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Abstract

We propose a method to compute scale invariant features in omnidirectional images. We present a formulation based on
Riemannian geometry for the definition of differential operators on non-Euclidian manifolds that describe the mirror and lens
structure in omnidirectional imaging. These operators lead to a scale-space analysis that preserves the geometry of the visual
information in omnidirectional images. We then build a novel scale-invariant feature detection framework for any omnidirectional
image that can be mapped on the sphere. We also present a new descriptor and feature matching solution for omnidirectional images.
The descriptor builds on the log-polar planar descriptors and adapts the descriptor computation to the specific geometry and the
non-uniform sampling density of spherical and omnidirectional images. We further propose a rotation-invariant matching method
that eliminates the orientation computation during the feature detection phase and thus decreases the computational complexity.
Finally, we show that the proposed framework also permits tomatch features in images with different geometries. Experimental
results demonstrate that the new feature detection method combined with the proposed descriptors offers promising performance
and improves on the common SIFT features computed on the planar omnidirectional images as well as other state-of-the art
methods for omnidirectional images.

Index Terms

scale-invariant features, omnidirectional imaging, Riemannian geometry, polar descriptors

I. I NTRODUCTION

A PPLICATIONS such as camera calibration, object detection,recognition or tracking generally rely on the localization
and matching of visual features in multiple images. These features need to be invariant to different transformations and

illumination changes so that they can be matched successfully in different images with similar content. Scale invariance is an
important characteristic of visual features that permits to be less sensitive to imperfect camera settings and transformations. The
most popular scale invariant feature detection algorithm is certainly the SIFT framework [1] for perspective camera images.
Many other methods have been proposed with different descriptors and feature detection approaches [2]–[5] that apply to
images from classical cameras.

Meanwhile, omnidirectional vision has been an active research field with applications in robotics and surveillance where
sensors with large fields of view present several advantagesin terms of deployment and maintenance. The omnidirectional
cameras typically consist of either a fisheye lens or a catadioptric system with a lens and a mirror with a smooth surface (e.g.,
parabolic, hyperbolic mirrors). The characteristics of the resulting images is highly dependent on the geometry of thesystem.
This particular geometry also causes partial scale changesin different regions of the same image. For example, a scene captured
with a catadioptric camera using a paraboloid mirror is sampled more densely in the outer parts of the image than in the center.
It should be taken into account for an appropriate processing of the light information. Classical scale-invariant feature detection
algorithms unfortunately do not take into account the implicit geometry of the mirrors. It penalizes the performance ofthe
image analysis applications that directly use the sensor images [6]–[8].

Recent works such as [9]–[11] have proposed to process omnidirectional images on the sphere after an inverse stereographic
projection that preserves the geometry of the light information [12], [13]. In these works, the scale-space representation is
computed with Gaussian kernels on the sphere, while the convolution is performed using the spherical Fourier transformon an
equiangular grid. An extra interpolation step between different sampling grids however induces loss of precision on the pixel
positions. In addition, the non-uniform sampling grid doesnot preserve the original sampling density and can cause spurious
upsampling and downsampling phenomena that affect the scale of the computed features. The inherent bandwidth limitations
of equiangular grids can also cause aliasing and extra smoothing when working in frequency domain. In an attempt to better
preserve the image geometry, an approximate solution that maps the Gaussian functions back to the original image is proposed
in [14]. It confirms that processing the images on their original sampling grid has important benefits.

After detection of the visual features, descriptors are computed so that features can be matched in different images. The
descriptors are expected to be distinctive as well as invariant to scale, rotation and affine transformations and robustto
illumination changes. Descriptors based on histogram computation provide the best robustness to these transformations. The
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SIFT descriptor is based on gradient orientation histograms computed in the region around feature points. Descriptorswith
different histograms such as SURF [15] and CHoG [16] have recently been proposed to improve the matching performance.
The GLOH framework [2] provides a log-polar descriptor thatcomputes histograms in spatial bins by radial division of the
support region of the feature. All these algorithms are however designed for planar images and do not take the geometry
of omnidirectional images into consideration. Furthermore, they assume that the sampling is uniform along the image. For
omnidirectional images, however, the sampling density differs from region to region and this should be taken into account in
the computation of the descriptors. One approach [10] maps the image around the feature to the tangent plane to form a planar
image patch and computes SIFT descriptors on the mapped image patch. This simple approach implicitly deals with different
sampling densities; however, an extra interpolation step is performed that may change the true scale of the feature and the
gradient values. In another approach [9], the SIFT descriptors are directly computed on the spherical surface. This approach is
however affected by different sampling densities as it doesnot take into account the different number of samples in the spatial
bins.

We propose in this paper a novel framework for the computation of scale invariant features in omnidirectional images
captured by sensors with specific geometries. In particularwe build on Riemannian geometry to define differential operators
on non-Euclidian manifolds, such that the images can be processed in their native geometry. We then propose a scale-space
analysis that permits to build scale invariant features that are adapted to the geometry of the omnidirectional images.We
illustrate our framework in the case of parabolic omnidirectional images that are commonly used in robotics and surveillance
applications. We then propose a polar descriptor for scale invariant features on the sphere that builds on log-polar descriptors
used for planar images. The new descriptors exploit the geometry of the sphere and take into account the different sampling
densities caused by the equiangular grid on the sphere. We further extend these descriptors by exploiting the relation between
the orientation bins and gradient orientation histograms in order to get rid of the orientation in the descriptor computation. This
leads to a novel matching strategy that permits to relax the computational complexity in the construction of the descriptors.
Tests on both synthetic and natural images show that the proposed feature detection and matching method outperforms theSIFT
method that is applied on the planar omnidirectional imagesand the state-of-the-art methods performed on spherical images.
Finally, we also show that it is possible to efficiently matchfeatures detected in different types of images. Our framework
therefore provides a promising solution for feature detection applications in both omnidirectional and hybrid cameranetworks
where it outperforms the state-of-the art methods.

The rest of the paper is organized as follows. It first introduces in Section II the scale-space analysis framework for non-
euclidean manifolds with an example on parabolic omnidirectional images. The feature detection method based on the novel
scale-space representation is presented in Section III. The polar descriptor with a feature matching criteria for bothoriented
and non-oriented descriptors is explained in Section IV. Section V discusses the experimental results for feature matching
between images from omnidirectional and heterogenous cameras.

II. SCALE-SPACE ANALYSIS ON NON-EUCLIDIAN MANIFOLDS

Scale-space analysis is the vital element of scale-invariant feature detection. The scale-space representation of images obtained
by smoothing is widely studied for planar images. The smoothing is performed by convolution with Gaussian kernels. For non-
euclidian manifolds, however, the Gaussian kernels cannotbe applied directly as they violate the shift invariance requirement
listed in the scale-space axioms [17] in this case. The heat diffusion equation can however be used to smooth these imagesand
to form the scale-space representation. In this section, wegive an overview of the heat diffusion equation and the Riemannian
geometry for the computation of differential operators on manifolds. We then give an example of omnidirectional images,
namely parabolic omnidirectional images and explain theirscale-space representation in a spherical framework. The spherical
representation is obtained by using the property that any central catadioptric omnidirectional image can be uniquely mapped
onto the sphere [12]. Two other examples namely spherical images and planar images are also discussed briefly.

A. Riemannian Geometry Framework

The scale-space analysis is generally performed with help of Gaussian kernels and differences of Gaussians on planar images.
Gaussian kernels can however not be used on generic smooth surfaces as these kernels are not shift invariant on these surfaces.
However, one can still compute the scale-space representation I(x, y, t) on non-Euclidian manifolds with help of the heat
diffusion equation and differential operators that can be computed on the non-euclidean manifolds. It reads

∂I(x, y, t)

∂t
= ∆I(x, y, t) (1)

where∆ is the Laplacian operator andt is the scale level. The initial condition is given asI(x, y, t0) = I(x, y) where the
original images is denoted byI(x, y). It can be noted that the Gaussian function with standard deviation

√
t is the Green’s

function for the heat diffusion equation (1) on planar images [17].
The heat diffusion equation permits to develop a scale-space analysis with differential operators. These operators can be

defined on smooth manifolds with help of Riemannian geometry, as recalled in [18]. In order to give a brief definition of
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these operators, letM be a parametric surface onR3 with an induced Riemannian metricgij that encodes the geometrical
properties of the manifold. In a local system of coordinatesxi onM, the components of the gradient of the scalar functionI read
∇ = gij ∂

∂xj , wheregij is the inverse ofgij . Note that for sake of simplicity, Einstein notation is adopted for the formulation.
Furthermore, the divergence of a vector fieldV on M is given asdivV = 1√

g∂i(V
i√g), whereg is the determinant ofgij .

We can then define the Laplace-Beltrami operator as the second order differential operator on the scalar fieldI on M, as

∆I = − 1√
g
∂j(

√
ggij∂iI) (2)

This operator that corresponds to the Laplace operator on the plane can be used to solve the heat diffusion equation (1) on
non-Euclidian manifolds and eventually for scale-space analysis. It has to be noted that the specific form of the Laplace-Beltrami
operator depends on the particular geometry of the manifoldM throughg.

B. Parabolic Mirror Systems

We now consider the specific case of omnidirectional imagingsystems with parabolic mirrors that are commonly used in
robotics and surveillance applications. Images from parabolic mirrors can be uniquely mapped on the 2-sphere by inverse
stereographic projection [12], similarly to images from most simple mirrors and catadioptric systems. This enables easier
processing of the parabolic images and enables the capture of the light rays from a central point which is the center of
the sphere. Thus, we use the mapping from the parabolic omnidirectional images to the sphere for the computation of the
differential operators explained in the previous section.In this case, the manifoldM becomes the sphere. We then derive the
metric necessary to the construction of differential operators on the sphere similarly to [18], in order to perform the scale-space
analysis and feature detection by properly taking into account the geometry of the images.

First, we can define the Euclidian line elementdl on the 2-sphereS2 in terms of the variablesr, θ andφ that represent the
spherical coordinates. The line element satisfies

dl2 = r2(dθ2 + sin2 θdφ2). (3)

The corresponding angles forθ andφ are given in Figure 1(a). The stereographic projection mapseach point on the sphere
to a planeR2 of coordinate(x, y). A point in polar coordinates(R, φ) on the stereographic plane is related to the point(θ, φ)
on the sphere byR = 2r tan( θ2 ) andφ = φ. Then the terms in the line element of (3) read

dθ2 =
16r2

(r2 + 4R2)2
dR2

sin2(θ) =
16r2R2

(4r2 +R2)2

(4)

and the line element,dl2 is

dl2 =
16r4

(4 +R2)2
(dR2 +R2dφ2) (5)

.
Let (x, y) ∈ R on the sensor plane define cartesian coordinates, whereR2 = x2 + y2, φ = tan−1( yx ), andr = 1. The line

element then reads
dl2 =

16

(4 + x2 + y2)2
(dx2 + dy2) (6)

giving the induced Riemannian metric

gij =

(

16
(4+x2+y2)2 0

0 16
(4+x2+y2)2

)

(7)

and the inverse metric

gij =

(

(4+x2+y2)2

16 0

0 (4+x2+y2)2

16

)

(8)

Equipped with this metric, we can finally compute the differential operators on the sphere with help of Eq. (2). In particular,
the norm of the gradient reads

|∇S2I|2 =
(4 + x2 + y2)2

16
|∇R2I|2 (9)

while the norm of the Laplace-Beltrami operator can be written as

|∆S2I|2 =
(4 + x2 + y2)2

16
|∆R2I|2 (10)
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(a) (b)

Fig. 1. Geometry of the 2-sphere (a) Spherical polar coordinates and (b) stereographic projection: The plane corresponds to the image plane and theθ is
the corresponding colatitude angle on the sphere.

These operators permit to compute a scale-space representation of the images in the sensor plane, while providing an
accurate representation of the geometry in the omnidirectional images through proper Riemannian metrics. It also enables the
fast computation of the Laplace-Beltrami (LB) operator by first computing the Laplacian of the image as if it is a planar image
with fast methods and then weighting by the metric to computethe LB operator.

C. Other Imaging Systems

We discuss the induced Riemannian metric for two other imaging manifolds for the sake of completeness. The first example
is the planar image. In such a case, the metric is the identitymatrix

gij =

(

1 0
0 1

)

(11)

and thus the LB operator is equal to the Laplacian as expected.
The second example is the spherical manifold with equiangular grid where the image plane becomes the unwarped spherical

image. The coordinates of the image plane are in discrete longitude,φ and co-latitude angles,θ. In such a scenario, the induced
Riemannian metric is

gij =

(

1 0
0 sin2θ

)

(12)

and the Laplace-Beltrami operator is

∆I =
cos(θ)

sin(θ)
∂θI + ∂θθI +

1

sin2(θ)
∂φφI (13)

where∂θ is the gradient with respect toθ and ∂θθ is the Laplacian with respect toθ. Note that, the Laplacian might have
some numerical instability around the poles. An alternative method based on spherical Fourier transform and gaussian kernels
on the sphere has been proposed to perform the smoothing on the sphere [11], [19]. That method is also based on the same
heat diffusion equation but aims to provide better numerical stability particularly around the poles.

III. F EATURE DETECTION

Equipped with the scale-space representation framework, we now present the feature detection method in omnidirectional
images. In the classical case of planar images, it has been shown that maxima and minima of scale-normalized Laplacian of
Gaussian images provide the most stable scale-invariant features [20] and differences of Gaussian images can approximate
scale-normalized Laplacian of Gaussian images if the scalelevels are separated by a constant multiplicative factor [1]. In order
to benefit from scale invariance, we adopt a similar method and define a multiplicative factork that controls the scaling in
the heat diffusion equation. We thus compute the heat diffusion equation at successive time steps,ti where ti = k2iσ2

o is
defined in terms of the normalization and scale factorsk and base smoothing level,σo. We form the scale levels such that
scale-normalized difference images are obtained after scale-space analysis.

Note that we use discrete operators for the computation of the scale-space representation. The differentiation with respect
to time in the heat diffusion equation is discretized with time intervals,dt and we use discrete differential operators on the
plane for the computation of the gradient and Laplacian. We use [−1 1]/ds as gradient operator and[−1 2 1]/ds as the
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Laplacian operator. Smoothing is finally performed by updating I(x, y, t) with the differences that have been computed at
previous time steps. Figure 2 illustrates some smoothed images for as a parabolic omnidirectional images. Note that thecentral
regions is smoothed less than the outer regions. This is due to the non-uniform sampling density on the surface of the sphere
caused by the inverse stereographic projection.

(a) (b) (c) (d)

Fig. 2. (a) Original parabolic omnidirectional image, (b) smoothingt = 2.25, (c) smoothingt = 5.76 , (d) the smoothed image with a Gaussian kernel on
the planar image. The resulting smoothing on the sphere is non-uniform in this case

Finally, the images are down-sampled for each octave in order to reduce the computation time. However, since the induced
metric is dependent on the position, the sampling factords is doubled for each octave in the differential operators after
downsampling. The smoothing process is summarized in Algorithm 1.

Algorithm 1 Smoothing of omnidirectional images with heat diffusion equation
1: Initialization :

Ī(x, y, ti) : The intermediate smoothed image during iterations
I(x, y) : The original image
t: smoothing level
dt: time interval
ni: max number of iterations
Ī(x, y, 0) = I(x, y), ni = t/dt

2: repeat
3: Compute gradient,∇R2 , and Laplacian∆R2 on the planar image,̄I(x, y)
4: Compute Laplacian ,∆S2 on the manifold using the induced metric,gij , and the Laplacian∆R2.
5: UpdateĪ(x, y) by Ī(x, y) = Ī(x, y) + dt ∗∆S2

6: until ni is reached
7: I(x, y, t) = Ī(x, y)

Once the scale-space images are formed, the scale-normalized Laplacian of Gaussian images are approximated by the
difference of Gaussian images similarly to the SIFT framework [1]. This permits to detect the most important visual features
by computing the difference of images of successive smoothing levels. Note however that Gaussian images are formed by the
heat diffusion equation in our proposed framework. The difference image,L(x, y, ti) is computed as

L(x, y, ti) = I(x, y, ti)− I(x, y, ti−1) (14)

whereI(x, y, ti) andI(x, y, ti−1) are the smoothed images at successive scale levels.
Given successive levels of difference images,L(x, y, ti), we then detect local extremum points by checking 26 neighbor

points in windows of 3 x 3 pixels in the current difference image L(x, y, ti) and adjacent difference images,L(x, y, ti−1)
andL(x, y, ti+1) as in [1]. The detected minima and maxima points are the stable points in terms of scale invariance [20].
The detected feature point is assigned the scale level,σ =

√
ti. Note that the Laplacian of the smoothed images are already

computed at each time step as required by the heat diffusion equation. However, it is not practical to check for the extrema at
each time step. Thus, the difference images are formed for discrete smoothing levels.

The detected extrema points are the potential feature points but some refinement and elimination is performed to increase
stability and accuracy. First the unstable points are removed. Extrema points in low contrast regions and edges are affected
by the localization errors. That is why the detected featurepoints in low textured areas and at edges have to be removed. The
magnitude of the difference of Gaussian images is used to remove the low contrast feature points. The features for which the
value ofL(x, y, ti) is below a pre-defined threshold are removed. This is a resultof heat diffusion based smoothing where
high textured regions will have higher difference between smoothed images compared to the low textured regions. Difference
images are also used to decide on the edge response. Again, asin [1], edge responses are removed by checking the ratio
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between maximum and minimum principle curvatures of the difference image at the feature position and features with a ratio
greater than a pre-defined threshold are deleted. Finally, the position of the feature point is refined to a sub-pixel level by
fitting a 3D quadratic function to the pixel position and scale. The extrema of the fitted function specifies the refined position
of the feature. Figure 3 illustrates the detected features in two omnidirectional images with rotation.

Fig. 3. Original omnidirectional images (Top) and the detected features in these images (Bottom). The diameter of the circles denote the scale level.

IV. FEATURE DESCRIPTORS ANDMATCHING

Once scale-invariant features are computed by difference of smoothed images, they have to be characterized by a descriptor
so that they become discriminative enough for proper matching between different images. In this section, we describe two new
descriptors, a polar descriptor for omnidirectional images and a non-oriented version of this polar descriptor. We also describe
a feature matching criteria based on Kullback-Leibler (KL)divergence and propose two matching criteria for non-oriented
polar descriptors based onL2 distance and KL-divergence.

A. Sampling-aware polar descriptors on the sphere

We propose a new feature descriptor that takes into account the specific geometry and sampling structure of omnidirectional
images. We use the property that central catadioptric images can be uniquely mapped onto the sphere. Thus, the new descriptor
is computed based on the sphere representation. The structure of the sphere and pixel densities on the surface of the sphere
are taken into account. Note that the processing on the sphere enables the computation of descriptors for both sphericaland
omnidirectional images.

The descriptor is computed using the pixels around the feature point. Considering the scale-space analysis on the sphere,
a circular support region around the feature point on the sphere is computed based on the scale of the visual features,σ and
the radius of this region is proportional tosin(σ), similarly to the method in [10]. As illustrated in Figure 4,if features are
detected in the omnidirectional image, this circular region is mapped on the omnidirectional image plane and image points
inside this region are considered. For spherical images with equiangular grid, pixels inside the circular support region on the
sphere are used directly.

The support regions are first used for computing the orientation of the feature. For rotation invariance, an orientationis
assigned to the visual feature. The orientation of the feature is determined by forming first an histogram of gradient orientations
weighted by the magnitude of the gradients. The peak of this histogram is selected as the orientation of the feature. If there
are more than one peak, new features are added with the same position and scale information, but with different orientations.

The gradient computation is the main part of orientation assignment. For omnidirectional images mapped onto the sphere
and for spherical images with equiangular grid, the sampling density is not constant on the surface of the sphere and thus
affects the gradient computation. On a unit sphere with aN ×N equiangular grid for example, the sampling distance between
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Fig. 4. The circular region around the mapped feature pointx′ on the sphere is mapped to the omnidirectional image plane I by stereographic projection
from the north pole,N

two neighbor pixels differing in colatitude anglesθ is constant and equal toπ/N . The sampling distance between two neighbor
pixels with different longitude anglesφ, however, is not constant. It changes with respect toθ and is equal tosin(θ)2π/N .
We thus adapt the gradient computation with a multiplicative factor depending on this distance. Recall that for omnidirectional
images, the gradients are computed using the induced Riemannian metric explained in Section II

C

Fig. 5. The log-polar descriptor and non-uniform samples inside spatial bins (left). Radial bin divisions correspond to equal division ofθ on the sphere
(right).

Once an orientation is assigned to a visual feature, a support region around the same feature point but with a bigger size
is formed again proportionally tosin(σ). As discussed in [1], the human visual system is sensitive tothe orientation of the
gradients and the spatial positions of the gradients. That is the reason why a descriptor formed in this way provides good
discrimination. The spatial position of the gradients are determined by grouping the pixels inside the support region into spatial
bins. The proposed descriptor divides the support region bydiscretizing the polar coordinates of the regions around the feature
point similar to the GLOH descriptor [2]. Figure 5 (left) shows the descriptor structure with 8 orientation bins and 3 radial
bins. The center bin is not divided into orientation bins in order to increase the robustness to feature localization errors. As one
may observe, the subdivision structure is similar to longitudes and latitudes around the poles of a sphere with an equiangular
grid and correspond to the geometry of the sphere. In addition, the selection of increasing radius values for the radial bins
is achieved by dividing the latitude angles uniformly. Figure 5 (right) illustrates this relation. Similarly to the orientation
computation, the support region and the subdivisions for the descriptor computation are mapped onto the omnidirectional plane
using stereographic projection. For spherical images withequiangular grid the pixels in the support regions are used directly.

For rotation invariance, the support region and the subdivisions are rotated on the sphere around the feature point using
the assigned orientation of the feature. For each spatial bin, the orientation and the magnitude of the gradients for pixels
inside the spatial bin are computed and an orientation histogram weighted by the magnitude of the gradients is eventually
constructed. Note that the orientation of the feature is subtracted from the computed orientation of the gradients after rotation of
the support region. Similarly to the feature orientation computation, the sampling structure on the sphere is taken into account
while computing the gradients. Another factor to consider is that the number of samples into a spatial bin also depends on
the position of the feature. Thus, a normalization is performed by dividing the histogram values by the number of the samples
inside the spatial bin. Both gradient computation and sampling number normalization provides robustness to sampling density
differences on the sphere.
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Finally, a descriptor vector is formed by concatenating thehistograms and normalizing this vector. For histogram-comparison
based method described later in the paper, the histograms are normalized for each spatial bin and concatenated to the descriptor
vector afterwards. The latter approach implicitly performs normalization with respect to the number of samples. Note that the
proposed descriptor is similar to the log-polar descriptors (GLOH) [2] for planar images. Our descriptor is however improved
in order to deal with both the geometry and sampling differences on the surface of the sphere.

B. Feature matching with oriented polar descriptors

The most common method to compare descriptors is theL2-norm between the two descriptor vectors. It is a simple and
fast method but it is shown that it does not necessarily provide the best matching scores [21]. Histogram-comparison based
methods such as the Kullback-Leibler (KL) divergence [16] or Earth Mover’s distance (EMD) [21], [22] are shown to provide
better matching performance at the price of more computation. The KL divergence method still provides a good trade-off
between accuracy and computation cost. The symmetric KL divergence between the histogramsh1 andh2 is computed as

KL(h1, h2) =

M
∑

n

(

(h1(n)log
h1(n)

h2(n)
)

)

+

M
∑

n

(

(h2(n)log
h2(n)

h1(n)
)

)

(15)

whereM is the number of bins in the histograms.
We propose to use the KL-divergence for matching the polar descriptors proposed in this paper. If we denote byDik the

spatial bin of the polar descriptorD for the ith radial division and thekth orientation division, the KL divergence between
descriptorsDp andDq is

∑

ik KL(Dik
p , Dik

q ).
It has been shown that the ratio of the best matching score to the second best matching score gives better matching

performance compared to checking only the best matching score [23]. This ratio is called the ambiguity factor parameter[10]
and used also in this paper.

Figure 6 illustrates some matched features for two omnidirectional images captured by a camera with a parabolic mirror.
Note that the geometry adaptive smoothing permits the matching of features with different scaling in different regionsof the
images.

Fig. 6. The matched features using the KL divergence metric and polar descriptors.

C. Rotation invariant matching criteria for polar descriptors

For rotation invariance, the orientation of the features isfirst estimated and then the descriptor kernel for spatial bins is
rotated to cope with the orientation differences. This stepadds an additional computation that might be particularly critical
for low-end sensors. We now exploit an interesting characteristic of our descriptors in order to derive an alternative descriptor
that necessitates smaller computational complexity. As the central bin of the descriptor is not divided into orientation bins, the
gradient histogram in this bin already captures the orientation of the feature. In addition, for a polar descriptor, therotation of
the descriptor corresponds simply to a shift of the spatial orientation bin indexes and gradient histogram bin indexes.Hence,
the descriptor can capture the distinctive characteristics of the feature even without rotating the descriptor. A non-oriented
version of the polar descriptor is computed as if the orientation of the feature is zero. The correct orientation is then computed
by the matching algorithm. We now propose a matching algorithm in order to pair these non-oriented descriptors.

The descriptors are assumed to be computed using our new descriptor but without any orientation so that the first radial
bin always points to the North pole. The approximate relative orientation is computed from the central spatial bins of the
descriptor. A circular shift is applied to one of the two central bin histograms and theL1 distance between the histograms is
computed. TheL1 distance is particularly efficient for finding a peak orientation. The amount of shift with the smaller distance
is chosen as the relative orientation. Formally, the shiftα is expressed as

α = argmin
α

[

∑

n

(
∥

∥D11
p (n)−D11

q (n+ α)
∥

∥

1
)

]

(16)
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whereD11 denotes the central spatial bin.
After the shift α has been computed, any matching criteria for polar descriptors can be modified accordingly. TheL2

distance, for example, is computed between the descriptorsby shifting the indexes of both spatial and orientation bins. In other
words, we have

‖Dp −Dq‖2 =

√

√

√

√

∑

ik

M
∑

n

(

Dik
p (n)−D

i(k−α)
p (n+ α)

)

(17)

The KL divergence used for polar descriptors is computed as
∑

ik KL(Dik
p , D̂

i(k−α)
q ) whereD̂q(n) = Dq(n+ α) and the

shift is circular.

V. EXPERIMENTAL RESULTS

A. Feature Detection Performance

We test the proposed feature detection and the descriptor computation methods on synthetic and natural omnidirectional
images. For synthetic images, we create a simple synthetic scene with a 10x10 unit planar patch in it. We map different natural
test images given in Figure 7 onto this patch. A virtual parabolic omnidirectional camera then captures the test plane from
different positions and orientations. The resolution of the synthetic images is512× 512. Figure 8 shows some of the resulting
images.

We compare the proposed feature detection algorithm to planar SIFT and spherical SIFT algorithms. We select the value
of the smoothing intervalk = 21/3 and use 4 successive octaves for all methods. We use two descriptors for the proposed
feature detector. The first descriptor is the novel polar descriptor. We use 3 radial divisions, 8 orientation divisionsand gradient
histograms with 8 orientation bins. This corresponds to a descriptor vector of length,8 ∗ (1 + 2 ∗ 8) = 136. The second
descriptor which is denoteds as VCP is based on SIFT descriptors that are computed on the plane tangent to the sphere at the
location of the feature point [10].

Fig. 7. Illustration of the natural test images that are mapped on the synthetic planar patch.

Fig. 8. Two of the synthetic parabolic omnidirectional testimages. The first image is selected as the reference image forthe rotation tests. The second image
is selected as the reference image for the translation tests.

We measure the repeatability of the features for different transformations such as rotation and translation. The measure of
repeatability is the ratio of repeating features to the number of detected features in a reference image. To find the repeating
features, we first map the detected features in the referenceimage to the destination image and update the scale of the mapped
features. Figure 9 illustrates this mapping. The update of the scale of the mapped feature is performed by multiplying the
initial scaleσ1 by the ratio of the distances of the corresponding 3D point toboth cameras. The updated scaleσ̂1 is then

σ̂1 = σ1
s′

s
(18)

wheres is the distance to the reference camera ands′ is the distance to the destination camera. In the case of no translation,
this ratio is equal tos

′

s = 1. Note that we know the 3D position and orientation of the cameras as well as the position of the
3D planar patch. Thus, we are able to map each feature in the reference image to the destination image.
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For omnidirectional images, there is a scale change due to the non-uniform sampling density in addition to the scale changes
due to camera movement. The proposed feature detection algorithm takes this scale change into account in contrary to the
planar SIFT method. For a fair comparison, however, the mapped scaleσ̂1 for features computed with planar SIFT is adapted
as

σ̂1 = σ1
s′

s

γ

γ′ (19)

whereγ =
√

(4+x2+y2)2

16 . The gamma scaling factor is obtained from (10).γ′ is computed on the destination image.
After mapping, we decide on the correct matches by checking the scale ratios and the distance between the positions of the

mapped feature point and the feature points on the other image. The condition for the feature position distance is given by

||x1
′ − x2| | ≤ δd (20)

wherex′
1

denotes the mapped point and the distance metric is theL2 norm. The distance thresholdδd is adapted to capture
the matches with different scale levels and computed as

δd = δ0σ̂1 (21)

whereδ0 is the distance threshold parameter.

Fig. 9. The mapping of the feature point in the first image to the second image. The distancess ands′ are used for the update of the scale in the mapped
feature point.

The matching condition on the scale ratio is
∣

∣

∣

∣

min(σ̂1, σ2)

max(σ̂1, σ2)

∣

∣

∣

∣

≤ δs (22)

whereδs is the scale ratio threshold.
Equipped with the correct match conditions (20) and (22), wemeasure the repeatability first for rotations in SO(3) around

the camera center. We apply rotations around the Y axis to thecamera looking towards the Z axis. The camera captures images
for rotation values changing from−50 to 50 degrees with 10 degrees intervals. The image capture is performed from two
different positions, namely 6 and 8 units away from the test plane in the virtual synthetic environment. The image corresponding
to the rotation of−50 degrees is selected as the reference image. For each rotation value, we compare the features in the
reference image to the features in the image corresponding to the rotation value. We apply the distance and the scale ratio
conditions for each feature in the reference image. The feature pairs satisfying these two conditions are considered asground
truth matches. Note that we do not apply any descriptor matching method for the ground truth match computation. The ground
truth matches give the performance of the feature detectionalgorithm independently of the descriptor quality. Figure10(a)
shows the performance for rotation tests using the ground truth matches with our proposed feature detection method (LB), the
spherical SIFT and the planar SIFT. The rate of the ground truth matches is the number of ground truth matches divided by the
number of features in the reference image. It can be seen thatwith the proposed method most of the features in the reference
image are detected again in the other images independently of the rotation value. The proposed method outperforms both the
planar SIFT and spherical SIFT algorithms. The spherical SIFT, similarly to the proposed method, preserves the scale when a
rotation in SO(3) is applied. The planar SIFT is however highly affected by the rotation changes.

We then perform the matching using the computed descriptorsat the feature points. Figure 10(b) shows the performance of
the proposed method for polar descriptor (LB-Polar) and with tangent plane descriptor (LB-VCP) [10]. The proposed method
with the proposed polar descriptor performs best compared to planar SIFT and spherical SIFT algorithms. It also performs
better than the SIFT descriptor computed on the tangent plane by its geometry adaptiveness and its ability to compute the
descriptor without any extra interpolation.
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Fig. 10. (a) Ground truth and (b) correct match rates for the rotation tests.

Second, we apply two different types of translation on the cameras. The first translation consists of a translation alongthe
X axis when the camera is facing the test plane. Seven different displacements with one unit intervals are performed. The
second translation type includes both rotation and translation and the translation is performed towards the test planein order
to test scaling effects. The rotation is from 0 to 30 degrees with 10 degrees intervals. The translation reaches up to 4 units
with 1 unit intervals. The image corresponding to 30 degreesrotation and 4 units translation is selected as reference. Figure
11 illustrates the two translation schemes.

Test

Plane

(a)

Test

Plane

(b)

Fig. 11. (a) Translation parallel to the test plane, (b) Translation towards the test plane with rotation

For both types of translation, the proposed feature detection method and the descriptor outperforms the planar SIFT and
spherical SIFT. Similarly to the rotation case, the proposed descriptor captures better the characteristics of the feature with
its sampling-awareness and geometry adaptation. Figure 12shows the ground truth rate and the correct match rate for the
first type of translation. Similarly, Figure 13 illustratesthe repeatability performance for the second type of translation. Note
that the spherical SIFT performs poorly particularly for the translation tests due to the change of resolution introduced during
mapping to the equiangular grid.

Finally, we test the performance of the proposed feature detection method on natural omnidirectional images. We capture two
set of omnidirectional images. The first set is composed of images captured by rotating cameras and includes 6 images with
the resolution of1024×1024 (See Figure 14). The second set has 4 omnidirectional imageswith the resolution of1024×1024
captured by a camera moving in the direction of its optical axis(See Figure 15). Furthermore, each camera pair is calibrated
so the essential matrix, the relative orientation and the translation between the cameras are known. Figure 16 illustrates the
epipolar great circles computed with the essential matrix for some of the features in the reference image of the translation
tests.

To measure the performance, we check the conditions for the correct matches given in (20) and (22) to detect the correct
matches similarly to the synthetic scenes. We use the view illustrated in Figure 14(a) as the reference image and performthe
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Fig. 12. Ground truth (Left) and correct match (Right) ratesfor the first type of translation.
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Fig. 13. Ground truth (Left) and correct match (Right) ratesfor the second type of translation.

matching with respect to the features in this image for the rotation tests. Similarly, the image shown in Figure 15(a) is used
as the reference for the translation tests. We compare the proposed method to planar SIFT method. We also test the matching
performance for bothL2-norm and KL-divergence metrics. For a fair comparison, we arrange the scaling levels so that the
average number of detected features are close for both the proposed method and the planar SIFT. Table I shows the average
number of detected features for both the translation and rotation tests. We set the ambiguity factor to 1.5 for all three methods
and compare the correct matching performances.

LB Polar Planar SIFT
Rotation 1948 1964

Translation 1980 2079

TABLE I
AVERAGE NUMBER OF DETECTED FEATURES FOR THE ROTATION AND THE TRANSLATION TESTS OF THE NATURAL OMNIDIRECTIONAL IMAGES.

Figure 17 shows the performance of the two methods for the rotating cameras. Figure 17(a) illustrates the ratio of the
correct matches for different rotation values with respectto the number of features in the reference image. The view numbers
correspond to the different images under test. The proposedmethod detects more correct matches than the planar SIFT method.
Also the proposed descriptor method provides more accuratematching than the planar SIFT method as shown in Figure 17(b).
The results suggest that the proposed feature detection andmatching method is robust to rotation. The performance gain
becomes more significant as the angular difference between the camera orientations increases.

Finally, Figure 18 illustrates the correct match performance for the translating cameras. Similarly to the rotating cameras,
Figure 18(a) illustrates the correct match ratio. The results suggest that the proposed method provides more robustness to
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(a) Rot. View 1 (b) Rot. View 2 (c) Rot. View 3

(d) Rot. View 4 (e) Rot. View 5 (f) Rot. View 6

Fig. 14. Natural test images for the feature detection testsfor rotating cameras.

(a) Trans. View 1 (b) Trans. View 2

(c) Trans. View 3 (d) Trans. View 4

Fig. 15. Natural test images for the feature detection testsfor translating cameras.

translation than the planar SIFT method. As illustrated in the Figure 18(b), the proposed descriptor also improves the matching
performance. The KL-divergence, however, does not improvethe matching performance for the natural omnidirectional images
because the number of pixels for each spatial bins in the support regions is not large enough to form a precise histogram where
the KL-divergence is based.

B. Matching Performance

We now study the performance of the proposed oriented and non-oriented polar descriptors for synthetic omnidirectional
images and spherical images on an equiangular grid. The depth information for each image is available so that an homography
can be computed in order to define the groundtruth information.
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Fig. 16. The great circles corresponding to some features onthe reference image for translation. Note that the epipole is close to the optical axis as expected.
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Fig. 17. Correct match performance on the real images for different rotation values.
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Fig. 18. Correct match performance on the real images for different translation values.

For omnidirectional images given by parabolic mirrors, 4 different types of transformations are applied and the performance
of the descriptors is measured by computing recall and precision. Two of the transformations represent translations ondifferent
axes and the other transformations are rotations on different axes. For the first translation test, the camera is moved inone
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direction with 1 unit intervals reaching up to the translation of 4 units. For the second translation test, the camera is rotated
so that the optical axis looks downwards and the camera is moved in one direction orthogonal to the optical axis with 1 unit
intervals reaching up to the translation of 4 units. For rotation tests, the camera is rotated from 0 to 50 degrees with 10 degrees
intervals in both X and Y axes. We create512×512 parabolic omnidirectional images for each translation androtation. Figure
19 shows some of the resulting test images.

Fig. 19. Some synthetic omnidirectional test images for thematching performance test.

We compute the scale-space representation and detect features using the algorithm proposed in Section III. When features
are detected, we compute descriptors on the omnidirectional planar images using the proposed descriptor, the SIFT descriptor
and virtual camera plane approach. For the SIFT descriptor,the size of the descriptor window is adapted using the computed
metric to compensate for the non-uniform sampling density in order to provide a fair comparison. The size of the support
regions is multiplied by the norm of the metric computed at the feature point. We also compare the proposed descriptor to
the planar SIFT descriptor computed at the feature points detected by the planar SIFT feature detection method (denoted
by SIFTF). For a fair comparison, we have considered multiple matches with the same position but different orientationsas
one match. As we know the homography between the images, we compute the ground truth matches and correct matches by
checking the conditions for scale ratio and distance between the feature pairs given in Section V-A. For the matching tests, we
set the distance threshold to 0.5 pixels and the scale ratio threshold to 0.9. We compute the recall and precision performance
for translation and rotation matches. We form recall vs 1-precision graphs by sweeping the ambiguity factor from 1 to 8. Note
that the recall is computed as

recall =
correct matches

ground truth matches
. (23)

The 1-precision is computed as

1− precision = 1− correct matches
all matches

. (24)

The performance measure of the 1-precision factor is described by the proximity of points to the upper-left corner of thegraph.
Figure 20 shows the recall vs 1-precision graphs for the two rotation tests. The proposed descriptor outperforms both SIFT-

based descriptors computed at the feature points. The feature detection algorithm together with the proposed descriptor also
performs better than the planar SIFT method with detection based on planar SIFT feature detection method (denoted by SIFTF).
The tests show that the feature matching based on Kullback-Leibler divergence based feature matching does not provide an
extra performance gain compared to matching based on Euclidean distance based matching for omnidirectional images. As
expected the non-oriented version of the descriptor with proposed rotation-invariant feature matching method is slightly worse
than the oriented descriptor but still better than both the SIFT descriptor and the virtual camera plane descriptor (VCP) [10]
and performs similarly to the SIFTF method.

Similarly, the two translation tests show that the proposeddescriptor is more capable to capture the feature characteristics and
the proposed detection algorithm together with the polar descriptor outperform the planar SIFT method (See Figure 21).For
translation tests, the non-oriented descriptor performs better than the full descriptor. This is due to an implicit extra constraint
imposed by the non-oriented descriptor and for the type of transformation under consideration which introduces almostno
rotation.

Next, we test the proposed oriented and non-oriented polar descriptors on synthetic spherical images. Figure 22 shows some
of the generated synthetic spherical images on equiangulargrid. We create1024×1024 spherical images for 3 positions namely
0, 2 and -4 in one direction to test the matching performance under translation. We choose 5 rotation values, namely 0, 30,
45, 60 and 90 degrees along the Y axis in order to test the matching performance under rotation. We compute the scale-space
representation on the sphere and detect scale invariant features using spherical SIFT method with the implementation from [9].
Note that this detection method is also based on the heat diffusion equation but uses spherical Fourier transform and Gaussian
kernel on sphere. This method provides an optimized way for smoothing on spherical signals. For a fair comparison between
descriptors, we have applied all the matching methods on thesame set of features. Similarly to the tests for omnidirectional
images, we consider multiple matches with the same positionbut different orientations as one single match. As we know the
homography between the images, we compute the ground truth matches and correct matches by checking the conditions for
scale ratio and distance between the feature pairs given in Section V-A. We set the distance threshold to 5 pixels and the scale
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Fig. 20. Recall vs 1-precision for two rotation tests. Firsttest (left) is for sideway rotation and the second test (right) is for the up-down rotation. SIFTF
denotes the planar SIFT for which both detection and descriptor computation are based on SIFT method.
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Fig. 21. Recall vs 1-precision for two translation tests. First test (left) is for translation along the optical axis. The second test (right) is for the translation
of downward looking camera. SIFTF denotes the planar SIFT for which both detection and descriptor computation are basedon SIFT method.

ratio threshold to 0.8. We compute recall and precision for translation and rotation match results and form recall vs 1-precision
graphs by sweeping the ambiguity factor from 1 to 4.

Fig. 22. Three of the synthetic spherical images used in the experiments

We perform the comparison for the polar descriptors and two other methods namely (VCP) [10], and local spherical SIFT
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descriptors (LSD) [9]. The VCP method forms image patches byprojecting the spherical image to a plane tangent at the feature
point. It computes the SIFT descriptor on the image patch. The LSD scheme computes the SIFT descriptor directly on the
spherical image by forming a rectangular descriptor regions.

We denote the polar descriptor as PSD and non-oriented polardescriptor as NoOrPSD. Figure 23(a) shows the recall vs
1-precision graph for the rotation tests. In this case, the polar descriptors provide the best performance. Non-oriented descriptors
perform as good as VCP and LSD with less computation cost on the detection phase compared to the oriented descriptor. The
KL-divergence metric together with the polar descriptors gives an additional performance gain.
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Fig. 23. Recall vs 1-precision for (a) the rotation and (b) the translation tests.

Figure 23(b) shows the performance of different descriptors for the translation of the cameras. Again, the polar descriptors
perform better than VCP and LSD methods. Note that the translation causes only slight changes in the orientation of the
features. This favors the non-oriented descriptors which do not compute any orientation. On the other hand, the extra orientations
computed for the oriented descriptors increases ambiguityand causes mismatches.

Both Figures 23(a) and 23(b) show the potential of the non-oriented descriptors together with the rotation-invariant matching
method for feature-matching applications on low-end sensors. The increase in performance for the polar descriptors isdue
to better handling of the sampling without the extra interpolation introduced by VCP, as well as better handling of position
dependent gradients. It is also shown that histogram-basedmatching is more precise for spherical images, similarly towhat
has been reported in the planar case [21].

C. Feature Matching with Hybrid Cameras

We finally test the performance of matching with hybrid cameras on synthetic planar, omnidirectional and spherical images
captured at the same camera positions. Figure 24 shows the test images from different types of cameras. Gaussian kernelsfor
planar images and Gaussian functions computed in terms of spherical harmonics for spherical images are optimized solutions
for the heat diffusion equation to form scale-space representations for their particular type of images. The method in this paper
rather proposes a direct solution to heat diffusion equation using an iterative numerical solution. As all these three methods
solve the same heat diffusion equation but with different methods, these three scale-invariant feature detection methods can
be combined in order to perform hybrid matching by computinga common type of descriptor. The proposed descriptor is
defined on the sphere and can be used to perform hybrid matching between omnidirectional and spherical images by using their
optimized scale-invariant feature detection method. Thatis, the features on the spherical images are detected using the spherical
SIFT method and the features on the omnidirectional images are computed using the proposed method. The descriptors for
each type of methods are then computed using the method proposed in this paper and the matching is performed. The polar
descriptor can be used for planar images too. For planar images, the descriptor is modified using the small angle approximation.
That is, the planar image is assumed to be tangent to a sphere with a very large radius so that the small angle approximation
holds. In this case, the radial bins have equal ranges assin(α) ≈ α.

We compute the descriptors for all features using the polar descriptors. We compare the performance to the planar SIFT
method applied to the three types of images. We compute ground truth and correct matches by checking the distance condition
explained in Section V-A. As the images are obtained synthetically, the depth and homography information are known. In
addition, there is no scale change among the images because all three images are captured from the same camera position. The
features on the omnidirectional images are mapped onto the planar images to measure the distance between the positions of
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Fig. 24. Planar, omnidirectional and spherical test imagesfor hybrid matching tests

the features. Similarly, the features on the omnidirectional images are mapped onto the sphere to check the distance condition
between features in the omnidirectional image and in the spherical image. We compare the performance ofL2 and KL-
divergence during the tests. Table II lists the number of detected features in omnidirectional, spherical and planar images.
Table III shows the matching performance between omnidirectional, spherical and planar images. The ambiguity factor is set
to 1 so that the matches with the best distance score are selected. The results suggest that geometry-adaptive feature detection
with the proposed descriptor performs better than applyingSIFT to all types of images.

TABLE II
NUMBER OF DETECTED FEATURES IN OMNIDIRECTIONAL, SPHERICAL AND PLANAR IMAGES.

Polar SIFT
Detected Features (Omni. Image) 437 462

Detected Features (Spherical Image)1288 1552
Detected Features (Planar Image) 541 544

TABLE III
MATCHING PERFORMANCE FOR HYBRID MATCHING BETWEEN OMNIDIRECTIONAL (OMNI .) AND SPHERICAL IMAGES AND PLANAR IMAGES

Polar KL PolarL2 SIFT
Correct Matches (Omni.- Spherical) 127 123 104

Ground Truth Matches (Omni. - Spherical) 274 274 245
Correct Matches (Omni. - Planar) 27 28 10

Ground Truth Matches (Omni. - Planar) 106 106 24

We also test the matching criteria by changing the ambiguityfactor. Table IV and Table V show the performance for different
ambiguity factors. The KL divergence better fits the proposed descriptor for the hybrid matching test. The performance decrease
with the L2 norm based matching criteria is due to the different discretizations of the signals on images of different camera
types.

Polar KL PolarL2 SIFT
Ambiguity Fact. 1 2 3 1 2 3 1 2 3
Correct Match 27 21 13 28 6 0 10 10 9

Matches 437 22 14 437 6 0 437 18 12

TABLE IV
MATCHING PERFORMANCE FOR HYBRID MATCHING BETWEEN OMNIDIRECTIONAL AND PLANAR IMAGES UNDER DIFFERENT AMBIGUITY FACTORS.

Polar KL PolarL2 SIFT
Ambiguity Fact. 1 2 3 1 2 3 1 2 3
Correct Match 127 60 34 123 10 1 104 55 23

Matches 437 84 34 437 10 1 462 66 23

TABLE V
MATCHING PERFORMANCE FOR HYBRID MATCHING BETWEEN OMNIDIRECTIONAL AND SPHERICAL IMAGES UNDER DIFFERENT AMBIGUITY FACTORS.
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VI. CONCLUSIONS

We have proposed a scale-invariant feature computation framework for omnidirectional images. We have exploited the
foundations of the Riemannian geometry to formulate the scale-space analysis and a feature detection framework that works
directly on the original image plane without the need for anyinterpolation. We have derived and tested the proposed method
for parabolic omnidirectional images, where experiments show that an accurate exploitation of the geometry leads to invariance
of the features to rotation in SO(3), and to competitive performance in the case of translation between the compared images.

We have also proposed a polar descriptor that takes the specific geometry and non-uniform sampling grids into consideration.
We have implemented a matching method that can successfullymatch non-oriented polar descriptors. The complexity on the
descriptor computation phase is reduced in this case, whichmakes it particularly interesting for mobile applications. Finally,
we have shown that the proposed feature detection and descriptor can be used to match features detected in images captured
with different types of cameras. Our framework provides a promising solution for feature detection applications in both
omnidirectional and hybrid cameras and outperforms the state-of-the art methods in terms of both detection and matching
performance.
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