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Abstract

We propose a method to compute scale invariant features mdinectional images. We present a formulation based on
Riemannian geometry for the definition of differential cgters on non-Euclidian manifolds that describe the mirmad &ens
structure in omnidirectional imaging. These operatorsl lma scale-space analysis that preserves the geometre ofighal
information in omnidirectional images. We then build a noseale-invariant feature detection framework for any adimeictional
image that can be mapped on the sphere. We also present a sevptbe and feature matching solution for omnidirectianaages.
The descriptor builds on the log-polar planar descriptors adapts the descriptor computation to the specific gegnaeid the
non-uniform sampling density of spherical and omnidiratdil images. We further propose a rotation-invariant magcmethod
that eliminates the orientation computation during theuesadetection phase and thus decreases the computatimmalexity.
Finally, we show that the proposed framework also permitsiédch features in images with different geometries. Expenial
results demonstrate that the new feature detection methimdbioed with the proposed descriptors offers promisindoperance
and improves on the common SIFT features computed on theuptamnidirectional images as well as other state-of-the art
methods for omnidirectional images.

Index Terms

scale-invariant features, omnidirectional imaging, Ri@man geometry, polar descriptors

I. INTRODUCTION

PPLICATIONS such as camera calibration, object detectienpgnition or tracking generally rely on the localization

and matching of visual features in multiple images. Thesgufes need to be invariant to different transformatiorgs an
illumination changes so that they can be matched succasgiulifferent images with similar content. Scale invaigans an
important characteristic of visual features that pernttbée less sensitive to imperfect camera settings and tnanafmns. The
most popular scale invariant feature detection algoriteradrtainly the SIFT framework [1] for perspective camerages.
Many other methods have been proposed with different dascsi and feature detection approaches [2]—-[5] that apply t
images from classical cameras.

Meanwhile, omnidirectional vision has been an active neteéield with applications in robotics and surveillance whe
sensors with large fields of view present several advantegésrms of deployment and maintenance. The omnidirectiona
cameras typically consist of either a fisheye lens or a capdaide system with a lens and a mirror with a smooth surfacg. (e
parabolic, hyperbolic mirrors). The characteristics & thsulting images is highly dependent on the geometry ofyiséem.
This particular geometry also causes partial scale changhfferent regions of the same image. For example, a scaptired
with a catadioptric camera using a paraboloid mirror is dathmore densely in the outer parts of the image than in theecen
It should be taken into account for an appropriate procgssirthe light information. Classical scale-invariant f&&t detection
algorithms unfortunately do not take into account the igipigeometry of the mirrors. It penalizes the performancehef
image analysis applications that directly use the sensagés [6]—[8].

Recent works such as [9]-[11] have proposed to process arectidnal images on the sphere after an inverse sterebigrap
projection that preserves the geometry of the light infaioma[12], [13]. In these works, the scale-space represiemntas
computed with Gaussian kernels on the sphere, while theohation is performed using the spherical Fourier transfomman
equiangular grid. An extra interpolation step betweeneddht sampling grids however induces loss of precision enpikel
positions. In addition, the non-uniform sampling grid dows preserve the original sampling density and can causeosisu
upsampling and downsampling phenomena that affect the séahe computed features. The inherent bandwidth linoitesti
of equiangular grids can also cause aliasing and extra $nimgotvhen working in frequency domain. In an attempt to lyette
preserve the image geometry, an approximate solution thpsrithe Gaussian functions back to the original image isqueg
in [14]. It confirms that processing the images on their oddisampling grid has important benefits.

After detection of the visual features, descriptors are mat@d so that features can be matched in different images. Th
descriptors are expected to be distinctive as well as iaaario scale, rotation and affine transformations and robmst
illumination changes. Descriptors based on histogram coatipn provide the best robustness to these transforngtithe



SIFT descriptor is based on gradient orientation histogranmmputed in the region around feature points. Descripidtts
different histograms such as SURF [15] and CHoG [16] haverrdg been proposed to improve the matching performance.
The GLOH framework [2] provides a log-polar descriptor tkamputes histograms in spatial bins by radial division & th
support region of the feature. All these algorithms are h@wealesigned for planar images and do not take the geometry
of omnidirectional images into consideration. Furtherepdhey assume that the sampling is uniform along the image. F
omnidirectional images, however, the sampling densitfediffrom region to region and this should be taken into aotdu
the computation of the descriptors. One approach [10] ntapdnage around the feature to the tangent plane to form aplan
image patch and computes SIFT descriptors on the mappecipetgh. This simple approach implicitly deals with diffietre
sampling densities; however, an extra interpolation sseperformed that may change the true scale of the featuretend t
gradient values. In another approach [9], the SIFT desmsmre directly computed on the spherical surface. Thiscgmh is
however affected by different sampling densities as it doEsake into account the different number of samples in gzial
bins.

We propose in this paper a novel framework for the computatib scale invariant features in omnidirectional images
captured by sensors with specific geometries. In partiou&build on Riemannian geometry to define differential ofmasa
on non-Euclidian manifolds, such that the images can beess®md in their native geometry. We then propose a scalespac
analysis that permits to build scale invariant features tra adapted to the geometry of the omnidirectional imauéss.
illustrate our framework in the case of parabolic omnidi@tal images that are commonly used in robotics and slaneié
applications. We then propose a polar descriptor for sealariant features on the sphere that builds on log-polacrgeers
used for planar images. The new descriptors exploit the gégnof the sphere and take into account the different sargpli
densities caused by the equiangular grid on the sphere. kfeflextend these descriptors by exploiting the relatietwken
the orientation bins and gradient orientation histogramarder to get rid of the orientation in the descriptor conagioh. This
leads to a novel matching strategy that permits to relax timeputational complexity in the construction of the dedenig.
Tests on both synthetic and natural images show that thepegjfeature detection and matching method outperformSItHe
method that is applied on the planar omnidirectional imamas the state-of-the-art methods performed on sphericadjés
Finally, we also show that it is possible to efficiently mafelatures detected in different types of images. Our framkewo
therefore provides a promising solution for feature dédecapplications in both omnidirectional and hybrid cameeaworks
where it outperforms the state-of-the art methods.

The rest of the paper is organized as follows. It first intrm@Riin Section 1l the scale-space analysis framework for non
euclidean manifolds with an example on parabolic omnidioeal images. The feature detection method based on thel nov
scale-space representation is presented in Section I8.pbhar descriptor with a feature matching criteria for botlented
and non-oriented descriptors is explained in Section I\ttiBe V discusses the experimental results for feature hniagc
between images from omnidirectional and heterogenous reeame

Il. SCALE-SPACE ANALYSIS ON NON-EUCLIDIAN MANIFOLDS

Scale-space analysis is the vital element of scale-inveigature detection. The scale-space representationagfémobtained
by smoothing is widely studied for planar images. The smiagtis performed by convolution with Gaussian kernels. Fam-n
euclidian manifolds, however, the Gaussian kernels cabeapplied directly as they violate the shift invarianceuisgment
listed in the scale-space axioms [17] in this case. The h#fasin equation can however be used to smooth these imawks
to form the scale-space representation. In this sectiorgiwveean overview of the heat diffusion equation and the Riemsn
geometry for the computation of differential operators oanifolds. We then give an example of omnidirectional images
namely parabolic omnidirectional images and explain tBe@le-space representation in a spherical framework. pherigal
representation is obtained by using the property that anyralecatadioptric omnidirectional image can be uniquebpmped
onto the sphere [12]. Two other examples namely sphericag@s and planar images are also discussed briefly.

A. Riemannian Geometry Framework

The scale-space analysis is generally performed with Hefaassian kernels and differences of Gaussians on plarzayesm
Gaussian kernels can however not be used on generic smatdbesias these kernels are not shift invariant on thesacsf
However, one can still compute the scale-space repregemtiz, y,t) on non-Euclidian manifolds with help of the heat
diffusion equation and differential operators that can bmguted on the non-euclidean manifolds. It reads

oI(x,y,t)
ot
where A is the Laplacian operator andis the scale level. The initial condition is given &&c,y,to) = I(x,y) where the
original images is denoted bi(z,). It can be noted that the Gaussian function with standardatien /¢ is the Green'’s
function for the heat diffusion equation (1) on planar imagE7].
The heat diffusion equation permits to develop a scaleespaalysis with differential operators. These operators lva
defined on smooth manifolds with help of Riemannian geometsyrecalled in [18]. In order to give a brief definition of

= Al(z,y,t) 1)



these operators, lett be a parametric surface dd® with an induced Riemannian metrig; that encodes the geometrical
properties of the manifold. In a local system of coordinatesn M, the components of the gradient of the scalar funcfioead

V = g 52, whereg" is the inverse of;;. Note that for sake of simplicity, Einstein notation is atkpfor the formulation.
Furthermore, the divergence of a vector fidldon M is given asdivV = Lgai(vi\/g), whereg is the determinant o§™.
We can then define the Laplace-Beltrami operator as the demater differential operator on the scalar figlbn M, as

L
Vi

This operator that corresponds to the Laplace operator ®@pldme can be used to solve the heat diffusion equation (1) on
non-Euclidian manifolds and eventually for scale-spa@dyasis. It has to be noted that the specific form of the LapBekrami
operator depends on the particular geometry of the manjfdidhroughg.

Al = 9; (/997 d;1) (2

B. Parabolic Mirror Systems

We now consider the specific case of omnidirectional imagiystems with parabolic mirrors that are commonly used in
robotics and surveillance applications. Images from pali@bnirrors can be uniquely mapped on the 2-sphere by imvers
stereographic projection [12], similarly to images from sh@imple mirrors and catadioptric systems. This enableea
processing of the parabolic images and enables the captuiteedight rays from a central point which is the center of
the sphere. Thus, we use the mapping from the parabolic dracignal images to the sphere for the computation of the
differential operators explained in the previous sectlarthis case, the manifold1 becomes the sphere. We then derive the
metric necessary to the construction of differential ofmgsaon the sphere similarly to [18], in order to perform tlals-space
analysis and feature detection by properly taking into antéhe geometry of the images.

First, we can define the Euclidian line elemehton the 2-spher&? in terms of the variables, § and ¢ that represent the
spherical coordinates. The line element satisfies

di* = r*(df? + sin® 0d¢?). (3)

The corresponding angles férand ¢ are given in Figure 1(a). The stereographic projection negeh point on the sphere
to a planeR? of coordinate(x, ). A point in polar coordinate§R, ¢) on the stereographic plane is related to the p@int)
on the sphere by = 2r tan(%) and ¢ = ¢. Then the terms in the line element of (3) read

1612
2 2
9" = (r?2 + 4R2)2 dR @
sin?(0) = LQRQ
~ (4?2 + R2)?
and the line elementjl? is A
167

Let (z,y) € R on the sensor plane define cartesian coordinates, where 22 + y?, ¢ = tan~' (%), andr = 1. The line
element then reads

16
2 2 2
giving the induced Riemannian metric
16
53 0
9ij = (e 16 (7
O (4+I2+y2)2
and the inverse metric
y (4+12+y2)2 O
e ®)
16

Equipped with this metric, we can finally compute the diffdial operators on the sphere with help of Eq. (2). In palicu

the norm of the gradient reads
(4 + x2 + y2)2

VsI|” = T Vr:I|” ©)
while the norm of the Laplace-Beltrami operator can be emitas
4 2 2\2
|Ag:I|? = @tz +y°)” |Ag:I[? (10)

16



N\

@ (b)

Fig. 1. Geometry of the 2-sphere (a) Spherical polar coatds and (b) stereographic projection: The plane corresptm the image plane and tldeis
the corresponding colatitude angle on the sphere.

These operators permit to compute a scale-space representd the images in the sensor plane, while providing an
accurate representation of the geometry in the omnidoratiimages through proper Riemannian metrics. It alsoleadhe
fast computation of the Laplace-Beltrami (LB) operator igtftomputing the Laplacian of the image as if it is a planaagm
with fast methods and then weighting by the metric to compleLB operator.

C. Other Imaging Systems

We discuss the induced Riemannian metric for two other img@gianifolds for the sake of completeness. The first example
is the planar image. In such a case, the metric is the idemtétrix

gz‘j—<é (1)) (11)

and thus the LB operator is equal to the Laplacian as expected

The second example is the spherical manifold with equiaargyid where the image plane becomes the unwarped spherical
image. The coordinates of the image plane are in discretgtlade,¢ and co-latitude angle$, In such a scenario, the induced
Riemannian metric is

1 0
9ij = ( 0 sin’0 > (12)
and the Laplace-Beltrami operator is
AT =0 o1 s Gl + ——0,,1 (13)
~ sin(f) 0 00 sin?(0) o0

where dy is the gradient with respect t and dyp is the Laplacian with respect . Note that, the Laplacian might have
some numerical instability around the poles. An altermativethod based on spherical Fourier transform and gaussiaelk

on the sphere has been proposed to perform the smoothingeaspttere [11], [19]. That method is also based on the same
heat diffusion equation but aims to provide better numéstability particularly around the poles.

IIl. FEATURE DETECTION

Equipped with the scale-space representation framewogknow present the feature detection method in omnidireation
images. In the classical case of planar images, it has bemmnstihat maxima and minima of scale-normalized Laplacian of
Gaussian images provide the most stable scale-invariattris [20] and differences of Gaussian images can appab&im
scale-normalized Laplacian of Gaussian images if the deaéds are separated by a constant multiplicative factprifilorder
to benefit from scale invariance, we adopt a similar methadl define a multiplicative factok that controls the scaling in
the heat diffusion equation. We thus compute the heat diffusquation at successive time stepswheret; = k%02 is
defined in terms of the normalization and scale factorand base smoothing levet,. We form the scale levels such that
scale-normalized difference images are obtained aftde-spmce analysis.

Note that we use discrete operators for the computationettale-space representation. The differentiation wispeet
to time in the heat diffusion equation is discretized witimei intervals,d, and we use discrete differential operators on the
plane for the computation of the gradient and Laplacian. We[a1 1]/d, as gradient operator affet1 2 1]/d, as the



Laplacian operator. Smoothing is finally performed by updaf (x,y,t) with the differences that have been computed at
previous time steps. Figure 2 illustrates some smoothedéséor as a parabolic omnidirectional images. Note thatémgral
regions is smoothed less than the outer regions. This isa@tieetnon-uniform sampling density on the surface of the sphe
caused by the inverse stereographic projection.

(d)

Fig. 2. (a) Original parabolic omnidirectional image, (Ifaothingt = 2.25, (¢) smoothingt = 5.76 , (d) the smoothed image with a Gaussian kernel on
the planar image. The resulting smoothing on the sphererisundorm in this case

Finally, the images are down-sampled for each octave inrdodeeduce the computation time. However, since the induced
metric is dependent on the position, the sampling faetplis doubled for each octave in the differential operatorgraft
downsampling. The smoothing process is summarized in Atguarl.

Algorithm 1 Smoothing of omnidirectional images with heat diffusioruatijon
1: Initialization :
I(x,y,t;) : The intermediate smoothed image during iterations
I(z,y) : The original image
t: smoothing level
d;: time interval
n;. max number of iterations
I(x,y,0) = I(z,y), n; = t/d;
: repeat
Compute gradienty =, and LaplacianA> on the planar imagel(x, y)
Compute Laplacian As2 on the manifold using the induced metrig,, and the Laplaciafiz:.
Updatel(z,y) by I(x,y) = I(z,y) + di * Ag>
- until n; is reached

I(x,y,t) = I(x,y)

NoahrwN

Once the scale-space images are formed, the scale-noghdleplacian of Gaussian images are approximated by the
difference of Gaussian images similarly to the SIFT framdwj@]. This permits to detect the most important visual teas
by computing the difference of images of successive smogtlavels. Note however that Gaussian images are formedeby th
heat diffusion equation in our proposed framework. Theedéhce imagel.(x,y,t;) is computed as

L(xvyati) :I(Iayvti)_l(xvyatifl) (14)

wherel(x,y,t;) andI(x,y,t;—1) are the smoothed images at successive scale levels.

Given successive levels of difference imagész, v, ¢;), we then detect local extremum points by checking 26 neighbo
points in windows of 3 x 3 pixels in the current difference geal(z,y,t;) and adjacent difference images(x,y,t;—1)
and L(z,y,t;+1) as in [1]. The detected minima and maxima points are the estpbints in terms of scale invariance [20].
The detected feature point is assigned the scale level,\/t;. Note that the Laplacian of the smoothed images are already
computed at each time step as required by the heat diffusjoat®n. However, it is not practical to check for the exteeat
each time step. Thus, the difference images are formed $orete smoothing levels.

The detected extrema points are the potential feature oimt some refinement and elimination is performed to inereas
stability and accuracy. First the unstable points are resdotxtrema points in low contrast regions and edges aretaéfe
by the localization errors. That is why the detected feapaiats in low textured areas and at edges have to be remowed. T
magnitude of the difference of Gaussian images is used toverthe low contrast feature points. The features for whieh t
value of L(z,y,t;) is below a pre-defined threshold are removed. This is a re$ulieat diffusion based smoothing where
high textured regions will have higher difference betwesmathed images compared to the low textured regions. [Rifies
images are also used to decide on the edge response. Agaim,[Hs edge responses are removed by checking the ratio



between maximum and minimum principle curvatures of théetdhce image at the feature position and features withia rat
greater than a pre-defined threshold are deleted. Finakypbsition of the feature point is refined to a sub-pixel lldue
fitting a 3D quadratic function to the pixel position and scalhe extrema of the fitted function specifies the refinedtiposi
of the feature. Figure 3 illustrates the detected featurdsd omnidirectional images with rotation.

Fig. 3. Original omnidirectional images (Top) and the ditddeatures in these images (Bottom). The diameter of tlaéesi denote the scale level.

IV. FEATURE DESCRIPTORS ANDMATCHING

Once scale-invariant features are computed by differefhsenoothed images, they have to be characterized by a d&scrip
so that they become discriminative enough for proper matchetween different images. In this section, we descrilmertew
descriptors, a polar descriptor for omnidirectional imggad a non-oriented version of this polar descriptor. We désscribe
a feature matching criteria based on Kullback-Leibler (Kliyergence and propose two matching criteria for non-deign
polar descriptors based dn, distance and KL-divergence.

A. Sampling-aware polar descriptors on the sphere

We propose a new feature descriptor that takes into accharggecific geometry and sampling structure of omnidireatio
images. We use the property that central catadioptric imaga be uniquely mapped onto the sphere. Thus, the new plescri
is computed based on the sphere representation. The sawaftthe sphere and pixel densities on the surface of therephe
are taken into account. Note that the processing on the sghables the computation of descriptors for both spheaiadl
omnidirectional images.

The descriptor is computed using the pixels around the fegtoint. Considering the scale-space analysis on the spher
a circular support region around the feature point on thesispis computed based on the scale of the visual featarasd
the radius of this region is proportional (o), similarly to the method in [10]. As illustrated in Figure i features are
detected in the omnidirectional image, this circular regi® mapped on the omnidirectional image plane and imagetgoin
inside this region are considered. For spherical images aquiangular grid, pixels inside the circular support eegon the
sphere are used directly.

The support regions are first used for computing the oriemtatf the feature. For rotation invariance, an orientati®on
assigned to the visual feature. The orientation of the fedatudetermined by forming first an histogram of gradien¢otations
weighted by the magnitude of the gradients. The peak of tisitdram is selected as the orientation of the feature.dfeth
are more than one peak, new features are added with the sait@mpand scale information, but with different orientets.

The gradient computation is the main part of orientatiorigagsent. For omnidirectional images mapped onto the sphere
and for spherical images with equiangular grid, the samgptiensity is not constant on the surface of the sphere and thus
affects the gradient computation. On a unit sphere wiffi a N equiangular grid for example, the sampling distance batwee



Fig. 4. The circular region around the mapped feature psinon the sphere is mapped to the omnidirectional image planestdreographic projection
from the north pole N

two neighbor pixels differing in colatitude angléss constant and equal to/ N. The sampling distance between two neighbor
pixels with different longitude angleg, however, is not constant. It changes with respedt tnd is equal tain(6)27/N.

We thus adapt the gradient computation with a multipli@factor depending on this distance. Recall that for omedational
images, the gradients are computed using the induced Rigarametric explained in Section Il

Fig. 5. The log-polar descriptor and non-uniform samplesdia spatial bins (left). Radial bin divisions correspondetjual division of¢ on the sphere
(right).

Once an orientation is assigned to a visual feature, a stppgion around the same feature point but with a bigger size
is formed again proportionally tein(c). As discussed in [1], the human visual system is sensitivihéoorientation of the
gradients and the spatial positions of the gradients. Thahe reason why a descriptor formed in this way provides good
discrimination. The spatial position of the gradients agtedmined by grouping the pixels inside the support regibo spatial
bins. The proposed descriptor divides the support regiodigretizing the polar coordinates of the regions arouedi¢iature
point similar to the GLOH descriptor [2]. Figure 5 (left) sk® the descriptor structure with 8 orientation bins and 3alad
bins. The center bin is not divided into orientation bins ider to increase the robustness to feature localizatiawsrAs one
may observe, the subdivision structure is similar to landgs and latitudes around the poles of a sphere with an egulén
grid and correspond to the geometry of the sphere. In addlitlte selection of increasing radius values for the radias b
is achieved by dividing the latitude angles uniformly. Figb (right) illustrates this relation. Similarly to the enitation
computation, the support region and the subdivisions ferdiscriptor computation are mapped onto the omnidireaitiplane
using stereographic projection. For spherical images waithiangular grid the pixels in the support regions are usestitly.

For rotation invariance, the support region and the subitins are rotated on the sphere around the feature poing usin
the assigned orientation of the feature. For each spatigl the orientation and the magnitude of the gradients foelpix
inside the spatial bin are computed and an orientation driatn weighted by the magnitude of the gradients is eventuall
constructed. Note that the orientation of the feature igragted from the computed orientation of the gradients aftetion of
the support region. Similarly to the feature orientatiompaitation, the sampling structure on the sphere is takenaiatount
while computing the gradients. Another factor to considethiat the number of samples into a spatial bin also depends on
the position of the feature. Thus, a normalization is penked by dividing the histogram values by the number of the $asnp
inside the spatial bin. Both gradient computation and sargpiumber normalization provides robustness to samplamgsity
differences on the sphere.



Finally, a descriptor vector is formed by concatenatingtistograms and normalizing this vector. For histogram-garison
based method described later in the paper, the histograanmamalized for each spatial bin and concatenated to theiges
vector afterwards. The latter approach implicitly perfernormalization with respect to the number of samples. Nwié the
proposed descriptor is similar to the log-polar descrp{@LOH) [2] for planar images. Our descriptor is however ioyed
in order to deal with both the geometry and sampling diffeeznon the surface of the sphere.

B. Feature matching with oriented polar descriptors

The most common method to compare descriptors islth@orm between the two descriptor vectors. It is a simple and
fast method but it is shown that it does not necessarily piethe best matching scores [21]. Histogram-comparisoacbas
methods such as the Kullback-Leibler (KL) divergence [16Earth Mover’s distance (EMD) [21], [22] are shown to prowid
better matching performance at the price of more computafidfie KL divergence method still provides a good trade-off
between accuracy and computation cost. The symmetric Kérgance between the histogramsand hy is computed as

M

KL(hi,hs) =Y ((hl(n)logZ;Eg)) +° ((hz(n)longEg)) (15)

n

where M is the number of bins in the histograms.

We propose to use the KL-divergence for matching the polacrijgtors proposed in this paper. If we denote ¥ the
spatial bin of the polar descriptdp for the i*" radial division and the:*" orientation division, the KL divergence between
descriptorsD, and D, is 3, KL(D., DiF).

It has been shown that the ratio of the best matching scorddosécond best matching score gives better matching
performance compared to checking only the best matchinge428]. This ratio is called the ambiguity factor paramdfii]
and used also in this paper.

Figure 6 illustrates some matched features for two omnitiveal images captured by a camera with a parabolic mirror.
Note that the geometry adaptive smoothing permits the rirejobf features with different scaling in different regioosthe
images.

Fig. 6. The matched features using the KL divergence metrit @lar descriptors.

C. Rotation invariant matching criteria for polar descriptors

For rotation invariance, the orientation of the featuredirist estimated and then the descriptor kernel for spatias lié
rotated to cope with the orientation differences. This sidds an additional computation that might be particularigical
for low-end sensors. We now exploit an interesting charatie of our descriptors in order to derive an alternatiesctiptor
that necessitates smaller computational complexity. &scéntral bin of the descriptor is not divided into orierdatbins, the
gradient histogram in this bin already captures the ort@rtaof the feature. In addition, for a polar descriptor, th&ation of
the descriptor corresponds simply to a shift of the spatientation bin indexes and gradient histogram bin indekiesnce,
the descriptor can capture the distinctive charactesisticthe feature even without rotating the descriptor. A ooented
version of the polar descriptor is computed as if the origéorieof the feature is zero. The correct orientation is themputed
by the matching algorithm. We now propose a matching allgoriin order to pair these non-oriented descriptors.

The descriptors are assumed to be computed using our newipdesdut without any orientation so that the first radial
bin always points to the North pole. The approximate redativientation is computed from the central spatial bins @f th
descriptor. A circular shift is applied to one of the two gahbin histograms and th&; distance between the histograms is
computed. Thd.; distance is particularly efficient for finding a peak oriditta. The amount of shift with the smaller distance
is chosen as the relative orientation. Formally, the shifs expressed as

« = argmin Z(HD;l(n) —D; (n+ O‘)Hl) (16)

n
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where D!! denotes the central spatial bin.

After the shift« has been computed, any matching criteria for polar desegptan be modified accordingly. The,
distance, for example, is computed between the descriptoshifting the indexes of both spatial and orientation binsother
words, we have

M
1Dy = Dylly = | 32D (Difm) = D (0 + ) (17)
ik n

The KL divergence used for polar descriptors is compute§ as K L(D:F, f)fl(k_a)) where D, (n) = D,(n + o) and the

shift is circular.

V. EXPERIMENTAL RESULTS
A. Feature Detection Performance

We test the proposed feature detection and the descriptopai@tion methods on synthetic and natural omnidirectiona
images. For synthetic images, we create a simple synttedireswith a 10x10 unit planar patch in it. We map differentirit
test images given in Figure 7 onto this patch. A virtual paligbomnidirectional camera then captures the test plaom fr
different positions and orientations. The resolution @& fiynthetic images i§12 x 512. Figure 8 shows some of the resulting
images.

We compare the proposed feature detection algorithm toapl&hFT and spherical SIFT algorithms. We select the value
of the smoothing intervak = 2!/3 and use 4 successive octaves for all methods. We use twoigtessrfor the proposed
feature detector. The first descriptor is the novel polacdetor. We use 3 radial divisions, 8 orientation divisicarel gradient
histograms with 8 orientation bins. This corresponds to scdptor vector of lengthg8 « (1 + 2 x 8) = 136. The second
descriptor which is denoteds as VCP is based on SIFT deswifitat are computed on the plane tangent to the sphere at the
location of the feature point [10].

Fig. 7. lllustration of the natural test images that are neappn the synthetic planar patch.

Fig. 8. Two of the synthetic parabolic omnidirectional testges. The first image is selected as the reference imadgbdaptation tests. The second image
is selected as the reference image for the translation tests

We measure the repeatability of the features for differeartdformations such as rotation and translation. The meaxfu
repeatability is the ratio of repeating features to the neindd detected features in a reference image. To find the tiegea
features, we first map the detected features in the refeiierage to the destination image and update the scale of thpedap
features. Figure 9 illustrates this mapping. The updateéhefdcale of the mapped feature is performed by multiplyireg th
initial scales; by the ratio of the distances of the corresponding 3D poiriidth cameras. The updated scéleis then

SI

UAl = 01— (18)
S
wheres is the distance to the reference camera and the distance to the destination camera. In the case ofamsl&tion,
this ratio is equal to*- = 1. Note that we know the 3D position and orientation of the cames well as the position of the
3D planar patch. Thus, we are able to map each feature in faeenee image to the destination image.
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For omnidirectional images, there is a scale change duestadh-uniform sampling density in addition to the scale gjesn
due to camera movement. The proposed feature detectionithigaakes this scale change into account in contrary to the
planar SIFT method. For a fair comparison, however, the redgeales; for features computed with planar SIFT is adapted

as ,

R s
o1 = 01—1, (19)
s

where~ = %. The gamma scaling factor is obtained from (1€)is computed on the destination image.
After mapping, we decide on the correct matches by checkiagtale ratios and the distance between the positions of the

mapped feature point and the feature points on the otheraniBge condition for the feature position distance is givgn b
|lx1" = x2| | < da (20)

wherex’ denotes the mapped point and the distance metric idtheorm. The distance thresholij is adapted to capture
the matches with different scale levels and computed as

84 = 600 (21)

whered, is the distance threshold parameter.

X1 Xy

X1

Fig. 9. The mapping of the feature point in the first image ® skcond image. The distancesind s’ are used for the update of the scale in the mapped
feature point.

The matching condition on the scale ratio is
min(a}, 0'2)

<4, (22)

max(d1,02)
whered, is the scale ratio threshold.

Equipped with the correct match conditions (20) and (22),maasure the repeatability first for rotations in SO(3) atbun
the camera center. We apply rotations around the Y axis todaheera looking towards the Z axis. The camera captures snage
for rotation values changing from50 to 50 degrees with 10 degrees intervals. The image capture isrmpegtl from two
different positions, namely 6 and 8 units away from the témt@in the virtual synthetic environment. The image cgoesling
to the rotation of—50 degrees is selected as the reference image. For each motatiee, we compare the features in the
reference image to the features in the image correspondittiget rotation value. We apply the distance and the scale rati
conditions for each feature in the reference image. Thaifegiairs satisfying these two conditions are consideregt@snd
truth matches. Note that we do not apply any descriptor nragamethod for the ground truth match computation. The gdoun
truth matches give the performance of the feature detealigarithm independently of the descriptor quality. Figl@(a)
shows the performance for rotation tests using the grourtt tnatches with our proposed feature detection method, (tH#)
spherical SIFT and the planar SIFT. The rate of the grourtti matches is the number of ground truth matches divided &y th
number of features in the reference image. It can be seemittathe proposed method most of the features in the referenc
image are detected again in the other images independdrtthe gotation value. The proposed method outperforms Huogh t
planar SIFT and spherical SIFT algorithms. The sphericBITSsimilarly to the proposed method, preserves the scaknveh
rotation in SO(3) is applied. The planar SIFT is however higiffected by the rotation changes.

We then perform the matching using the computed descrijgiiotise feature points. Figure 10(b) shows the performance of
the proposed method for polar descriptor (LB-Polar) andhwaingent plane descriptor (LB-VCP) [10]. The proposed meth
with the proposed polar descriptor performs best compavgalanar SIFT and spherical SIFT algorithms. It also perform
better than the SIFT descriptor computed on the tangeneptgnits geometry adaptiveness and its ability to compute the
descriptor without any extra interpolation.
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Fig. 10. (a) Ground truth and (b) correct match rates for titation tests.

Second, we apply two different types of translation on theeas. The first translation consists of a translation albeg
X axis when the camera is facing the test plane. Seven diffafisplacements with one unit intervals are performed. The
second translation type includes both rotation and tréinsland the translation is performed towards the test plar@der
to test scaling effects. The rotation is from 0 to 30 degreiks W0 degrees intervals. The translation reaches up to &% uni
with 1 unit intervals. The image corresponding to 30 degregstion and 4 units translation is selected as referenigerd&
11 illustrates the two translation schemes.

Test Test
Plane Plane

10 units

10 units

(b)

Fig. 11. (a) Translation parallel to the test plane, (b) Station towards the test plane with rotation

For both types of translation, the proposed feature detectiethod and the descriptor outperforms the planar SIFT and
spherical SIFT. Similarly to the rotation case, the proplodescriptor captures better the characteristics of theufeavith
its sampling-awareness and geometry adaptation. Figureht®s the ground truth rate and the correct match rate for the
first type of translation. Similarly, Figure 13 illustratdse repeatability performance for the second type of tetitsl. Note
that the spherical SIFT performs poorly particularly foe thanslation tests due to the change of resolution intredwaitiring
mapping to the equiangular grid.

Finally, we test the performance of the proposed featureatien method on natural omnidirectional images. We captuo
set of omnidirectional images. The first set is composed @fgies captured by rotating cameras and includes 6 images with
the resolution 0fl024 x 1024 (See Figure 14). The second set has 4 omnidirectional imateshe resolution ofl024 x 1024
captured by a camera moving in the direction of its opticaé@ee Figure 15). Furthermore, each camera pair is ctdithra
so the essential matrix, the relative orientation and thadiation between the cameras are known. Figure 16 iltastthe
epipolar great circles computed with the essential matiixsome of the features in the reference image of the tramslat
tests.

To measure the performance, we check the conditions for dhea matches given in (20) and (22) to detect the correct
matches similarly to the synthetic scenes. We use the viestidted in Figure 14(a) as the reference image and pertfoem
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Fig. 13. Ground truth (Left) and correct match (Right) rafimsthe second type of translation.

matching with respect to the features in this image for thatian tests. Similarly, the image shown in Figure 15(a)dsdi

as the reference for the translation tests. We compare tipoped method to planar SIFT method. We also test the matchin
performance for both..-norm and KL-divergence metrics. For a fair comparison, wargge the scaling levels so that the
average number of detected features are close for both dppged method and the planar SIFT. Table | shows the average
number of detected features for both the translation aratioot tests. We set the ambiguity factor to 1.5 for all thresthods

and compare the correct matching performances.

LB Polar | Planar SIFT
Rotation 1948 1964
Translation 1980 2079
TABLE |

AVERAGE NUMBER OF DETECTED FEATURES FOR THE ROTATION AND THERANSLATION TESTS OF THE NATURAL OMNIDIRECTIONAL IMAGES

Figure 17 shows the performance of the two methods for thatingt cameras. Figure 17(a) illustrates the ratio of the
correct matches for different rotation values with resgedhe number of features in the reference image. The viewbeusn
correspond to the different images under test. The propostkhod detects more correct matches than the planar SIHiochet
Also the proposed descriptor method provides more accuamatehing than the planar SIFT method as shown in Figure 17(b)
The results suggest that the proposed feature detectionmatching method is robust to rotation. The performance gain
becomes more significant as the angular difference betweenamera orientations increases.

Finally, Figure 18 illustrates the correct match perforocefor the translating cameras. Similarly to the rotatingneeas,
Figure 18(a) illustrates the correct match ratio. The tessliggest that the proposed method provides more robastoes
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(d) Rot. View 4 (e) Rot. View 5 () Rot. View 6

Fig. 14. Natural test images for the feature detection tiestsotating cameras.

(c) Trans. View 3 (d) Trans. View 4

Fig. 15. Natural test images for the feature detection testsranslating cameras.

translation than the planar SIFT method. As illustratechm Figure 18(b), the proposed descriptor also improves tiehing
performance. The KL-divergence, however, does not impthgenatching performance for the natural omnidirectionsges
because the number of pixels for each spatial bins in theatipggions is not large enough to form a precise histogramra/h
the KL-divergence is based.

B. Matching Performance

We now study the performance of the proposed oriented anebriented polar descriptors for synthetic omnidirectiona
images and spherical images on an equiangular grid. Thé d&jprmation for each image is available so that an homdgrap
can be computed in order to define the groundtruth informatio
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For omnidirectional images given by parabolic mirrors, #edent types of transformations are applied and the peréorice
of the descriptors is measured by computing recall and giceti Two of the transformations represent translationdiffarent

axes and the other transformations are rotations on diffexees. For the first translation test, the camera is movazhe
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direction with 1 unit intervals reaching up to the tranglatof 4 units. For the second translation test, the cameratéded
so that the optical axis looks downwards and the camera ithovone direction orthogonal to the optical axis with 1 unit
intervals reaching up to the translation of 4 units. Fortiotatests, the camera is rotated from O to 50 degrees withetjfees
intervals in both X and Y axes. We credt&2 x 512 parabolic omnidirectional images for each translation antdtion. Figure
19 shows some of the resulting test images.

Fig. 19. Some synthetic omnidirectional test images forrttegching performance test.

We compute the scale-space representation and detectefeaising the algorithm proposed in Section Ill. When fezgur
are detected, we compute descriptors on the omnidiredtaaar images using the proposed descriptor, the SIFTrigésc
and virtual camera plane approach. For the SIFT descrifitersize of the descriptor window is adapted using the coetput
metric to compensate for the non-uniform sampling densitpiider to provide a fair comparison. The size of the support
regions is multiplied by the norm of the metric computed at thature point. We also compare the proposed descriptor to
the planar SIFT descriptor computed at the feature pointscted by the planar SIFT feature detection method (denoted
by SIFTF). For a fair comparison, we have considered meltipatches with the same position but different orientatiams
one match. As we know the homography between the images, meute the ground truth matches and correct matches by
checking the conditions for scale ratio and distance batvtiee feature pairs given in Section V-A. For the matchingstese
set the distance threshold to 0.5 pixels and the scale tatshold to 0.9. We compute the recall and precision pedona
for translation and rotation matches. We form recall vs defgion graphs by sweeping the ambiguity factor from 1 to 8teN

that the recall is computed as

vecall — correct matches ' (23)
ground truth matches

The 1-precision is computed as
correct matches

all matches

The performance measure of the 1-precision factor is destttdy the proximity of points to the upper-left corner of graph.

Figure 20 shows the recall vs 1-precision graphs for the ttation tests. The proposed descriptor outperforms bd&i-Sli
based descriptors computed at the feature points. Theréedatection algorithm together with the proposed desariptso
performs better than the planar SIFT method with detectaset on planar SIFT feature detection method (denoted ByF3IF
The tests show that the feature matching based on Kullbaiiddr divergence based feature matching does not provide a
extra performance gain compared to matching based on Eaclidistance based matching for omnidirectional images. As
expected the non-oriented version of the descriptor withppsed rotation-invariant feature matching method ishdlljgworse
than the oriented descriptor but still better than both tHeriescriptor and the virtual camera plane descriptor (V/{1B]
and performs similarly to the SIFTF method.

Similarly, the two translation tests show that the propa$estriptor is more capable to capture the feature chaistatsrand
the proposed detection algorithm together with the polacdptor outperform the planar SIFT method (See Figure Baj.
translation tests, the non-oriented descriptor perforettebthan the full descriptor. This is due to an implicitrextonstraint
imposed by the non-oriented descriptor and for the type afisformation under consideration which introduces alnnast
rotation.

Next, we test the proposed oriented and non-oriented pelsergptors on synthetic spherical images. Figure 22 showees
of the generated synthetic spherical images on equiangrithrWe creatd 024 x 1024 spherical images for 3 positions namely
0, 2 and -4 in one direction to test the matching performanmmeutranslation. We choose 5 rotation values, namely 0, 30,
45, 60 and 90 degrees along the Y axis in order to test the ingtgierformance under rotation. We compute the scale-space
representation on the sphere and detect scale invarigntésausing spherical SIFT method with the implementatromf[9].
Note that this detection method is also based on the heasiifi equation but uses spherical Fourier transform and&iau
kernel on sphere. This method provides an optimized way rfayaghing on spherical signals. For a fair comparison betwee
descriptors, we have applied all the matching methods orsdinee set of features. Similarly to the tests for omnidiceti
images, we consider multiple matches with the same poditidrdifferent orientations as one single match. As we knasv th
homography between the images, we compute the ground tratbhes and correct matches by checking the conditions for
scale ratio and distance between the feature pairs giverdtidd V-A. We set the distance threshold to 5 pixels and taées

1 — precision =1 —

(24)
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of downward looking camera. SIFTF denotes the planar SIFwfich both detection and descriptor computation are base8IFT method.

ratio threshold to 0.8. We compute recall and precisionramglation and rotation match results and form recall vsebipion
graphs by sweeping the ambiguity factor from 1 to 4.

Fig. 22. Three of the synthetic spherical images used in theraments

We perform the comparison for the polar descriptors and tthkeromethods namely (VCP) [10], and local spherical SIFT
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descriptors (LSD) [9]. The VCP method forms image patcheprbjecting the spherical image to a plane tangent at therfeat
point. It computes the SIFT descriptor on the image patcle I8D scheme computes the SIFT descriptor directly on the
spherical image by forming a rectangular descriptor region

We denote the polar descriptor as PSD and non-oriented gekariptor as NoOrPSD. Figure 23(a) shows the recall vs
1-precision graph for the rotation tests. In this case, tilarglescriptors provide the best performance. Non-cegkdescriptors
perform as good as VCP and LSD with less computation cost @mlétection phase compared to the oriented descriptor. The
KL-divergence metric together with the polar descriptokseg an additional performance gain.
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Figure 23(b) shows the performance of different descripfor the translation of the cameras. Again, the polar dpts
perform better than VCP and LSD methods. Note that the t#ionsl causes only slight changes in the orientation of the
features. This favors the non-oriented descriptors whichat compute any orientation. On the other hand, the exteat@tions
computed for the oriented descriptors increases ambiguity causes mismatches.

Both Figures 23(a) and 23(b) show the potential of the naerted descriptors together with the rotation-invariaatehing
method for feature-matching applications on low-end sensbhe increase in performance for the polar descriptoduis
to better handling of the sampling without the extra intéafion introduced by VCP, as well as better handling of posit
dependent gradients. It is also shown that histogram-basddhing is more precise for spherical images, similarlyvteat
has been reported in the planar case [21].

C. Feature Matching with Hybrid Cameras

We finally test the performance of matching with hybrid caaseon synthetic planar, omnidirectional and spherical #sag
captured at the same camera positions. Figure 24 showsshimteges from different types of cameras. Gaussian kefoels
planar images and Gaussian functions computed in termshafrisal harmonics for spherical images are optimized gwnigt
for the heat diffusion equation to form scale-space remtasiens for their particular type of images. The methodhiis paper
rather proposes a direct solution to heat diffusion equatising an iterative numerical solution. As all these thresthods
solve the same heat diffusion equation but with differenthods, these three scale-invariant feature detection adetlan
be combined in order to perform hybrid matching by computingommon type of descriptor. The proposed descriptor is
defined on the sphere and can be used to perform hybrid mgtbeiween omnidirectional and spherical images by usinig the
optimized scale-invariant feature detection method. T)dhe features on the spherical images are detected usrgpherical
SIFT method and the features on the omnidirectional images@mputed using the proposed method. The descriptors for
each type of methods are then computed using the method ggdpo this paper and the matching is performed. The polar
descriptor can be used for planar images too. For planaresjdge descriptor is modified using the small angle appratian.
That is, the planar image is assumed to be tangent to a splithra wery large radius so that the small angle approximation
holds. In this case, the radial bins have equal rangesnds) ~ a.

We compute the descriptors for all features using the podgcidptors. We compare the performance to the planar SIFT
method applied to the three types of images. We compute dgrsuth and correct matches by checking the distance conditi
explained in Section V-A. As the images are obtained syithiéf, the depth and homography information are known. In
addition, there is no scale change among the images becltisea images are captured from the same camera positfe. T
features on the omnidirectional images are mapped onto l#r@pimages to measure the distance between the positions o
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Fig. 24. Planar, omnidirectional and spherical test imdgesybrid matching tests

the features. Similarly, the features on the omnidireaidmages are mapped onto the sphere to check the distand@icon
between features in the omnidirectional image and in theegpdl image. We compare the performancelof and KL-

divergence during the tests. Table Il lists the number otded features in omnidirectional, spherical and planages.
Table 11l shows the matching performance between omnitiowal, spherical and planar images. The ambiguity factageit
to 1 so that the matches with the best distance score ardextlde results suggest that geometry-adaptive featdeetomn

with the proposed descriptor performs better than appl@Her to all types of images.

TABLE Il
NUMBER OF DETECTED FEATURES IN OMNIDIRECTIONALSPHERICAL AND PLANAR IMAGES.

Polar | SIFT
Detected Features (Omni. Image) 437 462
Detected Features (Spherical Image)1288 | 1552
Detected Features (Planar Image) 541 544

TABLE Il
MATCHING PERFORMANCE FOR HYBRID MATCHING BETWEEN OMNIDIRETIONAL (OMNI.) AND SPHERICAL IMAGES AND PLANAR IMAGES

Polar KL | PolarLa | SIFT

Correct Matches (Omni.- Spherical) 127 123 104
Ground Truth Matches (Omni. - Spherical) 274 274 245
Correct Matches (Omni. - Planar) 27 28 10
Ground Truth Matches (Omni. - Planar) 106 106 24

We also test the matching criteria by changing the ambidaityor. Table IV and Table V show the performance for différe
ambiguity factors. The KL divergence better fits the proplodescriptor for the hybrid matching test. The performaremease
with the L, norm based matching criteria is due to the different discagbns of the signals on images of different camera
types.

Polar KL Polar Lo SIFT

Ambiguity Fact. | 1 2 3 1 213 1 2 3

Correct Match | 27 | 21| 13| 28 [ 6 (0| 10 [ 10| 9
Matches 437 | 22 | 14| 437 | 6 | O | 437 | 18 | 12

TABLE IV
MATCHING PERFORMANCE FOR HYBRID MATCHING BETWEEN OMNIDIRETCIONAL AND PLANAR IMAGES UNDER DIFFERENT AMBIGUITY FACTORS.

Polar KL Polar Lo SIFT

Ambiguity Fact. | 1 2 3 1 2 |3 1 2 3

Correct Match | 127 | 60 | 34 | 123 | 10 | 1 | 104 | 55 | 23
Matches 437 1 84 | 34| 437 10| 1] 462 | 66 | 23

TABLE V
MATCHING PERFORMANCE FOR HYBRID MATCHING BETWEEN OMNIDIRECIONAL AND SPHERICAL IMAGES UNDER DIFFERENT AMBIGUITY FACTORS.
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VI. CONCLUSIONS

We have proposed a scale-invariant feature computatianeingrk for omnidirectional images. We have exploited the
foundations of the Riemannian geometry to formulate théesgpace analysis and a feature detection framework thetsvo
directly on the original image plane without the need for amtgrpolation. We have derived and tested the proposedadeth
for parabolic omnidirectional images, where experimehtsisthat an accurate exploitation of the geometry leadsvariance
of the features to rotation in SO(3), and to competitive gemiance in the case of translation between the comparedesnag

We have also proposed a polar descriptor that takes thefispgmdmetry and non-uniform sampling grids into considerat
We have implemented a matching method that can successfialtgh non-oriented polar descriptors. The complexity an th
descriptor computation phase is reduced in this case, whikes it particularly interesting for mobile applicatiofsnally,
we have shown that the proposed feature detection and pisccan be used to match features detected in images cdpture
with different types of cameras. Our framework provides angising solution for feature detection applications intbot
omnidirectional and hybrid cameras and outperforms thte-sththe art methods in terms of both detection and matrchin
performance.
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