R|)), (20)

where the first term Cr,s
i,(s,l) is the constant, the second term is

the error propagated from (s, l−1, r), and the third term is the
error propagated from (s− 1, l, r). Assuming these terms are
uncorrelated, for the streams with s > 0 and r = 1 (only
temporal prediction and spatial prediction are applied), the
variance of the residual ∆1,s

i,(s,l) is

σ2
i,(s,l,1)

= var(C1,s
i,(s,l)) +

var(Pi,i−m∆i−m,(s,l−1,1) + Pi,i+m∆i+m,(s,l−1,1))

+var(U(∆i,(s−1,l,|R|))). (21)

C. Quality prediction
Coarse-grain quality prediction of H.264/SVC is similar to

spatial prediction after removing the up-sampling operator in
Equation (17). We use the matrix Y to select the pixels used by
inter-layer residual prediction. Let Ar,q

i,(s,l) denote the pixels in
the macroblocks predicted by inter-layer intra prediction; then,
the residual ∆r,q

i,(s,l) (as defined in Notation 3) with r ≥ 2 can
be represented as follows:

∆r,q
i,(s,l)

= (Ii,(s,l,∞) − Ir,ti,(s,l))−

Y (Ii,(s,l,r−1) − Ir−1,q
i,(s,l) )−Ar,q

i,(s,l) (22)

= (∆r,t
i,(s,l))− Y (Ii,(s,l,r−1) − Ir−1,q

i,(s,l) )−Ar,q
i,(s,l)

= (Cr,t
i,(s,l) +

(Pi,i−m∆i−m,(s,l−1,r) + Pi,i+m∆i+m,(s,l−1,r)))

+Y (∆i,(s,l,r−1))−Ar,q
i,(s,l)

= (Cr,t
i,(s,l) −Ar,q

i,(s,l)) +

(Pi,i−m∆i−m,(s,l−1,r) + Pi,i+m∆i+m,(s,l−1,r))

+Y (∆i,(s,l,r−1))

= (Cr,q
i,(s,l)) +

(Pi,i−m∆i−m,(s,l−1,r) + Pi,i+m∆i+m,(s,l−1,r))

+Y (∆i,(s,l,r−1)).

Since ∆r,t
i,(s,l) = Ii,(s,l,∞) − Ir,ti,(s,l), the quality prediction is a

residual prediction with the residual ∆r,t
i,(s,l) being predicted.
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Similar to Equation (21), the distortion of the residual ∆r,q
i,(s,l)

can be written as

σ2
i,(s,l,r) = var(Cr,q

i,(s,l)) +

var(Pi,i−m∆i−m,(s,l−1,r) + Pi,i+m∆i+m,(s,l−1,r))

+var(Y (∆i,(s,l,r−1))). (23)

Although the effects of INTRA prediction and inter-layer
intra-prediction are considered in (13), (17), and (22), in
the following analysis, we do not take account of the errors
propagated to them. Inter-layer intra prediction is applied to
macroblocks whose co-located macroblocks in the base layer
are INTRA-predicted. The statistical results indicate that the
probability of a macroblock having an INTRA mode in B
frames is at most 7% (QP = 50) and 4% on average [13]. As
a consequence, we can still derive a good approximation of
the optimal rate allocation even when the error propagations of
INTRA prediction and inter-layer intra-prediction are excluded.

B. Distortion propagation in spatial, temporal, and quality
prediction

In this sub-section, we explore the relationship between the
distortion of the predicted frame and that of the predicting
frames. Under H.264/SVC, quality prediction is not applied to
quality layer 1, and spatial prediction is not applied to spatial
resolution 0. Thus, the derivation of the distortion relationship
between the predicting and predicted frames can be divided
into three cases: (1) stream (0, l, 1) with l ≥ 1, where only
temporal prediction is used; (2) stream (s, l, 1) with s, l ≥ 1,
where temporal and spatial prediction are used; and (3) stream
(s, l, r) with s, l ≥ 1, r ≥ 2, where temporal and quality
prediction are used.
Case 1: stream (0, l, 1) with l ≥ 1. Note that the following
derivations can also be applied to l = 0, since the stream
(0, 0, 1) in the current GOP is temporally predicted by the
stream (0, 0, 1) in the previous GOP.

In Equation (16), if we substitute 0 and 1 for s and r
respectively, we obtain

σ2
i,(0,l,1) = var(C1,t

i,(0,l)) +

var(Pi,i−m∆i−m,(0,l−1,1) + Pi,i+m∆i+m,(0,l−1,1)).

(24)

The equation can be re-written as

σ2
i,(0,l,1) = hTi,(0,l,1)(

var(C1,t
i,(0,l))

var(Pi,i−m∆i−m,(0,l−1,1) + Pi,i+m∆i+m,(0,l−1,1))

)
,

(25)

where

hi,(0,l,1)[0] = (κα)i,(0,l,1)1{var(C1,t
i,(0,l)) ≥

var(Pi,i−m∆i−m,(0,l−1,1) + Pi,i+m∆i+m,(0,l−1,1))};
hi,(0,l,1)[1] = (κβ)i,(0,l,1)1{var(C1,t

i,(0,l)) <

var(Pi,i−m∆i−m,(0,l−1,1) + Pi,i+m∆i+m,(0,l−1,1))}.
(26)

with (κα)i,(0,l,1) =
σ2
i,(0,l,1)

var(C1,t
i,(0,l)

)
and (κβ)i,(0,l,1) =

σ2
i,(0,l,1)

var(Pi,i−m∆i−m,(0,l−1,1)+Pi,i+m∆i+m,(0,l−1,1))
; the value of the

indicator function 1{Statement} is 1 if Statement is true, and
0 otherwise. Note that hi,(0,l,1) is a 2 × 1 vector with one
of its components set to zero. In a value larger than 0, the
component in h is called the dominating term of h because
the distortion of the component is larger than that of the other
components.

Equations (24) and (25) have different interpretations of dis-
tortion propagation. Equation (24) indicates that the variance
σ2
i,(0,l,1) is contributed by two terms: one from the distortion

propagation in the predicting frames, and the other from the
coding of the predicted frame. In contrast, Equation (25) indi-
cates that the variance is caused by the distortion propagation
in the predicting frames or by encoding of the predicted frame,
but not both. Thus, Equation (25) can be regarded as an
approximation of Equation (24) by assuming that the variance
is propagated from the distortion of the predicting frames or
caused by encoding the predicted frame. The approximation
greatly simplifies our analysis of distortion propagation in the
complex prediction structure of H.264/SVC. In Appendix 1,
we provide a simple example to illustrate the approximation’s
effect on the analysis of distortion propagation.

If the number of bits assigned to encode ∆i−m,(0,l−1,1) and
∆i+m,(0,l−1,1) is small (i.e., a low bit rate), the variance of
(Pi,i−m∆i−m,(0,l−1,1) + Pi,i+m∆i+m,(0,l−1,1)) will be large;
hence, at a low bit rate, the error of the predicting frames
in the previous stream is propagated to and dominates the
distortion of the predicted frame in the current stream. On the
other hand, if a sufficiently large number of bits are assigned to
encode ∆i−m,(0,l−1,1) and ∆i+m,(0,l−1,1) (i.e., a high bit rate),
the variance of (Pi,i−m∆i−m,(0,l−1,1)+Pi,i+m∆i+m,(0,l−1,1))
will be small. Thus, at a high bit rate, the error of the predicting
frames in the previous stream is irrelevant to the predicted
frame in the current stream because var(C1,t

i,(0,l)) is a constant.
In Appendix 2, we show that, at low bit rates,

σ2
i,(0,l,1) ≈

((Cα)1,ti−m,(0,l−1)(C
β)1,ti+m,(0,l−1)

Di−m,(0,l−1,r)Di+m,(0,l−1,r))
1
2 ,

(27)

where (Cα)1,ti−m,(0,l−1) and (Cβ)1,ti+m,(0,l−1) are constants,
as defined in Notation 2. The above equation indi-
cates that the variance of the temporal residual is related
to the distortion of the associated predicting frames by
the geometric mean of (Cα)1,ti−m,(0,l−1)Di−m,(0,l−1,r) and
(Cβ)1,ti+m,(0,l−1)Di+m,(0,l−1,r).
Case 2: stream (s, l, 1) with s, l ≥ 1.

In this case, the frames are predicted by both temporal
prediction and spatial prediction. By Equation (21), we obtain

σ2
i,(s,l,1) = var(C1,s

i,(s,l))

+ var(Pi,i−m∆i−m,(s,l−1,1) + Pi,i+m∆i+m,(s,l−1,1))

+ var(U(∆i,(s−1,l,|R|))). (28)
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Similar to Case 1, we rewrite Equation (28) as follows:

σ2
i,(s,l,1) = hTi,(s,l,1)(

var(C1,s
i,(s,l))

var(Pi,i−m∆i−m,(s,l−1,1) + Pi,i+m∆i+m,(s,l−1,1))
var(U(∆i,(s−1,l,|R|)))

)
,

(29)

where hi,(s,l,1) is a 3 × 1 vector in which only one of the
components has a non-zero value (i.e., the dominating term).
For example, the first component of hi,(s,l,1) will be non-zero,
denoted as (κα)i,(s,l,1), if all the variances of ∆i−m,(s,l−1,1),
∆i+m,(s,l−1,1), and ∆i,(s−1,l,|R|) have smaller values, corre-
sponding to the high bit rates assigned to the predicting frames
in streams (s, l − 1, 1) and (s− 1, l, |R|); that is,

var(C1,s
i,(s,l)) ≥

var(Pi,i−m∆i−m,(s,l−1,1) + Pi,i+m∆i+m,(s,l−1,1)),

and (30)
var(C1,s

i,(s,l)) ≥
var(U(∆i,(s−1,l,|R|))). (31)

Similarly, (κβ)i,(s,l,1) indicates that the second component of
hi,(s,l,1) a non-zero component; and (κγ)i,(s,l,1) indicates that
the third component of hi,(s,l,1) a non-zero component. The
second component will be non-zero if the predicting frames
in stream (s, l − 1, 1) are assigned low bit rates; that is,

var(Pi,i−m∆i−m,(s,l−1,1) + Pi,i+m∆i+m,(s,l−1,1))

> var(C1,s
i,(s,l)), (32)

and
var(Pi,i−m∆i−m,(s,l−1,1) + Pi,i+m∆i+m,(s,l−1,1))

≥ var(U(∆i,(s−1,l,|R|))). (33)

The third component will be non-zero if the predicting frame
in stream (s− 1, l, |R|) is assigned a low bit rate; that is,

var(U(∆i,(s−1,l,|R|))) > var(C1,s
i,(s,l)), (34)

and
var(U(∆i,(s−1,l,|R|))) >

var(Pi,i−m∆i−m,(s,l−1,1) + Pi,i+m∆i+m,(s,l−1,1)).

(35)

Note that (κα)i,(s,l,1) =
σ2
i,(s,l,1)

var(C1,s
i,(s,l)

)
, (κβ)i,(s,l,1) =

σ2
i,(s,l,1)

var(Pi,i−m∆i−m,(s,l−1,1)+Pi,i+m∆i+m,(s,l−1,1))
, and

(κγ)i,(s,l,1) =
σ2
i,(s,l,1)

var(U(∆i,(s−1,l,|R|)))
.

In Appendix 3, we show that, at low bit rates,
var(U(∆i,(s−1,l,|R|))) can be approximated as

σ2
i,(s,l,1) = (Cω)

|R|,s
i,(s−1,l)Di,(s−1,l,|R|), (36)

where (Cω)
|R|,s
i,(s−1,l) depends on the up-sampling method em-

ployed. If bilinear interpolation is used to up-sample most of
the macroblocks in ∆i,(s−1,l,|R|), then (Cω)

|R|,s
i,(s−1,l) ≈ 1.

Case 3: stream (s, l, r) with s, l ≥ 1 and r ≥ 2.
In this case, both temporal prediction and quality prediction

are applied to predict a frame, and the variance of the predicted

frame is calculated according to Equation (23). Similar to the
previous cases, we rewrite Equation (23) as follows:

σ2
i,(s,l,r) = hTi,(s,l,r)(

var(Cr,q
i,(s,l))

var(Pi,i−m∆i−m,(s,l−1,r) + Pi,i+m∆i+m,(s,l−1,r))
var(Y (∆i,(s,l,r−1)))

)
,

(37)

where hi,(s,l,r) is a 3×1 vector in which only one component
non-zero (i.e., the dominating term).

We set the first component hi,(s,l,r)[1] = (κα)i,(s,l,r), where

(κα)i,(s,l,r) =
σ2
i,(s,l,r)

var(Cr,q
i,(s,l)

)
, if var(Cr,q

i,(s,l)) is the dominat-
ing term. This occurs when the values of ∆i−m,(s,l−1,r),
∆i+m,(s,l−1,r), and ∆i,(s,l,r−1) are smaller, corresponding
to the high bit rates assigned to the predicting frames
in streams (s, l − 1, r) and (s, l, r − 1). Next, we set
the second component hi,(s,l,r)[2] = (κβ)i,(s,l,r), where

(κβ)i,(s,l,r) =
σ2
i,(s,l,r)

var(Pi,i−m∆i−m,(s,l−1,r)+Pi,i+m∆i+m,(s,l−1,r))
,

if the dominating term is var(Pi,i−m∆i−m,(s,l−1,r) +
Pi,i+m∆i+m,(s,l−1,r)). This occurs when the predicting
frames in stream (s, l − 1, r) are assigned low bit rates.
Finally, we set the third component hi,(s,l,r)[3] = (κγ)i,(s,l,r),

where (κγ)i,(s,l,r) =
σ2
i,(s,l,r)

var(Y (∆i,(s,l,r−1)))
, to indicate that

var(Y (∆i,(s,l,r−1))) is the dominating term, which occurs
when the predicting frame in stream (s, l, r− 1) is assigned a
low bit rate.

In Appendix 4, we show that, at low bit rates,
var(Y (∆i,(s,l,r−1))) can be approximated as

σ2
i,(s,l,r) = (Cω)r−1,q

i,(s,l)Di,(s,l,r−1), (38)

where (Cω)r−1,q
i,(s,l) depends on the amount of inter-layer resid-

ual prediction applied to the macroblocks in ∆i,(s,l,r). If
it is applied to most of the macroblocks in ∆i,(s,l,r), then
(Cω)r−1,q

i,(s,l) ≈ 1.
We can summarize the three approximations of σ2

i,(s,l,r) as
follows:
For the frames in stream (0, l, 1) with l ≥ 1, we have

σ
2
i,(0,l,1) = h

T
i,(0,l,1) var(C

1,t
i,(0,l)

)

((Cα)
1,t
i−m,(0,l−1)

(Cβ)
1,t
i+m,(0,l−1)

Di−m,(0,l−1,r)Di+m,(0,l−1,r))
1
2 .

 .

(39)

For the frames in stream (s, l, 1) with s, l ≥ 1, we have

σ
2
i,(s,l,1) = h

T
i,(s,l,1)

var(C
1,s
i,(s,l)

)

((Cα)
1,t
i−m,(s,l−1)

(Cβ)
1,t
i+m,(s,l−1)

Di−m,(s,l−1,1)Di+m,(s,l−1,1))
1
2

(Cω)
|R|,s
i,(s−1,l)

Di,(s−1,l,|R|)))

 .

(40)

For the frames in stream (s, l, r) with s, l ≥ 1 and r ≥ 2, we
have

σ
2
i,(s,l,r) = h

T
i,(s,l,r)

var(C
r,q
i,(s,l)

)

((Cα)
r,t
i−m,(s,l−1)

(Cβ)
r,t
i+m,(s,l−1)

Di−m,(s,l−1,r)Di+m,(s,l−1,r))
1
2

(Cω)
r−1,q
i,(s,l)

Di,(s,l,r−1)

 .

(41)
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IV. DISTORTION OF A LAYER

We represent the distortion of a stream as a function of the
bits assigned to encode the layers along the residual prediction
path. Recall that, in our analysis, we adopt the dyadic temporal
enhancement layer structure in which the input frames of a
group of pictures (GOP) are organized in different temporal
levels. We use nu(l) to denote the number of frames in
temporal level identifier l. The dyadic temporal enhancement
layer structure means that

nu(0) = n0, and nu(l) = 2nu(l − 1) for l ≥ 1, (42)

where n0 is the number of frames in the stream (0, 0, 1). For
convenience, we define that nu(−1) = 0. The number of
frames in temporal level l is 2l−1n0. A user who subscribes
to temporal resolution t will receive all the frames in the
temporal level identifiers 0, 1, · · · , t. Thus, the user will
receive

∑t
i=0 nu(i) = 2tn0 frames. Note that the number

of frames in the temporal layer identifier t differs from the
number of frames in the temporal resolution t. If we enumerate
the frames from 1 to 2tn0 and divide them into t+1 temporal
layers with identifiers from 0 to t, the frames numbered from
1 to n0 will be assigned to temporal level identifier 0; and the
frames numbered from 2l−1n0+1 to 2ln0 will be assigned to
temporal layer identifier l, with l ≥ 1. The average distortion
of the frames in the resolution [s, t, r], denoted by D[s,t,r],
can be derived by calculating the geometric mean of the frame
distortion Di,[s,t,r] as follows:

D[s,t,r] = (
t∏

l=0

nu(l)∏
i=nu(l−1)+1

Di,(s,l,r))
1

2tn0 . (43)

Thus, the distortion of the resolution [s, t, r] is the geometric
mean of the distortions in stream, (s, 0, r), · · · , (s, t, r). We
let

b(s,l,r) =

nu(l)∑
i=nu(l−1)+1

bi,(s,l,r) (44)

denote the total number of bits assigned to the frames in the
stream (s, l, r), and

σ2
(s,l,r) =

nu(l)∏
i=nu(l−1)+1

σ2
i,(s,l,r) (45)

denote the product variance of the frames in the stream
(s, l, r).

We have analyzed the relationship between the distortion
of the predicted frame and that of the predicting frames. In
Section IV-A, we extend the results to the distortion between
all the frames in the predicting layer and predicted layer. Then,
in Section IV-B, we provide an example of error propagation
along the prediction path when the referred layers are encoded
at low bit rates.

A. Prediction error propagation in a temporal level

According to the modeling in Equation (3), the distortion
of a frame Ii,(s,l,r) is

Di,(s,l,r) = σ2
i,(s,l,r) exp {−γi,(s,l,r)bi,(s,l,r)}. (46)

To derive the distortion of a temporal level that is only
temporally predicted, according to Equations (39), (46) and
(45), the distortion of (0, l, 1) is

nu(l)∏
i=nu(l−1)+1

Di,(0,l,1)

=

nu(l)∏
i=nu(l−1)+1

σ2
i,(0,l,1) exp{−γi,(0,l,1)bi,(0,l,1)}

=

nu(l)∏
i=nu(l−1)+1

hTi,(0,l,1)(
var(C

1,t
i,(0,l)

)

(C
1,t,α
i−m,(0,l−1)

C
1,t,β
i+m,(0,l−1)

Di−m,(0,l−1,r)Di+m,(0,l−1,r))
1
2

)
exp{−γi,(0,l,1)bi,(0,l,1)}.

(47)

Note that each frame in the predicted temporal level l is
predicted by two frames in the predicting level l − 1: one
for forward prediction and the other for backward prediction.
If l ≥ 2, the predicted level will have twice as many frames
as the predicting level.

Similarly, to derive the distortion of the temporally and
spatially predicted stream (s, l, 1), with s ≥ 1, Equations
(40), (46) and (45) are used. The distortion of (s, l, 1) can
be computed as

nu(l)∏
i=nu(l−1)+1

Di,(s,l,1)

=

nu(l)∏
i=nu(l−1)+1

σ2
i,(s,l,1) exp{−γi,(s,l,1)bi,(s,l,1)}

=

nu(l)∏
i=nu(l−1)+1

hTi,(s,l,1) var(C
1,s
i,(s,l)

)

((Cα)
1,t
i−m,(s,l−1)

(Cβ)
1,t
i+m,(s,l−1)

Di−m,(s,l−1,1)Di+m,(s,l−1,1))
1
2

(Cω)
|R|,s
i,(s−1,l)

Di,(s−1,l,|R|)


exp{−γi,(s,l,1)bi,(s,l,1)}.

(48)

The distortion of the stream (s, l, r) after quality prediction
(r ≥ 2), can be related to the distortion of the frames in
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streams (s, l − 1, r) and (s, l, r − 1) as follows:

nu(l)∏
i=nu(l−1)+1

Di,(s,l,r)

=

nu(l)∏
i=nu(l−1)+1

σ2
i,(s,l,r) exp {−γi,(s,l,r)bi,(s,l,r)}

=

nu(l)∏
i=nu(l−1)+1

hTi,(s,l,r)(
var(C

r,q
i,(s,l)

)

((Cα)
r,t
i−m,(s,l−1)

(Cβ)
r,t
i+m,(s,l−1)

Di−m,(s,l−1,r)Di+m,(s,l−1,r))
1
2

(Cω)
r−1,q
i,(s,l)

Di,(s,l,r−1)

)
exp {−γi,(k,l,r)bi,(k,l,r)}.

(49)

In the above derivation, we use the results of Equations (41),
(44), (45), and (46).

B. Exploring error propagation
The derivation in Section IV-A can be used to determine the

propagation of the coding error in one stream to other streams.
As mentioned earlier, if a predicting stream is encoded at a
high bit rate, its coding error will not be propagated to the
predicted stream; on the other hand, if it is encoded at a low
bit rate, the coding error can propagate to the predicted stream.
The error propagation can be explored by substituting the
distortion in Equation (46) for Di−m,(0,l−1,r)Di+m,(0,l−1,r)
in Equations (47) and (48), Di−m,(0,l−1,r)Di+m,(0,l−1,r),
Di,(s−1,l,1) in Equation (48), and Di,(s,l,r−1) in Equation (49).
Let us assume that the h value of each frame (which we discuss
in Section (VI-B)) is known; thus, we know the propagation of
the distortion. For a stream (s, l, r), after replacing the model
in Equation (46) for the distortion D several times (according
to the values of h), the distortion in Equations (47), (48), and
(49) can be written as

nu(l)∏
i=nu(l−1)+1

Di,(s,l,r)

= C(s,l,r)

s∏
k=0

l∏
m=0

r∏
n=0

nu(m)∏
i=nu(m−1)+1

exp{−ω
(s,l,r)

i,(k,m,n)γi,(k,m,n)bi,(k,m,n)}
= C(s,l,r)

exp{
s∑

k=0

l∑
m=0

r∑
n=0

nu(l)∑
i=nu(l−1)+1

−ω
(s,l,r)

i,(k,m,n)γi,(k,m,n)bi,(k,m,n)},

(50)

where C(s,l,r) is a constant, and ω(s,l,r)
i,(k,m,n) is an integer number

indicating how many times the distortion Di,(k,m,n) is used
to derive the distortion of the stream (s, l, r) in the error
propagation process. Based on the results, we can derive the
average distortion of SVC.

V. THE AVERAGE DISTORTION OF SVC

Our objective is to determine the optimal bit assignment
that will minimize the average distortion function in Equation
(11). To achieve the objective, we need to represent the average

distortion as a function of the bits assigned to an individual
stream. Substituting Equation (43) into Equation (11), we have

∏
r∈R

∏
s∈S

|T |−1∏
t=0

(
t∏

l=0

nu(l)∏
i=nu(l−1)+1

Di,(s,l,r))
µ[s,t,r]

2tn0

=
∏
r∈R

∏
s∈S

|T |−1∏
l=0

(

nu(l)∏
i=nu(l−1)+1

Di,(s,l,r))
∑|T |−1

t=l

µ[s,t,r]

2tn0 .

(51)

Taking the minus logarithm of Equation (51), we have

−
∑
r∈R

∑
s∈S

|T |−1∑
l=0

|T |−1∑
t=l

log((

nu(l)∏
i=nu(l−1)+1

Di,(s,l,r))
µ[s,t,r]

2tn0 ).

(52)
Substituting Equation (50) into Equation (52), the minus
logarithm of the average distortion is calculated as

∑
r∈R

∑
s∈S

|T |−1∑
l=0

|T |−1∑
t=l

µ[s,t,r]

2tn0
log(

nu(l)∏
i=nu(l−1)+1

Di,(s,l,r))

=
∑
r∈R

∑
s∈S

|T |−1∑
l=0

|T |−1∑
t=l

µ[s,t,r]

2tn0
log(C(s,l,r)

exp{
s∑

k=0

l∑
m=0

r∑
n=0

nu(l)∑
i=nu(l−1)+1

−ω(s,l,r)
i,(k,m,n)γi,(k,m,n)bi,(k,m,n)})

=
∑
r∈R

∑
s∈S

|T |−1∑
l=0

|T |−1∑
t=l

µ[s,t,r]

2tn0
{log(C(s,l,r)) +

s∑
k=0

l∑
m=0

r∑
n=0

nu(l)∑
i=nu(l−1)+1

−ω(s,l,r)
i,(k,m,n)γi,(k,m,n)bi,(k,m,n))}

=
∑
r∈R

∑
s∈S

|T |−1∑
l=0

|T |−1∑
t=l

µ[s,t,r]

2tn0
logC(s,l,r)

+
∑
r∈R

∑
s∈S

|T |−1∑
l=0

|T |−1∑
t=l

s∑
k=0

l∑
m=0

r∑
n=0

nu(l)∑
i=nu(l−1)+1

−
µ[s,t,r]

2tn0
ω
(s,l,r)
i,(k,m,n)γi,(k,m,n)bi,(k,m,n).

(53)

The first and second terms in Equation (53), denoted by f1
and f2 respectively, can be deduced as follows.

1. The first term:

f1 =
∑
r∈R

∑
s∈S

|T |−1∑
l=0

|T |−1∑
t=l

µ[s,t,r]

2tn0
logC(s,l,r) (54)

The term represents the constant of the objective function,
and is not considered in the bit allocation problem.
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2. The second term:

f2 =
∑
r∈R

∑
s∈S

|T |−1∑
l=0

|T |−1∑
t=l

s∑
k=0

l∑
m=0

r∑
n=0

nu(l)∑
i=nu(l−1)+1

−
µ[s,t,r]

2tn0
ω
(s,l,r)
i,(k,m,n)γi,(k,m,n)bi,(k,m,n) (55)

=
∑
r∈R

∑
s∈S

|T |−1∑
l=0

nu(l)∑
i=nu(l−1)+1

ωi,(s,l,r)γi,(s,l,r)bi,(s,l,r) (56)

=
∑
r∈R

∑
s∈S

|T |−1∑
l=0

ω(s,l,r)b(s,l,r), (57)

where ωi,(s,l,r) denotes the weight of bi,(s,l,r), which can be
calculated by reordering the summations in Equation (55). The
value of ω(s,l,r) is the weight of the rate allocated to the stream
(s, l, r) and can be computed by

ω(s,l,r) =

∑nu(l)
i=nu(l−1)+1 ωi,(s,l,r)γi,(s,l,r)bi,(s,l,r)

b(s,l,r)
. (58)

The above derivations and Equation (11) show that max-
imizing the average PSNR of H.264/SVC with a coarse-
grain quality prediction structure can be approximated by
maximizing ∑

r∈R

∑
s∈S

|T |−1∑
l=0

ω(s,l,r)b(s,l,r). (59)

VI. SOLVING THE INTER-LAYER BIT ALLOCATION
PROBLEM

Recall that b(k,l,j) represents the number of bits assigned to
all the 2l−1n0 frames in the stream (k, l, j), Thus, Equation
(59) represents the inter-layer bit allocation problem in SVC.
It is difficult to solve this equation by a direct approach
because a weight contains h vectors whose values depend on
the results of the bit assignment process. Hence, we solve
the problem by finding the optimal bit assignment of a given
weight profile instead (see Section VI-A), and then modify
the profile based on the derived bit assignment. The proposed
optimal bit allocation algorithm is described in Section VI-B.

A. Optimal Bit Allocation with Fixed Weights

When the weight in Equation (59) is given, finding the opti-
mal bit allocation becomes a constrained linear programming
problem. To simplify the formula, we let i = r × |S| × |T |+
t×|S|+s. The bit allocation problem involves finding the set
of bits {bi|0 ≤ i < |R| × |S| × |T |} that solve the problem
(P):

(P ) max
bi

|R|×|S|×|T |−1∑
i=0

biwi, (60)

with the constraints{
bi ≤ Bi, ∀i∑|R|×|S|×|T |−1

i=0 bi ≤ C,
(61)

where Bi is the rate constraint for layer i, and C =
∑

iBi is
the maximal rate allowed for encoding the GOP. Note that C
and Bi are given values that depend on the user’s bandwidth.

The Lagrangian corresponding to the minimization problem
(P ) is defined as

L(ξ, λi, bi)
= min

bi
−
∑
i

biwi −
∑
i

λi(Bi − bi)− ξ(C −
∑
i

bi),

(62)

where ξ and λi are called Lagrange multipliers. From the
Lagrangian, we have

max
ξ≥0,λi≥0

L(ξ, λi, bi) =
{

−
∑

i wibi if Bi ≥ bi and C ≥
∑

i bi,
∞ otherwise.

(63)
Therefore, the solution of

min
bi

max
ξ≥0,λi≥0

L(ξ, λi, bi) (64)

coincides with (P ) in regions where bi ≤ Bi and
∑

i bi ≤ C.
The duality replaces “min” and “max” in the above equation,
resulting in

d∗ = max
ξ≥0,λi≥0

min
bi

L(ξ, λi, bi) ≤ min
bi

max
ξ≥0,λi≥0

L(ξ, λi, bi) = p∗.

(65)
Since L(λ, λi, bi) is a linear function, and therefore a con-
vex function, and the problem (P ) has a strictly feasible
solution with bi < Bi and

∑
i bi < C, according to

Slater’s theorem, we have p∗ = d∗. Thus, the solution of
maxλ≥0,λi≥0 minbi L(ξ, λi, bi) is the solution of (P ), where
minbi L(ξ, λi, bi) is called the dual function.

Let us define the vectors a =
(w0, w1, · · · , w|R|×|S|×|T |−1)

T , b =
(b0, b1, · · · , b|R|×|S|×|T |−1)

T , and λ =
(λ0, λ1, · · · , λ|R|×|S|×|T |−1)

T , where T is the transpose
operation. The Lagrangian can be represented as

L(ξ, λi, bi) = −aT b − λT (B − b)− ξ(C − 1T b), (66)

where 1 is a column vector whose element is 1. Taking the
partial derivative of the Lagrangian with respect to b and ξ,
we obtain

∂

∂b
L(ξ, λi, bi) = −a + λ+ ξ1 = 0, (67)

and
∂

∂ξ
L(ξ, λi, bi) = C − 1T b = 0, (68)

respectively. Solving Equations (67) and (68), we have 1T b =
C and λi + ξ = wi with 0 ≤ λi ≤ wi, 0 ≤ ξ ≤ wi. If we let
x∗ be mini wi and λ∗i = wi −x∗, then we have two sets with
λ = 0 and λ > 0 as follows:

Sλ=0 = {i|λ∗i = 0}; and Sλ>0 = {i|λ∗i > 0}.

Substituting the results of Equations (67) and (68) into the
Lagrangian, the minimization of the dual function in the
regions where bi ≤ Bi and

∑
i bi ≤ C can be written as

min
bi≤Bi,

∑
i bi=C

L(ξ, λ∗i , bi), (69)
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such that

L(ξ, λ∗i , bi)
= −

∑
i∈Sλ>0

{wibi + λ∗i (Bi − bi)} −
∑

i∈Sλ=0

wibi

(70)

= −
∑

i∈Sλ>0

(wiBi − x∗(Bi − bi))−
∑

i∈Sλ=0

wibi.

(71)

Equation (71) is derived by substituting λ∗i = wi − x∗ into
Equation (70). To minimize Equation (71), we choose b∗i = Bi

for for i ∈ Sλ>0. We can then derive that

min
bi≤Bi,

∑
i bi=C

L(ξ, λ∗i , bi) = −
∑

i∈Sλ>0

wiBi −
∑

i∈Sλ=0

wibi,

(72)
and ∑

i∈Sλ>0

Bi +
∑

i∈Sλ=0

bi = C. (73)

To minimize Equation (72), we find the optimal solution of

max
bi

∑
i∈Sλ=0

wibi (74)

According to the Cauchy Schwarz inequality, the maximum
occurs when bi = ϵwi. Thus, we have∑

i∈Sλ=0

bi = ϵ
∑

i∈Sλ=0

wi = C −
∑

i∈Sλ>0

Bi. (75)

The value of ϵ can be computed as ϵ =
C−

∑
i∈Sλ>0

Bi∑
i∈Sλ=0

wi
. We

conclude that the optimal bit allocation b∗i for a given weight
profile is

b∗i =

{
(C −

∑
k∈Sλ>0

Bk)
wi∑

k∈Sλ=0
wk

i ∈ Sλ=0,

Bi i ∈ Sλ>0.
(76)

B. Optimal Bit Allocation Algorithm with Known Preferences
In SVC, the optimal allocation rate is usually controlled

by the quantization parameter (QP ), instead of the bit rate.
The QP and bit rate can be related by QP = a ln(b) + c,
where a and c are the model’s parameters and b is the bit
rate [14]; however, we calculate the actual number of bits that
correspond to a QP-value when encoding a frame. Thus, the
proposed algorithm allocates the optimal bit rate to each layer
of quality resolution r.

The steps of the algorithm are detailed in Table 1. First, to
ensure that each stream is allocated the smallest number of
bits, we assign the largest possible QP value, say 51, to each
stream. From the QP values, we can determine the values of
h, the scaling factor κ, and γ in the encoding process; and from
those values, we can derive the weight of a stream. We then
partition the streams into two sets: Sλ>0 and Sλ=0. For each
stream that is not assigned an optimal bit rate (see Equation
(76)), we reduce its QP value by an amount approximately
equal to the increase in its bit rate. Then, based on the new
QP values, we repeat the above process until every stream
has been assigned an optimal bit rate. In Table 1, the set F
contains the streams that have optimal bit assignments.

VII. IMPLEMENTATION ISSUES AND EXPERIMENTAL
RESULTS

In this section, we consider some implementation issues and
compare the performance of QP selection by our method and
the method proposed in [7], [8].

A. Coding structure and implementation details

Our coding structure, which is a modification of that in
[4], supports the selection of QP values during the encoding
process, as shown in Figure 2. The implementation is based
on H.264/SVC JSVM 9.18. The steps of the encoding process
are as follows. The encoder processes one GOP at a time.
Before selecting the QP values used in the quantization
operation, the modes and motion vectors of the macroblocks
in a GOP are computed by the H.264/SVC JSVM 9.18. The
MQPs, defined as the QP values used to compute the modes
and motion vectors, are obtained from the QP values of
the previous GOP. For the first GOP, the MQP is set at
28 for all streams. After obtaining the modes and motion
vectors, the inter-layer bit allocation method decides the QP
values for all streams. Then, given the modes, motion vectors
and QP values, the SVC encoder generates bit streams for
each (s, l, r). Finally, the multiplexer combines the generated
streams. The implementation details are as follows: the size
of the GOP is 4; the inter-layer prediction option is enabled;
a full search is performed for motion estimation; the motion
vector accuracy is 1/4 of a pixel; the search range is 32× 32;
the variable block size option is enabled; and a hierarchical
prediction structure is used for temporal scalability.

B. Variance approximation

In this subsection, we examine the approximation of the
variance in Equation (3) by Equations (39), (40), and (41). At
each rate-distortion point, the calculations of the γ value, the
h vector, and the scaling factor κ, which adjusts the variance
of the dominating term in h to the actual variance, are based
on the actual rate, distortion, and variance. Then the method to
compute the distortion of each rate-distortion point is similar
to that in our rate allocation algorithm. Given the approximated
variance and the value of γ, we can predict the distortion of the
adjacent rate-distortion point with a higher rate according to
the modeling in Equation (3) and compare it with the distortion
measured by the actual encoding process.

First, we examine the approximated variance in Equation
(39). In the experiment, we let S = {352 × 288}, T =
{7.5fps, 15fps}, and R = {r1} (indicating only one quality
layer). From the graphs in the bottom row of Figure 3, we
observe that if the quantization step of the predicting stream
is large, ((352×288, 7.5fps, r1) in this case), corresponding to
a low bit rate, the propagated distortion dominates the variance
calculation so that our modeling is very accurate. In contrast,
when the quantization step of the predicting stream is small,
corresponding to a high bit rate, the constant term in Equation
(39) dominates the variance, as shown in the top row of Figure
3. However, if neither of the terms in Equation (39) dominates
the process, our modeling is less accurate, as shown in the
middle row of Figure 3.
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In Figure 4, we examine the validation of Equation (40),
which approximates the variance after spatial prediction and
temporal prediction. In the experiment, we let S = {176 ×
144, 352 × 288}, T = {30fps}, and R = {r1}. For ease of
presentation, we assume that if the streams have the same spa-
tial resolution, they also have the same QP value. As shown
in the bottom row of Figure 4, when the quantization step of
the spatial predicting stream is large, ((176× 144, 30fps, r1)
in this case), the propagated distortion dominates the variance
calculation, and our rate distortion modeling is very accurate.
In contrast, when the quantization step of the spatial predicting
stream is small, the constant term or the temporally propagated
distortion may dominate the variance, as shown in the top row
of Figure 4, and our approximation results are satisfactory.
However, if none of the three terms in Equation (40) dominates
the process, our modeling is less accurate, as shown in the
middle row of Figure 4.

In Figure 5, we examine the validation of Equation (41),
which approximates the variance of a frame after quality
prediction and temporal prediction. In the experiment, we
let S = {352 × 288}, T = {30fps}, and R = {r1, r2}
(corresponding to using two quality layers). Again, for ease
of presentation, we assume that if the streams have the same
quality resolution, they also have the same QP value. The
results depicted in the bottom row of Figure 5 show that when
the quantization step of the quality predicting stream is large
((352×288, 30fps, r1) in the case), the propagated distortion
dominates the variance calculation, and the rate distortion
curves can be well approximated. However, when the quan-
tization step of the quality predicting stream becomes small,
the constant term or the temporally propagated distortion may
dominate the variance, as shown in the top row of Figure 5. If
none of the terms in Equation (41) dominates the process, our
variance calculation model becomes less accurate, as shown
in the middle row of Figure 5.

The results in Figures 3, 4, and 5 show that when the
distortion of the dominating term is not significantly larger
than that of the other terms, the variances are not well
approximated by (39), (40), and (41). A precise distortion
model could be obtained by setting all the values of h as 1;
however, the analysis of the error propagation for such a model
would be overwhelmingly complex. Deriving a more precise
variance model whose error propagation can be analyzed easily
would be an interesting topic for future research.

C. Performance comparison

In this subsection, we compare the coding efficiency of
different QP selection schemes. We denote our bit allocation
method (discussed in Section VI-B) as Proposed, and compare
its performance with that of the state-of-the-art Lagrangian-
based method (denoted as Lagrangian) proposed in [8], [7].
The latter uses the weighting of each stream to indicate
the importance of the resolution in deriving the optimal
bit-allocation; however, the authors do not explain how the
weighting values are selected.

The Lagrangian method selects the QP values by minimiz-

ing

J =
∑

s∈S,t∈T,r∈R

w[s,t,r]{
t∑

l=0

nu(l)∑
i=nu(l−1)+1

Ji,(s,l,r)}, (77)

in which w[s,t,r] is the weighting of the resolution [s, t, r].
Here, Ji,(s,l,r) denotes the objective function of the frame i in
the stream (s, l, r). It is formulated as follows:

Ji,(s,l,r) = (SSD)i,(s,l,r) + λi,(s,l,r)bi,(s,l,r), (78)

where SSD denotes the sum of the squared differences.
According to the analysis in [15], if we assign the same
QP values (denoted by QP(s,l,r)) to all the frames in the
stream (s, l, r), the value of λ in Equation (78) will be
0.85× 2(QP(s,l,r)−12)/3. In our comparison, we let w[s,t,r] be
µ[s,t,r] because both of them are supposed to indicate the im-
portance of the resolution in the bit-allocation process. Thus,
we compare the optimization with the following objective
function:

J =
∑

s∈S,t∈T,r∈R

µ[s,t,r]{
t∑

l=0

nu(l)∑
i=nu(l−1)+1

Ji,(s,l,r)}. (79)

In the following experiments, we measure the performance
by averaging the coding gain of Proposed over Lagrangian
on four sequences: Foreman, News, Dancer and Coastguard.
First, we compare the user preference profiles assigned to
different temporal resolutions. We let S = {88 × 72},
T = {7.5fps, 15fps, 30fps}, and R = {r1}. Various
values are given to the three preferences, µ[88×72,7.5fps,r1],
µ[88×72,15fps,r1], and µ[88×76,30fps,r1] so that their sum is
equal to 1. We conduct experiments on three rate constraints,
namely, 40kbps, 60kbps and 80kbps (corresponding to C in
Equation (61)). The average PSNR gain of Proposed over La-
grangian is shown in Figure 6. In addition, as shown in Figure
7, we conduct experiments with the same settings as Figure 6,
except that the spatial resolution S = {352×288} and the rate
constraints are 80kbps, 120kbps, and 160kbps. From Figures 6
and 7, we observe that Proposed outperforms Lagrangian. The
average PSNR gain of Proposed over Lagrangian for temporal
scalability is 0.25db in Figure 6 and 0.06db in Figure 7.

Next, we compare the rate allocation schemes in terms of
different spatial resolutions. In the experiment, we let S =
{88×72, 176×144, 352×288}, T = {7.5fps, 15fps, 30fps},
and R = {r1}. Various values are given to µ[88×72,30fps,r1],
µ[176×144,30fps,r1], and µ[352×288,30fps,r1] so that their sum
is equal to 1. The average PSNR gain of Proposed over La-
grangian is shown in Figure 8. In addition, as shown in Figure
9, we conduct the experiments with the same settings as Figure
8, except that the spatial resolution S = {176 × 144, 352 ×
288, 704 × 576}, and the rate constraints become 320kbps,
640kbps, and 1280kbps. For all user preference distributions,
the average PSNR gain of Proposed over Lagrangian is 1.38db
in Figure 8 and 0.79db in Figure 9.

The coding gains in Figures 8 and 9 are much larger than
those in Figures 6 and 7. Thus, under our method, the coding
gain for spatial scalability is higher than that for temporal
scalability. From Figures 8 and 9, we observe that the coding
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gain depends on the distribution of the user preferences. If
most users prefer a lower spatial resolution, the coding gain
may be larger than 8db; conversely, if most users prefer a
higher spatial resolution, the coding gain may be less than
0.5db.

We also compare the rate allocation schemes in terms
of different quality resolutions. We let S = {88 × 72},
T = {7.5fps, 15fps, 30fps}, and R = {r1, r2, r3} (three
quality layers); and assign various values to µ[88×72,30fps,r1],
µ[88×72,30fps,r2], and µ[88×72,30fps,r3] so that the sum of their
preferences is equal to 1. The average PSNR gain of Proposed
over Lagrangian is shown in Figure 10. In addition, as shown
in Figure 11, we conduct experiments with the same settings as
Figure 10, except that the spatial resolution S = {352× 288}
and the rate constraints are 80kbps, 120kbps, and 160kbps.
For all user preference distributions, the average PSNR gain
of Proposed over Lagrangian is 0.2db in Figure 10 and 0.05db
in Figure 11.

Finally, we consider the complexity of the three coding
schemes. As shown in Figure 2, motion estimation and mode
selection, which are the most time consuming parts of the
encoding process in different coding schemes, are only per-
formed once for each macroblock in a GOP. The optimal bit-
allocation process of all the coding schemes has the same
computational complexity order O(MN ), where M repre-
sents the number of streams and N denotes the possible QP
values for each stream. If the modes and motion vectors are
given, motion compensation and quantization can be executed
efficiently in all the schemes. In our experiments, at a high
coding rate, the computation time of the Proposed method is
about 3 times longer than that of the JSVM encoder; however,
at a low coding rate, it is only 1.5 times longer.

VIII. CONCLUSION

We present a theoretical analysis of joint R-D optimization
for mult-layer coding. The data dependency structure of
temporal, spatial, and quality prediction is fully explored in
the analysis. In addition, we demonstrate the importance of
the end user’s preference to the coding performance of SVC.
We derive that the average PSNR of SVC is the weighted
average of the bit rates assigned to individual streams. The
weighting factor is a function of all the affected layers and
their corresponding preference factors. We also propose an
optimal bit allocation algorithm that controls the encoder
rate with subscribers’ preference information. Comparison of
the algorithm’s performance with that of a state-of-the-art
coder shows that it achieves a significant PSNR gain over
the compared method. In a future work, we will extend our
analysis to study the joint source and channel coding problem
under SVC.

ACKNOWLEDGMENTS

The authors wish to thank the reviewers and the associate
editor for their insightful comments, which have helped us
improve the quality of the paper significantly.

Table 1. The proposed optimal bit allocation algorithm
with known preference information
(1) Let QPi = 51 for each stream and let F = {}.
(2) Run SVC to obtain the actual number of bits used
in the current QP assignment.
(3) Derive the values of h, κ, and γ from QP ,
and compute the weight wi.
(4) Based on the weight, assign a stream to either
Sλ>0 or Sλ=0.
(5) If all the streams are in F , the algorithm stops.

Otherwise, for a stream i not in F , there are two
possibilities: i ∈ Sλ>0 or i ∈ Sλ=0.
(6) Case Sλ>0:
(6.1) Let wi = maxk∈Sλ>0,k/∈F wk; that is, the
coding error of the stream i has the largest weight.

If QPi = 1, the stream has the largest bit assignment
and it is added to F .

Otherwise, increase the number of bits assigned to
the stream by reducing its QP value;
QPi = max{QPi − 1, 1}.

(6.2) Run SVC to obtain the actual number of bits for
the new value of QP . If bi > Bi,

let QPi = QPi + 1, add stream i to F , and go to
step 5; otherwise, go to step 3.
(7) Case Sλ=0:

(7.1) Reduce QPi until bi >
C−

∑
k∈Sλ>0

Bk∑
k∈Sλ=0

wk
wi,

or bi > Bi, or QPi = 0.
Then, add i to F and let QPi = QPi + 1;

and go to step 3.

Appendix 1: Variance approximation
In this appendix, we provide a simple example to illustrate

how the dependency of frames in video coding can affect
the rate-distortion analysis significantly. In the following, the
texture means the residual obtained after predicting a frame.
We consider two cases and use three frames (frames 1, 2, and
3) to demonstrate the benefits derived by re-writing Equation
(24) as Equation (25).
Case 1: Independent rate distortion curves
Assuming the three frames are encoded separately with the
variances of the texture σ2

1 , σ2
2 , σ2

2 and the model coefficients
γ1 and γ2 and γ3 respectively (according to Equation (3)),
the optimal rate allocation problem involves minimizing the
following equation:

D1(b1)D2(b2)D3(b3)

= σ2
1 exp (−γ1b1)σ2

2 exp (−γ2b2)σ2
3 exp (−γ3b3) (80a)

= σ2
1σ

2
2σ

2
3 exp (−(γ1b1 + γ2b2 + γ3b3)). (80b)

Thus, after taking the logarithm on both sides of the equation,
we obtain the linear relationship between the log-distortion and
the bit rate allocated to each frame. As a result, the optimal rate
allocation solution can be derived efficiently by using linear
programming methods.
Case 2: Dependent rate distortion curves

In this case, we show how the dependency affects the rate
allocation results based on the ρ-domain source model. We
assume that frame 2 is temporally predicted by frame 1 and
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frame 3. Because the texture of frame 2 is dependent on the
reconstructed referred (predicting) frames in the prediction
steps, σ2

2 should be a function of the rates allocated to frame
1 and frame 3. The optimal rate allocation problem involves
minimizing the following equation:

D1(b1)D2(b1, b2, b3)D3(b3)

= σ2
1 exp (−γ1b1)σ2

2(b1, b3) exp (−γ2b2)σ2
3 exp (−γ3b3)

(81a)

= σ2
1σ

2
2(b1, b3)σ

2
3 exp (−(γ1b1 + γ2b2 + γ3b3)),

(81b)

where σ2
2(b1, b3) implies that the variance of frame 2 is

dependent on the rates b1 and b3. The detailed derivation of
the effects of b1 and b3 on σ2

2 is given in Appendix 2. Using
the result of Appendix 2, we have

σ2
2(b1, b3) = hT2

(
var(C2)

{Cα
1 C

β
3D1(b1)D3(b3)}

1
2

)
, (82)

where var(C2), Cα
1 , and Cα

3 are constants, and D1(b1) and
D3(b3) represent the distortion of frame 1 and frame 3
respectively. Let h12 and h22 be the first and second components
of column vector h2. Equation (82) can be written as

σ2
2(b1, b3) = h12var(C2) + h22{Cα

1 C
β
3D1(b1)D3(b3)}

1
2 . (83)

The ρ-domain source model is used for the distortions D1(b1)
and D3(b3) in Equation (83). We obtain

D1(b1)D2(b1, b2, b3)D3(b3)

= σ2
1σ

2
3(h

1
2var(C2) + h22A(b1, b2, b3)), (84)

where

A(b1, b2, b3) =

{Cα
1 C

β
3 σ

2
1 exp (−γ1b1)σ2

3

exp (−γ3b3)}
1
2 exp (−(γ1b1 + γ2b2 + γ3b3)). (85)

Note that, in Equation (84), the two leading terms begin with
h12 and h22 respectively. Thus, we cannot obtain the simple
linear relationship between the log-distortion and the rates
allocated to frames by taking the logarithm on both sides of the
equation. This example shows that the complexity of optimal
rate-allocation analysis of the three dependent frames can
increase. If more frames are involved, the distortion may be
comprised of several terms; hence, the rate-allocation analysis
would be even more complicated. Moreover, if we consider
spatial, temporal, and quality dependency simultaneously, as
in H.264/SVC, the optimal rate allocation problem would
become overwhelmingly complicated and impossible to solve
efficiently.

The above analysis explains why we only allow the vec-
tor h in Equations (39),(40), and (41) to have one non-
zero component (i.e., dominating component). As a result,
the variance of each predicted frame is comprised of only
one term, so we can maintain the simple linear relationship
between the log-distortion and the bit rate in the analysis.
In our example, σ2

2 is approximated as either κ1var(C2) or
κ2{Cα

1 C
β
3 σ

2
1 exp (−γ1b1)σ2

3 exp (−γ3b3)}
1
2 , not as a linear

combination of them, where κ1 and κ2 are scaling factors

that adjust the variance of the respective dominating terms
to the actual variance. Depending on which term in h is
the dominating term, the distortion in Equation (84) becomes
either

D1(b1)D2(b1, b2, b3)D3(b3) = κ1σ
2
1σ

2
3var(C2), (86)

or

D1(b1)D2(b1, b2, b3)D3(b3) = κ2σ
2
1σ

2
3A(b1, b2, b3), (87)

where A(b1, b2, b3) is given in Equation (85). Thus, our
approach can preserve the simple linear relationship between
the log-distortion and the allocated bit rates of dependent
frames. Using a simpler R-D analysis of distortion propagation
from referred frames/layers to referring frames/layers makes
the optimal rate allocation process much more straightforward.

Appendix 2: The two-stream relation of temporal prediction
at a low bit rate

The two-stream relation explores the data-dependency between
the predicting and predicted stream in SVC. We now derive the
distortion between the two streams due to temporal prediction
at a low bit rate. In the following analysis, the pixels of a
frame are arranged as a vector.

For temporal prediction at a low bit rate, Equation (15) can
be approximated as

(∆i,(0,l))
1,t = Pi,i−m∆i−m,(0,l−1,1) + Pi,i+m∆i+m,(0,l−1,1),

(88)
where Pi,i−m and Pi,i+m are the matrices of the motion
vectors. Without loss of generality, we assume that a pixel
in (∆i,(0,l))

1,t is estimated by a linear combination of one
pixel in ∆i−m,(0,l−1,1) and one pixel in ∆i+m,(0,l−1,1). Thus,
the p-th pixel in (∆i,(0,l))

1,t can be written as

(∆i,(0,l))
1,t(p) = a∆i−m,(0,l−1,1)(f1(p))+b∆i+m,(0,l−1,1)(f2(p)),

(89)
where a and b are the prediction weights of ∆i−m,(0,l−1,1)

and ∆i+m,(0,t−1,1) respectively; and f1(p) and f2(p) are the
corresponding pixels in the predicting residuals. As usual, the
pixels can be derived from the motion vectors. Because motion
estimation finds the most similar blocks in the predicting resid-
ual in order to estimate the target block, we can assume that
there are several pairs of pixels in which ∆i−m,(s,t−1,1)(f1(p))
and ∆i+m,(0,t−1,1)(f2(p)) have similar values; that is, for
several pairs of (f1(p), f2(p)),

∆i−m,(0,l−1,1)(f1(p)) ≈ ∆i+m,(0,l−1,1)(f2(p)). (90)

Substituting the above result into Equation (89), we have

((∆i,(0,l))
1,t)2 ≈ (a+ b)2(∆i−m,(0,l−1,1)(f1(p)))

2. (91)

Let N2 denote the number of pixels in (∆i,(0,l))
1,t. If the
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interpolation kernel is used, then a+ b = 1, and we have

σ2
i,(0,l,1) =

1

N2

N2∑
p=1

((∆i,(0,l))
1,t(p))2 (92)

≈
(Cα)1,ti−m,(0,l−1)

N2

N2∑
p=1

(∆i−m,(0,l−1,1)(f1(p)))
2

(93)
= (Cα)1,ti−m,(0,l−1)Di−m,(0,l−1,1), (94)

where (Cα)1,ti−m,(0,l−1) is related to the proportion of the pixels
used to perform forward prediction in ∆i−m,(0,l−1,r):∑N2

p=1(∆i−m,(0,l−1,1)(f1(p)))
2∑N2

p=1(∆i−m,(0,l−1,1)(p))2
. (95)

The value of (Cα)1,ti−m,(0,l−1) depends on the motion vectors.
It becomes a constant after the motion vectors have been
obtained. For the frames of slow motion objects, almost all the
pixels in ∆i−m,(0,l−1,r) will be used in the prediction process;
thus, (Cα)1,ti−m,(0,l−1) ≈ 1.

In a similar way, we can derive that

σ2
i,(0,l,1) ≈ (Cβ)1,ti+m,(0,l−1)Di+m,(0,l−1,1), (96)

where (Cβ)1,ti+m,(0,l−1) is calculated as follows:∑N2

p=1(∆i+m,(0,l−1,1)(f2(p)))
2∑N2

p=1(∆i+m,(0,l−1,1)(p))2
. (97)

(Cβ)1,ti+m,(0,l−1) is a constant after the motion vectors have
been obtained. For frames that contain slow motion objects,
(Cβ)1,ti+m,(0,l−1) ≈ 1. Combining Equations (94) and (96), we
have

σ2
i,(0,l,1) ≈

(Cα)1,ti−m,(0,l−1)(C
β)1,ti+m,(0,l−1)

Di−m,(0,l−1,r)Di+m,(0,l−1,r))
1
2 ,

(98)

which is the geometric mean of the results of Equations (94)
and (96).

Appendix 3: The two-stream relation of spatial residual
prediction at a low bit rate

In the following, we derive the relation between the distortion
of two frames during inter-layer spatial prediction at a low
bit rate. Let the size of a frame in spatial layer s − 1 be
N2. Without loss of generality, we assume a dyadic spatial
scalability structure, where the number of pixels of a frame in
spatial layer identifier s is four times greater than that of the
corresponding frame in spatial layer identifer s− 1.

Let ∆r,s
i,(s,l)(p) denote the p-th pixel in ∆r,s

i,(s,l), and let
∆i,(s−1,l,1)[p] denote the pixels in ∆i,(s−1,l,1) involved in
the spatial prediction of pixel ∆r,s

i,(s,l)(p). We use the vec
operator to change the pixels in the block ∆s

i,(s−1,l,1)[p] into
a column vector U , and use the latter to represent the spatial

prediction method. As shown in Equation (29), at a low bit
rate and var(U(∆i,(s−1,l,1))) > var(Pi,i−m∆i−m,(s,l−1,1) +

Pi,i+m∆i+m,(s,l−1,1)), the residual ∆1,s
i,(s,l)(p) can be approx-

imated as

∆1,s
i,(s,l)(p) ≈ UT (vec(∆i,(s−1,l,1)[p])), (99)

where T is the transpose operation. Taking the square of
∆1,s

i,(s,l)(p), we can derive that

(∆1,s
i,(s,l)(p))

2 = trace(UUT (vec(∆i,(s−1,l,1)[p]))

(vec(∆i,(s−1,l,1)[p]))
T ) (100)

≤ trace(UTU)trace((vec(∆i,(s−1,l,1)[p]))

(vec(∆i,(s−1,l,1)[p]))
T ) (101)

= trace(UTU)∥vec(∆i,(s−1,l,1)[p])∥F(102)

≤ ∥U∥22 ∥vec(∆i,(s−1,l,1)[p])∥F . (103)

Equations (101), (102), and (103) are derived by using the
properties of the Frobenius norm:

∥AB∥2F ≤ ∥A∥2F ∥B∥2F , and ∥A∥2F = trace(ATA), (104)

for any real matrices A and B. If U represents an interpolation,
then ∥U∥22 ≤ ∥U∥21 = 1. As a result, Equation (103) becomes

(∆1,s
i,(s,l)(p))

2 ≤ ∥vec(∆i,(s−1,l,1)[p])∥F . (105)

Let |U | denote the size of the vector U . Because any pixel in
∆i,(s−1,l,1) is used at most |U | times in the spatial prediction
process, the variance of ∆1,s

i,(s−1,l) can be calculated as

σ2
i,(s,l,1) =

1

4N2

4N2∑
p=1

(∆1,s
i,(s−1,l)(p))

2 (106)

≤ 1

4N2

4N2∑
p=1

∥vec(∆i,(s−1,l,1)[p])∥2F (107)

≤ |U |
4N2

∥vec(∆i,(s−1,l,1))∥2F (108)

=
|U |
4
Di,(s−1,l,1). (109)

Equation (109) gives the distortion between two corresponding
frames in the spatial prediction process. If bilinear interpola-
tion is used, (i.e., 4 pixels are involved in the interpolation), we
have |U | = 4. Then, we can introduce a constant (Cω)1,si,(s−1,l)
and re-write Equation (109) as follows:

σ2
i,(s,l,1) = (Cω)1,si,(s−1,l)Di,(s−1,l,1). (110)

Appendix 4: The two-stream relation of quality residual
prediction at a low bit rate

In the following, we derive the relation between the distor-
tion of two frames during inter-layer quality prediction at a
low bit rate. Let the size of a frame in spatial layer s be
N2. Let ∆r,q

i,(s,l)(p) denote the p-th pixel in ∆r,q
i,(s,l), and let

∆i,(s,l,r−1)[p] denote the pixels in ∆i,(s,l,r−1) involved in
the quality prediction of pixel ∆r,q

i,(s,l)(p). We use the vec
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operator to change the pixels in the block ∆s
i,(s,l,r−1)[p] into

a column vector Y , and use the latter to represent the quality
prediction method. As shown in Equation (29), at a low bit
rate and var(Y (∆i,(s,l,r−1))) > var(Pi,i−m∆i−m,(s,l−1,r) +
Pi,i+m∆i+m,(s,l−1,r)), the residual ∆r,q

i,(s,l)(p) can be approx-
imated as

∆r,q
i,(s,l)(p) ≈ Y T (vec(∆i,(s,l,r−1)[p])), (111)

where T is the transpose operation. Taking the square of
∆r,q

i,(s,l)(p), we can derive that

(∆r,q
i,(s,l)(p))

2 = trace(Y Y T (vec(∆i,(s,l,r−1)[p]))

(vec(∆i,(s,l,r−1)[p]))
T ) (112)

≤ trace(Y TY )trace((vec(∆i,(s,l,r−1)[p]))

(vec(∆i,(s,l,r−1)[p]))
T ) (113)

= trace(Y TY )∥vec(∆i,(s,l,r−1)[p])∥F(114)

≤ ∥Y ∥22 ∥vec(∆i,(s,l,r−1)[p])∥F . (115)

Equations (113), (114), and (115) are derived by using the
properties of the Frobenius norm:

∥AB∥2F ≤ ∥A∥2F ∥B∥2F , and ∥A∥2F = trace(ATA), (116)

for any real matrices A and B. Because Y represents selection
of pixels, we have ∥Y ∥22 ≤ 1. As a result, Equation (115)
becomes

(∆r,q
i,(s,l)(p))

2 ≤ ∥vec(∆i,(s,l,r−1)[p])∥F . (117)

The variance of ∆r,q
i,(s,l) can be calculated as

σ2
i,(s,l,r) =

1

N2

N2∑
p=1

(∆r,q
i,(s,l)(p))

2 (118)

≤ 1

N2

N2∑
p=1

∥Y ∥22∥vec(∆i,(s,l,r−1)[p])∥2F(119)

≤ 1

N2
∥vec(∆i,(s,l,r−1))∥2F (120)

= Di,(s,l,r−1). (121)

Equation (121) gives the distortion between two correspond-
ing frames in the quality prediction process. Then, we can
introduce a constant (Cω)r−1,q

i,(s,l) and re-write Equation (121)
as follows:

σ2
i,(s,l,r) = (Cω)r−1,q

i,(s,l)Di,(s,l,r−1). (122)
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Fig. 2. The proposed encoding structure supports the combined scalability. In
our implementation, motion estimation and mode selection are based on JSVM
9.18. Each layer performs its own motion estimation and mode selection. Note
that if the inter-layer QP selection step is removed, then the coding structure
is exactly the same as that of H.264/SVC. MQP is defined as the QP values
used to derive the modes and the motion vectors of macroblocks. The model
parameters for Inter-Layer QP Selection are h, κ, and γ. They are updated
in each iteration of our optimal bit allocation algorithm.
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Fig. 3. Approximation of the distortion of the predicted layer due to temporal
prediction based on Equation (39). The prediction accuracy depends on the
QP values of the predicting layer.
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Fig. 4. Approximation of the distortion of the predicted layer due to spatial
prediction and temporal prediction based on Equation (40). The prediction
accuracy depends on the QP values of the predicting layer.
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Fig. 5. Approximation of the distortion of the predicted layer due to quality
prediction and temporal prediction based on Equation (41). The prediction
accuracy depends on the QP values of the predicting layer.
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Fig. 6. The PSNR gain of Proposed over Lagrangian in terms of temporal
scalability. The preferences µ[88×72,7.5fps,r1] and µ[88×72,15fps,r1] are
shown; and, the preference µ[88×72,30fps,r1] can be obtained by (1 −
µ[88×72,7.5fps,r1] − µ[88×72,15fps,r1]).
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Fig. 7. The PSNR gain of Proposed over Lagrangian in terms of temporal
scalability. The preferences µ[352×288,7.5fps,r1] and µ[352×288,15fps,r1]
are shown; and, the preference µ[352×288,30fps,r1] can be obtained by (1−
µ[352×288,7.5fps,r1] − µ[352×288,15fps,r1]).
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Fig. 8. The PSNR gain of Proposed over Lagrangian in terms of spatial
scalability. The preferences µ[88×72,30fps,r1] and µ[176×144,30fps,r1] are
shown; and, the preference µ[352×288,30fps,r1] can be computed by (1 −
µ[88×72,30fps,r1] − µ[176×144,30fps,r1]).
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Fig. 9. The PSNR gain of Proposed over Lagrangian in terms of spatial
scalability. The preferences µ[176×144,30fps,r1] and µ[352×288,30fps,r1]
are shown; and, the preference µ[704×576,30fps,r1] can be computed by
(1− µ[176×144,30fps,r1] − µ[352×288,30fps,r1]).
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Fig. 10. The PSNR gain of Proposed over Lagrangian in terms of
quality scalability. The preferences µ[88×72,30fps,r1] and µ[88×72,30fps,r2]
are shown; and, the preference µ[88×72,30fps,r3] can be computed by
(1− µ[88×72,30fps,r2] − µ[88×72,30fps,r3]).
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Fig. 11. The PSNR gain of Proposed over Lagrangian in terms of quality
scalability. The preferences µ[352×288,30fps,r1] and µ[352×288,30fps,r2]
are shown; and, the preference µ[352×288,30fps,r3] can be computed by
(1− µ[352×288,30fps,r2] − µ[352×288,30fps,r3]).
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