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A CURE for Noisy Magnetic Resonance

Images: Chi-Square Unbiased Risk

Estimation
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Abstract

In this article we derive an unbiased expression for the expected mean-squared error

associated with continuously differentiable estimators of the noncentrality parameter of a chi-

square random variable. We then consider the task of denoising squared-magnitude magnetic

resonance image data, which are well modeled as independent noncentral chi-square random

variables on two degrees of freedom. We consider two broad classes of linearly parameterized

shrinkage estimators that can be optimized using our risk estimate, one in the general context

of undecimated filterbank transforms, and another in the specific case of the unnormalized Haar

wavelet transform. The resultant algorithms are computationally tractable and improve upon

state-of-the-art methods for both simulated and actual magnetic resonance image data.
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I. INTRODUCTION

Magnetic resonance (MR) imaging is a fundamental in vivo medical imaging technique that

provides high-contrast images of soft tissue without the use of ionization radiation. The signal-to-

noise ratio (SNR) of an acquired MR image is determined by numerous physical and structural

factors, such as static field strength, resolution, receiver bandwidth, and the number of signal

averages collected at each encoding step [1], [2]. Current developments in MR imaging are

focused primarily on lowering its inherently high scanning time, increasing the spatiotemporal

resolution of the images themselves, and reducing the cost of the overall system. However, the

pursuit of any of these objectives has a negative impact on the SNR of the acquired image. A

post-acquisition denoising step is therefore essential to clinician visualization and meaningful

computer-aided diagnoses [1].

In MR image acquisition, the data consist of discrete Fourier samples, usually referred to as

k-space samples. These data are corrupted by random noise, due primarily to thermal fluctuations

generated by a patient’s body in the imager’s receiver coils [1], [2]. This random degradation

is well modeled by additive white Gaussian noise (AWGN) that independently corrupts the real

and imaginary parts of the complex-valued k-space samples [3]. Assuming a Cartesian sampling

pattern, the output image is straightforwardly obtained by computing the inverse discrete Fourier

transform of the k-space samples; the resolution of the reconstructed image is then determined by

the maximum k-space sampling frequency. Note that some recent works (see [4] and references

therein) aim to accelerate MR image acquisition time by undersampling the k-space. Non-

Cartesian (e.g., spiral or random) sampling trajectories, as well as nonlinear (usually sparsity-

driven) reconstruction schemes are then considered. This axis of research is, however, outside

the scope of the present work.

Following application of an inverse discrete Fourier transform, the resulting image may be
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considered as a complex-valued signal corrupted by independent and identically distributed

samples of complex AWGN. In magnitude MR imaging, the image phase is disregarded and

only the magnitude is considered for visualization and further analysis. Although the samples of

the magnitude image remain statistically independent, they are no longer Gaussian, but rather are

Rician distributed [5]. Contrary to the Gaussian case, this form of “noise” is signal-dependent

in that both the mean and the variance of the magnitude samples depend on the underlying

noise-free magnitude image. Consequently, generic denoising algorithms designed for AWGN

reduction usually do not give satisfying results on Rician image data.

Denoising of magnitude MR images has thus gained much attention over the past several

years. Two main strategies can be distinguished as follows. In the first, the Rician data are

treated directly, often in the image domain. In the second, the denoising is applied to the squared

magnitude MR image, which follows a (scaled) noncentral chi-square distribution on two degrees

of freedom, whose noncentrality parameter is proportional to the underlying noise-free squared

magnitude. An appealing aspect of this strategy is that it renders the bias due to the noise

constant rather than signal dependent, thus enabling standard approaches and transform-domain

shrinkage estimators to be applied.

Following the first strategy previously mentioned, several Rician-based maximum likelihood

estimators [6]–[8] have been proposed. In [8], this estimation is performed non-locally among

pixels having a similar neighborhood. A Bayesian maximum a posteriori estimator has been

devised in [9], with the prior modeled in a nonparametric Markov random field framework.

Very recently, Foi proposed a Rician-based variance stabilizing transform which makes the use of

standard AWGN denoisers more effective [10]. Following the second strategy, a linear minimum

mean-squared error filter applied to the squared magnitude image has been derived in [11], [12].

In addition to these statistical model-based approaches, much work has also been devoted to the
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adaptation and enhancement of the nonlocal means filter originally developed by Buades et al.

for AWGN reduction [13]. The core of this relatively simple, yet effective, denoising approach

consists of a weighted averaging of similarly close (in spatial and photometric distance) pixels.

Some of these adaptations operate directly on the Rician magnitude image data [14], [15], while

others are applied to the squared magnitude image [16]–[18].

In addition to these image-domain approaches, several magnitude MR image denoising algo-

rithms have also been developed for the wavelet domain. The sparsifying and decorrelating effects

of wavelets and other related transforms typically result in the concentration of relevant image

features into a few significant wavelet coefficients. Simple thresholding rules based on coefficient

magnitude then provide an effective means of reducing the noise level while preserving sharp

edges in the image. In the earliest uses of the wavelet transform for MR image denoising [19],

[20], the Rician distribution of the data was not explicitly taken into account. Nowak subsequently

proposed wavelet coefficient thresholding based on the observation that the empirical wavelet

coefficients of the squared-magnitude data are unbiased estimators of the coefficients of the

underlying squared-magnitude image, and that the residual scaling coefficients exhibit a signal-

independent bias that is easily removable [21]. While the pointwise coefficient thresholding

proposed in [21] is most natural in the context of an orthogonal discrete wavelet transform,

Pižurica et al. subsequently developed a Bayesian wavelet thresholding algorithm applied in an

undecimated wavelet representation [22]. Wavelet-based denoising algorithms that require the

entirety of the complex MR image data [23]–[25] are typically applied separately to the real and

imaginary components of the image.

In this article, we develop a general result for chi-square unbiased risk estimation, which we

then apply to the task of denoising squared-magnitude MR images. We provide two instances

of effective transform-domain algorithms, each based on the concept of linear expansion of
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thresholds (LET) introduced in [26], [27]. The first class of proposed algorithms consists of a

pointwise continuously differentiable thresholding applied to the coefficients of an undecimated

filterbank transform. The second class takes advantage of the conservation of the chi-square

statistics across the lowpass channel of the unnormalized Haar wavelet transform. Owing to

the remarkable property of this orthogonal transform, it is possible to derive independent risk

estimates in each wavelet subband, allowing for a very fast denoising procedure. These estimates

are then used to optimize the parameters of subband-dependent joint inter-/intra-scale LET.

The article is organized as follows. We first derive in Section II an unbiased expression

of the risk associated with estimators of the noncentrality parameter of a chi-square random

variable having arbitrary (known) degrees of freedom. Then, in Section III, we apply this result

to optimize pointwise estimators for undecimated filterbank transform coefficients, using linear

expansion of thresholds. In Section IV, we give an expression for chi-square unbiased risk

estimation directly in the unnormalized Haar wavelet domain, and propose a more sophisticated

joint inter-/intra-scale LET. We conclude in Section V with denoising experiments conducted

on simulated and actual magnitude MR images, and evaluations of our methods relative to the

current state of the art. Note that a subset of this work (mainly part of Section III) has been

accepted for presentation at the 2011 IEEE International Conference on Image Processing [28].

II. A CHI-SQUARE UNBIASED RISK ESTIMATE (CURE)

Assume the observation of a vector y ∈ RN+ of N independent samples yn, each randomly

drawn from a noncentral chi-square distribution with (unknown) noncentrality parameter xn ≥ 0

and (known) common degrees of freedom K > 0. We use the vector notation y ∼ χ2
K(x),

recalling that (for integer K) the joint distribution p (y|x) can be seen as resulting from the

addition of K independent vectors on RN+ whose coordinates are the squares of non-centered

Gaussian random variables of unit variance. This observation model is statistically characterized
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by the data likelihood

p (y|x) =

N∏
n=1

p (yn|xn) =

N∏
n=1

1

2
e−

xn+yn
2

(
yn
xn

)K−2

4

IK

2
−1(
√
xnyn), (1)

where Iα(u) =
∑
k∈N

1

k!Γ(k + α+ 1)

(u
2

)2k+α
is the α-order modified Bessel function of the

first kind.

The chi-square distribution of (1) is most easily understood through its characteristic function,

or Fourier transform:

p̂(ω|x) =

N∏
n=1

exp
(
− jωnxn

1 + 2jωn

)
(1 + 2jωn)K/2

. (2)

For instance, by equating first and second order Taylor developments of this Fourier transform

with the corresponding moments, it is straightforward to show that

E {y } = x +K · 1,

and E
{
‖y‖2

}
= ‖x‖2 + 2(K + 2)1Tx +NK(K + 2),

(3)

where E {·} is the expectation operator.

When designing an estimator x̂ = f(y) of x, a natural criterion is the value of its associated

risk or expected mean-squared error (MSE), defined here by

E {MSE} = E

{
1

N
‖f(y)− x‖2

}
=

1

N

N∑
n=1

(
E
{
fn(y)2

}
− 2E {xnfn(y)}+ x2n

)
. (4)

The expectation in (4) is with respect to the data y; the vector x of noncentrality parameters

may either be considered as deterministic and unknown, or as random and independent of y.

In practice, for any given realization of the data y, the true MSE cannot be computed because

x is unknown. Yet, paralleling the general case of distributions in the exponential family [29],

it is possible to establish a lemma that allows us to circumvent this issue, and estimate the risk

without knowledge of x. The main technical requirement is that each component fn(y) of the

estimator f : RN → RN be continuously differentiable with respect to yn, and so we introduce

the following notation: ∂f(y) =
[
∂
∂yn

fn(y)
]
1≤n≤N

, ∂2f(y) =
[
∂2

∂y2n
fn(y)

]
1≤n≤N

.
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Lemma 1. Assume that the estimator f(y) = [fn(y)]1≤n≤N is such that each fn(y) is continu-

ously differentiable with respect to yn, with weakly differentiable partial derivatives ∂fn(y)/∂yn

that do not increase “too quickly” for large values of y; i.e., there exists a constant s < 1/2

such that for every 1 ≤ n ≤ N , limyn→+∞ e−syn | ∂∂yn fn(y)| = 0. Then

E {xTf(y)} = E {(y −K · 1)Tf(y)} − 4E

{(
y − K

2
· 1
)T

∂f(y)

}
+ 4 E

{
yT∂2f(y)

}
. (5)

Proof: We first evaluate the scalar expectation E {xnfn(y)} appearing in (4), before sum-

ming up the contributions over n to get the expectation of the inner product xTf(y).

Let us consider the characteristic function given by (2). By differentiating the logarithm of

this Fourier transform w.r.t. the variable ωn, we find that

1

p̂(ω|x)

∂p̂(ω|x)

∂ωn
= − jK

1 + 2jωn
− jxn

(1 + 2jωn)2
.

After a rearrangement of the different terms involved, we get

xnp̂(ω|x) = j(1 + 2jωn)2
∂p̂(ω|x)

∂ωn
−K(1 + 2jωn)p̂(ω|x).

Using (1 + 2jωn)2 = 1 + 4jωn + 4(jωn)2 and recalling that multiplication by jωn corresponds

to differentiating w.r.t. yn, while differentiation w.r.t. ωn is equivalent to a multiplication with

−jyn, we can deduce that the probability density p(y|x) satisfies (in the sense of distributions)

the following linear differential equation

xnp(y|x) =
(

1 + 4
∂

∂yn
+ 4

∂2

∂y2n

){
ynp(y|x)

}
−K

(
1 + 2

∂

∂yn

){
p(y|x)

}
.

The expectation E {xnfn(y)} is simply the Euclidean inner product (with respect to Lebesgue

measure) between fn(y) and xnp(y|x). Continuous differentiability of f(y) coupled with weak
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differentiability of ∂f(y) implies that we may twice apply integration by parts to obtain

E {xnfn(y)} = 〈fn(y), xnp(y|x)〉

=
〈
fn(y),

(
1 + 4

∂

∂yn
+ 4

∂2

∂y2n

){
ynp(y|x)

}〉
−K

〈
fn(y),

(
1 + 2

∂

∂yn

){
p(y|x)

}〉
=
〈
yn

(
1− 4

∂

∂yn
+ 4

∂2

∂y2n

){
fn(y)

}
, p(y|x)

〉
−K

〈(
1− 2

∂

∂yn

){
fn(y)

}
, p(y|x)

〉
= E

{
(yn −K)fn(y)− 4

(
yn −

K

2

)
∂fn(y)

∂yn
+ 4yn

∂2fn(y)

∂y2n

}
plus additional integrated terms that do not depend on xn, which vanish because of our (con-

servative) assumption on how fn(y) increases when yn → +∞. (Asymptotic expansions of

Bessel functions can be used to show that whenever s < 1/2, we have that esynp (y|x) → 0

and esyn∂p (y|x) /∂yn → 0.) Finally, summing up over the index n yields (5).

We can then deduce a theorem that provides an unbiased estimate of the expected MSE given

in (4). We term this random variable CURE, an acronym for Chi-square Unbiased Risk Estimate.

Theorem 1. Let y ∼ χ2
K(x) and assume that f(y) satisfies the regularity conditions of Lemma 1.

Then, the following random variable:

CURE =
1

N

(
‖f(y)−(y−K ·1)‖2−4T

(
y−K

2
·1
))

+
8

N

((
y−K

2
·1
)T

∂f(y)−yT∂2f(y)

)
, (6)

is an unbiased estimate of the risk; i.e., E {CURE} = E {MSE}.

Proof: As with other unbiased risk estimates, we express the MSE as a sum of three terms:

‖f(y)− x‖2 = ‖f(y)‖2︸ ︷︷ ︸
term 1

− 2xTf(y)︸ ︷︷ ︸
term 2

+ ‖x‖2︸︷︷︸
term 3

,

which we replace by a statistical equivalent that does not depend on x anymore.

Term 1 needs no change, term 2 can be replaced according to (5) from Lemma 1, and term 3

can be reformulated using the noncentral chi-square moments of (3) to yield

‖x‖2 = E
{
‖y‖2

}
− 2(K + 2)1TE {y}+NK(K + 2).
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Putting everything together then leads directly to (6), and thus the theorem is proved.

In Sections III and IV we propose specific examples of CURE-optimized transform-domain

processing for estimating the unknown noncentrality parameter vector x from data y.

III. CURE-OPTIMIZED DENOISING IN UNDECIMATED FILTERBANK TRANSFORMS

In this section, we focus on processing within a (J + 1)-band undecimated filterbank trans-

form, as depicted in Fig. 1. This broad class of redundant representations notably includes the

undecimated wavelet transform (UWT) and overlapping block discrete cosine transform (BDCT).

y

...

G̃J(z−1) wJ︸ ︷︷ ︸
D = [DT

0 DT
1 . . .D

T
J ]T

...

G̃1(z
−1) w1

G̃0(z
−1) w0

GJ(z)︸ ︷︷ ︸
R = [R0 R1 . . .RJ ]

G1(z)

G0(z)

y
⊕
...

Fig. 1. Undecimated (J + 1)-band analysis/synthesis filterbank.

A. Image-domain CURE for transform-domain processing

Nonlinear processing via undecimated filterbank transforms is a general denoising strategy

long proven to be effective for reducing various types of noise degradations [27], [30]–[34]. It

essentially boils down to performing a linear (and possibly redundant) analysis transformation

of the data, which provides empirical coefficients that are then thresholded (possibly using a

multivariate nonlinear function), the result of which is finally passed to a linear synthesis trans-

formation. When treating signal-dependent noise, the entire denoising procedure is conveniently

expressed in the generic form f(y) = Rθ(Dy,Dy) [34], where
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• The circulant matrices D = [DT
0 DT

1 . . .D
T
J ]T and R = [R0 R1 . . .RJ ] implement an

arbitrary pair of analysis/synthesis undecimated filterbanks (Fig. 1) such that the perfect

reconstruction condition RD = Id is satisfied. Each component of the N × N circulant

submatrix Dj = [djk,l]1≤k,l≤N and Rj = [rjk,l]1≤k,l≤N is given by
djk,l =

∑
n∈Z

g̃j [l − k + nN ]

rjk,l =
∑
n∈Z

gj [k − l + nN ]
, for j = 0 . . . J . (7)

We assume that the considered analysis filters have unit norms; i.e.,
∑

n(djl,n)2 = 1, for

l = 1 . . . N , j = 0 . . . J . By convention, we also assume that, for j = 1 . . . J , each Dj

implements a highpass channel; i.e., ∀l,
∑

n d
j
l,n = 0. The complementary lowpass channel

is then implemented by D0 with ∀l,
∑

n d
0
l,n = 2J/2.

Hence, denoting by wj = Djy = [wjl ]1≤l≤N (resp. ωj = Djx = [ωjl ]1≤l≤N ) each vector

of noisy (resp. noise-free) transform coefficients, we have

∀l = 1 . . . N,

 E
{
wjl

}
= ωjl , for j = 1 . . . J ,

E
{
w0
l

}
= ω0

l + 2J/2K.
(8)

While the noisy highpass coefficients are unbiased estimates of their noise-free counterparts,

the lowpass coefficients exhibit a constant bias (2J/2K) that must be removed.

• The circulant matrix D = [D
T

0 D
T

1 . . .D
T

J ]T implements a linear estimation of the variance

wj = Djy = [wjl ]1≤l≤N of each transform coefficient wjl . The actual variance is given by

var
{
wjl

}
=

N∑
n=1

(djl,n)2var {yn}
(3)
= 4

N∑
n=1

(djl,n)2
(
xn +

K

2

)
. (9)

Since E {yn} = xn +K, the natural choice Dj = [(djl,n)2]1≤l,n≤N achieves

var
{
wjl

}
= 4

(
E
{
wjl

}
− K

2

)
. (10)

• The vector function θ : RL ×RL → RL, where L = (J + 1)N , can generally be arbitrary,

from a simple pointwise thresholding rule to more sophisticated multivariate processing. In
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this section, we will however consider only subband-adaptive pointwise processing; i.e.,

θ(w,w) = [θjl (w
j
l , w

j
l )]0≤j≤J,1≤l≤N . (11)

We further assume that the transform-domain pointwise processing of (11) is (at least) contin-

uously differentiable, with piecewise-differentiable partial derivatives. Introducing the notation

∂1θ(w,w) =

[
∂θl(w,w)

∂wl

]
1≤l≤L

, ∂2θ(w,w) =

[
∂θl(w,w)

∂wl

]
1≤l≤L

,

∂211θ(w,w) =

[
∂2θl(w,w)

∂w2
l

]
1≤l≤L

, ∂222θ(w,w) =

[
∂2θl(w,w)

∂w2
l

]
1≤l≤L

, ∂212θ(w,w) =

[
∂2θl(w,w)

∂wl∂wl

]
1≤l≤L

and denoting by “�” the Hadamard (element-wise) matrix product, we have the following.

Corollary 1. For pointwise processing of the form given by (11) and satisfying the requirements

of Lemma 1, the risk estimate of (6) takes the following form:

CURE =
1

N

(
‖f(y)− (y −K · 1)‖2 − 4T

(
y − K

2
· 1
))

+
8

N

(
y − K

2
· 1
)T (

(R�DT)∂1θ(w,w) + (R�D
T
)∂2θ(w,w)

)
− 8

N
yT
(

(R�DT �DT)∂211θ(w,w) + (R�D
T �D

T
)∂222θ(w,w)

)
+

16

N
yT(R�DT �D

T
)∂212θ(w,w). (12)

The proof of this result is straightforwardly obtained by developing the term (y−K/2 · 1)T∂f(y)−

yT∂2f(y) from (6) for θ(w,w) as defined in (11). A similar result for transform-domain

denoising of mixed Poisson-Gaussian data is proved in [34].

For the remainder of this section, we drop the subband superscript j and the in-band location

index l. We thus denote by w, w, and ω any of the wjl , w
j
l , and ωjl , for j = 1 . . . J .
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B. Choice of thresholding rule

We need to specify a particular shrinkage or thresholding rule to estimate each unknown

highpass coefficient ω from its noisy counterpart w. In the minimum-mean-squared error sense,

the optimal pointwise shrinkage factor is given by

α∗ = arg min
α

E
{

(αw − ω)2
} (8),(10)

= 1−
4
(
E {w} − K

2

)
E {w2}

. (13)

There are various possible implementations of the above formula to yield an effective shrinkage

function. For the case of K = 2 degrees of freedom, Nowak proposed in [21] the function

θ(w,w) = max
(

1− λ4 max(w − 1, 1)

w2
, 0
)
w, (14)

where the particular choice λ = 3 was motivated by a Gaussian prior on the noisy coefficients

w. Our experiments have indicated that replacing max(w−1, 1) by w gives slightly better MSE

performance, and so, following the recent idea of linear expansion of thresholds (LET) [27], we

propose the following shrinkage rule for arbitrary degrees of freedom:

θ(w,w;a) =

I∑
i=1

ai max
(

1− λi
4w

w2
, 0
)
w︸ ︷︷ ︸

θi(w,w)

, with I << N , (15)

which can be seen as an optimized generalization of (14). To satisfy the requirements of

Corollary 1, we implement a continuously differentiable approximation of the max(·) function.

Empirically we have observed I = 2 terms per subband to be the best choice in (15). The

vector a ∈ RI of subband-adaptive parameters can be optimized in closed form via least squares,

while λ1 and λ2 can be optimized by minimizing the risk estimate of (12) directly. However,

fixing λ1 = 3 and λ2 = 9 was observed to work well in all of our experiments, and leads to

a much faster implementation. (We observed values close to (3, 9) to yield equivalent results

±0.2 dB.) A potential realization of the proposed LET is displayed in Fig. 2.
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−100
−50

0
50

100

0

100

200

300
−100

−50

0

50

100

w
w

θ
(w

,
w

;
a
)

Fig. 2. Possible realization of the proposed thresholding rule of (15) (I = 2, λ1 = 3, λ2 = 9, a = [0.75 0.25]T).

C. Implementation

The overall subband-adaptive transform-domain estimator is thus, for I = {0 . . . J}× {1, 2},

f(y) =
∑
i∈I

aifi(y) = a01 (R0w0 −K)︸ ︷︷ ︸
Lowpass

bias removed

+

J∑
j=1

2∑
i=1

ajiRjθ
j
i (wj ,wj),

with the CURE-optimized parameters a = [ai]i∈I the solution to Ma = c, where
c =

[
(y −K · 1)T fi(y)− 4

((
y − K

2
· 1
)T

∂fi(y)− yT∂2fi(y)

)]
i∈I

,

M = [fi(y)Tfj(y)]i,j∈I .
(16)

IV. CURE-OPTIMIZED DENOISING VIA UNNORMALIZED HAAR WAVELET TRANSFORM

In the previous section, we have considered the general case of an undecimated filterbank

transform and derived the corresponding image-domain MSE estimate. Owing to the intractability

of the noncentral chi-square distribution after an arbitrary (even orthogonal) transformation, an

explicit transform-domain risk estimate is generally unobtainable. Remarkably, in the particular

case of the unnormalized Haar wavelet transform, the derivation of such an explicit subband-

dependent MSE estimate is possible. Its construction is presented in this section.
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1− z−1 ����
↓2 wj

1 + z−1 ����
↓2 sj-

-

-sj−1
6

-

-

θj(wj , sj)

Same scheme
applied recursively

ω̂j

ς̂j

����
↑2 1−z

2

����
↑2 1+z

2
-

-

⊕- ς̂j−1

Fig. 3. Signal-dependent noise reduction in the unnormalized Haar discrete wavelet transform.

A. Unnormalized Haar wavelet-domain CURE

The 1D unnormalized Haar discrete wavelet transform consists of a critically-sampled two-

channel filterbank (see Fig. 3). On the analysis side, the lowpass (resp. highpass) channel

is implemented by the unnormalized Haar scaling (resp. wavelet) filter whose z-transform is

H̃(z−1) = 1 + z−1 (resp. G̃(z−1) = 1− z−1). To achieve a perfect reconstruction, the synthesis

side is implemented by the lowpass and highpass filters H(z) = (1+z)/2 and G(z) = (1−z)/2.

At a given scale j, the unnormalized Haar scaling and wavelet coefficients of the observed data

y = s0 are given by

sjn = sj−12n + sj−12n−1, wjn = sj−12n − s
j−1
2n−1. (17)

Similarly, the unnormalized Haar scaling and wavelet coefficients of the noncentrality param-

eter vector of interest x = ς0 are given by

ςjn = ςj−12n + ςj−12n−1, ωjn = ςj−12n − ς
j−1
2n−1. (18)

Since the sum of independent noncentral chi-square random variables is a noncentral chi-

square random variable whose noncentrality parameter and number of degrees of freedom are

the summed noncentrality parameters and number of degrees of freedom [35], the empirical

scaling coefficients follow a noncentral chi-square distribution; i.e., sj ∼ χ2
Kj

(ςj), where Kj =

2jK. Moreover, since the squared lowpass filter coefficients are the lowpass filter coefficients
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themselves, the scaling coefficients can be used as estimates of the variance of the (same-scale)

wavelet coefficients. In the notation of Section III-A, this means that wj = sj for j = 1 . . . J .

Denoting by Nj the number of samples at a given scale j and assuming a subband-adaptive

processing θj : RNj ×RNj → RNj

, the MSE in each highpass subband j is given by MSEj =

1
Nj
‖θj(wj , sj)− ωj‖2, and we have the following theorem.

Theorem 2. Let θ(w, s) = θj(wj , sj) be an estimator of the unnormalized Haar wavelet

coefficients ω = ωj of x at scale j, satisfying the conditions of Lemma 1. Then the random

variable

CUREj =
1

Nj

(
‖θ(w, s)−w‖2−4T

(
s−Kj

2
· 1
))

+
8

Nj

((
s−Kj

2
· 1
)T

∂1θ(w, s) + wT∂2θ(w, s)

)
− 8

Nj

(
wT
(
∂211θ(w, s) + ∂222θ(w, s)

)
+ 2sT∂212θ(w, s)

)
(19)

is an unbiased estimate of the risk for subband j; i.e., E {CUREj} = E {MSEj}.

Proof: We consider the case j = 1, so that we may use K = Kj/2, y = sj−1, and x = ςj−1

to ease notation. We first develop the squared error between ω and its estimate θ(w, s):

E
{
‖θ(w, s)− ω‖2

}
= E

{
‖θ(w, s)‖2

}
− 2 E {ωTθ(w, s)}︸ ︷︷ ︸

(I)

+ ‖ω‖2︸ ︷︷ ︸
(II)

. (20)

We can then evaluate the two expressions (I, II) that involve the unknown ω.

(I) Computation of E {ωTθ(w, s)} =

Nj∑
n=1

E {ωnθn(w, s)}: We can successively write

E {ωnθn(w, s)} (18)
= E {x2nθn(w, s)} − E {x2n−1θn(w, s)}

(5),(17)
= E

{
wn
(
θn(w, s) + 4

(
∂211θn(w, s) + ∂222θn(w, s)− ∂2θn(w, s)

))}
−4E

{
(sn −K)∂1θn(w, s)− 2sn∂

2
12θn(w, s)

}
. (21)
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(II) Computation of ‖ω‖2 =

Nj∑
n=1

ω2
n: We can successively write

ω2
n = E {ωnwn}

(21)
= E

{
w2
n − 4(sn −K)

}
. (22)

Inserting (21), (22) into (20) yields the desired equality; for j > 1, the proof is similar.

Subband superscript j will be omitted below, as we consider any of the J wavelet subbands.

B. CUREshrink

A natural choice of subband-adaptive estimator in orthogonal wavelet representations is soft

thresholding, introduced by Weaver et al. [19] and theoretically justified by Donoho [36]. In

contrast to the AWGN scenario, a signal-dependent threshold is required here. As in the case of

Poisson noise removal [37], [38], we wish to adapt the original “uniform” soft thresholding as

θn(w, s; a) = sign(wn) max(|wn| − a
√
sn, 0). (23)

In SUREshrink and PUREshrink [37]–[39] for Gaussian (resp. Poisson) noise reduction, a is

set to the value that minimizes the corresponding unbiased risk estimate. Similarly, we may select

a to yield the minimum CURE value according to (19) on the basis of observed data y, resulting

in a CUREshrink denoising procedure. To comply with the requirements of Theorem 2, we use

a continuously differentiable approximation to soft thresholding. Figure 4 shows the empirical

accuracy of CURE as a practical criterion for choosing the best value of a; we have also observed

a pointwise LET approach, as in (15), to yield comparable denoising results.

C. Joint inter-/intra-scale CURE-LET

To decrease the usual ringing artifacts inherent to orthogonal transform-domain thresholding,

more sophisticated denoising functions must be considered. In particular, the integration of inter-

scale dependencies between wavelet coefficients (the so-called “parent-child” relationship) has
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Fig. 4. Minimum CURE vs. MMSE threshold selection for the CUREshrink adapted soft thresholding of (23). Left:

N = 128× 128 samples, s ∼ χ2
8(ς), input SNR = 15 dB. Right: N = 256× 256, s ∼ χ2

16(ς), input SNR = 10 dB.

already been shown to significantly increase the denoising quality in both AWGN reduction [26],

[40]–[42] and Poisson intensity estimation [38].

To this end, Fig. 5 shows an example of a group-delay compensated parent p and its child

w for a particular subband at the first scale of a 2D unnormalized Haar wavelet transform. For

Fig. 5. A child (left) and its group-delay compensated parent (right) in a particular subband at the first scale of

a 2D unnormalized Haar wavelet transform. In this 16-color map, the background yellowish value is zero, with the

most significant coefficients appearing either in blue (negative) or in red (positive).

the unnormalized Haar wavelet transform, the group-delay compensated parent p = [pn]1≤n≤N
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is simply given by pn = sn+1 − sn−1 [38]. From Fig. 5, we observe that both the signs and

the locations of the significant (i.e., large-magnitude) coefficients persist across scale. To take

advantage of this persistence, we propose the following LET approach, inspired by (15):

θn(w, s;a) =

2∑
k=1

ak max
(

1− λk
4γn(s)

γ2n(w)
, 0
)
wn +

2∑
k=1

ak+2 max
(

1− λk
4γn(s)

γ2n(p)
, 0
)
wn

+

2∑
k=1

ak+4 max
(

1− λk
4γn(s)

γ2n(w)
, 0
)
pn +

2∑
k=1

ak+6 max
(

1− λk
4γn(s)

γ2n(p)
, 0
)
pn. (24)

Here the function γn(u) = 1/
√

2π
∑

k |uk|e−(n−k)
2/2 implements a normalized Gaussian smooth-

ing of the magnitude of its argument; this local filtering accounts for similarities between

neighboring wavelet, scaling, and parent coefficients.

The proposed denoising function of (24) thus integrates both the inter- and intra-scale depen-

dencies that naturally arise in the Haar wavelet transform. It involves a set a of eight parameters

that can be optimized via least squares, as well as parameters λ1 and λ2 that can be fixed

in advance without noticeable loss in denoising quality; we use λ1 = 1 and λ2 = 9 in all

experiments below. Considering the processing of all wavelet coefficients in a given subband

j, (24) reads as θ(w, s;a) =
∑8

k=1 akθk(w, s). The optimal (in the minimum CURE sense) set

of linear parameters is then the solution of the linear system of equation Ma = c, where
c =

[
wTθk(w, s)− 4

(
s− Kj

2
· 1
)T

∂1θk(w, s) + 8sT∂212θk(w, s)+

4wT
(
∂211θk(w, s) + ∂222θk(w, s)− ∂2θk(w, s)

) )]
1≤k≤8

,

M = [θk(w, s)
Tθl(w, s)]1≤k,l≤8 .

Finally, the bias is removed from the lowpass residual subband at scale J as ς̂J = sJ −2JK ·1.
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V. APPLICATION TO MAGNITUDE MR IMAGE DENOISING

In magnitude magnetic resonance imaging, the observed image consists of the magnitudes

|mn| of N independent complex measurements mn, where <{mn} ∼ N (<{µn}, σ2),

={mn} ∼ N (={µn}, σ2).
(25)

Our objective is to estimate the original (unknown) magnitudes |µn| =
√
<{µn}2 + ={µn}2

from their noisy observations |mn|. If we define two N -dimensional vectors x = [|µn|2/σ2]1≤n≤N ∈ RN+ ,

y = [|mn|2/σ2]1≤n≤N ∈ RN+ ,
(26)

then the data likelihood for y is the product of N independent noncentral χ2 distributions with

K = 2 degrees of freedom and noncentrality parameter xn; i.e., (1) with K = 2.

We then denoise the magnitude MR image m according to the following steps:

1) If necessary, estimate the noise variance σ2 using known techniques;

2) Rescale the squared-magnitude MR image y according to (26);

3) Apply a CURE-optimized denoising algorithm to obtain an estimate x̂ = f(y) of x;

4) Fix some λ ∈ [0, 1] and produce the final estimate µ̂ of the unknown magnitude MR

image µ, by applying the following nonlinear rescaling function:

µ̂ = σ
[
λ
√
|fn(y)|+ (1− λ)

√
max(fn(y), 0)

]
1≤n≤N

. (27)

We evaluate denoising performance objectively using three full-reference image quality metrics:

1) The standard peak signal-to-noise ratio (PSNR), defined as PSNR = 10 log10
N‖µ‖2∞
‖µ̂−µ‖2 ;

2) A contrast-invariant PSNR, defined as CIPSNR = 10 log10
N‖µ‖2∞

‖(a∗µ̂+b∗)−µ‖2 , where the affine

parameters a∗, b∗ are given by

(a∗, b∗) = arg min
a,b
‖(aµ̂+ b)− µ‖2 ⇐⇒


a∗ =

NµTµ̂− 1Tµ 1Tµ̂

N µ̂Tµ̂− (1Tµ̂)2
,

b∗ =
1Tµ µ̂Tµ̂− µTµ̂ 1Tµ̂

N µ̂Tµ̂− (1Tµ̂)2
.
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3) The mean of the structural similarity index map (SSIM), a popular visual quality metric

introduced in [43] (see https://ece.uwaterloo.ca/∼z70wang/research/ssim/).

In all simulated experiments, we have assumed that the variance σ2 of the complex Gaussian

noise is known. In practice, a reliable estimate can be obtained in signal-free or constant regions

of the image by moment matching [12], [21] or maximum likelihood techniques [6], [8], [44].

When no background is available, more sophisticated approaches can be considered [45].

To simulate various input noise levels, several values for σ have been selected in the range

σ ∈ [5, 100]. The set of high-quality magnitude MR test images used is shown in Fig. 6, and

may be obtained from http://bigwww.epfl.ch/luisier/MRIdenoising/TestImages.zip.

Image 1 (256× 256) Image 2 (512× 512) Image 3 (256× 256) Image 4 (256× 256)

Fig. 6. Test set of high-quality magnitude MR images used in the experiments of Section V.
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Fig. 7. PSNR comparisons among pointwise undecimated Haar CURE-LET (Section III-B) and joint intra-/inter-scale

unnormalized Haar CURE-LET (Section IV-C), shown relative to unnormalized Haar CUREshrink (Section IV-B).
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Fig. 8. PSNR improvements brought by cycle-spinning the unnormalized Haar wavelet transform.
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Fig. 9. Sensitivity to the choice of λ in (27); ordinate shows PSNR variations relative to the reference case λ = 0.

A. Comparisons between variants of the proposed approach

Before comparing our approach with four state-of-the-art MR image denoising methods, we

first evaluate the performance of the various variants of our approach. In Fig. 7, we compare the

results obtained using the pointwise CURE-LET thresholding of (15), applied in the undecimated

Haar wavelet transform domain, and the joint intra-/inter-scale LET denoising function of (24),

applied to the unnormalized Haar wavelet transform coefficients. These are shown relative to a

baseline provided by the unnormalized Haar CUREshrink approach of (23). As expected, the

joint intra-/inter-scale denoising function of (24) outperforms the simple soft-thresholding of (23)

by 1 − 3 dB. Moreover, pointwise thresholding applied in a shift-invariant setting outperforms
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(by 0.5− 1.5 dB) a more sophisticated thresholding in a shift-variant one.

Note that the shift-invariance of the unnormalized Haar wavelet transform can be increased by

applying the so-called “cycle-spinning” technique [30]. In Fig. 8, we show the PSNR improve-

ments brought by averaging the results of several cycle-spins (CS). As observed, 16 cycle-spins

allow a near match in performance to the shift-invariant transform. The cycle-spinning technique

has the further advantage of being easily implementable in parallel.

In Fig. 9, we evaluate the sensitivity of the CURE-optimized algorithms with respect to the

value of parameter λ appearing in the final nonlinear reconstruction function of (27). Note that

this parameter selection is usually not addressed in the literature; the most common choices are

either λ = 0 as in [16] or λ = 1 as in [22]. Yet, Fig. 9 indicates that the MMSE choice usually

lies in between these two extremal values. In all our experiments, we have thus used λ = 0.5.

B. Comparisons to state-of-the-art MR image denoising methods

As benchmarks for evaluating our CURE-LET approach, we have retained four state-of-the-

art MR image denoising techniques: two wavelet-based algorithms [21], [22] (code at http:

//telin.ugent.be/∼sanja/), a spatially adaptive linear MMSE filter [12], and an unbiased nonlocal

means filter specifically designed for MR data [16] (code at http://personales.upv.es/jmanjon/

denoising/nlm2d.htm). For each of these methods, we have used the tuning parameters suggested

in their respective publications and software, except for the linear MMSE filter, where we have

hand-optimized (in the MMSE sense) the size of the filter support.

We have considered three CURE-LET variants: 16 cycle-spins of the joint intra-/inter-scale

thresholding of (24) applied in the unnormalized Haar wavelet transform; the pointwise thresh-

olding of (15) applied in the undecimated Haar wavelet transform; and the same pointwise

thresholding applied in a mixed-basis overcomplete transform (an undecimated Haar wavelet

transform plus an 8× 8 overlapping block discrete cosine transform, BDCT). Note that a LET
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spanning several overcomplete bases was previously considered in [34].

In Table I, the PSNR results of the various methods are displayed, while the contrast-invariant

CIPSNR results are reported in Table II. As observed, the proposed CURE-optimized pointwise

LET applied in a mixed-basis overcomplete transform consistently achieves the best results. The

average denoising gains are about +2 dB relative to the method of [21], +3 dB compared to [22],

+3 dB compared to [12], and +0.4 dB compared to [16]. Overall, these CURE-LET methods

compare very favorably to state-of-the-art approaches, especially under very noisy conditions,

in which case the signal-dependent nature of the noise is more pronounced. Note that further

denoising gains are likely to be obtained by considering more sophisticated thresholding rules

and image-adaptive overcomplete dictionaries (e.g., [46]).

TABLE I

PSNR COMPARISONS

σ 5 10 20 30 50 100 5 10 20 30 50 100

Image Image 1 256× 256 Image 2 512× 512

Input PSNR 34.35 28.09 21.69 17.97 13.28 6.74 32.62 26.48 20.36 16.80 12.32 6.14

[21] 37.95 33.46 29.09 26.51 23.20 18.35 38.72 34.13 29.41 26.55 22.85 17.83

[22] 33.13 30.47 28.56 25.13 18.56 10.48 33.79 32.17 26.64 22.00 16.55 9.47

[12] 37.29 32.86 28.10 25.22 21.69 17.33 37.28 32.19 27.31 24.58 21.37 17.64

[16] 39.15 34.97 30.65 28.15 24.79 19.04 39.85 35.98 31.72 28.89 25.08 19.61
CURE-LET

(Haar, CS=16) 39.00 34.84 30.71 28.15 24.87 20.32 40.02 35.88 31.60 28.95 25.50 20.86
UWT Haar
CURE-LET 38.32 34.48 30.62 28.29 25.23 20.73 39.42 35.95 32.07 29.53 26.27 21.56
UWT/BDCT
CURE-LET 39.19 35.00 30.89 28.50 25.38 21.02 40.06 36.14 32.24 29.75 26.37 21.60

Image Image 3 256× 256 Image 4 256× 256

Input PSNR 34.00 27.77 21.48 17.84 13.32 7.07 33.84 27.73 21.64 18.13 13.71 7.36

[21] 35.88 31.72 27.64 25.21 22.10 17.84 35.75 31.50 27.36 24.99 22.07 18.08

[22] 29.35 27.62 25.89 24.73 19.45 11.65 28.20 26.32 24.63 24.15 20.98 12.31

[12] 35.84 31.24 26.58 24.07 21.00 17.47 35.86 31.19 26.70 24.14 21.06 17.40

[16] 36.25 32.51 28.92 26.67 23.53 19.17 36.16 32.24 28.55 26.43 23.43 18.68
CURE-LET

(Haar, CS=16) 36.55 32.54 28.72 26.47 23.57 19.67 36.36 32.17 28.23 25.98 23.19 19.41
UWT Haar
CURE-LET 36.43 32.71 29.07 26.88 23.99 20.03 36.20 32.24 28.58 26.49 23.77 20.00
UWT/BDCT
CURE-LET 36.88 33.02 29.24 27.01 24.10 20.09 36.56 32.51 28.72 26.59 23.89 20.12

Output PSNRs have been averaged over 10 noise realizations.
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TABLE II

CIPSNR COMPARISONS

σ 5 10 20 30 50 100 5 10 20 30 50 100

Image Image 1 256× 256 Image 2 512× 512

Input CIPSNR 34.52 28.58 22.72 19.69 16.85 15.16 34.71 28.66 22.59 19.29 16.08 14.13

[21] 38.00 33.57 29.41 27.05 24.02 19.46 39.35 35.15 31.02 28.50 25.13 20.27

[22] 33.55 30.89 28.64 26.29 22.89 18.72 36.41 33.36 28.63 25.88 22.81 18.94

[12] 37.30 32.91 28.33 25.57 22.17 17.91 37.81 33.18 28.57 26.06 23.01 19.29

[16] 39.15 34.99 30.66 28.16 24.80 19.21 39.93 36.11 31.94 29.17 25.42 19.92
CURE-LET

(Haar, CS=16) 39.00 34.85 30.82 28.40 25.30 20.75 40.29 36.37 32.50 30.13 26.98 22.46
UWT Haar
CURE-LET 38.32 34.48 30.64 28.36 25.41 21.03 39.56 36.17 32.45 30.07 27.08 22.71
UWT/BDCT
CURE-LET 39.20 35.01 30.91 28.58 25.60 21.36 40.30 36.45 32.68 30.34 27.22 22.79

Image Image 3 256× 256 Image 4 256× 256

Input CIPSNR 34.33 28.31 22.24 18.88 15.44 13.06 34.07 28.01 22.13 19.06 16.07 14.07

[21] 36.01 31.88 28.00 25.76 22.90 18.83 35.94 31.77 27.79 25.51 22.64 18.53

[22] 30.25 28.49 26.35 24.98 22.02 18.13 28.96 26.93 25.07 24.46 22.34 18.25

[12] 35.86 31.38 26.88 24.58 21.65 18.17 35.93 31.35 26.93 24.41 21.34 17.68

[16] 36.27 32.51 28.93 26.67 23.56 19.21 36.17 32.26 28.57 26.46 23.48 18.72
CURE-LET

(Haar, CS=16) 36.58 32.59 28.86 26.73 24.03 20.29 36.42 32.27 28.44 26.27 23.55 19.67
UWT Haar
CURE-LET 36.48 32.74 29.12 26.97 24.19 20.44 36.25 32.28 28.66 26.61 23.96 20.24
UWT/BDCT
CURE-LET 36.93 33.07 29.29 27.11 24.31 20.55 36.61 32.56 28.82 26.73 24.09 20.42

Output CIPSNRs have been averaged over 10 noise realizations.

Fig. 10 presents a visual comparison of the various algorithms considered. As observed, the

two CURE-LET denoising results offer a good balance between noise suppression, reasonable

denoising artifacts, and fine structure preservation. This subjective observation is confirmed by

the higher SSIM scores obtained by the proposed denoising approach.

In Table III, we report the computation time of the various algorithms considered. All have

been executed on Matlab R2010a running under Mac OS X equipped with a 2.66GHz Intel

Core 2 Duo processor. As observed, the proposed CURE-LET algorithms are quite fast, taking

1–10 s to denoise a 256×256 image. When applied within an undecimated filterbank transform,

most of the computational load is dedicated to the independent reconstructions of the processed

subbands and their corresponding first and second order derivatives (see (16)).
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Fig. 10. Visual Comparisons. (A) Zoom in image 1. (B) Noisy version: SSIM = 0.319. (C) Denoised by [21]:

SSIM = 0.734. (D) Denoised by [22]: SSIM = 0.726. (E) Denoised by [12]: SSIM = 0.653. (F) Denoised

by [16]: SSIM = 0.719. (G) Denoised by Haar CURE-LET (CS=16): SSIM = 0.800. (H) Denoised by UWT/BDCT

CURE-LET: SSIM = 0.796.

C. Denoising of a magnitude MR knee image

We have also applied our CURE-LET denoising algorithms to an actual magnitude MR image

of the knee. This 512×512 16-bit raw image has been acquired on a Siemens 1.5 Tesla Magnetom

Sonata MR system, following a sagittal T2-weighted protocol. The standard deviation of the

complex Gaussian noise has been estimated from a signal-free region S of the squared data, as
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TABLE III

COMPUTATION TIMES FOR MR IMAGE DENOISING TECHNIQUES.

Method
Image size

Method
Image size

256× 256 512× 512 256× 256 512× 512

[21] 0.2 0.9 Haar CURE-LET (CS=1) 0.3 0.8

[22] 0.6 2.5 Haar CURE-LET (CS=16) 3.7 12.1

[12] 0.1 0.5 UWT CURE-LET 1.6 9.6

[16] 55.8 248.4 UWT/BDCT CURE-LET 9.7 43.9

Computation times have been averaged over 10 runs; [12], [16] do not use pre-compiled MEX files.

σ̂ =
√

1
2

∑
n∈S |mn|2, and subsequently treated as known.

Fig. 11 shows the denoising results of the various CURE-LET algorithms. As observed, the

noise is efficiently attenuated and the contrast is significantly improved, owing to a proper

reduction of the signal-dependent bias introduced by the noise.

VI. CONCLUSION

In this article we have derived a noncentral chi-square unbiased risk estimate (CURE), and

applied it to the problem of magnitude MR image denoising, where the squared value of each

pixel comprises an independent noncentral chi-square variate on two degrees of freedom. Our

approach can be used to optimize the parameters of essentially any continuously differentiable

estimator for this class of problems, and here we have focused our attention on transform-domain

algorithms in particular.

In this vein, we first developed a pointwise linear expansion of thresholds (LET) estimator

applied to the coefficients of an arbitrary undecimated filterbank transform. We then considered

the specific case of the unnormalized Haar wavelet transform, a multiscale orthogonal transform

allowing for the derivation of subband-dependent CURE denoising strategies. We also introduced

a subband-adaptive joint inter-/intra-scale LET that outperforms a simpler estimator similar to

soft thresholding.
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(A) (B)

(C) (D)

Fig. 11. Denoising of a magnitude MR image of the knee. (A) Raw 16-bit data: σ̂ = 67.61. (B) Denoised via Haar

CURE-LET (16 cycle spins). (C) Via UWT Haar CURE-LET. (D) Via UWT/BDCT CURE-LET.

We then applied our proposed CURE-optimized algorithms to test images artificially degraded

by noise, and observed them to compare favorably with state-of-the-art techniques, both quan-

titatively and qualitatively. Finally, we showed an example of denoising results obtained on an

actual magnitude MR image, in order to show the practical efficacy of our approach to MR

image denoising via chi-square unbiased risk estimation.
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