

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://dx.doi.org/10.1109/TIP.2012.2197015

http://hdl.handle.net/10251/55943

Institute of Electrical and Electronics Engineers (IEEE)

Prades Nebot, J.; Morbee, M.; Delp, E. (2012). Generalized PCM coding of Images. IEEE
Transactions on Image Processing. 21(8):3801-3806. doi:10.1109/TIP.2012.2197015.

SUBMITTED TO IEEE TRANS. ON IMAGE PROCESSING 1

Generalized PCM coding of images
José Prades-Nebot*, Member, IEEE, Marleen Morbee, and Edward J. Delp, Fellow, IEEE

Abstract—Pulse-code modulation (PCM) with embedded quan-
tization allows the rate of the PCM bitstream to be reduced
by simply removing a fixed number of least significant bits
from each codeword. Although this source coding technique is
extremely simple, it has a poor coding efficiency. In this paper,
we present a generalized PCM (GPCM) algorithm for images
that simply removes bits from each codeword. In contrast to
PCM, however, the number and the specific bits that a GPCM
encoder removes in each codeword depends on its position in the
bitstream and the statistics of the image. Since GPCM allows the
encoding to be performed with different degrees of computational
complexity, it can adapt to the computational resources that are
available in each application. Experimental results show that
GPCM outperforms PCM with a gain that depends on the rate,
the computational complexity of the encoding, and the degree of
inter-pixel correlation of the image.

EDICS. COM-LOC: Lossy coding of images and video.

I. INTRODUCTION

Today, most signals of interest (e.g., voice, audio, image,
video) are digitally acquired (digitized) using A/D converters.
A/D converters perform pulse-code modulation (PCM) with
uniform quantization and fixed-length binary coding. This type
of coding has several advantages. First, PCM is the simplest
source coding technique [1]. Second, it is trivial to locate
(and decode) any codeword in the PCM bitstream (random
access). Third, when embedded quantization is used, the rate
of the PCM bitstream can be easily reduced by discarding a
fixed number of bits in each codeword (scalability). Despite
all these advantages, PCM is not usually used in the storing or
transmission of signals due to its poor coding efficiency. For
this reason, the PCM bitstream is usually compressed using a
sophisticated and efficient coding algorithm [1].

Apart from coding efficiency, encoding simplicity is also an
important factor in applications with very limiting constraints
on computational power and/or energy [2]. A simple encoder
is also necessary when the signal must be acquired at a very
high sampling rate. This happens, for instance, in applications
that require capturing video at very high frame rates [3]–[6].1

These applications, require source coding algorithms that are
extremely simple and, consequently, many times the PCM
signal (raw video) is directly transferred and stored. However,

José Prades-Nebot is with the Institute of Telecommunications and Mul-
timedia Applications, at the Universitat Politècnica de València, Camino de
Vera s/n, 46022 Valencia, Spain. Phone: +34 96 330 5821. FAX: +34 96 387
7309. E-mail: jprades@dcom.upv.es. Marleen Morbee is with the Department
of Telecommunications and Information Processing, Sint-Pietersnieuwstraat
41, 9000 Gent, Belgium. Gent, Belgium. Phone: +32 9 264 4225. Fax: + 32
9 264 4295. E-mail: marleen.morbee@telin.ugent.be. Edward J. Delp is with
the School of Electrical and Computer Engineering, Purdue University, 465
Northwestern Avenue, West Lafayette, IN 47907-2035 USA. Phone: +1 765
494 1740. FAX: +1 765 494 3358. E-mail: ace@ecn.purdue.edu.

1In some ultra high-speed applications, the frame rate is so high that not
even PCM can be used and only a few analog frames are captured and
stored [6].

the high bit rate of raw video can make its transmission or
storage difficult. Thus, the bus may not be fast enough to
transfer the video out of the sensor or the writing speed
of the storage device may not be high enough to save the
raw video [5]. In all these applications, a lossy coding algo-
rithm that has properties that are similar to those of PCM
but with a better coding efficiency would be of interest.2

These constraints discard most of the image coding algorithms
(e.g., JPEG) since their computational complexity is too high
for very high-speed video applications (even low-complexity
DPCM coders may be too complex for applications of this
type [7], [8]). Moreover, most image coding algorithms do
not preserve the random access property and are sensitive to
transmission or storage errors (especially DPCM coders). The
simplest solution to reduce the bit rate of raw video is to
decrease the temporal resolution and/or the spatial resolution
of the signal provided by the camera sensor.

In this paper, we present a generalized-PCM (GPCM) image
coding algorithm for applications that require an extremely low
computational complexity. The GPCM encoding is divided
into two stages: the analysis and the encoding itself. The
encoding is done by simply discarding bits of each pixel value
(as PCM with embedded quantization does).3 The type (least
significant bits (LSBs) or most significant bits (MSBs)) and
number of bits discarded in each pixel are determined by
using the information provided by the analysis stage. Although
the analysis stage involves some numerical processing, its
complexity can be reduced by using statistical sampling [10],
[11]. Moreover, GPCM can operate at different degrees of
computational complexity which allows it to adapt to the
computational resources that are available in each application.
Although GPCM has a worse coding performance than most
image coding algorithms, it is extremely simple, it facilitates
random access to the data, it is robust to transmission errors, it
is scalable in complexity, and it outperforms PCM in coding
efficiency. These features make the algorithm useful for the
recording of video at extremely high frame rates.

The rest of the paper is organized as follows. In Section II,
we describe the GPCM coding of images. In Section III,
we experimentally test the coding efficiency of GPCM and
compare it to other image coding algorithms. Finally, in
Section IV, we summarize our results.

2We are considering applications that permit a lossy compression of the
video signal.

3In preliminary versions of this work (i.e., [9], [10]), our algorithm was
named Modulo-PCM; however, in this paper, we use the name GPCM in order
to prevent confusion with the Modulo-PCM technique. In fact, our algorithm
combines three coding techniques (one of which is very similar to Modulo-
PCM).

2 SUBMITTED TO IEEE TRANS. ON IMAGE PROCESSING

II. GPCM CODING OF IMAGES

Let us consider a monochromatic digital image encoded
with PCM at R0 bits per pixel (bpp). Let ∆0 be the quan-
tization step-size of the digital image. Let us also assume that
uniform embedded quantization is used, i.e., the removal of
the l LSBs of each codeword of the image provides the same
bitstream as the PCM encoding of the analog image with R0−l
bpp. Our GPCM algorithm divides the input image into blocks
of b×b pixels and encodes each block at the target rate R using
appropriate parameter values. In Section II-A, we describe
the GPCM encoding and decoding of each image block. In
Section II-B, we describe the different coding techniques
used in GPCM. In Section II-C, we show how the GPCM
encoder assigns values to the coding parameters of each
block. Section II-D is devoted to evaluating the computational
complexity of GPCM. Finally, in Section II-E, we show how
GPCM can achieve different degrees of coding complexity and
efficiency.

A. GPCM coding

Let x[n1, n2] be a block of b× b pixels of the input image.
For the sake of brevity, we will drop variables n1 and n2
when this does not jeopardize clarity. The GPCM encoder first
divides x into four decimated subblocks (Figure 1):

x0[n1, n2] = x[2n1, 2n2],

x1[n1, n2] = x[2n1 + 1, 2n2],

x2[n1, n2] = x[2n1, 2n2 + 1],

x3[n1, n2] = x[2n1 + 1, 2n2 + 1].

We refer to x0 as the PCM subblock, and we refer to x1,
x2, and x3 as the GPCM subblocks. In each subblock xk,
the encoder simply removes the lk LSBs and the mk MSBs
from each pixel value. Parameter m0 is always set to zero. To
simplify the assignment of values to the coding parameters, we
set l1 = l2 = l3 and m1 = m2 = m3. In this way, the encoder
only has to assign values to three parameters: l0, l1, and m1.
The resulting codewords x̃k are transmitted to the decoder
(Figure 1). Each codeword of x̃0 represents a quantization
interval of length 2l0∆0. Similarly, each codeword of x̄k (k ∈
{1, 2, 3}) represents an interval of size 2lk∆0. If mk > 0, the
encoder performs binning over the codewords of x̄k [12], i.e.,
each codeword of x̃k represents a bin of 2mk codewords x̄k.

At the decoder, x0 is first decoded using midpoint re-
construction (i.e., using the midpoint of each quantization
interval). Then, the decoder obtains an approximation of x1,
x2, and x3 by performing interpolation over the reconstructed
PCM subblock x̂0. Bilinear interpolation is used since it rep-
resents a good trade-off between complexity and interpolation
accuracy [13].4 The interpolated subblocks y1, y2, and y3 act
as side information (SI) for the decoding of x1, x2, and x3,
respectively (Figure 1).

4To interpolate the pixels of the GPCM subblocks that are placed in the
last column and row of a block x, the first column of PCM subblock that is
placed to the right of x and the first row of the PCM subblock that is placed
below x must be previously decoded.

The decoding of each codeword of x̃k (k ∈ {1, 2, 3}) is
divided into two steps: decision and reconstruction. In the
decision step, the decoder selects one of the 2m1 quantiza-
tion intervals represented by the codeword (no decision is
performed when m1 = 0). Among all the potential intervals of
the codeword, the decoder selects the one that is closest to its
SI. If the decision is correct, the m1 MSBs that were removed
by the encoder are correctly recovered. Otherwise, the decoder
incurs a decision error which may generate a large-amplitude
decoding error. After the decision, each codeword represents
a single interval.

In the reconstruction step, the aim is to recover the l1
LSBs that were removed from each pixel codeword by the
encoder. The decoder first estimates the value of each pixel
using its SI and its quantization interval. If we assume that
the interpolation error e between a pixel value x and its SI
y (e , y − x) follows a unimodal and symmetric probability
distribution, then the maximum a posteriori (MAP) estimation
of x when x belongs to a quantization interval [a, b] is given
by the clipping function

x̌ =


a, y < a

y, a ≤ y ≤ b
b, y > b

. (1)

A better but more complex reconstruction can be performed if
minimum mean squared error (MMSE) estimation is used [9].
When m1 = 0 and l0 = l1, midpoint reconstruction instead
of MAP reconstruction is used since, in this case, the SI does
not offer any significant help for the decoding of the GPCM
subblocks. Each estimated value x̌ is then quantized with
R0 bits. Finally, the four decoded subblocks are multiplexed
(Figure 1). Since all the blocks are encoded at the same rate
and bilinear interpolation only operates over a small number of
pixel values (2 or 4), random access is facilitated (i.e., locating
the codeword of any pixel and decoding it is simple).

B. Coding techniques

GPCM combines three simple techniques: PCM, interpola-
tive coding, and binning. GPCM behaves like PCM when
m1 = 0 and l0 = l1. PCM is optimum at high rates or for
blocks with very poor spatial correlation (i.e., when no benefit
is obtained from exploiting the similarity among pixels). When
m1 = 0 and l0 < l1, a GPCM encoder behaves like a PCM
encoder that uses two quantization step-sizes. At the decoder,
the pixels of x̂0 are interpolated to generate SI, which helps in
the reconstruction of the three GPCM blocks. This technique
can outperform conventional PCM at low rates.

When l1 + m1 = R0, interpolative coding is used [14]:
the GPCM encoder only encodes and transmits x0, which is
reconstructed and interpolated at the decoder. This technique
provides good results at low rates since, at these rates, only
transmitting x0 and interpolating x̂0 provides better results
than spending the available bits in the encoding of the four
subblocks.

When m1 > 0 and l1+m1 < R0, binning is performed over
the codewords of the GPCM subblocks. The use of binning
is useful in blocks with a high spatial correlation since most

J. PRADES-NEBOT, M. MORBEE AND E. J. DELP. 3

Remove the
l0 LSBs Recons.

SI gen.

Remove the
l1 LSBs

Remove the
m1 MSBs Decision Recons.

Remove the
l2 LSBs

Remove the
m2 MSBs Decision Recons.

Remove the
l3 LSBs

Remove the
m3 MSBs Decision Recons.

x̃0

x1

x2

x3

x̃1

x̃2

x̃3

x′1

x′2

x′3

x0

x1

x2

x3

x

x̂0

x̂1

x̂2

x̂3

x̂

Encoder Decoder

y1

y2

y3

Fig. 1. Block diagram of the GPCM coding of an image block.

of the removed MSBs bits can be correctly recovered by the
decoder by exploiting the similarity among the pixels.

C. Assignment of values to the coding parameters

The encoder has to assign values to the parameters l0, l1,
and m1 of each block. For a target rate R, the optimum
(l0, l1,m1) is the one that minimizes the distortion D and
fulfills the rate constraints:

minimize D(l0, l1,m1)

subject to R = R0 −
1

4
[l0 + 3(l1 +m1)] (2)

0 ≤ l0, l1,m1 ≤ R0

0 ≤ l1 +m1 ≤ R0

In [15], we developed a model for D when the interpolation
error follows a Laplacian distribution. Hence, by solving (2)
using the distortion model in [15], a GPCM encoder could
obtain the optimum assignment for each block. Nevertheless,
since solving (2) is a complex task and encoding complexity
is our main concern, the encoder uses a series of assignment
rules (ARs) to perform the assignment. Thus, for each possible
R and b, there is an AR that provides an appropriate triplet
(l0, l1,m1) for each block as a function of the peak signal-to-
noise ratio of its SI (PSNRSI) defined as

PSNRSI = 10 log

(
2R0 − 1

)2
MSESI

(dB) (3)

where MSESI is the mean squared interpolation error of the
block when l0 = 0 (i.e., MSESI can be computed from pixels
of the original image). We experimentally obtained the ARs for
a set of values of b (b ∈ {4, 8, 16, 32, 64, 128, 256, 512}) and
R (R ∈ {1, 2, 3, 4, 5, 6}) using 50 gray-scale digital images.
To obtain the AR for a pair of b and R values, we classified
each consecutive block of b × b pixels of the 50 images in
accordance with its PSNRSI value when l0 = 0. In this
classification, intervals with a width of 1 dB were used. Then,
we encoded the blocks with all the possible triplets (l0, l1,m1)
that corresponded to each target rate R. Finally, we selected the

(l0, l1,m1) that provided the minimum mean squared decoding
error of the blocks in each PSNRSI interval.5

D. Computational complexity

The GPCM encoding of a block essentially involves two
processes: the computation of its MSESI (the PSNRSI can be
obtained from the MSESI through a look-up table) and the
encoding itself. Computing the MSESI of a block of b × b
pixels involves: the bilinear interpolation of x0 (5b2/4 addi-
tions and 3b2/4 shifts), the computation of the interpolation
errors (3b2/4 subtractions), the squaring of the errors (3b2/4
multiplications), and the summation of all the errors (3b2/4
additions).6 Therefore, on average, 4.25 integer operations
per pixel (iopp) are necessary to compute the MSESI. The
complexity of this computation can be reduced by computing
the MSESI using only one out of f pixels that must be
interpolated. In this way, MSESI is computed with 4.25/f
iopp. The higher the sampling factor f , the lower the number
of operations to compute but the less accurate the assignment
is (since MSESI is less accurate). Nevertheless, for a given
block size, there is a maximum factor fmax such that assign-
ments that are different to the optimum one rarely occur if
f ≤ fmax

7. Hence, if f = fmax, the complexity is reduced
without incurring any appreciable loss in coding efficiency.

The encoding of each pixel of a PCM subblock requires zero
shifts when l0 = 0 and one shift when l0 > 0. The encoding
of each pixel in a GPCM subblock requires: zero shifts when
l1 + m1 = 8, one shift when l1 > 0 and m1 = 0, and two
shifts in the rest of the cases.

Let us assume that the pixel values are accessed line by
line in raster order and that w is the width of the image in
pixels. Then, the encoding has a maximum latency of b(w+1)

5The ARs can be found on http://personales.upv.es/jprades/publications.html.
6The multiplications and divisions by integer powers of two and the removal

of m1 MSBs and l1 LSBs can be implemented through shift operations.
7Since the MSESI is the sample variance of a finite population, the error

in estimating MSESI depends on both the sampling factor and the size of
the population (i.e., the size of the image). To achieve a target error variance
in estimating the MSESI, the larger the size of the population, the larger the
sampling factor to use [16].

4 SUBMITTED TO IEEE TRANS. ON IMAGE PROCESSING

Process
Maximum average number of integer operations per pixel

Additions Subtractions Multiplications Shifts Comparisons Total

Encoding
2

f

3

4f

3

4f

3

4f
+

7

4
0

17

4f
+

7

4

Decoding
9

4
0 0

10

4

12

4

31

4

TABLE I
MAXIMUM NUMBER OF OPERATIONS PER PIXEL REQUIRED IN THE GPCM ENCODING AND DECODING OF AN IMAGE.

pixels and requires at most b(w+ 1) + 1 memory cells. When
b is large, the memory usage and the encoding latency can be
drastically reduced by encoding each block of a frame using
the coding parameters that were computed for its colocated
block in the previous frame8.

The decoding of a block has three stages: the reconstruction
of the PCM subblock, its bilinear interpolation, and the decod-
ing of the three GPCM subblocks. The decoding of x̂0 involves
multiplying each codeword by ∆0 and adding 2l0−1∆0 to
the result (i.e., b2/4 shifts and b2/4 additions). The bilinear
interpolation of x̂0 requires 5b2/4 additions and 3b2/4 shifts.
The decoding of each pixel of the GPCM subblocks has two
steps: the decision (only if m1 > 0) and the reconstruction.
The decision is equivalent to a uniform quantization which
involves: two shifts, one addition, and two comparisons (to
clip the result of the division) per pixel of the GPCM images.
Finally, the MAP reconstruction of each pixel involves two
comparisons. Table I shows the maximum average number of
operations per pixel that is necessary to encode and decode
an image. The maximum decoding latency is 2w pixels and
2w + 1 memory cells are required at most.

E. Complexity scalability

The smaller the block size b, the higher the adaptation of
GPCM to the local statistics of the image, and, consequently,
the higher its coding efficiency. However, the smaller b, the
smaller the maximum value of the sampling factor (fmax)
that can be used in the computation of MSESI, and, hence,
the higher the computational complexity of the encoding. As
a consequence, the block size b trades off coding efficiency
and computational complexity. This scalability in complexity
allows our algorithm to adapt to the computational resources
that are available in each application. In the following, we
describe how this adaptation can be made (Algorithm 1).

First, the value of the sampling factor f is determined by the
computational complexity that is attainable by the application.
For each value of f , there is a minimum block size bmin such
that the assignments that are different to the optimum ones
rarely occur if b ≥ bmin, and, hence, using this bmin provides

8If b is large, most of the texture content of two colocated blocks will not
vary significantly from frame to frame. A similar approach is used in real-time
rate control of video coders where some parameters computed in a frame of
a certain type (I-, P- or B- frame) are used to control the rate in the following
frame of the same type [17], [18].

both the highest spatial adaptation and accurate assignments
in most cases. Appropriate values b for each value of f are
stored in a block-size table, which is used by the GPCM
encoder to determine the value of b. To build a block-size
table for our GPCM encoder, we experimentally encoded 50
images at different rates (R ∈ {1, 2, 3, 4, 5}) with different
values of b and f . Then, for each value of f , we selected the
minimum value of b that provides good encoding results (i.e.,
the minimum value of b such that the loss in quality with this
f value is negligible with respect to f = 1 in most of the
encodings). These values are shown in Table II.

f 1 2 4 8 16 32 64 256

b 4 8 16 32 64 128 256 512

TABLE II
BLOCK-SIZE b FOR DIFFERENT VALUES OF f .

Once the values of f and b are known, the algorithm selects
an AR according to the value of R and b. Finally, for each
block in the image, the algorithm first computes its PSNRSI,
obtains the optimum (l0, l1,m1) from the AR, and encodes
the block using the selected parameter values.

Algorithm 1 GPCM coding

1: Select f depending on the attainable complexity
2: Select b depending on f using the block-size table
3: Select an assignment rule depending on R and b
4: for “each block of b× b pixels” do
5: Compute the PSNRSI using a sampling factor f
6: Obtain l0, l1, and m1 from the assignment rule
7: Encode the block
8: end for

III. EXPERIMENTAL RESULTS

In this section, we experimentally analyze the performance
of GPCM and compare it to other image coding algorithms.
We encoded six gray-scale images of 512×512 pixels and
8 bpp. Each image was encoded with GPCM using six differ-
ent values of f (1, 2, 4, 8, 16, and 256) and their corresponding
block sizes (4, 8, 16, 32, 64, and 512, respectively). Figure 2
shows the PSNR of the six images as a function of the rate
R and b. In Figure 2, the images are ordered according to
their degree of spatial correlation (Zelda is the most correlated

J. PRADES-NEBOT, M. MORBEE AND E. J. DELP. 5

image and Baboon is the least correlated one). The results of
encoding each image using PCM, JPEG, and JPEG-LS (near-
lossless mode) [19] are also shown for comparison.

Note in Figure 2 that the higher the computational com-
plexity (or equivalently, the smaller f or b), the higher the
coding efficiency of GPCM. Thus, the best coding efficiency
is obtained when b = 4 and f = 1, while the worst coding
efficiency is obtained when b = 512 and f = 256 (i.e., each
image is encoded using a single block). At 1 bpp and 2 bpp, the
use of small values of b does not generally provide significant
improvements. The reason is that most blocks are encoded
using the same assignment at these rates. Thus, at 1 bpp, most
of the blocks are encoded using the assignment (4,8,0) (only
those blocks that have a very small PSNRSI are encoded using
the assignment (7,7,0)). In the rest of the rates, decreasing b
improves the coding efficiency significantly (the greater the
degree of spatial correlation, the greater the improvement).

Decision errors may occur in those pixels that belong
to edges or textured regions (i.e., when the interpolation
error may be large). Optimal parameter assignments provide
decodings with a very small number of decision errors. Thus,
the maximum percentage of decision errors among all the
encodings of Figure 2 was 0.42% (Peppers at 3 bpp with
b = 4). Sometimes, an inaccurate assignment provides a value
of m1 that is large. As a consequence, a large number of
decision errors occur in the decoding, which can significantly
increase the distortion (e.g., see Zelda encoded at 6 bpp with
b = 4 in Figure 3). Nevertheless, the visibility of the distortion
in those pixels that are affected by decision errors is reduced
thanks to the limited sensitivity of the human visual system
to amplitude errors in edges and high-activity regions.

The gain in coding efficiency of GPCM with respect to
PCM is large at 1 bpp and 2 bpp and generally decreases
with R. When b = 512, this gain is zero above a certain
rate (GPCM behaves like PCM) except for very correlated
images such as Zelda. Figure 3 shows a portion of the Barbara
image encoded at 2 and 3 bpp using PCM, and at 2.003 and
3.003 bpp using GPCM with b = 32. In the images encoded
with PCM, luminance is poorly represented and there is false
contouring [20], which is even more visible at 1 bpp. In the
images encoded using GPCM, the degradation comes mostly
from the under-sampling and interpolation performed which
reduces the edge sharpness and introduces stair-case effect in
slanted edges (see for instance the back of the chair and the
right part of the scarf in image (b)). False contouring is also
visible in the GPCM decoded images in those blocks that are
encoded using PCM (see for instance the left part of the chin
in images (b) and (d)).

Predictive and transform coding algorithms perform better
than GPCM at the expense of a higher computational complex-
ity. Transform-based algorithms such as JPEG and JPEG2000
perform much better than GPCM at all rates (see Figure 2).
The high coding efficiency of these algorithms comes at the
expense of using two-dimensional transforms, quantization,
and lossless coding techniques (e.g., Huffman or arithmetic
coding). In particular, only the DCT stage of JPEG requires
more operations than the whole GPCM encoding for any value

of b.9 Hence, although today’s hardware allows the use of
transform coders in many applications, they are not appropriate
when an extremely low complexity coding is required [7], [8].

JPEG-LS in near-lossless mode is less complex than other
image coding algorithms (e.g., JPEG, JPEG-2000, CALIC)
and allows a controlled maximum coding error (δ) [19]. As
shown in Figure 2, JPEG-LS performs better than JPEG at
high rates and much better than GPCM at all rates (the gap
between JPEG-LS and GPCM increases as the rate increases).
However, JPEG-LS is also much more complex than GPCM.
In particular, in order to decide the encoding mode (regular
or run) for each pixel, the JPEG-LS encoder must compute
three gradients gi (i = 1, 2, 3) and check that |gi| ≤ δ (i.e.,
in each pixel, three subtractions, three absolute values, and
three comparisons must be computed) [19]. Therefore, just
the decision of the coding mode in JPEG-LS requires more
operations than the entire GPCM encoding even when b = 4.

Recently, very simple DPCM-based image coders have been
proposed for applications with high constraints in energy
and/or computational resources [7], [8]. These algorithms
perform better than PCM and GPCM thanks to the use of pre-
diction and entropy coding. These features, however, make the
compressed bitstream highly sensitive to transmission/storage
errors and complicate random access. Moreover, even the sim-
plest DPCM encoders (i.e., those that use low-order prediction
with fixed coefficients, scalar uniform quantization, and simple
entropy coding) require computing more operations than the
GPCM encoder even when b = 4. Additionally, these DPCM
coders are not scalable in complexity and, in some cases, part
of their simplicity is due to the specific properties of the video
of the targeted applications [7], [8]. One of the advantages of
DPCM image coders (and JPEG-LS) is their small memory
requirements and coding latency. When b is large, GPCM
encoders can obtain these features by using in each block the
coding parameters of the colocated block in the previous frame
(see Section II-D).

IV. CONCLUSION

We have presented a GPCM coding algorithm for images
which, after properly assigning values to the coding parame-
ters, simply discards bits from each codeword of the PCM bit-
stream. Our algorithm is very simple computationally, is robust
to transmission or storage errors, facilitates random access, and
is scalable in complexity. These features make GPCM coding
useful in those applications that need to reduce the bitrate of
raw video in an extremely simple way. Experimental results
show that GPCM provides improvements with respect to PCM.
The magnitude of these improvements depends on the rate (the
smaller the rate, the larger the gain), the encoding complexity
(the greater the complexity, the greater the gain), and the
degree of inter-pixel correlation (the greater the correlation,
the greater the gain). Standard coding algorithms such as JPEG
and JPEG-LS perform much better than GPCM at the expense
of a significantly larger computational complexity.

9The Feig-Winograd fast-DCT algorithm requires computing 462 additions,
54 products, and 6 divisions in each 8×8 block, which involves 8.15 iopp on
average [21]. However, the GPCM encoder requires 6.0 iopp at most when
b = 4.

6 SUBMITTED TO IEEE TRANS. ON IMAGE PROCESSING

(a) Zelda (b) Lena (c) Peppers

1 2 3 4 5 6
R (bpp)

15

20

25

30

35

40

45

50
PS

NR
 (d

B)

JPEG
JPEG-LS
GPCM (b=4)
GPCM (b=8)
GPCM (b=16)
GPCM (b=32)
GPCM (b=64)
GPCM (b=512)
PCM

1 2 3 4 5 6
R (bpp)

15

20

25

30

35

40

45

50

PS
NR

 (d
B)

JPEG
JPEG-LS
GPCM (b=4)
GPCM (b=8)
GPCM (b=16)
GPCM (b=32)
GPCM (b=64)
GPCM (b=512)
PCM

1 2 3 4 5 6
R (bpp)

15

20

25

30

35

40

45

50

PS
NR

 (d
B)

JPEG
JPEG-LS
GPCM (b=4)
GPCM (b=8)
GPCM (b=16)
GPCM (b=32)
GPCM (b=64)
GPCM (b=512)
PCM

(d) Man (e) Barbara (f) Baboon

1 2 3 4 5 6
R (bpp)

15

20

25

30

35

40

45

50

PS
NR

 (d
B)

JPEG
JPEG-LS
GPCM (b=4)
GPCM (b=8)
GPCM (b=16)
GPCM (b=32)
GPCM (b=64)
GPCM (b=512)
PCM

1 2 3 4 5 6
R (bpp)

15

20

25

30

35

40

45

50

PS
NR

 (d
B)

JPEG
JPEG-LS
GPCM (b=4)
GPCM (b=8)
GPCM (b=16)
GPCM (b=32)
GPCM (b=64)
GPCM (b=512)
PCM

1 2 3 4 5 6
R (bpp)

15

20

25

30

35

40

45

50

PS
NR

 (d
B)

JPEG
JPEG-LS
GPCM (b=4)
GPCM (b=8)
GPCM (b=16)
GPCM (b=32)
GPCM (b=64)
GPCM (b=512)
PCM

Fig. 2. PSNR as a function of the rate of six digital images coded using GPCM, PCM, JPEG, and JPEG-LS.

(a) PCM (2 bpp) (b) GPCM (2.003 bpp, b = 32)

(c) PCM (3 bpp) (d) GPCM (3.003 bpp, b = 32)

Fig. 3. Image Barbara encoded using PCM and GPCM (with b = 32).

REFERENCES

[1] N. S. Jayant and P. Noll, Digital coding of waveforms. Prentice-Hall,
Inc, 1984.

[2] Z. Xiong, A. Liveris, and S. Cheng, “Distributed source coding for
sensor networks,” IEEE Signal Process. Mag., vol. 21, no. 5, pp. 80–94,
Sep. 2004.

[3] H. Shum and T. Komura, “Tracking the translational and rotational
movement of the ball using high-speed camera movies,” in Proc. IEEE
Int. Conf. Image Processing, Genoa, Italy, Sep. 2005, pp. 1084–1087.

[4] J. Sekikawa and T. Kubono, “Spectroscopic imaging observation of
break arcs using a high-speed camera,” in Proc. IEEE Conf. Electrical
Contacts, Sep. 2007, pp. 275–279.

[5] P. Gemeiner, W. Ponweiser, P. Einramhof, and M. Vincze, “Real-time
SLAM with high-speed CMOS camera,” in Proceedings IEEE Int. Conf.
Image Analysis and Processing, Sep. 2007, pp. 297–302.

[6] M. El-Desouki, M. J. Deen, Q. Fang, L. Liu, F. Tse, and D. Armstrong,
“CMOS image sensors for high speed applications,” Sensors, vol. 9,
no. 1, pp. 430–444, 2009.

[7] A. N. Kim, T. A. Ramstad, and I. Balasingham, “Very low complexity
low rate image coding for the wireless endoscope,” in International
Symposium on Applied Sciences in Biomedical and Communication
Technologies, Barcelona, Spain, Oct. 2011, pp. 90:1–90:5.

[8] T. H. Khan and K. A. Wahid, “Low power and low complexity
compressor for video capsule endoscopy,” IEEE Trans. Circuits Syst.
Video Technol., vol. 21, no. 10, pp. 1534–1546, Oct. 2011.

[9] J. Prades-Nebot, A. Roca, and E. Delp, “Modulo-PCM based encoding
for high speed video cameras,” in Proc. IEEE Int. Conf. Image Process-
ing, San Diego, USA, Oct. 2008, pp. 153–156.

[10] J. Prades-Nebot, “Very low-complexity coding of images using adaptive
Modulo-PCM,” in Proc. IEEE Int. Conf. Image Processing, Brussels,
Belgium, Sep. 2011, pp. 313–316.

[11] N.-M. Cheung, H. Wang, and A. Ortega, “Sampling-based correlation
estimation for distributed source coding under rate and complexity
constraints,” IEEE Trans. Image Process., vol. 17, no. 11, pp. 2122–
2137, Nov. 2008.

[12] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley-
Interscience, 1991.

[13] G. Wolberg, Digital Image Warping. Wiley-IEEE Computer Society,
1990.

[14] B. Zeng and A. Venetsanopoulos, “A JPEG-based interpolative image
coding scheme,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal
Processing, Minneapolis, MN, Apr. 1993, pp. 393–396.

[15] M. Morbee, “Optimized information processing in resource-constrained
vision systems: From low-complexity coding to smart sensor networks,”
Ph.D. dissertation, Faculty of Engineering and Architecture, Ghent
University, Mar. 2011.

[16] E. Cho, M. J. Cho, and J. Eltinge, “The variance of sample variance
from a finite population,” in International Journal of Pure and Applied
Mathematics, vol. 21, May 2005, pp. 387–394.

[17] MPEG-2, Test Model 5 (TM5), Doc. ISO/IEC JTC1/SC29/WG11/93-
225b, Test Model Editing Committee, Apr. 1993.

[18] T. Chiang and Y.-Q. Zhang, “A new rate control scheme using a new
rate-distortion model,” IEEE Trans. Circuits Syst. Video Technol., vol. 7,
no. 2, pp. 246–250, Feb. 1997.

[19] M. J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless
image compression algorithm: Principles and standardization into JPEG-
LS,” IEEE Trans. Image Process., vol. 9, no. 8, pp. 1309–1324, Aug.
2000.

[20] A. K. Jain, Fundamentals of Digital Image Processing. Prentice-Hall,
Inc, 1989.

[21] E. Feig and S. Winograd, “Fast algorithms for the Discrete Cosine
Transform,” IEEE Trans. Signal Process., vol. 40, no. 9, pp. 2174–2193,
Sep. 1992.

