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3D Steerable Wavelets in Practice
Nicolas Chenouard, Member, IEEE, and Michael Unser, Fellow, IEEE

Abstract— We introduce a systematic and practical design
for steerable wavelet frames in 3D. Our steerable wavelets are
obtained by applying a 3D version of the generalized Riesz
transform to a primary isotropic wavelet frame. The novel
transform is self-reversible (tight frame) and its elementary
constituents (Riesz wavelets) can be efficiently rotated in any 3D
direction by forming appropriate linear combinations. Moreover,
the basis functions at a given location can be linearly combined
to design custom (and adaptive) steerable wavelets. The features
of the proposed method are illustrated with the processing and
analysis of 3D biomedical data. In particular, we show how
those wavelets can be used to characterize directional patterns
and to detect edges by means of a 3D monogenic analysis.
We also propose a new inverse-problem formalism along with
an optimization algorithm for reconstructing 3D images from
a sparse set of wavelet-domain edges. The scheme results in
high-quality image reconstructions which demonstrate the
feature-reduction ability of the steerable wavelets as well as their
potential for solving inverse problems.

Index Terms— 3D wavelet transform, edge detection, image
reconstruction, monogenic signal, riesz transform, steerability.

I. INTRODUCTION

THE MULTISCALE representations offered by three-
dimensional (3D) wavelets are especially relevant in the

context of biomedical imaging where the data is inherently 3D.
In particular, wavelet-based techniques have been developed
for MRI reconstruction [1], 3D deconvolution microscopy [2],
and medical image coding [3]. Various 3D wavelets have also
been designed and used for video processing [4]–[7]. While
the use of separable wavelets is the simplest option available
to practitioners, these decompositions have the drawback of
lacking invariance with respect to shifts and rotations and
of providing an uneven angular selectivity. During the past
five years, researchers have investigated how a certain amount
of redundancy makes possible the construction of wavelet-
like representations of 3D data that are better suited to the
geometrical features of images. These efforts have resulted
in several versions of 3D curvelet transforms [8], [9], the
3D beamlet transform [10], surflets [11], and surfacelets [12].
The purpose of this paper is to present an alternative wavelet
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representation that uses steerable basis functions that can be
rotated in 3D space in a data-adaptive fashion.

Steerable filters have been known for many years and have
been successfully applied to a variety of feature-extraction
tasks, including in 3D. Simoncelli and co-workers were able
to combine steerable filters and multiresolution decomposition
in the mid 1990s with their groundbreaking design of the
2D steerable pyramid [13], [14], which has been extremely
popular in applications ever since. This representation owes its
success to the fact that it is self-inverting (tight-frame property)
with steerable basis functions that achieve a wavelet analysis
that is truly rotation-invariant. Moreover, the angular selectiv-
ity of the wavelets can be controlled through the addition of
orientation channels at the expense of a corresponding increase
in redundancy. In practice, the design of a steerable wavelet
frame has two main requirements: 1) the use of steerable func-
tions as elementary building blocks and 2) self-invertibility to
promote the tightness of the frame [15]. The steerable pyramid
solution consists in taking steerable functions that are polar-
separable in the Fourier domain and rotated versions of one
another in an equiangular configuration. While this design
ensures self-invertibility in 2D under fairly general conditions,
it does not extend to 3D because of the lack of a systematic
scheme to uniformly tile the sphere. The 3D steerable-wavelet
design that we propose in this paper overcomes this issue by
making use of a 3D version of the generalized Riesz transform
[16], [17] to map an isotropic wavelet frame of L2(R

3) into a
new one that is steerable. Extending our previous work on 2D
steerable wavelets [17] to 3D is feasible because the Riesz
construction does not rely on equiangular basis functions.
The proposed steerable transform offers a large palette of
possibilities as its rotational components are parameterized
by the shaping matrix of the generalized Riesz transform.
The amount of redundancy of the whole transform stays
reasonably low. It benefits from the low redundancy of the
primary transform (8/7 asymptotically) and the ability to limit
the number of bands of the Riesz-transform by controlling its
order.

The contributions of this paper can be grouped under three
primary headings.

1) Functional Specification of Steerable Wavelets: We are
providing a general and systematic design of steerable
wavelets in 3D with a complete decoupling of the multiresolu-
tion and steerable aspects of the transform. We have selected
a multiresolution backbone that is the direct 3D counterpart of
the radial bandpass filter (with a log-Gabor type profile) used
in the steerable pyramid. The steerable part of the transform
is obtained by application of the N th-order generalized Riesz
transform which has the remarkable property of preserving
self-invertibility. The transform parameters are the Riesz order,
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which determines the number M of orientation channels, and
the (M ×M) wavelet-shaping matrix U. Note that U is freely
adjustable with the only constraint that it needs to be invertible,
in the general case, and unitary for the construction of a
tight frame.

2) Implementation: Our steerable wavelet transform is
specified in the continuous domain. To address the issue of
its proper discretization, we have projected the input signal
onto the space of bandlimited functions. This results in the
specification of a fast digital filterbank algorithm that is
perfectly reversible. We are providing a generic FFT-based
implementation1 that can handle arbitrary orders and wavelet
shaping matrices.

3) Application to 3D Image Processing: We are illustrating
specific advantages of the proposed decomposition for the
processing of biomedical images and are proposing novel
algorithms. First, we have made use of the connection between
the Riesz and the directional Hilbert transforms to define a
truly 3D version of a wavelet-domain monogenic analysis,
as an extension of prior works of our team and others in
2D [16], [18]. This scheme provides a multiscale description
of the local orientation, amplitude, and phase of the 3D
signal and turns out to be particularly well-suited to the
characterization of directional structures such as sheets and
filaments. Second, we exploit the differential interpretation of
our wavelets as multiscale derivatives to design a 3D wavelet-
domain contour-detection algorithm that is inspired by Canny’s
edge detector. We have also proposed a novel scheme for
reconstructing the image from its multiscale edge map which
is encoded by the local extrema of the wavelet transform.
In doing so, we are able to demonstrate the pertinence of
edges for the characterization of images, in the spirit of
Marr’s primal sketch [19], and to extend those ideas to 3D.
The proposed algorithm also serves as an illustration of the
successful application of our framework to the solution of
inverse problems.

The paper is organized as follows: We start with a brief
introduction on steerable functions and the presentation of the
generalized Riesz transform. This constitutes the mathematical
foundation of our approach. In Section III, we give a detailed
description of the principles and digital implementation of
the new 3D steerable wavelet transform. In Section IV, we
introduce the 3D monogenic signal analysis and illustrate its
capability for a set of real microscope images. Finally, in
Section V, we demonstrate the benefits of the Riesz-wavelet
transform for image reconstruction from edge coefficients,
before discussing our results in the concluding part of the
paper.

II. PRELIMINARIES

A. From 2D to 3D Steerable Wavelets

In their seminal work [20], Freeman and Adelson have
shown that a 2D function f is steerable if its polar

1These tools are made available via a dedicated open-source toolbox,
available from http://bigwww.epfl.ch/demo/steerable-wavelets-3D/.

representation can be expanded as

f (r, φ) =
N∑

n=−N

an(r)ejnφ (1)

with 0 ≤ N <∞, an(r) ∈ C, j2 = −1, and polar coordinates
(r, φ) ∈ R

+×]−π, π]. Indeed, when (1) holds, it is not hard to
show that there exists a set of primary functions {gm}m=1...M
and a set of interpolating functions {κm}m=1...M with M <∞
such that

f (r, φ + φ0) =
M∑

m=1

κm(φ0)gm(r, φ) (2)

for any φ0 ∈ R. In particular, Freeman and Adelson have
proposed to use the rotated versions of f in M directions
with equispaced angles as the primary functions

gm(r, φ) = f (r, φ + π(m − 1)/M). (3)

The key consequence of (2) is that the versions of f
rotated by any arbitrary angle can be efficiently computed by
linear combination of the primary functions, which need to
be computed once only. This property has lead Simoncelli
and his colleagues to use steerability as the key concept for
the construction of rotation-invariant wavelets in 2D [14].
Their steerable pyramid [13] relies on a polar separable design
consisting of two parts: 1) a set of primary wavelet functions
which are isotropic and define a tight frame of L2(R

2) for
the radial part, 2) an equiangular steerable filterbank as in (3)
for the polar part. The steerable filterbank is carefully chosen
such that self-invertibility of the whole construction holds.

In 3D, the equiangular concept for steerable wavelets is
not well-defined and has proved difficult to apply because
of the self-invertibility constraints [21], except for the special
case M = 3 [22]. As as consequence, we have adopted a
more general steerable-wavelet design that does not require
equiangular functions for M ≥ 3. To do so, we state our
definition of 3D steerability as the direct extension to 3D of (2)
given by

f (Rx) =
M∑

m=1

κm(R)gm(x) (4)

for any vector of Cartesian coordinates x = (x1, x2, x3) and
any rotation matrix R in three dimensions.

B. Riesz-Wavelet Transform

A flexible alternative to the steerable pyramid construction
is to replace the equiangular filterbank by a generalized Riesz
transform of high order [17]. We introduce hereafter some
useful notations and the fundamentals of this technique, which
we extend to 3D in Section III.

1) Notations: In the sequel, we use a bold font for any
column vector x = (x1, . . . , xd) ∈ R

d . The notation ‖ · ‖
is used for the �2 norm of R

d , with ‖x‖ = ‖x‖2 =
(
∑d

i=1 |xi |2)1/2. We also consider d-dimensional multiindex
vectors of the form n = (n1, . . . , nd ) whose entries ni are
nonnegative integers. We then define the following multiindex
operations and operators.
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1) Sum of components |n| =∑d
i=1 ni = N .

2) Factorial n! = n1! n2! · · · nd !.
3) Exponentiation xn = xn1

1 · · · xnd
d .

4) Higher-order partial derivative of a function f :
R

d �→ R

∂n f (x) = ∂ |n| f (x)
∂xn1

1 · · · ∂xnd
d

.

5) Fourier transform of f ∈ L2(R
d)

f̂ (ω) =
∫

Rd
f (x)e−j〈ω,x〉dx

for ω ∈ R
d .

These notations allow us to describe the multinomial theorem
concisely as

(
d∑

i=1

xi

)N

=
∑

|n|=N

N !
n! xn

which involves a summation over
(N+d−1

d−1

)
distinct monomials

of the form xn = xn1
1 · · · xnd

d with n1 + · · · + nd = N .
2) Generalized Riesz Transforms: The Riesz transform of

a function f (x) of L2(R
d ) is a scalar-to-vector transforma-

tion R f (x) = (R1 f (x), . . . ,Rd f (x)). The Riesz-operator
component Ri : R

d �→ R is linear, space-invariant, and
characterized by the frequency response

R̂i f (ω) = −j
ωi

‖ω‖ f̂ (ω). (5)

We readily check that the Riesz transform is self-reversible:

R̂�R f (ω) = (−jω)H (−jω)

‖ω‖2 f̂ (ω) = f̂ (ω)

with (−jω)H = jωT the Hermitian transpose of the
complex-valued vector (−jω). In [23], a high-order version
of the Riesz transform is proposed for R

d by iterating the
Riesz-component operators. The Riesz transform RN of order
N ∈ N is a scalar-to-vector transformation with

p(N, d) =
(

N + d − 1
d − 1

)

components. The Riesz-operator components are defined as

Rn =
√

N !
n!R

n1
1 Rn2

2 · · ·Rnd
d

for every n ∈ N
d such that |n| = N .

Using multiindex notations, the frequency response of each
component finds the compact expression

R̂n(ω) = (−j)N

√
N !
n!

ωn

‖ω‖N
.

Due to the appropriate normalization factor for each
component, one can now apply the multinomial theorem
to prove self-invertibility of the high-order Riesz transform.
It shows that the high-order Riesz transform can map any tight
frame of L2(R

d ) into another one [22], [23].
The framework can be extended by parameterizing the

high-order Riesz transform with an (M ×M) complex-valued

matrix U (with M = p(N, d)) to build the family of general-
ized Riesz transforms defined as RU = URN [17]. It is easily
shown that the self-invertibility property is preserved as long
as U is unitary. The benefits of adapting the generalization
matrix U to a given task was demonstrated in [17] for the
image-denoising case. It is worth noting that the generalized
Riesz transform is steerable, which means that the impulse
responses of its components can be simultaneously oriented
in any direction by forming suitable linear combinations
[17], [23]. Specifically, let R be a d×d spatial rotation matrix.
Then, we have that

RU f (Rx) =RUSR f (x) (6)

with SR the appropriate (M × M) steering matrix for R.
3) 2D Riesz-Wavelet Pyramid: The ability of Riesz

transforms to map any tight frame of L2(R
2) into another

tight frame of L2(R
2) has been exploited for the design of

2D Riesz-wavelet pyramids, first with spline-based wavelets
for the high-order transform [23], and then with an isotropic
and non-separable wavelet pyramid for the generalized
version [17]. In the latter case, the isotropy of the wavelet
functions yields a perfect steerability of the Riesz-wavelet
basis functions. As compared to Simoncelli’s pyramid, the
Riesz-wavelet transform enjoys a greater degree of flexibility
for the polar part of the basis functions, as it does not
require the individual wavelets to be rotated versions of
the same primary profile. Shaping these functions can be
conveniently achieved with the design of the generalization
matrix U.

III. DESIGN OF 3D STEERABLE WAVELETS

We propose a 3D steerable wavelet transform consisting
of the composition of two operators: a 3D isotropic wavelet
transform that performs multiscale decomposition and gives
vanishing moments, together with a 3D Riesz transform that
brings directionality and steerability. We give the continuous-
domain characterization of the transform and we make explicit
the link with a digital implementation for bandlimited signals
of L2(R

3).

A. Primal Isotropic 3D Wavelet Frame

The multiresolution backbone of our method is the tight
wavelet frame {ψi,k}i∈Z,k∈Z3 , whose basis functions in L2(R

3)
are generated by suitable dilations and translations of a single
mother wavelet ψ(x). The normalized wavelets at scale i and
translation parameter k are given by

ψi,k(x) = ψi (x − 2i k) with ψi (x) = 2−3i/2ψ(x/2i ). (7)

The present requirement is that the mother wavelet ψ(x) be
isotropic. It has been shown by various authors that this can be
achieved by selecting a function that is bandlimited radially
[22], [24]–[26]. The specific Fourier-domain wavelet-design
constraints are given in Proposition 1.

Proposition 1: Let h(ω) be a radial frequency profile
such that

Condition 1): h(ω) = 0,∀ω > π
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Condition 2):
∑

i∈Z
|h(2iω)|2 = 1

Condition 3):
dnh(ω)

dωn

∣∣∣∣
ω=0
= 0, for n = 0, . . . , N.

Then, the mother wavelet ψ whose 3D Fourier transform is
given by

ψ̂(ω) = h(‖ω‖)
generates a tight wavelet frame of L2(R

3). The corresponding
basis functions, which are specified by (7), are isotropic with
vanishing moments up to order N .

It is instructive to have a closer look at the underlying
multiresolution decomposition mechanism. Condition 1)
ensures that the bandpass signals

ri (x) = 〈 f, ψi (· − x)〉 = ( f ∗ ψi )(x)

which are obtained by performing a continuous wavelet
analysis at the scale i , are bandlimited. By Shannon’s sampling
theorem, ri is completely specified by its uniform samples with
sampling period Ti = 2i , which happen to be the wavelet
coefficients of f at scale i computed as

wi,k = 〈 f, ψi,k〉 = ri (x)|x=Ti k .

This leads to the Shannon reconstruction formula

ri (x) =
∑

k∈Z3

wi,k
1

T 3
i

sinc

(
x − Ti k

Ti

)
.

Condition 2) guarantees that the dyadic sequence of
wavelets ψi provides a full coverage of the 3D frequency
domain since ∑

i∈Z
|ψ̂i (ω)|2 = 1 (8)

which is the key to ensuring the tight-frame property [27].
In fact, (8) is equivalent to

∑

i∈Z

(
ψi ∗ ψi ∗ f

)
(x) =

∑

i∈Z

(
ψi ∗ ri

)
(x) = f (x). (9)

Because ψi is bandlimited and the rescaled sinc function
acts an ideal lowpass filter, let us now write that
ψi ∗ 1

T 3
i

sinc(·/Ti ) = ψi . We find that

(ψi ∗ ri )(x) =
∑

k∈Z3

wi,kψi,k(x).

By inserting this result into (9), we end up with

f (x) =
∑

i∈Z

∑

k∈Z3

〈 f, ψi,k〉ψi,k (x)

which is a wavelet expansion that holds for any finite
energy function f ∈ L2(R

3). Likewise, we can represent
a bandlimited function using a scale-truncated wavelet
expansion that yields J ∈ N subsampled bands and a low-
frequency residual. In the 3D case, the overall redundancy

is 1 + 1
8 + · · · + ( 1

8 )
J = 8

7 (1 − ( 1
8 )

J+1)
J→∞−−−→ 8

7 over the
canonical representation in terms of its sampled values.

The fact that the wavelet frame is tight is also equivalent to
the existence of a constant A such that (cf. [28], [29])

A · ‖ f ‖L2(R3) =
∑

i

∑

k∈Z3

|〈 f, ψi,k 〉|2.

Finally, Condition 3) implies that

∂ |n|

∂n1ω1∂n2ω2∂n3ω3
ψ̂(ω)

∣∣∣∣
ω=0
= 0

and
(−j)|n|

∫

R3
xn1

1 xn2
2 xn3

3 ψ(x)dx = 0

for all multiindices n, with |n| < N . Since the design is in the
frequency domain, it is actually possible to obtain N arbitrarily
large (N → ∞) by imposing that h(ω) = 0 for ω ∈ [−ε, ε]
in a finite interval (0 < ε <∞) around the origin.

The simplest choice of radial frequency profile that
fulfills the conditions in Proposition 1 is h(ω) = rect

(ω−3π/4
π/2

)

(Shannon ideal-bandpass wavelet), which yields a Bessel-
type wavelet that can be characterized analytically [25].
Another prominent solution is the filter h that is implemented
in the popular version of the steerable pyramid described
in [14], with

h(ω) =
{

cos
(
π
2 log2

(
2ω
π

))
, π4 < ‖ω‖ ≤ π

0, otherwise.

The latter has the advantage of producing a wavelet that is
better localized in space. It is the design that is adopted for
the experimental part of this paper. We illustrate in Figure 1
the frequency profile of these wavelet functions.

B. High-Order Riesz Transform in 3D

For the polar part of the transform, we rely on the gener-
alized Riesz transforms in 3D. For the sake of simplicity, we
investigate the standard N th order case (i.e., U is the (M×M)
identity matrix). The generalized version is straightforward
to obtain by taking linear combination of the Riesz basis
functions. In 3D, the Riesz tranform of order N ∈ N is
composed of M = (N + 2)(N + 1)/2 components which we
denote by Rn, with n = (n1, n2, n3) ∈ N

3 such that |n| = N .
Each of these convolutive operators has the frequency response

R̂n(ω) = (−j)N

√
N !

n1!n2!n3!
ωn1

1 ω
n2
2 ω

n3
3

(ω2
1 + ω2

2 + ω2
3)

N/2
(10)

with ω = (ω1, ω2, ω3) ∈ R
3 the 3D pulsation vector.

Expression (10) highlights the link of the 3D Riesz transform
with more-standard operators. On one hand, the fractional
Laplacian (−�)s/2 of order s ∈ R is defined in the Fourier
domain in the sense of distributions as

(−�)s/2 f (x)
F←→ ‖ω‖s f̂ (ω).

On the other hand, the Fourier transform of ∂n f (x) is

∂n f (x)
F←→ ( jω)n f̂ (ω).

The frequency response of the 3D Riesz transform thus
shows that it can be interpreted as the 3D partial derivative
of the integral operator (�)−N/2, which turns out to be an
isotropic smoothing filter. The 3D Riesz transform may thus be
viewed as a high-order gradient operator which is regularized
for self-invertibility. We exploit this view to obtain an explicit
space-domain expression for the impulse response Rn{δ}(x)
of each component.
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(a)

(b)

Fig. 1. Frequency-domain partition achieved by the primary isotropic wavelet
transform. (a) h(ω) for Shannon’s wavelets (dashed lines) and Simoncelli’s
wavelets (solid lines). (b) Support of each Shannon’s wavelet function in
2D is delineated by dashed lines. The space-domain subsampling operations,
which restrict the frequency plane to the support of each wavelet function,
are shown with boxes.

The space-domain expression of the impulse response of
(−�)s/2 is given by

‖ω‖s F←→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Cd,s‖x‖−(s+d),

if |s| < d or if s + d is odd

C ′d,s‖x‖−(s+d) log ‖x‖,
otherwise,

where d is the dimension of the space. This is a standard
result from the theory of distributions [30]. For s < 0, the
real constants Cd,s and C ′d,s are given by

Cd,s = 2s

( s+d

2

)

π
d
2 


(− s
2

) , C ′d,s =
2s+1(−1)− s+d

2 +1

π
d
2 


(− s
2

)



(− s+d
2 + 1

) .

The impulse response of the nth order Riesz transform can
thus be expressed as

Rn{δ}(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(−1)N Cd,−N∂
n{‖ · ‖−(d−N)}(x),

if N < d or if N + d is odd

(−1)N C ′d,−N∂
n{‖ · ‖−(d−N) log ‖ · ‖}(x),

otherwise.

We give in Table I the formulas for the 3D Riesz filters of
order 1, 2, and 3. The impulse response is a homogeneous
distribution which is not a conventional function around the
origin. It is non compactly supported and decays like ‖x‖−3.
We shall see in Section III-C that the transform is more
conveniently implemented in the frequency domain.

Using a high-order Riesz transform allows characterizing
3D structures of various morphologies. In Figure 2 we give

TABLE I

IMPULSE AND FREQUENCY RESPONSES OF SOME RIESZ

TRANSFORMS OF ORDER N IN 3D

N n R̂n(ω) Rn{δ}(x)

1 (1, 0, 0)
− jω1||ω||

x1
π2||x||4

2
(2, 0, 0) (− jω1)

2

||ω||2 −−2x2
1+x2

2+x2
3

4π ||x||5

(1, 1, 0) (− jω1)(− jω2)

||ω||2
3x1 x2

4π ||x||5

3

(3, 0, 0) (− jω1)
3

||ω||3
x1(x

2
1−3x2

2−3x2
3 )

π2||x||6

(2, 1, 0) (− jω1)
2(− jω2)

||ω||3 − x2(−3x2
1+x2

2+x2
3 )

π2||x||6

(1, 1, 1) (− jω1)(− jω2)(− jω3)

||ω||3 − 4x1 x2 x3
π2||x||6

(a) (b)

(c) (d)

Fig. 2. (a)–(d) Isosurface representation of some Riesz-wavelet components
of different orders. The surface is colored white if the component value
is positive, and black otherwise. Simoncelli’s wavelet [14] is used for the
primary wavelet function ψ . (a) R(0,0,1)ψ . (b) R(0,0,2)ψ . (c) R(1,1,1)ψ .
(d) R(0,2,2)ψ .

examples of filters that are adapted to edges (a), sheets (b),
filaments (d), and other complex shapes (c).

C. 3D Riesz-Wavelet Frames

We combine the 3D Riesz transform with the isotropic
wavelet frame presented in Section III-A to obtain
steerable wavelet frames in 3D. Remarkably, because the Riesz
transform is scale-invariant, the basis functions remain dilated
versions of a primary profile after applying the Riesz transform

Rψi (x) = 2−3i/2Rψ(x/2i ).

This justifies the wavelet frame appelation. The Riesz
and wavelet analysis operators commute as they are both
convolution operators (i.e., operators that are linear and
invariant by translation). Therefore, for any f ∈ L2(R

3),
Riesz-wavelet coefficients can be obtained either by applying
the Riesz transform to each wavelet band ψi,k ∗ f , or by
analyzing each Riesz band Rn f with the wavelet functions.
The bandlimitedness and symmetry of ψi allows us to
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compute the Riesz-wavelet expansion

f (x) =
⎧
⎨

⎩
∑

i∈Z
ψi ∗

∑

|n|=N

(Rn)∗(Rnψi ∗ f )

⎫
⎬

⎭ (x)

=
⎧
⎨

⎩
∑

i∈Z

∑

|n|=N

((Rn)∗ψi ) ∗ (Rnψi ∗ f )

⎫
⎬

⎭ (x)

=
⎧
⎨

⎩
∑

i∈Z

∑

|n|=N

((Rn)∗ψi )

∗
∑

k∈Z3

sn
i,ksinc

( · − Ti k
Ti

)
1

T 3
i

⎫
⎬

⎭ (x)

=
∑

i∈Z

∑

|n|=N

∑

k∈Z3

sn
i,k

{
(Rn)∗ψi,k

}
(x)

where sn
i,k = {Rnψi ∗ f }(x)|x=Ti k is the Riesz-wavelet

coefficient at scale i for the nth Riesz band at shift k.

D. Digital Riesz-Wavelet Transforms

We consider hereafter that any 3D image f corresponds to a
set of uniform samples of a function of L2(R

3): f [k] = f (k),
such that f is radially bandlimited ( f̂ (ω) = 0 if ||ω|| ≥ π).
The sampling step is fixed to 1, without loss of generality. We
denote Bπ to be the set of such functions and V0 the space of
functions that can be written as

f (x) =
∑

k∈Z3

f [k]sinc(x − k) (11)

with f [·] ∈ �2, where sinc is the separable and orthonor-
malized cardinal sine function of R

3. Because Bπ ⊂ V0, the
Shannon reconstruction formula (11) applies for any f ∈ Bπ ,
and the Riesz-wavelet coefficients of f can be computed as

sn
i,k =

⎧
⎨

⎩Rnψi ∗
∑

k′∈Z3

f [k′]sinc(· − k′)

⎫
⎬

⎭ (Ti k)

=
∑

k′∈Z3

f [k′] {Rnψi
}
(Ti k − k′).

The 3D discrete sequence of coefficients sn
i [k] = sn

i,k for
k ∈ Z

3 are therefore obtained as the discrete convolution at
points Ti k of the 3D sequences f [·] and {Rnψi }[·]. The latter
corresponds to a discrete set of uniform samples of the func-
tion Rnψi on the grid Z

3. The set of Riesz-wavelet coefficients
can thus be computed in two steps: 1) discrete convolution
between the image and the sampled filters, 2) downsampling
by a factor Ti .

A different digital implementation consists in applying first
the digital wavelet transform to f and then the digital Riesz
transform to each wavelet band, as for the steerable pyramid
in 2D. Indeed, it is not hard to show that the sequence
of wavelet coefficients wi [k] = wi,k can be obtained by
subsampling by a factor Ti the discrete convolution between
f and the samples of the wavelet filters. This leads to

wi [k] =
∑

k′∈Z3

f [k ′]ψi (Ti k − k′).

Then, the set of Riesz-wavelet coefficients sn
i,k = {Rnψi ∗

f }(x)|x=Ti k is computed as

sn
i,k =

⎧
⎨

⎩Rn
∑

k′∈Z3

wi,k′
1

T 3
i

sinc

( · − Ti k′

Ti

)⎫
⎬

⎭ (x)|x=Ti k

=
∑

k′∈Z3

wi,k′ {Rnsinc} (k − k′
)

(12)

which corresponds to a discrete convolution product between
wavelet coefficients at scale i and a discrete set of uniform
samples of Rnsinc (a bandlimited version of the impulse
response of the Riesz component) on the Cartesian grid. In
practice, this digital two-step scheme is efficient as the digital
wavelet transform can be computed as a set of cascaded dis-
crete convolutions and subsampling steps [13]. We then apply
the Riesz transform to each set of wavelet coefficients (12).
The space-domain convolution in (12) is not practical as
the Riesz impulse response is not compactly supported and
because it is not a conventional function at the origin. Instead,
the discrete convolution is made possible in the frequency
domain due to the smoothness of the wavelet transform at
the origin [Condition (iii)] which annihilates the singularity
of the frequency response of the Riesz transform at this point.
Inverting the full transform to obtain a 3D digital signal f
from the Riesz-wavelet coefficients is achieved by inverting
sequentially each step of the forward transform, using a series
of discrete adjoint operators.

E. Steerability

As the primary wavelet transform is isotropic, the direc-
tional information is fully encoded by the Riesz part of the
frame. The proposed Riesz-wavelet transform consequently
inherits the steerable property of the high-order Riesz trans-
form as defined in (6) for R a (3× 3) spatial rotation matrix,
and we check that the general steerability definition in (4) is
satisfied.

Applying Theorem 1 from [17], we have that the entries
sn,m (in multiindex notation) of SR for R = [r1 r2 r3] are
computed as

sn,m =
√

m!
n!

∑

|k1|=n1

∑

|k2|=n2

∑

|k3|=n3

δk1+k2+k3,m

· n!
k1!k2!k3! r

k1
1 rk2

2 rk3
3

where δk1+k2+k3,m denotes the Kronecker symbol that selects
only multiindex coefficients k1, k2, and k3 such that k1 +
k2 + k3 = m. Theorem 2 in [17] moreover shows that we
can steer back the Riesz-wavelet coefficients to their original
values by applying the transpose of the steering matrix ST

R
since SRST

R = IM×M (the (M × M) identity matrix).
In practice, the sampled version of a steerable function is

still steerable with the same interpolating functions since the
steering and sampling operators commute. Hence, the steering
of digital coefficients is performed using the standard matrix
SR as defined above.
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IV. 3D MONOGENIC SIGNAL ANALYSIS

As first application, we investigate the design of a multiscale
analytic-like signal in 3D. The analytic signal was introduced
by Gabor [31] as the complex extension of a 1D signal

fanal(x) = f (x)+ jH f (x) = A(x)ejξ(x)

based upon the Hilbert transform H, which is the linear
and shift-invariant operator that maps all 1D cosine functions
into their corresponding sine functions. An AM/FM signal
analysis is achieved with this representation by taking the time-
varying amplitude as A(x) = | fanal(x)| and the instantaneous
frequency as ν(x) = dξ(x)/dx . The extension of the analytical
signal to 2D proposed in [32] is via the Riesz transform,
which can be viewed as a natural extension of the Hilbert
transform to multiple dimensions. This so-called monogenic
signal was recently extended to the analysis of 2D Riesz-
wavelet coefficients in [16], and to nD in [22]. We extend
to 3D the directional Hilbert interpretation of the monogenic
signal that is proposed in [16] as it is simpler and more directly
applicable than the Clifford frame framework of [22].

A. 3D Monogenic Signal

We propose to perform in 3D the same type of AM/FM
signal analysis as in 1D, but along the particular 3D direction
u ∈ R

3. More precisely, we choose u as the local orientation
that maximizes the directional Hilbert-transform response,
with ‖u‖ = 1. (We present in the next section a fast and robust
way to compute u.) When comparing the frequency response
Ĥ f (ω) = −jω/|ω| f̂ (ω) of the Hilbert transform with the
Fourier-domain definition of the Riesz components (5), it
is apparent that Hu f , which is the Hilbert transform of f
along the direction u, corresponds to the projection of its
Riesz transform onto u. Formally, we write that Hu f (x) =
uT R f (x), with R f (x) the column-vector of first-order Riesz
coefficients for f at position x. We thus propose the following
3D extension of the monogenic signal which is based on the
3D Riesz transform:

fmono(x) = ( f (x),R1 f (x),R2 f (x),R3 f (x)).

We compute the local signal amplitude (AM component)
as A(x) = ‖fmono(x)‖. The local phase ξ in the direc-
tion u is computed as ξ(x) = arctan (Hu(x)/ f (x)) =
arctan

(
uT R f (x)/ f (x)

)
.

B. Tensor-Based Estimation of the Local Orientation

We extend to 3D the local orientation-estimation procedure
proposed in [16] that relies on a structure tensor [33]. We
select the orientation u that maximizes Hu(x), but, instead
of doing it pointwise, we optimize the response over a 3D
local neighborhood that is specified by the isotropic weighting
function v : R

3 �→ R+. The function v is typically a 3D
Gaussian window which acts as a regularization function of
the orientation map and enhances the consistency and the
robustness to noise of the estimated values. The pointwise
optimization problem for estimating an orientation is

uv (x0) = arg max‖u‖=1

∫

R3
v(x − x0)|Hu f (x)|2dx.

Exploiting the link between the directional Hilbert transform
and the Riesz transform, and taking advantage of the steer-
ability of the latter, we write

|Hu f (x)|2 = uT (R f (x))(R f (x))T u.

The above formula shows that estimating the local orientation
is a quadratic-form maximization problem which boils down to
an eigenvalue problem. The vector uv is computed pointwise
as the eigenvector corresponding to the largest eigenvalue of
the tensor matrix J(x0), with

[J(x0)]mn =
∫

R3
v(x − x0)Rm f (x)Rn f (x)dx

and m, n ∈ {1, 2, 3}. The sorted collection of eigenvectors of
J(x0) defines a rotation matrix Uv such that the energy of the
first band of the rotated Riesz transform UvR f is maximized
at x0, the first row of Uv being uv (x0)

T .
The eigenvalue decomposition of J(x0) also allows us to

quantify the degree of directionality of the neighborhood
through the relative weights of the eigenvalues. To do so, we
define the coherency of the 3D local neighborhood as

χ(x0) = λ1(x0)− (λ2(x0)+ λ3(x0))/2

λ1(x0)+ (λ2(x0)+ λ3(x0))/2

with λi (x0) the i th largest eigenvalue of J(x0). The coherency
indicator takes value 1 when all the eigenvalues except the first
do vanish (the energy is concentrated along the uv (x0) direc-
tion), and 0 when the three eigenvalues are equal (isotropic
gradient values).

C. 3D Monogenic Wavelet for the Analysis of Biological
Images

We apply the proposed 3D monogenic analysis to each scale
of the 3D isotropic wavelet pyramid described in Section III,
which yields at each scale the monogenic signal

fmono,i (x) = (ψi ∗ f (x),R1{ψi ∗ f }(x),
× R2{ψi ∗ f }(x),R3{ψi ∗ f }(x)).

As a result, we estimate locally the orientation and coherency
for different scales of the underlying 3D image. It is worth
pointing out that the isotropy of the primary wavelet pyramid
is crucial here. It prevents the introduction of a bias in the
monogenic analysis of the Riesz coefficients at each scale.
We show in Figure 3 the local orientations obtained with the
monogenic Riesz-wavelet transform for fluorescence images of
collagen filaments. The figure is an illustration of the ability of
our method to estimate the local orientation at a given scale.
The estimation is robust and consistent, which is of major
importance for 3D microscope images which are generally
corrupted by noise. This ability is exploited in the Section V to
guide a multiscale edge-detection algorithm which was found
to perform well for a set of 3D medical images.

V. IMAGE RECONSTRUCTION FROM EDGES: AN

INVERSE PROBLEM APPROACH

We demonstrate now the use of the 3D Riesz-wavelet
frame for inverse problems. In particular, we investigate the
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(b) (c)

(a)

(a)

(c)(b)

Fig. 3. 3D image stack of collagen filaments (top left). (a)–(c) Color
encoded (hue) monogenic direction at scale 2 for the plans A, B, and C,
after an orthogonal projection onto the xy, xz, and yz planes, respectively. The
saturation indicates the value of the local coherency.

reconstruction of an image from a subset of coefficients
located on edges. This application leads us to solve constrained
and unconstrained optimization problems involving the
Riesz-wavelet transform of 3D images.

A. 3D Singularity Detection in the Riesz-Wavelet Domain

We adapt the well-known Canny edge detector [34] to the
3D multiscale case by using the monogenic signal analysis
proposed above. For an input signal f ∈ V0, coefficients
corresponding to singularities in 3D (surfaces, ridges, dots)
are detected by exploiting the estimated directional monogenic
amplitude and pointwise local orientation. For each wavelet
scale, we

1) compute the local orientation uv (x0) at each point x0;
2) identify Bx0,uv (x0), the set of neighboring voxels of x0

in the direction uv (x0);
3) retain x0 as a singular point if A(x0) ≥ A(x), ∀x ∈

Bx0,uv (x0).
For each singular point, thresholding with hysteresis [34] is
then performed on the monogenic amplitude values. High
amplitude singularities are detected using a high threshold
value, and lower-amplitude singularities (exceeding a low
threshold value) are kept only if connected (using 26 connec-
tivity in 3D) to a high-amplitude component. This results in
a set of singular points which represent in a robust manner
both high- and low-intensity 3D features. The coarsest-scale
coefficients are also included in the representation in order to
preserve the brightness information of the image. We show
in Figure 4 the set of edges which are detected for a real
3D MRI image. We check that the procedure of thresholding
with hysteresis yields the identification of both strong and
weak features with only few false-positive detections.

B. Reconstruction from Edge Coefficients

Let us denote by f ∈ R
N the column vector that represents

a 3D image with N pixels, and by s the column vector of

(a)

(b)

Fig. 4. Multiscale edge detection for a 3D MRI volume. (a) Transverse,
sagittal, and coronal slices from the original (144× 144× 144) data. (b) 3D
edges detected for each slice in the three analyzed wavelet bands.

its stacked Riesz-wavelet coefficients {sn
i,k}. Then, f = Ws

with W the (N × M) matrix corresponding to the digital
Riesz-wavelet synthesis operator. As we are considering tight
Riesz-wavelet frames, we also write s = WH f , where the
Hermitian transpose of the matrix W corresponds to the
Riesz-wavelet analysis operator.

Let us assume for the image f 0 = Ws0 that the singular-
point detection method presented in Section V-A yields a set
of indices S for the Riesz-wavelet coefficients s0. We wish
to build a close approximation f̂ of f 0 from the knowledge
of the subset S of Riesz-wavelet coefficients only. For the 2D
Marr-like pyramid [35], which is inspired from experiments
on visual perception and is technically closely related to the
monogenic Riesz-wavelet pyramid in 2D, a primal sketch
was proposed to build f̂ as an image with consistent edges
with s0. In practice, f̂ was obtained by alternating between
1) the penalization of wrong edges and 2) the projection onto
the space of feasible wavelet coefficients, so that the edge-
detection procedure applied to f̂ yielded the index set S.
Despite some convicing results, this approach was suffering
from some limitations. First, the set of images with consistent
edges is not finite in general and there is no hint that the
image towards which the procedure converges is close to the
original image f 0. Second, the edge-detection procedure is
time-consuming in 3D, which hampers the use of methods
repeatedly using it. We tackle these issues by proposing a new
paradigm for reconstructing images from edge coefficients that
exploits a novel inverse-problem formulation of the task.

1) Constrained Optimization With the Riesz-Wavelet
Transform: We express the task of reconstructing an
image from wavelet-domain singularities as the constrained
minimization problem over the image space

f̂ = arg min
f∈RN

‖WH
� f ‖1 s.t. C (13)
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(a)

(b)

(c)

Fig. 5. 3D image reconstruction for the edge set shown in Fig. 4. (a) 2D
areas from the original MRI volume. (b) Reconstruction by orthogonal
projection of the edge coefficients: 25.81 dB. (c) Reconstructed images by
(13) with Algorithm 1 (50 iterations): 32.06 dB. The orthogonal projection
reconstruction shown in (b) is used as a starting point for the proposed method
shown in (c).

with
C : [WH f ]k = [s0]k, ∀k ∈ S.

There, ‖ · ‖1 stands for the �1 norm of R
M . In (13), we take

WH
� = �WH with � an (M × M) diagonal matrix with

positive elements which weight the Riesz-wavelet coefficients
for the computation of the regularization term. We typically
take equal weights for coefficients from the same Riesz-
wavelet band and set the diagonal elements of � to 0 for
the coefficients of the coarsest scale (lowpass residual) that
should not be penalized.

With the proposed formulation (13), the set of constraints
C for Riesz-wavelet coefficients enforces the consistency
between the original sampled values and the coefficients
of the estimated image. The regularization term ‖WH

� f ‖1
corresponds to a sparse prior for the solution image in the
Riesz-wavelet space. The sparsity criterion naturally complies
with the edge consistency between f 0 and f̂ as spurious
singularities in the Riesz-wavelet representation of f̂ generally
yield an increased �1 penalty term. This intuitive assumption is
verified in the sequel with various reconstruction experiments.

It is worth noting that if we take � = I, and if an
orthonormal frame (W−1 = WH ) is used in place of the
Riesz-wavelet frame, then there exists a trivial solution to the
constrained problem (13). This solution is given by f̂ =Ws̃,
with s̃k = [s0]k if k ∈ S, and s̃k = 0 otherwise. Indeed, in this
particular case we have that s̃ =WH Ws̃. By contrast, because
the Riesz-wavelet frame is redundant, there may not exist f ∈
R

N such that s̃ =WH f . In other words, s̃ may not correspond
to the Riesz-wavelet coefficients of an image. A naive idea to

Algorithm 1 Augmented-Lagrangian Optimization Procedure

Require: μ(0) ∈ R
M+ , λ(0) ∈ R

M , f (0)0 ∈ R
N , and a final

tolerance ε ∈ R+ or a maximal number of iterations T
for t = 0, 1, 2 . . . do

Compute f (t) = arg min f∈RN L( f ,λ(t),μ(t)) with the

starting point f (t)0
if convergence holds (‖� f L( f (t),λ(t),μ(t))‖ ≤ ε or t ≥
T ) then

Exit
else

for k ∈ S do
λ
(t+1)
k = λ(t)k − μ(t)k

(
[WH f (t)]k − [s0]k

)

μ
(t+1)
k = βμ(t)k with β ∈ (1,∞)

end for
f (t+1)

0 = f (t)

end if
end for f̂ = f (t)

solve the reconstruction problem is to orthogonally project s̃
onto the space of Riesz-wavelet coefficients. This requires the
solution of arg min f∈RN ||s̃−WH f ||2, which can be obtained
by exploiting the tight-frame property of the Riesz-wavelet
frame (WWH = I). It is easy to show that this solution,
which we call the orthogonal projection solution, is f̃ =Ws̃,
as for the case of a basis. We however show in Figure 5
for the MRI volume that this procedure is detrimental to the
edge consistency. We thus aim at solving (13) to improve the
reconstruction quality by jointly imposing edge consistency
and exploiting a sparsity prior.

Overall, (13) corresponds to the minimization of a convex
functional subject to a finite set of linear constraints. We can
thus guarantee that there exists a feasible minimum f̂ , and that
we can reach it with appropriate optimization algorithms. We
propose to use an augmented-Lagrangian (AL) technique [36]
in order to maximize (13) subject to C. For the vectors of
multipliers λ ∈ R

M and μ ∈ R
M+ we write the AL functional as

L( f ,λ,μ) = ‖WH
� f ‖1 −

∑

k∈S

λk

(
[WH f ]k − [s0]k

)

+
∑

k∈S

μk

2

(
[WH f ]k − [s0]k

)2
.

The global scheme for AL minimization is summarized in
Algorithm 1. We initialize the multiplier vectors as λ(0)k = 0
for k = 1 . . .M , and μ

(0)
k = 1 for k ∈ S and μ

(0)
k = 0

otherwise. We note that, following Algorithm 1, multipliers
values λk and μk for k /∈ S are kept fixed to their initial zero
values. Using these initial conditions, we concisely re-write
the Lagrangian functional as

L( f ,λ,μ) = ‖WH
� f ‖1 − λT

(
WH f − s0

)

+1

2

(
WH f − s0

)T
C

(
WH f − s0

)
(14)

with C a diagonal (M×M) matrix such that Ck,k = μk for k =
1 . . .M . In order to initiate the optimization algorithm, we take
the orthogonal projection solution f̃ as the first estimate f (0)0 .
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(b)

(c)(a)

Fig. 6. Einstein image reconstructed from edges. (a) Edge map in wavelet bands as obtained from a wavelet-domain Canny-like detector [35]. (b) Full-
resolution images. (c) Zoomed-in images of the collar area. The images in (b) and (c) are, from left to right: original image, reconstructed image using the
proposed method with 50 iterations (35.37 dB), and image reconstructed with the Marr-like primal sketch [35] with 50 iterations (33.46 dB).

At each step of the AL minimization procedure, we solve
the unconstrained minimization problem f � = arg min f ∈RN

L( f ,λ,μ). As the cost function is convex, we use a
gradient-descent-like minimization procedure. The gradient
vector at point f is computed as

G f � � f L ( f ,λ,μ)

= W
(
�v f − λ+ C

(
WH f − s0

))

where v f is the M-dimensional vector with component
[v f ]k = sgn([WH

� f ]k). In practice, we use a Huber loss
function to cope for the non-differentiability of the absolute
value function at the origin. It is worth pointing out that the
computation of G f is efficient for a tight Riesz-wavelet frame
since, in this case, the left-multiplication by W corresponds
to applying the synthesis operator, which admits a fast
filterbank implementation. In order to solve (14), we use an
iterative procedure in which the tth estimate is computed
as f (t) = f (t−1) − α(t)G f . The step length α(t) ∈ R+
is set such as to minimize L( f (t−1) − α(t)G f ,λ,μ) for
faster convergence. We note that, once WH G f is computed,
the optimization of the step length can be performed very
efficiently in the transformed domain using a line-search
algorithm since we have that WH ( f (t−1) − α(t)G f ) =
WH f (t−1) − α(t)WH G f . To do so, we keep the estimated
image in the Riesz-wavelet domain and perform the update
as WH f (t) = WH f (t−1) − α(t)WH G f because the AL
functional involves only transformed-domain coefficients.
As a consequence, we need to apply the Riesz-wavelet
analysis and synthesis operators only once per iteration of
the gradient-descent algorithm in order to estimate WH G f .
The computation of the Riesz-wavelet forward and backward
transforms is the main computational bottleneck as the
evaluation of the gradient vectors and the computation of AL
functional values both involve only pointwise operations in
the transformed domain. The fast filterbank implementation
of the transforms is therefore a key advantage of the proposed
steerable frames for the reconstruction task.

C. Experiments

1) 2D Image Reconstruction: We first investigate the recon-
struction of 2D images from edge coefficients in order to
facilitate the comparison of the proposed technique with
previous works. We have applied the edge-detection procedure
proposed in [35] to the Einstein image in order to obtain a
mask indicating edges in the wavelet domain. An example of
detected edges is shown in Figure 6. We have then applied both
the primal-sketch reconstruction with the Marr-like pyramid
coefficients and the proposed reconstruction method with the
Riesz-wavelet coefficients when using 2D versions of the
isotropic wavelet and Riesz transforms. We show in Figure 6
the corresponding reconstructions. We observe that the pro-
posed method yields an image that is very close to the original
(PSNR = 35.37 dB), despite the low ratio of coefficients
that are retained by the edge detector (7.5%). Edges in the
reconstructed image are indeed consistent with those in the
original image, although (13) does not explicitly impose
consistency. As compared with the state-of-the-art technique,
we have found that our reconstructed image contains much
fewer oscillating patterns close to the edges. This happens
because the �1 minimization technique we use prevents this
kind of artifacts and the creation of new edges. For the
reconstruction method based on the primal sketch, oscillating
patterns are allowed (despite the extra �2 penalty term) as
long as they are not seen by the edge detector. As a result, the
proposed reconstruction significantly outperforms the primal-
sketch reconstruction based on the Marr-like pyramid in term
of PSNR (+1.91 dB).

We have repeated the reconstruction experiments for dif-
ferent rates of retained coefficients. For the two techniques,
the performance measured by the PSNR and the structural
similarity (SSIM) index, which better accounts for visual
perception [37], are shown in Figure 7. We observe that the
proposed method consistently outperforms the primal sketch
reconstruction method, for both the PNSR and SSIM criteria.
We have measured an SSIM difference as large as 0.049.
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Fig. 7. Performance of reconstruction from edges for the Einstein image with
an increasing number of coefficients. Results for the proposed reconstruction
method in 2D are plotted with boxes. Results for the Marr-like primal
sketch [35] are plotted with circles. Fifty iterations have been performed for
each reconstruction procedure.

The difference between the measured PSNR values increases
with the number of coefficients: In our experiments, the
difference monotonically grows from 0.73 dB to 7.63 dB.
We note that the PSNR of the primal-sketch tends to saturate
for large numbers of coefficients, while that of the proposed
method does not. As demonstrated by the very high SSIM
values (up to 0.985), our experiments show that the Riesz-
wavelet coefficients located on the edges contain the essential
visual information of the Einstein image and that the proposed
reconstruction method is able to fully exploit these data.

2) Reconstruction of 3D Medical Images: We have applied
the proposed reconstruction procedure to the set of 3D edges
shown in Figure 4 for the MRI data set. In Figure 5, some
2D slices from the initial estimate (orthogonal projection) and
from the final reconstruction are shown. It first demonstrates
that the orthogonal projection of the edge coefficients onto
the space of images does not yield an accurate estimation of
the original data. This projection operation tends to blur the
edges excessively. By contrast, the proposed method yields
consistent and sharpened edges. As a result, the reconstructed
image quality is significantly improved as compared to the
initial projected images (+6.25 dB for the PSNR). Like for
the 2D case, we check that no artifactual oscillatory pattern
is created near the edges. Instead, the reconstruction method
produces smooth areas in regions where no edge is present.
The reconstruction quality which is achieved is high for
the analyzed MRI volume: 32.06 dB. It shows, for a real
3D medical data set, that the proposed 3D Riesz-wavelet
coefficients contain the essential data information and that our
inverse-problem approach for image reconstruction is able to
extract and exploit this information.

VI. CONCLUSION

In this paper, we have introduced the first 3D wavelet frame
having the key property of steerability. We have discussed a
functional framework involving both non-separable wavelet
pyramids and the 3D generalized Riesz transforms. Then,
the link between the continuous-domain model and the 3D
digital transforms has been established. As a result, fast
filterbank transforms for the synthesis and analysis operators
have been proposed. We have identified key properties of the
3D Riesz-wavelet frame such as the 3D steerability of the
basis functions, its tightness, and the ability to customize it

by shaping the parameterization matrix of the 3D generalized
Riesz transform.

In order to illustrate the usefulness of our contributions,
we have investigated two applications taking advantage of
3D steerable pyramids. First, we have demonstrated that the
Riesz-wavelet transform can be used to define a 3D monogenic
signal which allows one to estimate AM/FM-like parameters
along any 3D direction. We have shown for a set of biological
images that one can accurately estimate the local orientation
in 3D microscope images. The 3D monogenic signal has been
exploited in our second application for detecting singularities
at multiple scales of 3D medical images. We have then pro-
posed a new optimization framework for reconstructing images
based on the coefficients along these multiscale singularities.
Our technique relies on the formulation of the reconstruction
problem as a constrained sparsity-promoting optimization of
an inverse problem and takes advantage of Riesz-wavelet
frames. In practice, experiments have shown that our approach
outperforms previous works when considering the 2D case,
while its applications to 3D is novel. In both 2D and 3D, the
high quality of the reconstructed images shows that the Riesz-
wavelet coefficients along singularities contain the essential
information of the images, and that the proposed reconstruc-
tion method takes full advantage of it. All the 3D experiments
in this work have been performed with real biomedical data.
This type of data requires extensive use of image analysis,
processing, and reconstruction methods.
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