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Abstract

It is well-known that box filters can be efficiently computed using
pre-integrations and local finite-differences [2, 4, 1]. By generalizing this
idea and by combining it with a non-standard variant of the Central
Limit Theorem, a constant-time or O(1) algorithm was proposed in
[3] that allowed one to perform space-variant filtering using Gaussian-
like kernels . The algorithm was based on the observation that both
isotropic and anisotropic Gaussians could be approximated using cer-
tain bivariate splines called box splines. The attractive feature of the
algorithm was that it allowed one to continuously control the shape
and size (covariance) of the filter, and that it had a fixed computational
cost per pixel, irrespective of the size of the filter. The algorithm,
however, offered a limited control on the covariance and accuracy of the
Gaussian approximation. In this work, we propose some improvements
by appropriately modifying the algorithm in [3].

Keywords: Linear filtering, Gaussian approximation, Central limit
theorem, Anisotropic Gaussian, Covariance, Box spline, Cartesian grid,
Running sum, O(1) algorithm.

1 Introduction

A space-variant filter is one where the shape and size of the filter is allowed
to change from point-to-point within the image. Unlike the more standard
convolution filter, the efficient computation of space-variant filters (diffu-
sion filters) remains a challenging problem in computer vision and image
processing [9]. It has been shown that efficient algorithms for space-variant
filtering can be designed using spline kernels, particularly when the space-
variance is in terms of the scale (or size) of the kernel. For instance, Heckbert
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proposed an algorithm for adaptive image blurring using tensor-products
of polynomial splines, where the image is filtered with kernels of various
scales using repeated integration and finite-difference [4]. Based on similar
principles, namely, the scaling properties of B-splines, Munoz-Barrutia et
al. have developed an algorithm for fast computation of the continuous
wavelet transform at different scales [10]. The idea was extended in [12] to
perform space-variant filtering using Gaussian-like functions of arbitrary size
. This was done by approximating the Gaussian using separable B-splines.
The flip side of using a separable construction, however, was that it offered
limited steerability and ellipticity. More recently, it was shown in [3] that
this limitation could be fixed using certain non-separable splines called the
box splines [7]. This, however, did not solve the problem completely as the
associated filtering algorithm offered only a limited control on the accuracy
of the Gaussian approximation. In this paper, we address these algorithmic
limitations and provide some simple solutions. To introduce the problem and
to fix the notations, we briefly recall the main results in [3]. While we keep
the presentation as self-contained as possible, we have avoided reproducing
all the technical details, and refer the readers to original paper for a more
complete account.

1.1 Background

The key idea behind the fast O(1) algorithm for Gaussian filtering in [3] is
the use of a single global pre-integration, followed by local finite differences.
At the heart of this is the following non-standard form of the Central Limit
Theorem1.

Theorem 1.1 (Gaussian approximation, [3]). For a given integer N ≥ 2,
let θk = (k − 1)π/N for 1 ≤ k ≤ N . Then

lim
N−→∞

N∏
k=1

sinc

(
σ

√
6

N
(x cos θk + y sin θk)

)
= exp

(
− σ2

2
(x2 + y2)

)
. (1)

This result tells us that the Gaussian can be approximated by the product
of rescaled sinc2 functions that have been uniformly spread out over the
half-circle. Note that each term in the product in (1) is obtained through a
rotation and rescaling of sinc(u)1(v), the tensor-product between the sinc

1We refer the interested reader to [5] for an interpretation of this result in the proba-
bilistic setting.

2We define sinc(t) to be 1 at the origin and sin(t)/t otherwise.
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function and the constant function of unit height. The main idea behind
(1) is that sinc(t) behaves as 1 − t2/6 + O(t4) close to the origin, so that
[sinc(t/

√
N)]N ≈ exp(−t2/6) when N is large compared to t.

So how exactly does this observation lead to an O(1) algorithm for
approximating Gaussian filters? By O(1), we mean that the cost of filtering
is independent of the size of the filter. It is clear that the right side of (1) is
simply the Fourier transform of the Gaussian

g(x, y) =
1

2πσ
exp

(
− x2 + y2

2σ2

)
.

On the other hand, the product in (1) can be related to the box distribution
Boxa(x)δ(y), where

Boxa(t) =

{
1/a for −a/2 < t ≤ a/2,

0 otherwise,

and δ(y) is the delta function. Indeed, using the rotation-invariance and the
multiplication-convolution property of the Fourier transform, we see that the
left side of (1) is the Fourier transform of

Boxa1(x cos θ1 + y sin θ1)δ(x sin θ1 − y cos θ1) ∗ · · ·
· · · ∗ BoxaN (x cos θN + y sin θN )δ(x sin θN − y cos θN ), (2)

where every ak equals σ
√

24/N . This gives us the dual interpretation of (1)
in the space domain, namely that g(x, y) can be approximated using the
convolution of uniformly rotated box distributions. This idea is illustrated
in Figure 1. The function in (2) turns out to be a compactly-supported
piecewise polynomial of degree ≤ N − 2, popularly called a box spline. Note
that we could as well replace the sinc function in (1) by any other “bump”
function that looks like an inverted parabola around the origin, e.g. the
cosine function as used in [8]. However, not every such function would be
the Fourier transform of a simple, compactly-supported function such as the
box function.

Applied to a continuously-defined function f(x, y), this means that we can
approximate the Gaussian filtering (f∗g)(x, y) by successive convolutions with
a fixed number of rotated box distributions. Now, note that the convolution
of f(x, y) with Boxa(x cos θk +y sin θk)δ(x cos θk−y sin θk) amounts to doing
one-dimensional convolutions of Boxa(t) with profiles of f(x, y) sampled along
Lθ = {(x, y) : x cos θk − y sin θk = 0} and lines parallel to Lθ. For example,
the convolution of f(x, y) with Boxa(x)δ(y) is given by one-dimensional
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(a) (b) (c)

Figure 1: Demonstration of the Central Limit Theorem used to approximate
the isotropic Gaussian. (a) Convolution of four box distributions of equal
width and uniformly distributed over [0, π), (b) Convolution of eight box
distributions of equal width and uniformly distributed over [0, π), (c) Target
Gaussian. The widths of the boxes are so adjusted that (a) and (b) have the
same covariance as (c). Note that the convergence happens quite rapidly
with the increase in the number of boxes. The maximum pointwise error
between (b) and (c) is already within 1% of the peak value.

convolutions of Boxa(t) with the profiles of f(x, y) along the x-coordinate
and lines parallel to it. The idea in [3] was to decompose the convolution
with a box distribution into two steps:

• Pre-integration of the scan profiles along Lθk (1 ≤ k ≤ N) and lines
parallet to it. This resulted in the so-called running sum.

• Application a finite-difference mesh to the running sum at each pixel,
where the mesh parameters were determined by the scales a1, . . . , aN .

By doing so, the cost of the convolutions with the box distributions was
reduced to the cost of (1) and (2), which is clearly O(1) per pixel irrespective
of the values of a1, . . . , aN .

This idea was then extended to perform the more challenging space-
variant filtering. This was based on the observation that by adjusting the
scale of the box spline along each direction θ1, . . . , θk, one could control
the anisotropy of the box spline. From the algorithmic perspective, this
meant that we could change the filter at every pixel simply by changing the
finite-difference mesh. This resulted in a fast algorithm for space-variant (or,
non-convolution) filtering that had the same O(1) complexity.
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In particular, for the case N = 4, corresponding to θ1 = 0, θ2 = π/4, θ3 =
π/2, θ4 = 3π/4 in (2), a simple algorithm was developed that allowed one to
control the covariance simply by adjusting the scales a1, . . . , a4 in (2). We
continue to use βa(x, y) to denote this four-directional box spline, where we
call a = (a1, a2, a3, a4) the scale-vector. The algorithm for the four-directional
box spline proceeded in two steps. In the first step, the running sum was
obtained by pre-integrating teh image along the directions 0, π/4, π/2, and
3π/4. This was done using fast recursions. To keep the running sum on
the Cartesian grid, a step size of unity was used along the horizontal and
vertical directions, while a step of

√
2 was used along the diagonals. In

the second step, a 16-tap finite-difference mest was applied at point of the
running sum, where the taps of the mesh was determined by the scale-vector.
This produced the final filtered image. We refer the readers to Algorithm 1
in [3] for further details. Henceforth, we will refer to this as the BoxFilter

algorithm. More recently, similar ideas have also been applied in the field
of computer graphics [6]. By adapting the same algorithm, an efficient
technique for detecting blobs in cell images was also proposed in [11].

The anisotropy of βa(x, y) was specified using three parameters, its size
(sa), elongation (ρa), and orientation (θa). These were defined using the
eigen decomposition of the covariance matrix of βa(x, y),

Ca =

( ∫ ∫
x2βa(x, y) dxdy

∫ ∫
xyβa(x, y) dxdy∫ ∫

xyβa(x, y) dxdy
∫ ∫

y2βa(x, y) dxdy

)
. (3)

The size was defined as the sum of the eigenvalues, the elongation as the
ratio of the larger to the smaller eigenvalue, and the orientation as the angle
(between 0 and π) of the top eigenvector. In fact, the covariance of βa(x, y)
was explicitly computed to be

Ca =
1

24

(
2a21 + a22 + a24 a22 − a24

a22 − a24 2a23 + a22 + a24

)
. (4)

This resulted in the following formulas in terms of the scale-vector:

sa =
1

12

∑
a2k, ρa =

∑
a2k +

√
D∑

a2k −
√
D
, and tan θa =

(
a23 − a21 +

√
D

a22 − a24

)
,

(5)
where D = (a21 − a23)2 + (a22 − a24)2.

The scale vector was to control the anisotropy of the filter at every
pixel, and this was done, in effect, by controlling the tap positions of the
finite-difference. Note that Ca = (a2/6)I when all the four scales are equal
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to a. As a result, the best approximation of the isotropic Gaussian with
variance σ2 was obtained by seeting each scale to

√
6σ. As for the anisotropic

setting, a simple algorithm for uniquely determining the scales for a given
size, elongation, and orientation (equivalently, for a given covariance) was
provided in [3]. The algorithm took the covariance C as input and returned
the box spline that had the minimum kurtosis among all box splines with
covariance C.

1.2 Problem description

There are, however, two bottlenecks with the above approach. The first is
that one cannot control the accuracy of the Gaussian approximation in case
of the space-variant filtering. We note that this problem can be addressed
for the more simple setting of convolution filtering simply using higher-order
box splines (see Figure 1). In effect, this amounts to repeated filtering of the
image with the four-directional box spline However, this cannot be done in
the space-variant setting, where the kernel changes from point-to-point. The
only possibility is to adapt the algorithm for the higher-order box splines.
This, however, turns out to be of limited practical use since the size of the
finite-difference mesh grows as 2N with the order N (two points per box
distribution).

The other problem is the control on the elongation of the anisotropic
box splines. This problem is intimately related to the geometry of the
Cartesian grid Z2. Note that the axes Lθ of the box distribution in the
continuous setting corresponds to the discrete points Lθ = {(m,n) ∈ Z2 :
m cos θk − n sin θk = 0} on the grid. As a result, one requires tan θk to be a
rational number to avoid interpolating the off-grid samples. It is, however,
easily seen that, for N > 4, one cannot find lines Lθ1 , . . . , LθN with the
requirement that θ1, . . . , θN are uniformly distributed. This restricted us to
the four-directional box spline βa(x, y). This restriction on the number of
directions resulted in a ceiling on the maximum achievable elongation. In
particular, while βa(x, y) could arbitrarily elongated in the neighborhood of
its four axes, it was difficult to achieve large elongations in the neighborhood
of the mid-axes, i.e., along π/8, 3π/8, 5π/8, and 7π/8. It was found that,
for every orientation 0 ≤ φ < π, there is a bound e(φ) on the elongation
achievable by βa(x, y) given by

e(φ) =
1 + t+

√
1 + t2

1 + t−
√

1 + t2
, (6)

where t = | tanφ − cotφ|/2. This meant that ρa could be made at most
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as large as e(φ) under the constraint that θa = φ, where ρa and θa are as
defined in (5). The smallest value of e(φ) as φ varied over the half-circle was
found to be roughly 5.8, and this was reached along the mid-axes where one
had the least control.

2 Improved accuracy and elongation

We now address the above mentioned problems for the four-directional box-
spline. Our interest is mainly in the space-variant setting, where the filter
varies from point-to-point in the image.

2.1 Improved accuracy

As remarked earlier, the Gaussian approximation can be improved by con-
volving the box spline with itself. All that needs to be guaranteed is that the
covariance remains equal to that of the target Gaussian after the convolution.
In fact, when the functions involved have some structure, one can exactly
predict how the covariance changes with smoothing.

Proposition 2.1 (Covariance of convolutions). Let f(x, y) and g(x, y) be
two functions which are symmetric around the origin, and which have unit
mass. Then the covariance of (f ∗ g)(x, y) is the sum of the covariances of
f(x, y) and g(x, y).

Note that βa(x, y) automatically satisfies the conditions in the proposition.
Our next observation is that we can get a higher-order space-variant filter
from a lower-order space-variant filter by applying a global convolution. We
note that the space-variant filtering of f(x, y) can generally be written as

f(x, y) =

∫ ∞
−∞

∫ ∞
−∞

f(x− u, y − v)h(x, y;u, v) dudv,

where h(x, y;u, v) is the space-variant kernel that is indexed by the spatial
coordinates (x, y).

Proposition 2.2 (Filter decomposition). Let h1(x, y;u, v) be a space-variant
kernel, and let h2(x, y) be a convolution kernel. Then the convolution of
f(x, y) with h2(x, y), followed by the space-variant filtering with h1(x, y;u, v),
can be expressed as a single space-variant filtering:

f(x, y) =

∫ ∞
−∞

∫ ∞
−∞

f(x− u, y − v)h(x, y;u, v) dudv,
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where

h(x, y;u, v) =

∫ ∞
−∞

∫ ∞
−∞

h1(x, y;u′, v′)h2(u− u′, v − v′) du′dv′.

Propositions 2.1 and 2.2 together suggest a simple means of improving
the Gaussian approximation for space-variant filtering. Suppose that C is
the covariance of the target Gaussian. We split this into two parts, namely,

C = σ2I + ∆C. (7)

Note that C and ∆C have the same orientations, that is, σ2I possibly alters
the elongation, but not the orientation. This is confirmed by the fact that C
and ∆C have the same set of eigenvectors.

Algorithm 1 Space-variant O(1) Gaussian filtering (better accuracy)

Input: Image f(m,n), covariance map C(m,n).
1. Set σ2 to be half the bound in (9).
2. Set a1 = · · · = a4 =

√
6σ.

3. Pass a1, . . . , a4 and f(m,n) to the BoxFilter algorithm, which return
g(m,n).
4. At each pixel, compute a(m,n) from C(m,n)− σ2I.
5. Pass a(m,n) and g(m,n) to BoxFilter algorithm, which returns f(x, y).
Return: Filtered image f(x, y).

The idea is we first convolve the image f(x, y) with an isotropic β(x, y)
of covariance σ2I (each ak is

√
6σ). This is done using the O(1) algorithm

described earlier. We then calculate the residual ∆C at each point in the
image. This is used to fix a of the anisotropic βa(x, y). The scale assignments
are then used for the space-variant filtering, again using the O(1) algorithm.
The main steps are given in Algorithm 1. It is clear that the overall algorithm
requires O(1) operations per pixel.

There is a technical point that must be addressed at this point. Namely,
σ must be so choosen that ∆C is again a valid covariance matrix, that is, ∆C
be positive definite. Now, note that ∆C can be written as QT (Λ− σ2I)Q,
where QTΛQ is the eigen decomposition of C. It follows that a necesaary
and sufficient condition for ∆C to be a valid covariance matrix is that σ2

must be smaller than the minimum eigenvalue of C, that is,

σ2 <
1

2

(
C11 + C22 −

√
(C11 −C22)2 + 4C2

12

)
. (8)
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∗ =

(a) (b) (c)

∗ =

(a) (b) (c)

Figure 2: This show the steps involved in improving the accuracy of the
Gaussian approximation. The isotropic ones are shown on the top panel,
while the bottom panel shows the anisotropic ones. In either case, (a) is the
four-directional box spline with covariance σ2I, and (b) is the four-directional
box spline with covariance C− σ2I, where C is the covariance of the target
Gaussian. The resulting box spline approximation is shown in (c), which
indeed looks more Gaussian-like than the ones in (b) and (c). See Figure 3
for a comparison of the approximations.
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The other consideration comes from the bound in (6) (this concerns only
the anisotropic case), which requires that the the ratio of the eigenvalues of
∆C must be with e(φ), where φ is the orientation of the target Gaussian. A
simple calculation shows that this is equivalent to

σ2 <
1

2

(
C11 + C22 −

(
e(φ) + 1

e(φ)− 1

)√
(C11 −C22)2 + 4C2

12

)
. (9)

Since e(φ) > 1, this bound is clearly smaller than the one in (8), so it suffices
to guarantee that (9) holds.

We have empirically observed that, while it is the order of the box splines
that dictates the final smoothness, it is the size of σ that controls the level of
approximation. In practice, we have observed that the best approximations
are obtained when σ2 is roughly 50% of the bound in (9). We will discuss
this in detail in the sequel.

2.2 Improved elongation

We now address the elongation problem. The elongations achievable by
the box spline is minimum exactly mid-way between the axes of the box
distributions, namely along 22.5◦, 67.5◦, 112.5◦, and 157.5◦. An intuitive
solution to this is to place box distributions along these angles. As mentioned
earlier, the problem is that the tangents of these angles are not rational. The
best we can do in this situation is to approximate the tangents by rational
numbers. In other words, for an given angle θ, the problem reduces to one of
finding integers p and q such that p/q ≈ tan θ. Of course, we would also like
to keep p and q as small as possible. Also, for every θ with tan θ = p/q, we
balance it with the orthogonal angle θ + 90◦. This is easily done by setting
the tangent of the orthogonal angle to −q/p. For example, if we set p = 1
and q = 2, then we get two orthogonal directions at roughly 26.6◦ and 116.6◦.
The other two directions are obtained by setting p = 2 and q = 1 which gives
the orthogonal directions at roughly 63.4◦ and 153.4◦. Though these are
not distributed uniformly over the half-circle, they are off the mark by only
about 4◦. To the best of our knowledge, this is the best we can do keeping p
and q as small as possible.

This gives us eight directions on the Cartesian grid that are “almost”
uniformly distributed over the half-circle and whose tangents are rational.
The idea then is to place box distributions along all or some of these directions.
The higher the number of directions, the better is the Gaussian approximation.
Unfortunately, as mentioned in the introduction, there are practical difficulties
in simultaneously using the eight directions. Keeping in mind that we
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already have a solution to improve the accuracy, we instead propose the
following trick. The idea is to use a pair of four-directional box splines,
βa(x, y) with angles Θ = {0◦, 45◦, 90◦, 135◦}, and β′a(x, y) with angles Θ′ =
{26.6◦, 63.4◦, 116.6◦, 153.4◦}. We next divide the half-circle into two disjoint
sectors S and S′, where S consists the neighborhood of the former angles,
and S′ consists of the neighborhood of the latter angles. To approximate a
Gaussian with orientation φ, we use βa(x, y) if φ is in S, and β′a(x, y) if φ
is in S′. This allows us to achieve better elongations than what βa(x, y) or
β′a(x, y) could achieve by themselves. Of course, we will now require two sets
of running sums, one corresponding to each of the box splines. The overall
algorithm for space-variant filtering is summarized in Algorithm 2. We note
that, as proposed in Section 2.1, we could smooth the four-directional box
splines with a isotropic box spline, if higher accuracy is desired.

Algorithm 2 Space-variant O(1) Gaussian filtering (improved elongation)

1. Input: Image f(m,n) and covariance map C(m,n) on Z2.
2. Perform running sums on f(m,n) along Θ to get g(m,n).
3. Perform running sums on f(m,n) along Θ′ to get g′(m,n).
3. At each (m,n) do
(a) Compute the orientation φ from C(m,n).
(b) if φ ∈ S, then

(b1) Compute a for βa(x, y), and the finite-difference parameters.
(b2) Apply finite-difference on g(m,n) to get f(m,n).
else (φ ∈ S′)
(b1) Compute a for β′a(x, y), and the finite-difference parameters.
(b2) Apply finite-difference on g′(m,n) to get f(m,n).

4. Return: Filtered image f(m,n).

2.3 Filtering algorithm for β′a(x, y)

We note that the algorithm for space-variant filtering using β′a(x, y) is identi-
cal to the one for βa(x, y). For completeness, we describe this in Algorithm
3. Here x0, . . . , x15 and y0, . . . , y15 are the coordinates of the finite-difference
mesh, and w0, . . . , w15 are the corresponding weights. The exact values are
given in table 1. The shifts τ1 and τ2 along the image coordinates are given
by

τ1 =
1

2
√

5
(2a1+a2−a3−2a4) and τ2 =

1

2
√

5
(a1+2a2+2a3+a4−6

√
5). (10)
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Table 1: The positions and weights of the finite-difference mesh used in
Algorithm 3. Here a = (a1, a2, a3, a4) are the scales of the mesh, and
w = 1/(a1a2a3a4) and a′i = ai/

√
5.

i (xi, yi) wi i (xi, yi) wi
0 (0, 0) +w 8 (−2a′4, a

′
4) −w

1 (2a′1, a
′
1) −w 9 (2a′1 − 2a′4, a

′
1 + a′4) +w

2 (a′2, 2a
′
2) −w 10 (a′1 − 2a′4, 2a

′
1 + a′4) +w

3 (2a1 + a′2, a
′
1 + 2a′2) +w 11 (2a′1 + a′2 − 2a′4, a

′
1 + 2a′2 + a′4) −w

4 (−a′3, 2a′3) −w 12 (−a′3 − 2a′4, 2a
′
3 + a′4) +w

5 (2a′1 − a′3, a′1 + 2a′3) +w 13 (2a′1 − a′3 − 2a′4, a
′
1 + 2a′3 + a′4) −w

6 (a′2 − a′3, 2a′2 + 2a′3) +w 14 (a′2 − a′3 − 2a′4, 2a
′
2 + 2a′3 + a′4) −w

7 (2a′1 + a′2 − a′3, a′1 + 2a′2 + 2a′3) −w 15 (2a′1 + a′2 − a′3 − 2a′4, a
′
1 + 2a′2 + 2a′3 + a′4) +w

Note that we have set the scales of the running to
√

5 along each of
the four directions. This ensures that no off-grid sample, and hence no
interpolation, is required to compute the running sums. The sample F (x, y)
used in the finite-difference is given by

F (x, y) =
∑

|m−x|≤3, |n−y|≤3

g4(m,n)β′b(x−m, y − n) (11)

where b = (
√

5,
√

5,
√

5,
√

5). The box spline β′b(x, y) is supported within
the square [−3, 3]2, and this is why we have a finite sum in (11). This can
be seen as an interpolation step, where we interpolate the running-sum using
the samples of the box spline.

2.4 Analytical formulas for β′a(x, y)

The exact formula for the box spline β′b(x, y) in (11) can be computed
analytically. To do so, we note that this box spline can be expressed as the
convolution of two rescaled and rotated box functions. In particular, β′b(u, v)
is given by the area of overlap between a box function of width

√
5 and height

1/
√

5 that is centered at the origin and rotated by φ1, and a second box
function of same width and height that is centered at (u, v) and rotated by
φ2, where tanφ1 = 1/2 and tanφ2 = 2. The overlapping region is a polygon,
whose area can be determined by inspection. This can also be found using
symbolic computation. For example, this can be done in Mathematica by
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setting

f[x, y] := (1/
√
5) UnitBox[(u cosφ1 + v sinφ1)/

√
5]

g[x, y] := (1/
√
5) UnitBox[(u cosφ2 + v sinφ2)/

√
5]

and then invoking the command Convolve[ f[u, v], g[u, v], {u, v}, {x, y}].
The function returned is a piecewise polynomial of second degree that is
compactly supported on a octagonal domain. The equation for each patch is
stored in a look-up table.

Algorithm 3 Space-variant O(1) filtering using β′a(x, y)

1. Input: Image f(m,n) and scale map a(m,n) on Z2.
2. Use recursion to compute the following:
(a) g1(m,n) =

√
5f(m,n) + g1(m− 1, n− 2).

(b) g2(m,n) =
√

5g1(m,n) + g2(m− 2, n− 1).
(c) g3(m,n) =

√
5g2(m,n) + g3(m+ 1, n− 2).

(d) g4(m,n) =
√

5g3(m,n) + g4(m+ 2, n− 1).
3. At each (m,n) do
(a) Set up wi, xi, yi(i = 0, 1, . . . , 15) using table 1, and τ1, τ2 using (10).
(b) Compute Fi = F (m + τ1 − xi, n + τ2 − yi) for i = 0, 1, . . . , 15 using
(11).
(c) Set f(m,n) = w0F0 + · · ·+ w15F15.
4. Return: Filtered image f(m,n).

Similar to βa(x, y), we can control the covariance (size, elongation, and
orientation) of β′a(x, y) using its scale vector. We computed the covariance
of β′a(x, y) to be

1

60

(
4a21 + a22 + a23 + 4a24 2(a21 + a22 − a23 − a24)
2(a21 + a22 − a23 − a24) a21 + 4a22 + 4a23 + a24)

)
.

We defined the size, elongation and orientation as in (5). The final expressions
are respectively

r

60
,

r +
√
p2 + q2

r −
√
p2 + q2

, and tan−1

[
−p+

√
p2 + q2

q

]
,

where p = 3(a21 − a22 − a23 + a24), q = 4(a21 + a22 − a23 − a24), and r = 5(a21 +
a22 + a23 + a24).

We note that a1, . . . , a4 cannot be uniquely determined from the above
three constraints. As proposed in our earlier paper, we select the box spline
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that has the minimum kurtosis of all box splines with a given covariance.
This turns out to be a one-dimensional optimization problem and can be
solved efficiently using a root-finding algorithm. The kurtosis of β′a(x, y)
using the definition in [13] turns out to be

κ

5

(
4a41 + a42 + a43 + 4a44 2(a41 + a42 − a43 − a44)
2(a41 + a42 − a43 − a44) a41 + 4a42 + 4a43 + a44)

)
,

where κ is the kurtosis of the box function Box1(t). To get a number from
this matrix, we simply take its Frobenius norm, which is then optimized
to get the scale vector. The steps of the derivation are identical to the one
described in [3], and therefore we skip the details.

3 Experiments

We now present some results that confirm the improvements suggested in the
previous section. First, we try to see the improvement in the accuracy of the
Gaussian approximation. To do so, we consider an isotropic Gaussian with
C = I, and an anisotropic Gaussian with size 1, elongation 3, and orientation
30◦. In either case, we split the covariance as C = σ2I + ∆C. The steps
in the construction are shown in Figure (2), and the final box splines are
compared in Figure (3). In either case, we have used the four-directional
box spline to approximate the Gaussian with covariance σ2I, where the four
scales were set to

√
6σ. To approximate the Gaussian with covariance ∆C,

we used a four-directional box spline, but now with unequal scales. The
four scales were computed by minimizing the kurtosis of the box spline as
explained earlier. It is seen from the figures that the final box splines are
indeed very good approximations of the target Gaussian. In particular, the
maximum pointwise error was within 1% of the peak value for the isotropic
one, while it was within 2% for the anisotropic ones. Note in figure (3) how
the convolution helps in “rounding” the sharp corners of the four-directional
box spline.

To get a better understanding of the improvement in the accuracy, we
compare the approximation error between the target Gaussian and the two
box splines. We do this for various sizes, elongations, and orientations of the
target Gaussian g(x, y). We use the ratio ‖f − g‖2/‖g‖2 as the normalized
error between the approximating box spline f(x, y) and g(x, y), where ‖f‖2
is the L2 norm of a function. We computed the error from the analytical
formulas of the Gaussian and the box splines using numerical integration. The
results are reported in table 2. In the first two instances (isotropic setting),
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(a) (b) (c)

(a) (b) (c)

Figure 3: In this figure, we compare the target Gaussian (c) with the box
spline approximation (a) proposed in [3] and the one (c) proposed in this
work. The isotropic Gaussian has covariance I, while the anisotropic one has
elongation 3 and orientation 30◦. The maximum pointwise error is within
1% of the peak value for the former and within 2% for the later. A visual
comparison confirms the improvement in the accuracy – it is indeed hard to
distinguish (b) from (c).

Table 2: Improvement in Gaussian approximation using Algorithm 1. The
table shows the normalized errors for the BoxFilter in [3] (second row)
and the filter proposed in the paper (third row). This is done for certain
representative size (s), elongation (ρ), and orientation (θ) of the target
Gaussian.

(s, ρ, θ) (1,1,0) (5,1,0) (1,4,0) (5,4,0) (5,3,π/8) (5,8,π/3) (5,5,π/2)

Error (%) in [3] 10.8 10.8 19.1 18.7 23.9 19.2 17.2

Present error (%) 4.9 4.9 15.3 14.6 20.8 15.8 12.6

Improvement (%) 54.8 54.8 21.6 18.32 12.7 17.7 26.7
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note that there is almost a 40% improvement in the approximation (this is
the case for any size). The improvement is less dramatic, but nonetheless
appreciable, for the remaining five instances (anisotropic setting). We found
that this is between 10% − 30% for the anisotropic box splines in general.
The improvement is on the higher side when the orientation is close to one
of the four axes of the box spline.

We now discuss the choice of σ in (7) used in the above experiments.
As noted earlier, we have observed that the best results are obtained when
σ2 for the isotropic box spline is roughly 50% of the bound in (9). The
variation in the approximation accuracy is shown in table 3 for a particular
Gaussian. Exhaustive experiments across various settings have shown that
this happens consistently across different size, elongation, and orientation.
The explanation for this is as that very little smoothing takes place when
σ is small, which explains the marginal improvement in accuracy. On the
other hand, large values of σ result in over-smoothing, where the isotropic
box spline dominates the overall anisotropy – the contribution from the
anisotropic part is less significant. Following these observations, we set σ2 to
be 50% of the bound in (9).

Table 3: Effect of σ in (7) on the Gaussian approximation. The table shows
the difference between (a) the approximation error between a fixed Gaussian
(s = 5, ρ = 3, θ = π/4) and the BoxFilter, and (b) the error between the
same Gaussian and the present filter. The best results are obtained when σ2

is roughly 50% of the bound in (9).
% of the bound in (9) 10 20 30 40 50 60 70 80

Improvement (%) 3.5 12.1 22.3 29.9 33.3 33.13 30.9 28.8

We now study the improvement in elongation obtained using Algorithm 2.
While there is an explicit formula for the bound of βa(x, y), we computed the
bound of β′a(x, y) empirically. Table 4 gives a comparison of the maximum
elongations achievable using βa(x, y) and β′a(x, y) as against that achievable
using only βa(x, y). In the table, we give the bounds on the elongation for
orientations in the sector [0◦, 45◦], spanned between two neighboring axes
of βa(x, y). While large elongations are achievable using βa(x, y) in the the
caps [0◦, 5◦] and [40, 45◦], the bound falls off quickly outside these caps. In
particular, the bound falls to a minimum of 5.8 at 22.5◦. The second box
spline β′a(x, y), with its axis along 26.6◦, helps us improve the elongation
over [5◦, 40◦]. For example, the bound at 22.5◦ has now increased to 10.8,
and remains fairly high in the cap [20◦, 40◦]. However, a minimum of 8.2 is
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reached at 13.3◦, exactly midway between the axes of βa(x, y) and β′a(x, y).
This is nevertheless better than the previous low of 5.8. We have evidence
that the use of a third box spline with axes close to 13.3◦ can improve
the minimum bound to 15.2. We note that the use of multiple box splines
increases the run time of the BoxFilter by only 10% − 15%. The added
computations are required only from the running sums, which is the fastest
part of the algorithm. The finite-difference part of the algorithm remains the
same. For every orientation, one simply has to choose the correct running
sum and the associated finite-difference.

Table 4: Comparison of the elongations achievable in [3] and using Algorithm
2. The table shows the bounds on the elongation at different orientations
using a single box spline filter (second row) and a pair of box spline (third
row). The new bound is the maximum of the bounds of the two box splines.

Orientation 0◦ 5◦ 13.3◦ 20◦ 22.5◦ 25◦ 26.6◦ 30◦ 40◦ 45◦

Previous bound ∞ 13.6 6.8 5.9 5.8 5.9 6.0 6.1 13.6 ∞
New bound ∞ 13.6 8.2 9.5 10.8 30.1 ∞ 28.8 13.6 ∞

We have implemented a basic version of Algorithm 1 as an ImageJ plugin.
The Java code can be found at www.math.princeton.edu/∼kchaudhu/code.html.
Some of the results in this paper can be reproduced using this plugin. The
typical run time on a 256× 256 image (Intel quad-core 2.83 GHz processor)
was around 300 milliseconds. As expected, the run time was approximately
the same for filters of different shape and size. On the other hand, we have
tested the formulas for the box spline βa(x, y) by implementing Algorithms 2
in Matlab. The typical run time was around 600 milliseconds on a 256× 256
image. The results obtained on a impulse image are shown in Figure 4. In
the future, we plan to improve the run time by implementing the algorithms
in Java.

4 Discussion

In this work, we showed that the performance of the box spline filters in
[3] can be improved, while preserving the O(1) complexity of the orignal
algorithm. In particular, we showed how the accuracy of the Gaussian
approximation can be improved by pre-filtering the image with an isotropic
Gaussian of appropriate size. This idea is in fact quite generic, and can be
used to improve the performance of any algorithm for space-variant filtering.
We also showed that better elongations can be achieved using a pair of
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(a) (b) (c)

Figure 4: This shows the Gaussian-like blobs obtained by applying Algorithm
3 to an impulse image. (a) is the isotropic response obtained using equal
scales. (b) and (c) are the anisotropic responses obtained using unequal
scales. The latter are oriented along 45◦ and 135◦, and have elongation 3.

four-directional box splines instead of one. The present work suggests that
both the accuracy and the elongation can be dramatically improved, at a
small extra cost, by using a bank of four-directional box splines (ideally,
three or four) whose axes are evenly distributed over the half-circle. We will
investigate this possibility in the future.
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