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Abstract—We study a new image sensor that is reminiscent of a
traditional photographic film. Each pixel in the sensor has a binary
response, giving only a 1-bit quantized measurement of the local
light intensity. To analyze its performance, we formulate the over-
sampled binary sensing scheme as a parameter estimation problem
based on quantized Poisson statistics. We show that, with a single-
photon quantization threshold and large oversampling factors, the
Cramér–Rao lower bound (CRLB) of the estimation variance ap-
proaches that of an ideal unquantized sensor, i.e., as if there were no
quantization in the sensor measurements. Furthermore, the CRLB
is shown to be asymptotically achievable by the maximum-likeli-
hood estimator (MLE). By showing that the log-likelihood function
of our problem is concave, we guarantee the global optimality of it-
erative algorithms in finding the MLE. Numerical results on both
synthetic data and images taken by a prototype sensor verify our
theoretical analysis and demonstrate the effectiveness of our image
reconstruction algorithm. They also suggest the potential applica-
tion of the oversampled binary sensing scheme in high dynamic
range photography.

Index Terms—Computational photography, diffraction-limited
imaging, digital film sensor, high dynamic range imaging, photon-
limited imaging, Poisson statistics, quantization.

I. INTRODUCTION

B EFORE the advent of digital image sensors, photography,
for the most part of its history, used film to record light

information. At the heart of every photographic film are a large
number of light-sensitive grains of silver halide crystals [1].
During exposure, each micrometer-sized grain has a binary fate,
i.e., either it is struck by some incident photons and becomes
“exposed” or it is missed by photon bombardment and remains
“unexposed”. In the subsequent film development process, ex-
posed grains, due to their altered chemical properties, are con-
verted to silver metal, contributing to opaque spots on the film;
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unexposed grains are washed away in a chemical bath, leaving
behind them transparent regions on the film. Thus, in essence, a
photographic film is a binary imaging medium using local densi-
ties of opaque silver grains to encode the original light intensity
information. Due to the small size and large number of these
grains, one hardly notices this quantized nature of film when
viewing it at a distance, observing only a continuous gray tone.

In this paper, we study a new digital image sensor that is rem-
iniscent of a photographic film. Each pixel in the sensor has
a binary response, giving only a 1-bit quantized measurement
of the local light intensity. At the start of the exposure period,
all pixels are set to 0. A pixel is then set to 1 if the number of
photons reaching it during the exposure is at least equal to a
given threshold . One way to build such binary sensors is to
modify standard memory chip technology, where each memory
bit cell is designed to be sensitive to visible light [2]. With cur-
rent CMOS technology, the level of integration of such systems
can exceed – (i.e., 1 to 10 giga) pixels per chip. In this
case, the corresponding pixel sizes (around 50 nm [3]) are far
below the diffraction limit of light (see Section II for more de-
tails), and thus, the image sensor is oversampling the optical
resolution of the light field. Intuitively, one can exploit this spa-
tial redundancy to compensate for the information loss due to
1-bit quantizations, as is classic in oversampled analog-to-dig-
ital (A/D) conversions [4]–[7].

Building a binary sensor that emulates the photographic film
process was first envisioned by Fossum [8], who coined the
name “digital film sensor”. The original motivation was mainly
out of technical necessity. The miniaturization of camera
systems calls for continuous shrinking of pixel sizes. At a
certain point, however, the limited full-well capacity (i.e., the
maximum photonselectrons a pixel can hold) of small pixels
becomes a bottleneck, yielding very low signal-to-noise ratios
(SNRs) and poor dynamic ranges. In contrast, a binary sensor,
whose pixels only need to detect a few photoelectrons around
a small threshold , has much less requirement for full-well
capacities, allowing pixel sizes to further shrink.

In this paper, we present a theoretical analysis of the perfor-
mance of the binary image sensor and propose an efficient and
optimal algorithm to reconstruct images from the binary sensor
measurements. Our analysis and numerical simulations demon-
strate that the dynamic ranges of the binary sensors can be orders
of magnitude higher than those of conventional image sensors,
thus providing one more motivation for considering this binary
sensing scheme.

Since photon arrivals at each pixel can be well approximated
by a Poisson random process whose rate is determined by the
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local light intensity, we formulate the binary sensing and subse-
quent image reconstruction as a parameter estimation problem
based on quantized Poisson statistics. Image estimation from
Poisson statistics has been extensively studied in the past,
with applications in biomedical and astrophysical imaging.
Previous work in the literature has used linear models [9],
multiscale models [10], [11], and nonlinear piecewise smooth
models [12], [13] to describe the underlying images, leading
to different (penalized) maximum-likelihood and/or Bayesian
reconstruction algorithms. The main difference between our
work and previous work is that we only have access to 1-bit
quantized Poisson statistics. Binary quantization and spatial
oversampling in the sensing scheme add interesting dimensions
to the original problem. As we will show in Section III, the
performance of the binary sensor depends on the intricate in-
terplay of three parameters, namely, the average light intensity,
the quantization threshold , and the oversampling factor.

The binary sensing scheme studied in this paper also bears re-
semblance to oversampled A/D conversion schemes with quan-
tizations (see, e.g., [4]–[7]). Previous work on 1-bit A/D con-
versions considers band-limited signals or, in general, signals
living in the range space of some overcomplete representations.
The effect of quantization is often approximated by additive
noise, which is then mitigated through noise shaping [4], [6] or
dithering [7], followed by linear reconstruction. In this paper,
the binary sensor measurements are modeled as 1-bit quantized
versions of correlated Poisson random variables (instead of de-
terministic signals), and we directly solve the statistical inverse
problem by using maximum-likelihood estimation, without any
additive noise approximation.

The rest of this paper is organized as follows. After a precise
description of the binary sensing model in Section II, we present
three main contributions in this paper.

1) Estimation performance: In Section III, we analyze the
performance of the proposed binary sensor in estimating a
piecewise-constant light intensity function. In what might
be viewed as a surprising result, we show that, when the
quantization threshold and with large oversampling
factors, the Cramér–Rao lower bound (CRLB) [14] of
the estimation variance approaches that of unquantized
Poisson intensity estimation, i.e., as if there were no
quantization in the sensor measurements. Furthermore,
the CRLB can be asymptotically achieved by a max-
imum-likelihood estimator (MLE) for large oversampling
factors. Combined, these two results establish the feasi-
bility of trading spatial resolutions for higher quantization
bit depth.

2) Advantage over traditional sensors: We compare the over-
sampled binary sensing scheme with traditional image sen-
sors in Section III-C. Our analysis shows that, with suffi-
ciently large oversampling factors, the new binary sensor
can have higher dynamic ranges, making it particularly at-
tractive in acquiring scenes containing both bright and dark
regions.

3) Image reconstruction: Section IV presents an MLE-based
algorithm to reconstruct the light intensity field from the
binary sensor measurements. As an important result in
this paper, we show that the log-likelihood function in

Fig. 1. Imaging model. (a) Simplified architecture of a diffraction-limited
imaging system. Incident light field � ��� passes through an optical lens,
which acts like a linear system with a diffraction-limited PSF. The result is a
smoothed light field ����, which is subsequently captured by the image sensor.
(b) PSF (Airy disk) of an ideal lens with a circular aperture.

our problem is always concave for arbitrary linear field
models, thus ensuring the achievement of global optimal
solutions by iterative algorithms. For numerically solving
the MLE, we present a gradient method and derive ef-
ficient implementations based on fast signal processing
algorithms in the polyphase domain [15], [16]. This atten-
tion to computational efficiency is important in practice
due to extremely large spatial resolutions of the binary
sensors.

Section V presents numerical results on both synthetic data
and images taken by a prototype device [17]. These results
verify our theoretical analysis on the binary sensing scheme,
demonstrate the effectiveness of our image reconstruction
algorithm, and showcase the benefit of using the new binary
sensor in acquiring scenes with high dynamic ranges.

To simplify the presentation, we base our discussions on a
1-D sensor array, but all the results can be easily extended to the
2-D case. Due to space limitations, we only present the proofs
for the most important results in this paper, and we leave the rest
of the proofs to an extended technical report [18].

II. IMAGING BY OVERSAMPLED BINARY SENSORS

A. Diffraction Limit and Linear Light Field Models

Here, we describe the binary imaging scheme studied in this
paper. Consider a simplified camera model shown in Fig. 1(a).
We denote by the incoming light intensity field (i.e., the
radiance map). By assuming that light intensities remain con-
stant within a short exposure period, we model the field as only
a function of spatial variable . Without loss of generality, we
assume that the dimension of the sensor array is of one spatial
unit, i.e., .

After passing through the optical system, original light field
gets filtered by the lens, which acts similar to a linear

system with a given impulse response. Due to imperfections
(e.g., aberrations) in the lens, the impulse response, also known
as the point-spread function (PSF) of the optical system, cannot
be a Dirac delta, thus imposing a limit on the resolution of the
observable light field. However, a more fundamental physical
limit is due to light diffraction [19]. As a result, even if the lens
is ideal, the PSF is still unavoidably a small blurry spot [see,
for example, Fig. 1(b)]. In optics, such diffraction-limited spot
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is often called the Airy disk [19], whose radius can be com-
puted as

where is the wavelength of the light, and is the F-number
of the optical system.

Example 1: At wavelength nm (i.e., for blue visible
light) and , the radius of the Airy disk is 1.43 m.
Two objects with distance smaller than cannot be clearly
separated by the imaging system as their Airy disks on the image
sensor start blurring together. Current CMOS technology can
already make standard pixels smaller than , reaching sizes
ranging from 0.5 to 0.7 m [20]. In the case of binary sensors,
the simplicity of each pixel allows the feature size to be further
reduced. For example, based on standard memory technology,
typical memory bit cells (i.e., pixels) can have sizes around 50
nm [3], making it possible to substantially oversample the light
field.

In what follows, we denote by the diffraction-limited
(i.e., “observable”) light intensity field, which is the outcome of
passing the original light field through the lens. Due to the
low-pass (smoothing) nature of the PSF, the resulting has
a finite spatial resolution, i.e., it has a finite number of degrees
of freedom per unit space.

Definition 1 (Linear Field Model): In this paper, we model
the diffraction-limited light intensity field as

(1)

where is a nonnegative interpolation kernel, is a given
integer, is the exposure time, and is a set of
free variables.

Remark 1: The constant in front of the summation is not
essential, but its inclusion here leads to simpler expressions in
our later analysis.

Function , as defined in (1), has degrees of freedom.
To guarantee that the resulting light fields are physically mean-
ingful, we require both interpolation kernel and expansion
coefficients to be nonnegative. Some examples of interpo-
lation kernels include the box function

if
if otherwise

(2)

cardinal B-splines [21]

(3)

and squared sinc function .

B. Sampling the Light Intensity Field

The image sensor in Fig. 1(a) works as a sampling device of
light intensity field . Suppose that the sensor consists of

pixels per unit space and that the th pixel covers the area
between for . We denote by

the total light exposure accumulated on the surface area of
the th pixel within an exposure time period . Then

(4)

where is the box function defined in (2), and repre-
sents the standard inner product. Substitute the light field
model (1) into the above equality

(5)

where (5) is obtained through a change of variables
.
Definition 2: The spatial oversampling factor, denoted by ,

is the ratio between the number of pixels per unit space and the
number of degrees of freedom needed to specify the light field

in (1), i.e.,

(6)

In this paper, we are interested in the “oversampled” case
where . Furthermore, we assume that is an integer for
simplicity of notation. Using (6) and by introducing a discrete
filter

(7)

we can simplify (5) as

(8)

The above equality specifies a simple linear mapping from the
expansion coefficients of the light field to the light expo-
sure values accumulated by the image sensor. Readers
familiar with multirate signal processing [15], [16] will imme-
diately recognize that the relation in (8) can be implemented
via a concatenation of upsampling and filtering, as shown in the
left part of Fig. 2. This observation can be also verified by ex-
pressing (8) in the -transform domain

(9)

and using the fact that is the -transform of the -fold
upsampled version of . In Section IV, we will further study the
signal processing block diagram in Fig. 2 to derive efficient im-
plementations of the proposed image reconstruction algorithm.
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Fig. 2. Signal processing block diagram of the imaging model studied in this
paper. In the first step, the light exposure value � at the �th pixel is related
to the expansion coefficients � through a concatenation of upsampling and fil-
tering operations. Subsequently, the image sensor converts �� � into quantized
measurements �� � (see Fig. 3 and the discussions in Section II-C for details
of this second step).

Fig. 3. Model of the binary image sensor. The pixels (shown as “buckets”)
collect photons, the numbers of which are compared against a quantization
threshold �. In the figure, we illustrate the case when � � �. The pixel outputs
are binary: � � � (i.e., white pixels) if there are at least two photons received
by the pixel; otherwise, � � � (i.e., gray pixels).

Example 2: Discrete filter is completely specified by in-
terpolation kernel and oversampling factor . As a simple
case, when kernel , we can compute from (7) that

for ;
otherwise.

(10)

C. Binary Sensing and 1-Bit Poisson Statistics

Fig. 3 illustrates the binary sensor model. Recall in (4) that
denotes the exposure values accumulated by the sensor

pixels. Depending on the local values of , each pixel (de-
picted as “buckets” in the figure) collects a different number of
photons hitting on its surface. In what follows, we denote by

the number of photons impinging on the surface of the th
pixel during an exposure period . The relation between
and photon count is stochastic. More specifically, can
be modeled as realizations of a Poisson random variable ,
whose intensity parameter is equal to , i.e.,

for (11)

It is a well-known property of the Poisson process that
. Thus, the average number of photons captured by a given

pixel is equal to local light exposure .

As a photosensitive device, each pixel in the image sensor
converts photons to electrical signals, whose amplitude is pro-
portional to the number of photons impinging on that pixel.1 In
a conventional sensor design, the analog electrical signals are
then quantized by an A/D converter into 8–14 bits (usually the
more bits the better). In this paper, we study a new sensor design
using the following binary (i.e., 1-bit) quantization scheme.

Definition 3 (Binary Quantization): Let be an integer
threshold. A binary quantizer is a mapping

, such that

if ;
if otherwise.

In Fig. 3, we illustrate the binary quantization scheme. White
pixels in the figure show , and gray pixels show

. We denote by , , the
quantized output of the th pixel. Since the photon counts
are drawn from random variables , so are the binary sensor

output , from the random variables . In-
troducing two functions

(12)

we can write

(13)

Remark 2: The noise model considered in this paper is that
of Poisson noise. In practice, the performance of image sensors
is also influenced by thermal noise, which, in our case, can be
modeled as random bit flipping in the binary sensor measure-
ments. Due to space constraints, we leave further discussions
on this additional noise source and its impact on reconstruction
performance to a follow-up work.

D. Multiple Exposures and Temporal Oversampling

Our previous discussions focus on the case of acquiring a
single frame of quantized measurements during the exposure
time . As an extension, we can consider multiple exposures
and acquire consecutive and independent frames. The expo-
sure time for each frame is set to so that the total acquisi-
tion time remains the same as that of the single-exposure case.
In what follows, we call the temporal oversampling factor.

As before, we assume that and, thus, light intensities
stay constant within the entire acquisition time . For

the th frame , we denote by the light exposure
at the th pixel. Following the same derivations as those in
Section II-B, we can show that

for all (14)

1The exact ratio between these two quantities is determined by the quantum
efficiency of the sensor.
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where are the expansion coefficients of light field ,
and is the discrete filter defined in (7). The only difference
between (14) and (8) is the extra factor of due to the change
of exposure time from to . In the -domain, similar to (9)

(15)

In what follows, we establish the equivalence between tem-
poral and spatial oversamplings. More precisely, we will show
that an -pixel sensor taking independent exposures (i.e.,
with times oversampling in time) is mathematically equiva-
lent to a single sensor consisting of pixels.

First, we introduce a new sequence , ,
constructed by interlacing the exposure sequences . For
example, when , the new sequence is shown at the bottom
of the page, where and alternate. In general,
can be obtained as

(16)

In multirate signal processing, the above construction is called
the polyphase representation [15], [16], and its alternating sub-
sequences are the polyphase components.

Proposition 1: Let be a filter whose -transform

(17)

where is the -transform of the filter defined in (7).
Then

(18)

Proof: See Appendix A.
Remark 3: Proposition 1 formally establishes the equivalence

between spatial and temporal oversamplings. We note that (18)
has exactly the same form as (8), and thus, the mapping from

to can be implemented by the same signal processing
operations shown in Fig. 2, i.e., we only need to change the
upsampling factor from to and the filter from to .
In essence, by taking consecutive exposures with an -pixel
sensor, we get the same light exposure values , as if we
had used a more densely packed sensor with pixels.

Remark 4: Taking multiple exposures is a very effective way
to increase the total oversampling factor of the binary sensing
scheme. The key assumption in our analysis is that, during the

consecutive exposures, the light field remains constant over
time. To make sure that this assumption holds for arbitrary
values of , we set the exposure time for each frame to
for a fixed and small . Consequently, the maximum temporal
oversampling factor we can achieve in practice will be limited
by the readout speed of the binary sensor.

Due to the equivalence between spatial and temporal over-
samplings, we only need to focus on the single-exposure case
in our following discussions on the performance of the binary
sensor and image reconstruction algorithms. All the results we
obtain extend directly to the multiple exposure case.

III. PERFORMANCE ANALYSIS

Here, we study the performance of the binary image sensor
in estimating light intensity information, analyze the influ-
ence of the quantization threshold and oversampling factors,
and demonstrate the new sensor’s advantage over traditional
sensors in terms of higher dynamic ranges. In our analysis,
we assume that the light field is piecewise constant, i.e., the
interpolation kernel in (1) is the box function . This
simplifying assumption allows us to derive closed-form expres-
sions for several important performance measures of interest.
The numerical results in Section V suggest that the results and
conclusions we obtain in this section apply to the general linear
field model in (1) with different interpolation kernels.

A. CRLB of Estimation Variances

From Definition 1, reconstructing light intensity field
boils down to estimating unknown deterministic parameters

. Input to our estimation problem is a sequence of binary
sensor measurements , which are realizations of Bernoulli
random variables . The probability distributions of
depend on the light exposure values , as shown in (13).
Finally, exposure values are linked to the light intensity
parameters in the form of (8).

Assume that light field is piecewise constant. We have
computed in Example 2 that, under this case, the discrete filter

used in (8) is a constant, supported within , as
shown in (10). The mapping (8) between and can be
now simplified as

for (19)

We see that parameters have disjoint regions of influ-
ence, meaning, can be only sensed by a group of pixels

, by , and so on. Con-
sequently, parameters can be estimated one by one
independently of each other.

In what follows and without loss of generality, we focus on
estimating from the block of binary measurements

. For notational simplicity, we will drop the sub-
script in and use instead. To analyze the performance of the
binary sensing scheme, we first compute the CRLB [14], which
provides a theoretical lower bound on the variance of any unbi-
ased estimator.

Denote by the likelihood function of observing bi-
nary sensor measurement . Then

(20)

(21)
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where (20) is due to the independence of the photon counting
processes at different pixel locations, and (21) follows from (13)
and (19). Defining to be the number of “1”s
in the binary sequence , we can simplify (21) as

(22)

Proposition 2: The CRLB of estimating the light intensity
from binary sensor measurements with threshold is

CRLB

for (23)

Proof: See Appendix B.
It will be interesting to compare the performance of our bi-

nary image sensor with that of an ideal sensor, which does not
use quantization at all. To this end, consider the same situation
as before, where we use pixels to observe a constant light in-
tensity value . The light exposure at each pixel is equal to

, as shown in (19). Now, unlike the binary sensor that only
takes 1-bit measurements, consider an ideal sensor that can per-
fectly record the number of photon arrivals at each pixel. By
referring to Fig. 3, the sensor measurements in this case will be

, whose probability distributions are given in (11).
In the Appendix C in [18], we compute the CRLB of this

unquantized sensing scheme as

CRLB (24)

which is natural and reflects the fact that the variance of a
Poisson random variable is equal to its mean (i.e., in our
case).

To be sure, we always have CRLB
CRLB for arbitrary oversampling factor and
quantization threshold . This is not surprising, as we lose
information by 1-bit quantizations. In practice, the ratio
between the two CRLBs provides a measure of performance
degradations incurred by the binary sensors. What is surprising
is that the two quantities can be made arbitrarily close when

and is large, as shown by the following proposition.
Proposition 3: For ,

CRLB (25)

which converges to CRLB as oversampling factor
goes to infinity. For ,

CRLB CRLB (26)

and CRLB CRLB .
Proof: Specializing expression (23) for , we get

CRLB

and thus (25). The statements for cases when are shown
in Appendix D in [18].

Proposition 3 indicates that it is feasible to use oversampling
to compensate for information loss due to binary quantizations.

It follows from (25) that, with large oversampling factors, the bi-
nary sensor operates as if there were no quantization in its mea-
surements. It is also important to note that this desirable tradeoff
between spatial resolution and estimation variance only works
for a single-photon threshold (i.e., ). For other choices of
the quantization threshold, the “gap” between CRLB
and CRLB , measured in terms of their ratio, cannot be
made arbitrarily small, as shown in (26). In fact, it quickly tends
to infinity as oversampling factor increases.

The results in Proposition 3 can be intuitively understood
as follows: The expected number of photons collected by each
pixel during light exposure is equal to . As oversam-
pling factor goes to infinity, the mean value of the Poisson dis-
tribution tends to zero. Consequently, most pixels on the sensor
will only get zero or one photon, with the probability of re-
ceiving two or more photons at a pixel close to zero. In this
case, with high probability, a binary quantization scheme with
threshold does not lose information. In contrast, if ,
the binary sensor measurements will be almost uniformly zero,
making it nearly impossible to differentiate between different
light intensities.

B. Asymptotic Achievability of the CRLB

In what follows, we show that, when , the CRLB de-
rived in (23) can be asymptotically achieved by a simple MLE.
Given a sequence of binary measurements , the MLE we
seek is the parameter that maximizes the likelihood function

in (22). More specifically

(27)

where we substitute in (22) by its equivalent form
. The lower bound of the search domain is chosen

according to physical constraints, i.e., the light field cannot take
negative values. Upper bound becomes necessary when

, in which case likelihood function
is monotonically increasing with respect to light intensity level
.

Lemma 1: The MLE solution to (27) is

if ;
if otherwise

(28)

where is the inverse function of .
Remark 5: From the definition in (12), we can easily verify

that for all . It follows that func-
tion is strictly decreasing for and that the inverse

is well defined. For example, when , we have
, and thus, . In this partic-

ular case, and for , we have
. It follows that we can use the sum of the bi-

nary measurements as a first-order approximation of the light
intensity estimation.

Proof: At the two extreme cases, when or
, it is easy to see that (28) is indeed the solution to (27). Next,

we assume that .
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Computing the derivative of and setting it to zero, we
can verify that equation has a single solution
at

Since and , we conclude
that likelihood function achieves its maximum value at

. Finally, MLE solution , and thus,
we have (28).

Theorem 1: When , we have

for (29)

where . Meanwhile, the mean
squared error (MSE) of the estimator approaches CRLB ,
i.e.,

for (30)

where .
Remark 6: It is easy to verify that, for fixed , the

two terms and converge (very quickly) to 0 as
tends to infinity. It then follows from (29) and (30)

that the MLE is asymptotically unbiased and efficient
in the sense that and

. We leave the formal
proof of this theorem to Appendix C. Its main idea can be
summarized as follows. As goes to infinity, the area of each
pixel tends to zero and so does the average number of photons
arriving at that pixel. As a result, most pixels on the sensor will
get only zero or one photon during exposure. A single-photon
binary quantization scheme can perfectly record the patterns of
“0”s and “1”s on the sensor. It loses information only when a
pixel receives two or more photons, but the probability of such
events tends to zero as increases.

Now, suppose that we use a quantization threshold .
In this case, as tends to infinity, the binary responses of dif-
ferent pixels will be almost always “0”, essentially obfuscating
the actual light intensity values. This problem leads to poor per-
formance in the MLE. As stated in the following proposition,
the asymptotic MSE for becomes instead of .

Proposition 4: When , the MLE is asymptotically
biased, i.e., for any fixed and

(31)

Meanwhile, the MSE becomes

(32)

Proof: See Appendix F in [18].

C. Advantages Over Traditional Sensors

In what follows, we demonstrate the advantage of the over-
sampled binary sensing scheme, denoted by “BIN,” in achieving
higher dynamic ranges. We focus on the case where the quanti-
zation threshold is set to . For comparisons, we also con-
sider the following two alternative sensing schemes. The first,

Fig. 4. Performance comparisons of three different sensing schemes (i.e.,
“BIN”, “IDEAL”, and “SAT”) over a wide range of light exposure values
� (shown in logarithmic scale). The dash–dot line (in red) represents the
“IDEAL” scheme with no quantization. The solid line (in blue) corresponds
to the “SAT” scheme with a saturation point set at � � ���� [22]. The
four dashed lines (in black) correspond to the “BIN” scheme with � � � and
different oversampling factors (from left to right: � � � , � , � , and � ,
respectively).

denoted by “IDEAL”, uses a single pixel to estimate the light
exposure parameter (i.e., nonoversampled), but that pixel can
perfectly record the number of photon arrivals during exposure.
The second scheme, denoted by “SAT”, is very similar to the
first, with the addition of a saturation point , beyond which
the pixel can hold no more photons. Note that in our discus-
sions, the “SAT” scheme serves as an idealized model of con-
ventional image sensors, for which saturation is caused by the
limited full-well capacity of the semiconductor device. The gen-
eral trend of conventional image sensor design has been to pack
more pixels per chip by reducing pixel sizes, leading to lower
full-well capacities, and thus, lower saturation values.

Fig. 4 compares the performances of the three different
sensing schemes (i.e., “BIN”, “IDEAL”, and “SAT”) over a
wide range of light exposure values. We measure the perfor-
mances in terms of SNRs, defined as

SNR

where is the estimation of the light exposure value we obtain
from each of the sensing schemes.

We observe that the “IDEAL” scheme (i.e., the red dash–dot
line in the figure) represents an upper bound of the estimation
performance. To see this, denote by the number of photons
that arrive at the pixel during exposure. Then, is a realization
of a Poisson random variable with intensity equal to light
exposure value , i.e.,

Maximizing this function over , we can compute the MLE for
the “IDEAL” scheme as . It is easy to verify that
this estimator is unbiased, i.e., , and
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that it achieves the ideal CRLB in (24), i.e., var
var . Accordingly, we can compute the SNR as

SNR

which appears as a straight line in our figure with light exposure
values shown in a logarithmic scale.

The solid line in the figure corresponds to the “SAT” scheme,
with a saturation point set at , which is the full-
well capacity of the image sensor reported in [22]. The sensor
measurement in this case is , and the
estimator we use is

(33)

We can see that the “SAT” scheme initially has the same per-
formance as “IDEAL”. It remains this way until light exposure
value approaches saturation point , after which there is
a drastic drop2 in SNR. Denoting by SNR the minimum ac-
ceptable SNR in a given application, we can then define the dy-
namic range of a sensor as the range of for which the sensor
achieves at least SNR . For example, if we choose SNR

dB, then, as shown in the figure, the “SAT” scheme has a dy-
namic range from to , or, if measured in terms
of ratios, 100:1.

Finally, the three dashed lines represent the “BIN” scheme
with and increasing oversampling factors (from left to
right: , , , and ). We use the MLE given in
(28) and plot the corresponding estimation SNRs. We see that,
within a large range of , the performance of the “BIN” scheme
is very close to that of the “IDEAL” scheme that does not use
quantization. This verifies our analysis in Theorem 1, which
states that the “BIN” scheme with a single-photon threshold can
approach the ideal unquantized CRLB when the oversampling
factor is large enough. Furthermore, when compared with the
“SAT” scheme, the “BIN” scheme has a more gradual decrease
in SNR when the light exposure values increase and has a higher
dynamic range. For example, when , the dynamic
range of the “BIN” scheme spans from to ,
about two orders of magnitude higher than that of “SAT.” In
Section V, we will present a numerical experiment that points
to a potential application of the binary sensor in high dynamic
range photography.

Remark 7: Note that is the product of the spatial and tem-
poral oversampling factors. For example, the pixel pitch of the
image sensor reported in [22] is 1.65 m. If the binary sensor is
built on memory chip technology, with a pitch size of 50 nm [3],
then the maximum spatial oversampling factor is about 1089.
To achieve , , , and , respectively, as required
in Fig. 4, we then need to have temporal oversampling factors
ranging from 8 to 60. Unlike traditional sensors, which require
multibit quantizers, the binary sensors only need 1-bit compara-
tors. This simplicity in hardware can potentially lead to faster

2The estimator in (33) is biased around � � � . For a very narrow range of
light intensity values centered around � , the MSE of this biased estimator is
lower than the ideal CRLB. Thus, there is actually a short “spike” in SNR right
before the drop.

readout speeds, making it practical to apply temporal oversam-
pling.

IV. OPTIMAL IMAGE RECONSTRUCTION AND EFFICIENT

IMPLEMENTATIONS

In the previous section, we studied the performance of the
binary image sensor and derived the MLE for a piecewise-con-
stant light field model. Our analysis establishes the optimality
of the MLE, showing that, with single-photon thresholding and
large oversampling factors, the MLE approaches the perfor-
mance of an ideal sensing scheme without quantization. Here,
we extend the MLE to the general linear field model in (1), with
arbitrary interpolation kernels. As a main result of this paper,
we show that the log-likelihood function is always concave.
This desirable property guarantees the global convergence of
iterative numerical algorithms in solving the MLE.

A. Image Reconstruction by MLE

Under the linear field model introduced in Definition 1, re-
constructing an image [i.e., light field ] is equivalent to es-
timating the parameters in (1). As shown in (8), the light
exposure values at different sensors are related to
through a linear mapping, implemented as upsampling followed
by filtering, as shown in Fig. 2. Since it is linear, the mapping
(8) can be written as a matrix–vector multiplication

(34)

where , , and
is an matrix representing the combination of upsam-

pling (by ) and filtering (by ). Each element of can be
then written as

(35)

where is the th standard Euclidean basis vector.3

Remark 8: In using the above notations, we do not dis-
tinguish between single exposure and multiple exposures,
whose equivalence has been established by Proposition 1 in
Section II-D. In the case of multiple exposures, the essential
structure of —upsampling followed by filtering—remains
the same. All we need to do is to replace by the interlaced
sequence constructed in (16), the oversampling factor
by , and the filter by in (17).

Similar to our derivations in (20) and (21), the likeli-
hood function given binary measurements

can be computed as

(36)

3Here, we use zero-based indexing. Thus, ��� � ��� �� � � � � �� , ��� �
��� �� � � � � �� , and so on.
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where (36) follows from (12) and (35). In our subsequent dis-
cussions, it is more convenient to work with the log-likelihood
function defined as

(37)

For any given observation , the MLE we seek is the param-
eter that maximizes , or equivalently, . Specifically

(38)

Constraint means that every parameter should
satisfy for some preset maximum value .

Example 3: As discussed in Section III, when the light field
is piecewise constant, different light field parameters can
be independently estimated. In this case, the likelihood function
has only one variable [see (22)] and can be easily visualized. In
Fig. 5, we plot in (22) and the corresponding log-likeli-
hood function under different choices of the quantization
thresholds. We observe in the figures that the likelihood func-
tions are not concave, but the log-likelihood functions indeed
are. In what follows, we will show that this result is general,
i.e., the log-likelihood functions in the form of (37) are always
concave.

Lemma 2: For any two integers and such that
or , the function

is concave on the interval .
Proof: See Appendix D.

Theorem 2: For arbitrary binary sensor measurements , the
log-likelihood function defined in (37) is concave on the
domain .

Proof: It follows from the definition in (12) that, for any
, function is either

or (39)

We can apply Lemma 2 in both cases and show that
are concave functions for . Since the

sum of concave functions is still concave and the composition
of a concave function with a linear mapping
is still concave, we conclude that the log-likelihood function
defined in (37) is concave.

In general, there is no closed-form solution to the maximiza-
tion problem in (38). An MLE solution has to be found through
numerical algorithms. Theorem 2 guarantees the global conver-
gence of these iterative numerical methods.

B. Iterative Algorithm and Efficient Implementations

We compute the numerical solution of the MLE by using a
standard gradient ascent method. Denote by the estima-

Fig. 5. Likelihood and log-likelihood functions for piecewise-constant light
fields. (a) Likelihood functions � ���, defined in (22), under different choices
of the quantization thresholds � � �� �� and �. (b) Corresponding log-likeli-
hood functions. In computing these functions, we set the parameters in (22) as
follows: � � ��, i.e., the sensor is ��-timesoversampled. The binary sensor
measurements contain ten “1”s, i.e., � � ��.

tion of the unknown parameter at the th step. The estimation
at the next step is obtained by

(40)

where is the gradient of the log-likelihood function
evaluated at , is the step size at the current iteration, and

is the projection onto the search domain . We
apply to ensure that all estimations of lie in the search
domain.

Taking the derivative of the log-likelihood function in
(37), we can compute the gradient as

(41)
where is the current esti-
mation of the light exposure values, and

for

For example, when , we have and
. In this case, and ,

respectively.
The choice of the step size has a significant influence over

the speed of convergence of the above iterative algorithm. We
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follow [9] by choosing, at each step, a so that the gradient
vectors at the current and the next iterations are approximately
orthogonal to each other. By assuming that the estimates
and at consecutive iterations are close to each other, we can
use the following first-order approximation:

where

for

It follows that

diag

(42)

Assuming that gradient update is inside of
the constraint set , we can neglect the projection operator
in (40), and write

Substituting the above equality into (42), we get

diag

Finally, by requiring that be orthogonal to
, we compute the optimal step size as (43), shown at

the bottom of the page.
Remark 9: By definition, (for ) are the second-

order derivatives of concave functions (see Lemma 2) and are
thus nonpositive. Consequently, the terms in the de-
nominator of (43) are well defined.

At every iteration of the gradient algorithm, we need to up-
date the gradient and the step size . We see in (41) and (43)
that the computations always involve matrix–vector products in
the form of and for some vectors and . Matrix
is of size , where is the total number of pixels. In
practice, will be in the range of (i.e., gigapixels
per chip), making it impossible to directly implement the ma-
trix operations. Fortunately, the matrix used in both formulas

Fig. 6. Signal processing implementations of ������ and ��� ���. (a) Product ������
can be obtained by upsampling followed by filtering. (b) Product ��� ��� can be
obtained by filtering followed by downsampling. Note that the filter used in (b)
is � , i.e., the “flipped” version of � . (c) Polyphase domain implementation
of (a). (d) Polyphase domain implementation of (b).

is highly structured, and it can be implemented as upsampling
followed by filtering (see our discussions in Section II-B and
expression (8) for details). Similarly, the transpose can be
implemented by filtering (by ) followed by downsampling,
essentially “flipping” all the operations in . Fig. 6(a) and (b)
summarizes these operations.

We note that the implementations illustrated in
Fig. 6(a) and (b) are not yet optimized. For example, the
input to the filter in Fig. 6(a) is an upsampled sequence,
containing mostly zero elements. In Fig. 6(b), we compute a
full filtering operation (by ), only to discard most of the
filtering results in the subsequent downsampling step. All these
deficiencies can be eliminated by using the tool of polyphase
representations from multirate signal processing [15], [16] as
follows.

First, we split the filter into nonoverlapping polyphase
components , defined as

for (44)

Intuitively, the polyphase components specified in (44) are
simply downsampled versions of the original filter , with the
sampling locations of all these polyphase components forming
a complete partition. The mapping between the filter and
its polyphase components is one to one. To reconstruct , we
can easily verify that, in the -domain

(45)

diag

(43)
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Following the same steps as above, we can also split
the sequences and in Fig. 6 into their respec-
tive polyphase components and

.
Proposition 5: Denote by and (for )

the -transforms of and , respectively. Then

for (46)

and

(47)

Proof: See Appendix H of [18].
The results in Proposition 5 require some further explana-

tions. What (46) suggests is an alternative implementation of
, as shown in Fig. 6(c). We compute parallel convolutions

between input and polyphase filters . The channel
outputs are the polyphase components , which can be
combined to form the desired output . Similarly, it follows
from (47) that can be implemented by the parallel filtering
scheme in Fig. 6(d).

The new implementations in Fig. 6(c) and (d) are significantly
faster than their respective counterparts. To see this, suppose that
filter has coefficients. It is easy to see that the original
implementation in Fig. 6(a) requires arithmetic opera-
tions for every pixel in . In contrast, each individual channel
in Fig. 6(c) requires only arithmetic operations (due
to the shorter supports of the polyphase filters), and thus, the
total cost in Fig. 6(c) stays at operations per pixel. This
represents a -fold reduction in computational complexities. A
similar analysis also shows that Fig. 6(d) needs -times fewer
operations than Fig. 6(b). Recall that is the oversampling
factor of our image sensor. As we operate in highly oversam-
pled regimes (e.g., ) to compensate for information
loss due to 1-bit quantizations, the above improvements make
our algorithms orders of magnitude faster.

V. NUMERICAL RESULTS

We present several numerical results in this section to verify
our theoretical analysis and the effectiveness of the proposed
image reconstruction algorithm.

A. One-Dimensional Synthetic Signals

Consider a 1-D light field shown in Fig. 7(a). The inter-
polation filter we use is the cubic B-spline function
defined in (3). We can see that is a linear combination of
the shifted kernels, with the expansion coefficients shown
as blue dots in the figure.

We simulate a binary sensor with threshold and over-
sampling factor . Applying the proposed MLE-based
algorithm in Section IV, we obtain a reconstructed light field
(see the red dashed curve) shown in Fig. 7(b), together with the
original “ground truth” (see the blue solid curve). We observe
that the low-light regions are well reconstructed, but there exist
large “overshoots” in the high-light regions.

Fig. 7. Binary sensing and reconstructions of 1-D light fields. (a) Original light
field ����, modeled as a linear combination of shifted spline kernels. (b) Re-
construction result obtained by the proposed MLE-based algorithm using mea-
surements taken by a sensor with spatial oversampling factor � � ���. (c)
Improved reconstruction result due to the use of a larger spatial oversampling
factor � � ���	. (d) Alternative result, obtained by keeping � � ��� but
taking � � 	 consecutive exposures.

We can substantially improve the reconstruction quality by
increasing the oversampling factor of the sensor. Fig. 7(c) shows
the result obtained by increasing the spatial oversampling factor
to . Alternatively, we show in Fig. 7(d) a different
reconstruction result obtained by keeping the original spatial
oversampling factor at , but taking consec-
utive exposures. Visually, the two sensor configurations, i.e.,

and , lead to very sim-
ilar reconstruction performances. This observation agrees with
our previous theoretical analysis in Section II-D on the equiva-
lence between spatial and temporal oversampling schemes.
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Fig. 8. High dynamic range photography using the binary sensor. (a) Sequence
of images taken inside a church with decreasing exposure times [23]. (b) Re-
constructed high dynamic range radiance map (in logarithmic scales) using our
MLE reconstruction algorithm. (c) Tone-mapped version of the reconstructed
radiance map.

B. Acquiring Scenes With High Dynamic Ranges

A well-known difficulty in photography is the limited dy-
namic ranges of the image sensors. Capturing both very bright
and very dark regions faithfully in a single image is difficult.
For example, Fig. 8(a) shows several images taken inside a
church with different exposure times [23]. The scene contains
both sun-lit areas and shadow regions, with the former over
a thousand times brighter than the latter. Such high dynamic
ranges are well beyond the capabilities of conventional image
sensors. As a result, these images are either overexposed or
underexposed, with no single image rendering details in both
areas. In light of this problem, an active area of research in com-
putational photography is to reconstruct a high dynamic range
radiance map by combining multiple images with different
exposure settings (see, e.g., [23] and [24]). While producing
successful results, such multi-exposure approaches can be time
consuming.

In Section III-C, we have shown that the binary sensor studied
in this paper can achieve higher dynamic ranges than conven-
tional image sensors. To demonstrate this advantage, we use the
high dynamic range radiance map obtained in [23] as the ground
truth data [i.e., the light field as defined in (1)] and simu-
late the acquisition of this scene by using a binary sensor with
a single-photon threshold. The spatial oversampling factor of
the binary sensor is set to 32 32, and the temporal oversam-
pling factor is 256 (i.e., 256 independent frames). Similar to our
previous experiment on 1-D signals, we use a cubic B-spline
kernel [i.e., ] along each of the spatial dimen-
sions. Fig. 8(b) shows the reconstructed radiance map using our
algorithm described in Section IV. Since the radiance map has
a dynamic range of , the image is shown in a loga-
rithmic scale. To have a visually more pleasing result, we have
also shown in Fig. 8(c) a tone-mapped [24] version of the recon-
struction. We can see in Fig. 8(b) and (c) that details in both light
and shadow regions have been faithfully preserved in the recon-
structed radiance map, suggesting the potential application of
the binary sensor in high dynamic range photography.

C. Results on Real Sensor Data

We have also applied our reconstruction algorithm to im-
ages taken by an experimental sensor based on single-photon
avalanche diodes (SPADs) [17]. The sensor has binary-valued
pixels with single-photon sensitivities, i.e., the quantization
threshold is . Due to its experimental nature, the sensor
has limited spatial resolution, containing an array of only 32
32 detectors. To emulate the effect of spatial oversampling, we
apply temporal oversampling and acquire 4096 independent
binary frames of a static scene. In this case, we can estimate
the light intensity at each pixel independently by using the
closed-form MLE solution in (28). Fig. 9 shows 50 such binary
images, together with the final reconstruction result (at the
lower right corner). The quality of reconstruction verifies our
theoretical model and analysis.

VI. CONCLUSION

We have presented a theoretical study of a new image sensor
that acquires light information using 1-bit pixels, i.e., a scheme
reminiscent of traditional photographic film. By formulating
the binary sensing scheme as a parameter estimation problem
based on quantized Poisson statistics, we analyzed the perfor-
mance of the binary sensor in acquiring light intensity informa-
tion. Our analysis shows that, with a single-photon quantization
threshold and large oversampling factors, the binary sensor per-
forms much like an ideal sensor, as if there were no quantization.
To recover the light field from binary sensor measurements, we
proposed an MLE-based image reconstruction algorithm. We
showed that the corresponding log-likelihood function is always
concave, thus guaranteeing the global convergence of numerical
solutions. To solve for the MLE, we adopt a standard gradient
method and derive efficient implementations using fast signal
processing algorithms in the polyphase domain. Finally, we pre-
sented numerical results on both synthetic data and images taken



YANG et al.: BITS FROM PHOTONS: OVERSAMPLED IMAGE ACQUISITION USING BINARY POISSON STATISTICS 1433

Fig. 9. Reconstructing an image from the binary measurements taken by a SPAD sensor [17], with a spatial resolution of 32 � 32 pixels. The final image (lower
right corner) is obtained by incorporating 4096 consecutive frames, 50 of which are shown in the figure.

by a prototype sensor. These results verify our theoretical anal-
ysis and demonstrate the effectiveness of our image reconstruc-
tion algorithm. They also point to the potential of the new binary
sensor in high dynamic range photography applications.

APPENDIX A

A. Proof of Proposition 1

The sequence in (16) can be written, equivalently, as
, where is the Kronecker delta

function. Taking -transforms on both sides of the equality leads
to

(48)

By substituting (15) into (48) and using definition (17), we can
simplify (48) as

(49)

Finally, since is the -transform of the se-
quence , it follows from (49) that

and, thus, (18).

B. CRLB of Binary Sensors

We first compute the Fisher information, which is defined as
. Using (22), we get

(50)

where and
are the first- and second-order derivatives of , respec-
tively. In reaching (50), we have also used the fact that

, and thus, and
.

Note that is a binomial random variable,
and thus, its mean can be computed as

On substituting the above expression into (50), the Fisher infor-
mation can be simplified as

(51)

Using the definition of in (12), the derivative in the nu-
merator of (51) can be computed as

(52)

Finally, since CRLB , we reach (23) by sub-
stituting (12) and (52) into (51), and after some straightforward
manipulations.

C. Proof of Theorem 1

When , we have , and thus,
. In this case, the MLE solution in (28) can be rewritten

as

if ;

if otherwise.

We note that
and that . Thus,

for sufficiently large , the above MLE solution can be further
simplified as

if ;
if otherwise.

(53)
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Without loss of generality, we assume that is an integer in
what follows. The expected value of the MLE then becomes

Using the following identity about the
mean of a Poisson random variable, we have

(54)

In what follows, we derive bounds for the quantities on the
right-hand side of the above inequality. First, consider the prob-
ability . Since is a binomial random variable, we
have

(55)

For every , it is easy to verify that
,

and . Thus, for any , we
can simplify (55) as

(56)

It follows that

(57)

Next, consider the second term on the right-hand side of (54)

(58)

(59)

for all , where (58) follows from (56) and inequality (59)
is due to the Chernoff bound on the tail of Poisson distributions
[25]. Similarly, the third term on the right-hand side of (54) can
be rewritten as

(60)

where the inequality is again an application of the Chernoff
bound. Finally, on substituting (57), (59), and (60) into (54) and
after some simple manipulations, we reach (29).

The proof for MSE formula (30) is similar. Using (53), we
have

(61)

where in reaching (61), we have used the estimation (56) of the
binomial probabilities. We note that the variance of a Poisson
random variable is equal to its mean. Thus,

. On combining this identity with (61)

for

for

Applying the Chernoff bound to the above inequality, we get
(30).

D. Proof of Lemma 2

Function is continuously dif-
ferentiable on the interval . Therefore, to establish its
concavity, we just need to show that its second derivative is non-
positive. To this end, we first introduce a sequence of functions

defined as

if ;
if or .

(62)
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It is straightforward to verify that for
all . Now, rewriting as
and computing its second derivative, we get

(63)
where we have omitted the function argument in ,

, and for notational simplicity.
Recall that our goal is to show that ,

for . Since the denominator of (63) is always pos-
itive, we just need to focus on its numerator. Using the
identities and

, we can
simplify the numerator of (63) as follows:

(64)

In what follows, we show that

(65)

for arbitrary choices of and , where
or . Note that, when or ,

the left-hand side of (65) becomes , and thus,
(65) automatically holds. Now, assume that and .
From the definition in (62), the left-hand side of (65) is

for . Using similar arguments, we can also show that

for (66)

On substituting inequalities (65) and (66) into (64), we verify
that the numerator of (63) is nonpositive, and therefore,

for all .
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