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Abstract
Active contours are very popular tools for video tracking and image segmentation. Parameterized
contours are used due to their fast evolution and have become the method of choice in the Sobolev
context. Unfortunately, these contours are not easily adaptable to topological changes, and they
may sometimes develop undesirable loops, resulting in erroneous results. To solve such
topological problems, one needs an algorithm for contour self-crossing detection. We propose a
simple methodology via simple techniques from differential topology. The detection is
accomplished by inspecting the total net change of a given contour’s angle, without point sorting
and plane sweeping. We discuss the efficient implementation of the algorithm. We also provide
algorithms for locating crossings by angle considerations and by plotting the four-connected lines
between the discrete contour points. The proposed algorithms can be added to any parametric
active-contour model. We show examples of successful tracking in real-world video sequences by
Sobolev active contours and the proposed algorithms and provide ideas for further research.

Index Terms
Active contours; image segmentation; self-crossing; snakes; tracking

I. Introduction
Active contours (snakes) are widely used in segmentation and tracking. The development of
this field began with the seminal paper by Kass et al. [1]. Snakes have applications in
various fields, from medical imaging to surveillance. The purpose of snakes is to define an
object’s outline in the tested image, i.e., by minimizing an energy associated with different
object properties (e.g., average intensity value), and intrinsic curve properties (e.g.,
smoothness).

Parametric snakes are given as curves that explicitly provide the (x,y) coordinates of the
given points on the given contour (these are called snaxels). The advantage of such a
parametrization is in the fast evolution of the snake and, in fact, has dominated the tracking
literature [2]. The problem that occurs with parametric snakes, particularly when used to
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segment noisy images, is the development of false loops [see Fig. 1(c)–(e)]. If the snakes are
region based (e.g., in [3] and [4]), then these loops can cause a divergence of the snake since
they change the normal direction and thus the inside and outside of the closed contour. In
other cases, the false loops may catch irrelevant features for tracking. This brings us to the
importance of the contour self-crossing detection and of the consequent topological changes
(loop elimination or snake splitting).

Currently, there are five main approaches to tackle the problem of self-crossing. First, level
sets are perhaps the most popular approach. The curve is defined by zero level set of the
graph of surface, usually starting with the distance function (see [3] and [5] the references
therein). With level sets, the topological changes are automatically managed, and the
problem of self-crossing does not occur. In general, the snake evolution in the level-set
framework is slower than the evolution of parametric snake models. Moreover, automatic
topological changes may be less appropriate for tracking, where a single target may be
unintentionally split or two distinct targets may have merged.

A second popular class of approaches for detection and location of the crossing points is
based on the classical Bentley–Ottmann line segment intersection algorithm in
computational geometry. These approaches are reviewed in [6, Ch. 2] and [7]. The general
idea of this type of techniques is to sort the snake’s points by the x-coordinate in ascending
order and to employ the plane sweep algorithm to detect the overlapping x and y projections
of the segment pairs. The actual crossing is tested only if both x and y projections overlap.
These algorithms are fast and efficient but are not simple to implement, partly due to the
need of checking various special cases.

The third approach is grid based [8]–[11]. For easy collision and crossing detection, the
motion of snake points can be restricted to the edges of the grid, as in [10], or one can
inspect the crossings with a constant rectangular grid [9] or simplicial cell decomposition
[8], [11]. Unfortunately, these algorithms are not always able to detect all the crossings
because of the discretization of the snaxel locations or the restrictions.

The next approach is perhaps the simplest. The idea is to complete the lines with additional
points computed from linear interpolation between the snaxels, i.e., to complete the
segments between the endpoints and to make the snake segments connected (continuous) on
the given discrete grid [12]. Then, all the points are plotted on a 2-D counter raster (matrix),
where the crossing is detected and located if the points are plotted more than once to the
same raster location. The obvious problems with this method are explained in [7]. The
method cannot provide sub-pixel accuracy in crossing location because of the discretization
of snaxel locations. In addition, by the nature of the interpolation algorithm, false positive
and false negative detections may frequently occur (see Fig. 4). The proposal to use double-
width lines makes the problem of false positives much worse, and the additional
computational time for the direct checking of these pseudocrossings virtually eliminates all
the advantages of the algorithm.

The last approach is based on an idea of Kass et al. [1]. Here, one employs a “repulsion
force, ” which forces the snaxels not to be too close to one another. This force can be
incorporated into the energy minimization framework. Ivins and Porrill [4] propose to
compute the repulsion force from the tension, stiffness, and reversed pressure.
Unfortunately, introducing the new repulsion force will not always prevent crossings;
therefore, an additional self-crossing check may be needed. In addition, introducing the
repulsive force affects the snake dynamics and convergence properties, which may not be
desirable.
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It is important to note that while self-crossing does not occur very frequently, nevertheless,
its appearance may ruin the tracking of a target in a given scenario. Consequently, our goal
is to effectively detect the existence of self-crossing as quickly as possible, and when it
exists, to locate the crossing points, and to apply the appropriate topological change to the
snake (loop removing or snake splitting). Since the problem of detection is simpler than the
simultaneous detection and location of the crossing (as in the approaches described earlier),
this problem can be solved more efficiently with regard to space usage and run time. We
propose two algorithms: The first is for an efficient self-crossing detection, and the second is
for the computation of crossing locations.

The first algorithm should be run for each snake iteration, without computing the crossing
segments and the crossing point. We base our idea on the Hopf turning-number topological
theorem [13, p.162], which states that the total net angle change of a simple continuous
closed curve (without self-crossings) can be 360° for a clockwise (CW) curve and −360° for
a counterclockwise (CCW) curve, as explained in Section II. The same is true for simple
polygons.

In Section II-B, we show that an explicit angle computation is unnecessary and may be
replaced by a more efficient algorithm that counts the number of quadrants that the curve
has passed in turn. In Section II-C, we investigate the rare cases when our detection
algorithm may fail, and propose a possible solution.

The second algorithm solves the problem of crossing localization. We propose a particular
line completion algorithm for that purpose. In Section II-D, we describe our novel
interpolation scheme. The proposed algorithm provides four-connected segments (each
snake point has two neighbors, from the left, right, top, or down), which totally eliminates
the false negatives without a significant increase in false positives. The crossing points are
computed only if a self-crossing is detected (Sections II-C and II-D). The self-crossing can
be found by checking the appropriate segments for crossing, which can be accomplished by
solving certain simultaneous parametric equations [14] or by testing on which side of the
given segment lies the endpoints of the second segment, as explained in the Section II-D. In
case of self-crossing, the snake can be split by a simple method described in [14] or [15]
(see Section II-E).

We have successfully tested our approach on numerous real-world videos. We have used
region-based Sobolev snakes [16] with the Chan–Vese energy [3]. Representative results
and the discussion are provided in Section III. Section IV summarizes this and proposes
possible further research.

II. Self-Crossing Detection

In this section, we propose an easily implementable algorithm for detecting active-contour
self-crossing, which is based on the concept of turning number.

Let α : ℝ → ℝ2 be a regular closed curve. The turning number of α, i.e., Turn(α), is the
total signed curvature of α divided by 360° [13, p.156]. It can be shown that, for closed
curves, the number Turn(α) is an integer, and it is equivalent to the topological rotation
index [13, p.160]. Intuitively, Turn(α) is the number of full CCW turns until the curve
returns to the (arbitrarily) chosen initial point. If the turns are CW, then Turn(α) is negative.
Similarly, the total curvature is the net change of unwrapped angle Δϕ (see Fig. 1).

For convenience, we define the turning direction by
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(1)

We now state the key result due to Hopf [13, p.162].

Theorem 1—The turning number of a simple closed curve α (without self-crossings)
equals to dir(α).

As we have mentioned earlier, this theorem can be restated in terms of the total net angle
change of 360°·dir(α). In particular, this theorem is true for any simple closed polygon, as is
typically given with the snake representation. In the following subsection, we use this
observation to formulate a straightforward algorithm for the detection of crossings.

A. Crossing Detection Algorithm
Suppose the parametric snake is defined by its point coordinates: pi = (xi, yi) i = 1,…, n,
where pn+1 = p1. The corresponding segment between pi and pi+1 is denoted by si (see Fig.
2).

The unwrapped angle of segment si is denoted by ϕi as follows:

(2)

The angle is defined up to 360°; therefore, one should note the meaning of the unwrapped
angle: If the angle difference between the consecutive segments is larger than 180°, then
multiples of +360° or −360° should be added to ϕ. As a result, the angle ϕ can get any real
value and is not bounded by ±180°.

The following algorithm allows one to check if self-crossings exist, without actual
computing the crossing points. The algorithm is based on Theorem 1 for polygons, and it
should be run for each snake iteration.

Algorithm for Self-crossing detection

Input : snaxels pi

Compute the angle ϕ by (2)

if |ϕ(n) − ϕ(1) −360° · dir| > 180° then

report that crossing is detected

Remarks
• Only a single comparison of the first and the last segment angles is needed in our

algorithm.

• The first segment is chosen arbitrary.

• No sorting procedure is required.

In most practical situations, the proposed algorithm robustly and efficiently detects the
existence of self-crossings. The special cases when this algorithm fails [an even number of
crossings with double twist, as in Fig. 3, and an equal number of inward and outward loops,
as in Fig. 1(e)] are explored in Section II-C, and a solution for these cases is proposed.
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The next subsection describes a more efficient version of the self-crossing detection
algorithm.

B. Efficient Detection
The next algorithm is based on the observation that any simple closed curve is topologically
equivalent to a square. Accordingly, the turning number may be computed by considering
how many quadrants the curve has passed in turn, or how many 90° turns the curve
performed along the way. If this number is not 4, then the curve is not simple. The
increments in the number of quadrants may be computed by inspecting the signs of Δyi =
yi+1 − yi and Δxi = xi+1 − xi as described in the following.

Let (+,+)(i) denote sign(Δxi) = +1 and sign(Δyi) = +1, (+,−)(i) denote sign(Δxi) = +1 and
sign(Δyi) = −1, (−,+)(i) denote sign(Δxi) = −1 and sign(Δyi) = +1, and (−, −)(i) denote
sign(Δxi) = −1 and sign(Δyi) = −1.

The increment in the number of quadrants is summarized in the Table I.

The sign of 2 on the second diagonal (for a very sharp angle change) is computed by
inspecting the slopes of the consecutive segments si and si+1 as follows:

(3)

where ε is a small number that is added to prevent the division by zero.

All the values in Table I (except the second diagonal) may be computed by the following
formula:

(4)

Note that sign(ΔyiΔxi+1) is mathematically equivalent to a binary XOR operation and can
be efficiently implemented.

We can now describe our algorithm as follows.

Efficient Algorithm for Self-Crossing Detection

Input : snaxels pi

q0 ← 0

For i = 1 to n

 Compute Δq by (4)

 If |Δq| = 2 then

 qi ← qi−1 + sign(Slopei − Slopei+1)Δq

 else

 qi ← qi−1 + Δq

 end

end

If qn ≠ 4 · dir then

 report that crossing is detected
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Remarks
• The index i of the number of quadrants q and the values of q for different indexes

will be used in the next subsection; otherwise, only the last value q of is of interest.
Thus, only a single integer variable q can be used, and minimal memory space
requirements can be satisfied.

• In the worst case (zigzag curve), our algorithm needs n divisions and 3n additions
(subtractions), but for smooth enough curves, we need only comparisons, and 3n
additions and subtractions. Our algorithm uses a natural order of snaxels, without
sorting. The algorithms for detection and localization described in [6, Ch.2] need at
least O(n log n) operations, that is less time efficient, but they provide the location
of crossing as well. The run time of our algorithm is negligible with regard to the
snake’s evolution time.

C. Special Cases
As we stated earlier, for an even number of self-crossings, if double twisting occurs (see
Figs. 1(e) and 3), our algorithm will not find the crossing. The algorithm for detecting self-
crossings in these cases is more computationally demanding but can be still accomplished by
exploring the snake segment angles.

The test for self-crossing is based on the following important observations.

1. A given segment si cannot cross segments si+1 and si−1.

2. No curve can cross itself without turning more than 180° first (CW or CCW). This
is equivalent to passing through (at least) three different quadrants. The necessary
condition for the crossing of si and sj is |qj − qi| ≥ 3 (see Section II-B).

3. If the segments si and sj have not reached 180° between them, then any segments
between i and j cannot cross.

4. If the segments si and sj cross each other, then they have the overlapping in the x-
coordinates ((xi, xi+1) with (xj, xj+1)), as well as in the y-coordinates ((yi, yi+1) with
(yj, yj+1)).

• 5) Suppose that si and sj are the tested candidates for crossing each other. Then, if
we remove these segments and connect pi to pj+1 and pj to pi+1, we obtain two
separated closed curves (see Fig. 3). If there are no self-crossings in the curve and
if there are no crossings with the added segments, then the algorithm proposed in
Section II-A should return that the crossing is not detected for both curves. If there
were an even number of self-crossings in the curve, as in all the special cases, then
the algorithm in Section II-A should report that one curve has self-crossings (by
removing one crossing, we convert the total number of crossings to odd). All the
angles of curves are available from the previous computation; therefore, only the
two angles of the added segments should be computed in order to apply the
algorithm. Similarly, we can connect pi+1 to pj and pj+1 to pi to obtain two separate
closed curves, but without removing the segments. The result should be the same
since, by this snake separation process, we have added one crossing if the segments
were crossed before. The second kind of curve splitting is included to verify that
there were no crossings with the added segments.

All five tests (or relevant portions of them) can be used in the proposed order to rule out the
segments that cannot cross. All the proposed conditions are necessary but not sufficient;
thus, the segment pairs that passed all the proposed tests should be directly checked for
crossing by solving simultaneous equations [14], or explicitly, for the segments si and sj, if
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(5)

then the segments are crossed.

It is important to note that if one does not halt the algorithm after the first crossing, then all
the crossings may be found in this manner. Another possibility for self-crossing localization
is to use the algorithm proposed in the following subsection. This algorithm is simple and
fast but cannot achieve subpixel accuracy.

D. Computing the Crossing Point
In addition to the known methods for detection and computation of crossing points outlined
in Section I and the method described in the previous subsection, we propose another
approximate method that allows finding the location of all the crossing points by four-
connected linear interpolation of the snake segments. The idea is to connect the sequential
but distant points of the given snake with additional points in between, and if the added
points will fall on the same grid cell, then a crossing is located. All the points are registered
in a 2-D raster accumulator. Algorithms of simple linear interpolation (single- and double-
width lines plotted on a raster) are prone to false positives and false negatives, as shown in
Fig. 4.

It is clear in Fig. 4 that the reason for the false negative is the two crossing lines that are not
four connected (vertically or horizontally connected). Thus, we propose a simple algorithm
for four-connected line interpolation between the two given snake points as follows:

Algorithm for four-connected line interpolation

Input : rounded to the closest integer segment

 endpoint (x1,y1) and (x2,y2)

if x1 = x2 then draw a vertical line

else

Slope = |(y2 − y1)/(x2 − x1)|

r ← Slope

Repeat until the (x2, y2) points is reached

 make [r] steps in sign(y2 − y1) y direction

  (i.e., move 1 point in signed y direction)

 make 1 step in sign(x2 − x1) x direction

 r ← − [r] + Slope

 end

end
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Remarks
• The slope has been already defined in (3) and computed via the efficient algorithm

for self-crossing detection (Section II-B).

• The [r] denotes the closest to r integer.

• As simple as it seems, the problem of defining a four-connected linear interpolation
is not a well-defined problem because the solution is not necessarily unique. Our
algorithm provides only one possible solution. In some cases, it adds false
positives, but it detects all the crossings without false negatives. The false positives
are easily detected and removed [12].

E. Contour Splitting and Reordering
When a self-crossing is detected and located, the snake will generally go through a
topological change (splitting into two snakes or removing the loop). Different methods for
topological changes have been proposed earlier [8]–[12], [15]. In this paper, we use the
simplest splitting proposed in [14]. If the segments si : pi → pi+1 and sj : pj → pj+1 are
crossed, then we remove these segments and add the segments between pi → pj+1 and pj →
pi+1 (see Fig. 3). If some loops are removed, e.g., for single-target tracking, the shortest
loops are eliminated, and the removed points are distributed in the most sparse regions of the
remaining loop.

Additional cues about the loops that should be removed can also be extracted from the angle
information. If we suppose that the direction dir(α) does not change through tracking or
segmentation, we can remove the loops with the wrong direction.

III. Results and Discussion
In this section, we show how the proposed algorithms improved the tracking with parametric
Sobolev snakes [16] with the Chan–Vese energy functional [3]. The snake was used to track
a single target in video sequences with a constant-velocity dynamic model (current frame
initialization contour is a translated version of the previous frame result). The algorithms
have been implemented in Matlab.

We have chosen two representative videos. The first is the well-known “Walking in
Finland” sequence from the University of Oulu. This sequence consists of 22 frames and is
frequently used to test visual trackers. We run the algorithm of the Sobolev snake with the
same parameters (λ = 1, step size dt = 1, six iterations per frame), with and without the loop
detection and elimination algorithms. The target is manually selected in the first frame. For
the following frames, the predicted in the previous frame result is used to initialize the
snake. The results are shown in Fig. 5.

Without the proposed algorithm, in frame 3, the snake develops a loop, which prevents
further convergence of the snake around the target. When the developing loop was detected
via our self-crossing detection algorithm, it was removed, and the tracking was successful.

The second sequence, i.e., “The Hand, ” is filmed by infrared (IR) camera, and has 1050
frames. Again, only with the self-crossing detection algorithm, the Sobolev snake managed
to track the hand in the entire sequence. The results of tracking are shown in Fig. 6.

The additional time to detect and remove the loops for all the tested sequences was less than
2%, compared with the running time of the Sobolev snake algorithm.
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Some more experiments illustrating our methodology may be found on the website: http://
www.youtube.com/playlist?list=PL0E921BB9455C23B3. The failure scenarios for these
videos (without our algorithm) are shown in the top row in Fig. 7, and the success scenarios
(with the self-crossing detection and elimination) are show at the bottom row of this figure.

IV. Conclusion and Further Research
We have proposed a fast and simple approach to snake self-crossing detection and
localization. The algorithms can be adapted to any type of parametric snakes, which is
defined by snaxel coordinates, and do not restrict the snake’s motion and evolution in any
manner.

The proposed crossing-point computation algorithm uses rounded integer values for snaxels
and is appropriate in cases where no subpixel accuracy is needed. Its implementation is fast
and efficient, with a low number of false positives (that can be easily rejected).

We have shown that the proposed algorithm can be used for tracking real-world scenarios
and helps to prevent the divergence of the active contour from the target of interest. We
believe that future research of angle dependencies for an even number of self-crossings will
simplify the algorithm for the special cases discussed in this paper. The idea of Perrin et al.
[17] of using the assumption that, initially, the contour is simple and that each moved snaxel
should be tested only if the simplicity condition is violated should be applicable to our
framework by testing the changes in the angles of each moved point. Additional
improvements may be done by considering the work of Whitney and Graustein [13, p.164]
and the connection of the right-hand and left-hand crossings with the total angular change.
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Fig. 1.
Closed curves with the turning number and the total net change of the angle.
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Fig. 2.
Snake coordinates and segments definition.
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Fig. 3.
Special case: The curve with double twisting.
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Fig. 4.
Possibility of false positive (detected crossing where it does not exist) and false negative
(actual crossing is not detected) with the grid-based algorithms.
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Fig. 5.
“Walking in Finland” sequence (top row) without and (bottom row) with the algorithm for
self-crossing detection and loop elimination. The (blue) next frame prediction contour and
the (magenta) current final contour are shown.
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Fig. 6.
“The Hand” sequence (top row) without and (bottom row) with the algorithm for self-
crossing detection and loop elimination. The (blue) next frame prediction contour and the
(magenta) current final contour are shown.
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Fig. 7.
“The Car” and “The Robot” sequences. (top row) Frames after the loop’s creation. (bottom
row) Loops are detected and eliminated by the proposed algorithm.
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TABLE I

Increment in the Number of Quadrants

(+,+)(i + 1) (+,−)(i + 1) (−, +)(i + 1) (−, −)(i + 1)

(+,+)(i) 0 −1 1
2, if Slopei > Slopei+1

−2, otherwise

(+,−)(i) 1 0
2, if Slopei < Slopei+1

−2, otherwise
−1

(−,+)(i) −1
2, if Slopei < Slopei+1

−2, otherwise
0 1

(−, −)(i)
2, if Slopei > Slopei+1

−2, otherwise
1 −1 0
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