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Abstract: The sparse representation models code an image patch as a linear combination of a few atoms 

chosen out from an over-complete dictionary, and they have shown promising results in various image 

restoration applications. However, due to the degradation of the observed image (e.g., noisy, blurred and/or 

downsampled), the sparse representations by conventional models may not be accurate enough for a faithful 

reconstruction of the original image. To improve the performance of sparse representation based image 

restoration, in this paper the concept of sparse coding noise is introduced, and the goal of image restoration 

turns to how to suppress the sparse coding noise. To this end, we exploit the image nonlocal self-similarity to 

obtain good estimates of the sparse coding coefficients of the original image, and then centralize the sparse 

coding coefficients of the observed image to those estimates. The so-called nonlocally centralized sparse 

representation (NCSR) model is as simple as the standard sparse representation model, while our extensive 

experiments on various types of image restoration problems, including denoising, deblurring and 

super-resolution, validate the generality and state-of-the-art performance of the proposed NCSR algorithm. 
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I. Introduction 

Reconstructing a high quality image from one or several of its degraded (e.g., noisy, blurred and/or 

down-sampled) versions has many important applications, such as medical imaging, remote sensing, 

surveillance and entertainment, etc. For an observed image y, the problem of image restoration (IR) can be 

generally formulated by  

υy = Hx + ,                                   (1) 

where H is a degradation matrix, x is the original image vector and υ  is the additive noise vector. With 

different settings of matrix H, Eq. (1) can represent different IR problems; for example, image denoising 

when H is an identity matrix, image deblurring when H is a blurring operator, image superresolution when 

H is a composite operator of blurring and down-sampling, and compressive sensing when H is a random 

projection matrix [1-3]. In the past decades, extensive studies have been conducted on developing various IR 

approaches [4-23]. Due to the ill-posed nature of IR, the regularization-based techniques have been widely 

used by regularizing the solution spaces [5-9, 12-22]. In order for an effective regularizer, it is of great 

importance to find and model the appropriate prior knowledge of natural images, and various image prior 

models have been developed [5-8, 14, 17-18, 22].  

The classic regularization models, such as the quadratic Tikhonov regularization [8] and the TV 

regularization [5-7] are effective in removing the noise artifacts but tend to over-smooth the images due to 

the piecewise constant assumption. As an alternative, in recent years the sparsity-based regularization [9-23] 

has led to promising results for various image restoration problems [1-3, 16-23]. Mathematically, the sparse 

representation model assumes that a signal N∈x  can be represented as ≈x Φα , where MΝ ×∈Φ  

(N<M) is an over-complete dictionary, and most entries of the coding vector α are zero or close to zero. The 

sparse decomposition of x can be obtained by solving an l0-minimization problem, formulated as 

0 2arg min || || ,  . . || ||s t ε= − ≤x xαα α Φα , where ||•||0 is a pseudo norm that counts the number of non-zero 

entries in α, and ε is a small constant controlling the approximation error. Since l0-minimization is an 

NP-hard combinatorial optimization problem, it is often relaxed to the convex l1-minimization. The l1-norm 

based sparse coding problem can be generally formulated in the following Lagrangian form: 

2
2 1arg min {|| || || || }λ= − +x xαα Φα α ,                           (2) 
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where constant λ denotes the regularization parameter. With an appropriate selection of the regularization 

parameter λ, we can get a good balance between the sparse approximation error of x and the sparsity of α, 

and the term “sparse coding” refer to this sparse approximation process of x. Many efficient l1-minimization 

techniques have been proposed to solve Eq. (2), such as iterative thresholding algorithms [9-11] and 

Bregman split algorithms [25-26]. In addition, compared with the analytically designed dictionaries (e.g., 

wavelet/curvelet dictionary), the dictionaries learned from example image patches can improve much the 

sparse representation performance since they can better characterize the image structures [27-28].  

 

     

     

Figure 1: Examples of the sparse coding coefficients by using the KSVD [27] approach. The first row shows some 
natural images; the second row shows the corresponding distributions of the sparse coding coefficients (associated with 
the 3rd atom of the dictionary in KSVD) of the patches extracted at each pixel. Note that the coefficients are not 
randomly distributed but highly correlated.  
 

In the scenario of IR, what we observed is the degraded image signal y via υy = Hx + . To recover x 

from y, first y is sparsely coded with respect to Φ by solving the following minimization problem: 

2
2 1arg min {|| || + || || }λ= −y y Hαα Φα α ,                          (3) 

and then x is reconstructed by ˆ yx =Φα . Clearly, it is expected that αy could be close enough to αx. Due to 

the degradation of the observed image (e.g., the image is blurry and noisy), however, it is very challenging to 

recover the true sparse code αx from y. Using only the local sparsity constraint ||α||1 in Eq. (3) may not lead 

to an accurate enough image reconstruction. On the other hand, it is known that image sparse coding 

coefficients α are not randomly distributed due to the local and nonlocal correlations existing in natural 

images. In Fig. 1, we visualize the sparse coding coefficients of several example images. One can see that 
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the sparse coding coefficients are correlated, while the strong correlations allow us to develop a much more 

accurate sparse model by exploiting the local and nonlocal redundancies. Indeed, some recent works, such as 

[17] and [18], are based on such considerations. For example, in [18] a group sparse coding scheme was 

proposed to code similar patches simultaneously, and it achieves impressive denoising results. 

In this paper we improve the sparse representation performance by proposing a nonlocally centralized 

sparse representation (NCSR) model. To faithfully reconstruct the original image, the sparse code αy (refer 

to Eq. (3)) should be as close as possible to the sparse codes αx (refer to Eq. (2)) of the original image. In 

other words, the difference υα = αy−αx (called as sparse coding noise, SCN in short, in this work) should be 

reduced and hence the quality of reconstructed image ˆ yx =Φα can be improved because 

ˆ x− ≈ − =y αx x Φα Φα Φυ . To reduce the SCN, we centralize the sparse codes to some good estimation of 

αx. In practice, a good estimation of αx can be obtained by exploiting the rich amount of nonlocal 

redundancies in the observed image.  

The proposed NCSR model can be solved effectively by conventional iterative shrinkage algorithm [9], 

which allows us to adaptively adjust the regularization parameters from a Bayesian viewpoint. The extensive 

experiments conducted on typical IR problems, including image denoising, deblurring and super-resolution, 

demonstrate that the proposed NCSR based IR method can achieve highly competitive performance to 

state-of-the-art denoising methods (e.g., BM3D [17, 40-42], LSSC [18]), and outperforms state-of-the-art 

image deblurring and super-resolution methods.  

The rest of the paper is organized as follows. Section II presents the modeling of NCSR. Section III 

provides the iterative shrinkage algorithm for solving the NCSR model. Section IV presents extensive 

experimental results and Section V concludes the paper. 

 

II. Nonlocally centralized sparse representation (NCSR) 

Following the notation used in [19], for an image N∈x , let i i=x R x  denote an image patch of size 

n n×  extracted at location i, where Ri is the matrix extracting patch xi from x at location i. Given an 

dictionary n M×∈Φ , n M≤ , each patch can be sparsely represented as ,i x i≈x Φα  by solving an 
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l1-minimization problem 2
, 2 1arg min {|| || || || }

ix i i i iλ= − +xαα Φα α . Then the entire image x can be 

represented by the set of sparse codes { ,x iα }. The patches can be overlapped to suppress the boundary 

artifacts, and we obtain a redundant patch-based representation. Reconstructing x from { ,x iα } is an 

over-determined system, and a straightforward least-square solution is [19]: 

1
,1 1

( ) ( )N NT T
i i i x ii i

−
= =

≈ ∑ ∑x R R R Φα . For the convenience of expression, we let   

1
,1 1

( ) ( )N NT T
i i i x ii i

−
= =

≈ = ∑ ∑xx R R RΦ α Φα ,                        (4) 

where αx denotes the concatenation of all αx,i. The above equation is nothing but telling that the overall 

image is reconstructed by averaging each reconstructed patch of xi.  

In the scenario of image restoration (IR), the observed image is modeled as υy = Hx + . The 

sparsity-based IR method recovers x from y by solving the following minimization problem:  

2
2 1arg min {|| || + || || }y λ= −y Hαα Φ α α .                         (5) 

The image x is then reconstructed as ˆ yx =Φ α .  

 
A. The sparse coding noise 

In order for an effective IR, the sparse codes αy obtained by solving the objective function in Eq. (5) are 

expected to be as close as possible to the true sparse codes αx of the original image x. However, due to the 

degradation of the observed image y (e.g., noisy and blurred), the sparse code αy will deviate from αx, and 

the IR quality depends on the level of the sparse coding noise (SCN), which is defined as the difference 

between αy and αx: 

υα= αy−αx .                                    (6) 

To investigate the statistical property of SCN υα, we perform some experiments on typical IR problems. 

We use the image Lena as an example. In the first experiment, we add Gaussian white noise to the original 

image x to get the noisy image y (the noise level σn=15). Then we compute αx and αy by solving Eq. (2) and 

Eq. (5), respectively. The DCT bases are adopted in the experiment. Then the SCN υα is computed. In Fig. 

2(a-1), we plot the distribution of υα corresponding to the 4th atom in the dictionary. Similarly, in Fig. 2(a-2) 

and Fig. 2(a-3) we plot the distributions of υα when the observed data y is blurred (by a Gaussian blur kernel 
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with standard deviation 1.6) and down-sampled by factor 3 in both horizontal and vertical directions (after 

blurred by a Gaussian blur kernel with standard deviation 1.6), respectively. We can see that the empirical 

distributions of SCN υα can be well characterized by Laplacian distributions, while the Gaussian 

distributions have much larger fitting errors. To better observe the fitting of the tails, we also plot the these 

distributions in log domain in Figs. 2(b-1)~(b-3). This observation motivates us to model υα with a 

Laplacian prior, as will be further discussed in Section III-A. 

 

    
(a-1)                                   (b-1) 

    
(a-2)                                   (b-2) 

    
(a-3)                                   (b-3) 

Figure 2: The distributions of SCN when the Lena image is (a-1) noisy; (a-2) noisy and blurred; and (a-3) 
down-sampled. (b-1), (b-2) and (b-3) show the same distributions of (a-1), (a-2) and (a-3) in log domain, respectively.  
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B. Modeling of nonlocally centralized sparse representation (NCSR) 

The definition of SCN υα indicates that by suppressing the SCN υα we could improve the IR output x̂ . 

However, the difficulty lies in that the sparse coding vector αx is unknown so that υα cannot be directly 

measured. Nonetheless, if we could have some reasonably good estimation of αx, denoted by β, available, 

then αy−β can be a good estimation of the SCN υα. To suppress υα and improve the accuracy of αy and thus 

further improve the objective function of Eq. (5), we can propose the following centralized sparse 

representation (CSR) model [22]:  

2
12

arg min{ + || || || || }i i i p
i i

λ γ= − + −∑ ∑y y H
α

α Φ α α α β ,                   (7) 

where βi is some good estimation of αi, γ is the regularization parameter and p can be 1 or 2. In the above 

CSR model, while enforcing the sparsity of coding coefficients αi, the sparse codes are also centralized to 

some estimate of αx (i.e., β) so that SCN υα can be suppressed.  

One important issue of sparsity-based IR is the selection of dictionary Φ. Conventional analytically 

designed dictionaries, such as DCT, wavelet and curvelet dictionaries, are insufficient to characterize the so 

many complex structures of natural images. The universal dictionaries learned from example image patches 

by using algorithms such as KSVD [27] can better adapt to local image structures. In general the learned 

dictionaries are required to be very redundant such that they can represent various image local structures. 

However, it has been shown that sparse coding with an overcomplete dictionary is unstable [43], especially 

in the scenario of image restoration. In our previous work [21], we cluster the training patches extracted 

from a set of example images into K clusters, and learn a PCA sub-dictionary for each cluster. Then for a 

given patch, one compact PCA sub-dictionary is adaptively selected to code it, leading to a more stable and 

sparser representation, and consequently better image restoration results. In this paper, we adopt this 

adaptive sparse domain selection strategy but learn the sub-dictionaries from the given image itself instead 

of the example images.   

We extract image patches from image x and cluster the patches into K clusters (typically K=70) by using 

the K-means clustering method. Since the patches in a cluster are similar to each other, there is no need to 

learn an over-complete dictionary for each cluster. Therefore, for each cluster we learn a dictionary of PCA 

bases and use this compact PCA dictionary to code the patches in this cluster. (For the details of PCA 
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dictionary learning, please refer to [21].) These K PCA sub-dictionaries construct a large over-complete 

dictionary to characterize all the possible local structures of natural images.  

In the conventional sparse representation models as well as the model in Eq. (7), the local sparsity term 

1|| ||iα  is used to ensure that only a small number of atoms are selected from the over-complete dictionary Φ 

to represent the input image patch. In our algorithm (please refer to Algorithm 1 in Section III-C), for each 

patch to be coded, we adaptively select one sub-dictionary from the trained K PCA sub-dictionaries to code 

it. This actually enforces the coding coefficients of this patch over the other sub-dictionaries to be 0, leading 

to a very sparse representation of the given patch. In other words, our algorithm will naturally ensure the 

sparsity of the coding coefficients, and thus the local sparsity regularization term 1|| ||iα  can be removed. 

Hence we propose the following sparse coding model: 

2

2
arg min{ + || || }i i p

i

λ= − −∑y y H
α

α Φ α α β .                     (8) 

There is only one regularization term || ||i i p−α β
 

in the above model. In the case that p=1, and the estimate 

βi is obtained by using the nonlocal redundancy of natural images, this regularization term will become a 

nonlocally centralized sparsity term, and we call this model nonlocally centralized sparse representation 

(NCSR). Next let’s discuss how to obtain a good estimation βi of the unknown sparse coding vectors αi. 

 

C. The nonlocal estimate of unknown sparse code 

Generally, there can be various ways to make an estimate of αx, depending on how much the prior 

knowledge of αx we have. If we have many training images that are similar to the original image x, we could 

learn the estimate β of αx from the training set. However, in many practical situations the training images are 

simply not available. On the other hand, the strong nonlocal correlation between the sparse coding 

coefficients, as shown in Fig. 1, allows us to learn the estimate β from the input data. Based on the fact that 

natural images often contain repetitive structures, i.e., the rich amount of nonlocal redundancies [31], we 

search the nonlocal similar patches to the given patch i in a large window centered at pixel i. For higher 

performance, the search of similar patches can also be carried out across different scales at the expense of 

higher computational complexity, as shown in [32]. Then a good estimation of αi, i.e., βi, can be computed 

as the weighted average of those sparse codes associated with the nonlocal similar patches (including patch i) 
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to patch i. For each patch xi, we have a set of its similar patches, denoted by Ωi. Finally βi can be computed 

from the sparse codes of the patches within Ωi.  

Denote by αi,q the sparse codes of patch xi,q within set Ωi. Then βi can be computed as the weighted 

average of αi,q:  

, ,
i

i i q i qq Ω
ω

∈
=∑β α ,                                  (9) 

where ,i qω  is the weight. Similar to the nonlocal means approach [31], we set the weights to be inversely 

proportional to the distance between patches xi and xi,q: 

2
, , 2

1 ˆ ˆexp( || || / )i q i i q h
W

ω = − −x x ,                           (10) 

where ˆ ˆi i=x Φα  and , ,ˆ ˆi q i q=x Φα  are the estimates of the patches xi and xi,q, h is a pre-determined scalar 

and W is the normalization factor. In the case of orthogonal dictionaries (e.g., the local PCA dictionaries 

used in this work), the sparse codes ˆiα  and ,ˆi qα  can be easily computed as ˆ ˆT
i i= xα Φ  and , ,ˆ ˆT

i q i q= xα Φ . 

Our experimental results show that by exploiting the nonlocal redundancies of natural images, we are able to 

achieve good estimation of the unknown sparse vectors αi, and the NCSR model of Eq. (8) can significantly 

improve the performance of the sparsity-based IR results.  

Eq. (8) can be solved iteratively. We first initialize βi as 0, i.e., ( 1)
i
−β =0, and solve for the sparse coding 

vector, denoted by (0)
yα , using some standard sparse coding algorithm. Then we can get the initial estimation 

of x, denoted by x(0), via (0) (0)
yx =Φ α . Based on x(0), we search for the similar patches to each patch i, and 

hence the nonlocal estimate of βi can be updated using Eqs. (9) and (10). The updated estimation of αx, 

denoted by (0)
iβ , will then be used to improve the accuracy of the sparse codes and thus improve the IR 

quality. Such a procedure is iterated until convergence. In the lth iteration, the sparse vector is obtained by 

solving the following minimization problem 

( ) 2 ( )
2arg min{|| || + || || }l l

y i i p
i

λ= − −∑y H
α

α Φ α α β .                   (11) 

The restored image is then updated as ( ) ( )ˆ l l
y=x Φ α . In the above iterative process, the accuracy of sparse 

coding coefficient ( )l
yα  is gradually improved, which in turn improves the accuracy of βi. The improved βi 
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are then used to improve the accuracy of αy, and so on. Finally, the desired sparse code vector αy is obtained 

when the alternative optimization process falls into a local minimum. The detailed algorithm will be 

presented in Section III.  

 

III. Algorithm of NCSR 

A. Parameters determination 

In Eq. (8) or Eq. (11) the parameter λ that balances the fidelity term and the centralized sparsity term should 

be adaptively determined for better IR performance. In this subsection we provide a Bayesian interpretation 

of the NCSR model, which also provides us an explicit way to set the regularization parameter λ. In the 

literature of wavelet denoising, the connection between Maximum a Posterior (MAP) estimator and sparse 

representation has been established, and here we extend the connection from the local sparsity to nonlocally 

centralized sparsity.  

For the convenience of expression, let’s define θ=α−β. For a given β, the MAP estimation of θ can be 

formulated as  

arg max log ( | )

            arg max {log ( ) log ( )}.
y Ρ

Ρ Ρ

=

= +
θ

θ

θ θ y

y |θ θ
                    (12) 

The likelihood term is characterized by the Gaussian distribution: 

2
22

1 1( | ) ( | , ) exp( || || )
22 nn

Ρ Ρ
σπσ

= = − −y θ y y Hα β Φ α ,               (13) 

where θ and β are assumed to be independent. In the prior probability Ρ(θ), θ reflects the variation of α from 

its estimation β. If we take β as a very good estimation of the sparse coding coefficient of unknown true 

signal, then θy =αx–β is basically the SCN associated with αy, and we have seen in Fig. 2 that the SCN signal 

can be well characterized by the Laplacian distribution. Thus, we can assume that θ follows i.i.d. Laplacian 

distribution, and the joint prior distribution P(θ) can be modeled as  

,,

| ( ) |1( ) { exp( )}
2

i

i j i ji j

j
Ρ

σσ
= −∏∏ θθ ,                         (14) 

where θi(j) are the jth elements of θi, and σi,j is the standard deviations of θi(j).  

Substituting Eq. (13) and (14) into Eq. (12), we obtain  
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2 2
2

,

1arg min{|| || +2 2 | ( ) |}n i
i j i j

jσ
σ

= − ∑∑y θ
y Hθ Φ α θ .                 (15) 

Hence, for a given β the sparse codes α can then be obtained by minimizing the following objective function 

2 2
2

,

1arg min{ +2 2 | ( ) ( ) |}n i i
i j i j

j jσ
σ

= − ∑∑y y H
α

α Φ α α − β .               (16) 

Compared with Eq. (8), we can see that the l1-norm (i.e., p=1) should be chosen to characterize the SCN 

term αi−βi. Comparing Eq. (16) with Eq. (8), we have  

2

,
,

2 2 n
i j

i j

σ
λ

σ
= .                                  (17) 

In order to have robust estimations of σi,j, the image nonlocal redundancies can be exploited. In practice, we 

estimate σi,j using the set of θi computed from the nonlocal similar patches. λi,j is then updated with the 

updated θ in each iteration or in several iterations to save computational cost. Next we present the detailed 

algorithm of the proposed NCSR scheme.  

 

B. Iterative shrinkage algorithm 

As discussed in Section II, we use an iterative algorithm to solve the NCSR objective function in Eq. (8) or 

(16). In each iteration, for fixed βi we solve the following l1-norm minimization problem  

2
,2

arg min{ + | ( ) ( ) |}i j i i
i j

j jλ= − ∑∑y y H
α

α Φ α α − β ,                 (18) 

which is convex and can be solved efficiently. In this paper we adopt the surrogate algorithm in [9] to solve 

Eq. (18). In the (l+1)-th iteration, the proposed shrinkage operator for the jth element of αi is  

( 1) ( )
,( ) ( ( )) ( )l l

i i j i ij S v j jτ
+ = − +α β β ,                         (19) 

where ( )Sτ ⋅  is the classic soft-thresholding operator and ( ) ( ) ( )( ) /l T l lc= − +v K y K α α , where =K HΦ ,  

T T T=K HΦ , τ=λi,j/c, and c is an auxiliary parameter guaranteeing the convexity of the surrogate function. 

The derivation of the above shrinkage operator follows the standard surrogate algorithm in [9]. The 

interesting readers may refer to [9] for details.  
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C. Summary of the algorithm     

As we mentioned in Section II-B, in our NCSR algorithm the adaptive sparse domain selection strategy [21] 

is used to code each patch. We cluster the patches of image x into K clusters and learn a PCA sub-dictionary 

Φk for each cluster. For a given patch, we first check which cluster it falls into by calculating its distances to 

means of the clusters, and then select the PCA sub-dictionary of this cluster to code it. The proposed NCSR 

based IR algorithm is summarized in Algorithm 1.  

In Algorithm 1, for fixed parameters λi,j and {βi} the objective function in Eq. (18) is convex and can be 

efficiently solved by the iterative shrinkage algorithm in the inner loop, and its convergence has been well 

established in [9]. Since we update the regularization parameter λi,j and {βi} in every J0 iterations after 

solving a sub-optimization problem, Algorithm 1 is empirically convergent in general, as those presented in 

[39]. 

 

Algorithm 1  

1. Initialization:  
(a) Set the initial estimate as x̂ = y  for image denoising and deblurring, or initialize x̂  by 

bicubic interpolator for image super-resolution;  
(b) Set initial regularization parameter λ and δ; 

2. Outer loop (dictionary learning and clustering): iterate on l =1,2,…, L 
(a) Update the dictionaries {Φk} via k-means and PCA; 
(b) Inner loop (clustering): iterate on j=1,2,…, J 

(I) ( 1/ 2) ( ) ( )ˆ ˆ ˆ( )j j T jδ+ = + −x x H y Hx , where δ is the pre-determined constant; 
(II) Compute 

1

( ) ( 1/ 2) ( 1/ 2)
1 ˆ ˆ[ , , ]

N

j T j T j
k k N

+ +=v R x R xΦ Φ , where 
ikΦ  is the dictionary assigned to 

patch ( 1/ 2)ˆ ˆ j
i i

+=x R x ; 
(III) Compute ( 1)j+

iα  using the shrinkage operator given in Eq. (19); 
(IV) If mod(j, J0)=0 update the parameters λi,j and {βi} using Eqs. (17) and (9), respectively; 
(V) Image estimate update: ( 1) ( 1)ˆ j j+ += yx Φ α using Eq. (4).  

 
 

IV. Experimental results 

To verify the IR performance of the proposed NCSR algorithm we conduct extensive experiments on image 

denoising, deblurring and super-resolution. The basic parameter setting of NCSR is as follows: the patch size 

is 7×7 and K=70. The parameters L, J, and δ in Algorithm 1 are set accordingly for different IR applications. 

For image denoising, δ=0.02, L=3, and J=3; for image deblurring and super-resolution, δ=2.4, L=5, and 
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J=160. To evaluate the quality of the restored images, the PSNR and the recently proposed powerful 

perceptual quality metric FSIM [33] are calculated. Due to the limited page space, we only show part of the 

results in this paper, and all the experimental results can be downloaded on the website: 

http://www.comp.polyu.edu.hk/~cslzhang/NCSR.htm.  

A. Image denoising 

Table 1: The PSNR (dB) results by different denoising methods. In each cell, the results of the four denoising methods 
are reported in the following order: top left – SAPCA-BM3D [40]; top right – LSSC [18]; bottom left – EPLL [34]; 
bottom right – NCSR.  
 

σ 5 10 15 20 50 100 

Lena 
38.86 38.68 36.07 35.83 34.43 34.14 33.20 32.88 29.07 28.95 25.37 25.96 

38.52 38.70 35.56 35.81 33.85 34.09 32.60 32.92 28.42 28.89 25.30 25.66 

Monarch 
38.69 38.53 34.74 34.48 32.46 32.15 30.92 30.58 26.28 25.59 22.31 21.82 

38.22 38.49 34.27 34.57 32.04 32.34 30.48 30.69 25.67 25.68 22.04 22.05 

Barbara 
38.38 38.44 35.07 34.95 33.27 32.96 31.97 31.53 27.51 27.13 23.05 23.56 

37.56 38.36 33.59 34.98 31.33 33.02 29.75 31.72 24.83 27.10 22.10 23.30 

Boat 
37.50 37.34 34.10 33.99 32.29 32.17 31.02 30.87 26.89 26.76 23.71 23.94 

36.78 37.35 33.63 33.90 31.89 32.03 30.63 30.74 26.64 26.60 23.78 23.64 

C. Man 
38.54 38.24 34.52 34.14 32.31 31.96 30.86 30.54 26.59 26.36 22.91 23.14 

38.04 38.17 33.94 34.12 31.73 31.99 30.28 30.48 26.08 26.16 22.87 22.89 

Couple 
37.60 37.41 34.13 33.96 32.20 32.06 30.83 30.70 26.48 26.31 23.19 23.34 

37.32 37.44 33.78 33.94 31.83 31.95 30.47 30.56 26.22 26.21 23.34 23.22 

F. Print 
36.67 36.71 32.65 32.57 30.46 30.31 28.97 28.78 24.53 24.21 21.07 21.18 

36.41 36.81 32.13 32.70 29.83 30.46 28.29 28.99 23.58 24.53 19.80 21.29 

Hill 
37.31 37.16 33.84 33.68 32.06 31.89 30.85 30.71 27.13 26.99 24.10 24.30 

37.00 37.17 33.49 33.69 31.67 31.86 30.47 30.61 26.91 26.86 24.37 24.13 

House 
40.13 40.00 37.06 37.05 35.31 35.32 34.03 34.16 29.53 29.90 25.20 25.63 

39.04 39.91 35.81 36.80 34.21 35.11 33.08 33.97 28.91 29.63 25.44 25.65 

Man 
37.99 37.84 34.18 34.03 32.12 31.98 30.73 30.61 26.84 26.72 23.86 24.00 

37.67 37.78 33.90 33.96 31.89 31.89 30.53 30.52 26.63 26.60 23.96 23.97 

Peppers 
38.30 38.15 34.94 34.80 33.01 32.87 31.61 31.47 26.94 26.87 23.05 23.14 

37.93 38.06 34.51 34.66 32.56 32.70 31.18 31.26 26.60 26.53  22.93 22.64 

Straw 
35.81 35.92 31.46 31.39 29.13 28.95 27.52 27.36 22.79 22.67 19.42 19.50 

35.36 35.87 30.84 31.50 28.50 29.13 26.93 27.50 22.00 22.48 18.95 19.23 

Average 
37.98 37.87 34.40 34.24 32.42 32.23 31.04 30.85 26.71 26.54 23.10 23.29 

37.49 37.84 33.79 34.22 31.78 32.21 30.39 30.83 26.04 26.44 22.91 23.14 
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Figure 3: Denoising performance comparison on the Monarch image with moderate noise corruption. From left to right 
and top to bottom: original image, noisy image (σ=20), denoised images by SAPCA-BM3D [40] (PSNR=30.91 dB; 
FSIM=0.9404), LSSC [18] (PSNR=30.58 dB; FSIM=0.9310), EPLL [34] (PSNR=30.48 dB; FSIM=0.9330), and NCSR 
(PSNR=30.69 dB, FSIM=0.9316).  
 

We compare the proposed NCSR method with three recently developed state-of-the-art denoising methods, 

including the shape-adaptive PCA based BM3D (SAPCA-BM3D) [40, 41] (which outperforms the 

benchmark BM3D algorithm [17]), the learned simultaneously sparse coding (LSSC) method [18] and the 

expected patch log likelihood (EPLL) based denoising method [34]. A set of 12 natural images commonly 

used in the literature of image denoising are used for the comparison study. The PSNR results of the test 

methods are reported in Table 1 (the highest PSNR values among the four are highlighted). Due to the 

limited space, the FSIM results are not reported here but they are available in the website of this work. From 

Table 1, we can see that the proposed NCSR achieves highly competitive denoising performance. In term of 

average PSNR results, NCSR performs almost the same as LSSC, and is slightly lower than SAPCA-BM3D, 

which is the best among the competitors.  

Let’s then focus on the visual quality of the denoised images by the four competing methods. In Fig. 3 

and Fig. 4 we show the denoising results on two typical images with moderate noise corruption and strong 

noise corruption, respectively. It can be seen that NCSR is very effective in reconstructing both the smooth 
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and the texture/edge regions. When the noise level is not very high, as shown in Fig. 3 (σ=20), all the four 

competing methods can achieve very good denoising outputs. When the noise level is high, as shown in Fig. 

4 (σ=100), however, the SAPCA-BM3D and EPLL methods tend to generate many visual artifacts. LSSC 

and NCSR work much better in this case. In particular, the denoised image by the proposed NCSR has much 

less artifacts than other methods, and is visually more pleasant. More denoised images can be downloaded in 

the website associated with this paper. 

 

   

   
 
Figure 4: Denoising performance comparison on the House image with strong noise corruption. From left to right and 
top to bottom: original image, noisy image (σ=100), denoised images by SAPCA-BM3D [40] (PSNR=25.20 dB; 
FSIM=0.8065), LSSC [18] (PSNR=25.63 dB; FSIM=0.8017), EPLL [34] (PSNR=25.44 dB; FSIM= 0.8100), and 
NCSR (PSNR=25.65 dB; FSIM=0.8068).  
 

B. Image deblurring 

In this sub-section, we conduct experiments to verify the performance of the proposed NCSR method for 

image deblurring in comparison with some competitive image deblurring methods. The deblurring methods 

are applied to both the simulated blurred images and real motion blurred images. For the simulated blurred 

images, the blurred images are generated by first applying a blur kernel and then adding additive Gaussian 

noise. Two sets of non-blind image deblurring experiments are conducted. Fist, two commonly used blur 



16 
 

kernels, i.e., 9×9 uniform blur and 2D Gaussian function (non-truncated) with standard deviation 1.6, are 

used for simulations. Additive Gaussian noise with noise levels σn= 2  is added to the blurred images. 

Second, 6 typical non-blind deblurring image experiments presented in [37, 42] are conducted to further test 

the deblurring performance of the proposed NCSR method under different image blurry conditions. For the 

real motion blurred images, we borrowed the motion blur kernel estimation method from [35] to estimate the 

blur kernel and then fed the estimated blur kernel into the NCSR deblurring method. For color images, we 

only apply the deblurring operation to the luminance component.  

 
Table 2: The PSNR (dB) and FSIM results by different deblurring methods.  

 
 9×9 uniform blur, σn= 2  

Images Butterfly Boats C. Man House Parrot Lena Barbara Starfish Peppers Leaves Average 

FISTA [36] 28.37 
0.9119 

29.04 
0.8858 

26.82 
0.8627 

31.99 
0.9017 

29.11 
0.9002 

28.33 
0.8798 

25.75 
0.8375 

27.75 
0.8775 

28.43 
0.8813 

26.49 
0.8958 

28.21 
0.8834 

l0-SPAR 
[37] 

27.10 
0.8879 

29.86 
0.9094 

26.97 
0.8689 

32.98 
0.9225 

29.34 
0.9262 

28.72 
0.9063 

26.42 
0.8691 

28.11 
0.8951 

28.66 
0.9066 

26.30 
0.8776 

28.44 
0.8970 

IDD-BM3D 
[42] 

29.21 
0.9287 

31.20 
0.9304

28.56 
0.9007 

34.44 
0.9369 

31.06 
0.9364 

29.70 
0.9197 

27.98 
0.9014 

29.48 
0.9167 

29.62 
0.9200 

29.38 
0.9295 

30.06 
0.9220 

ASDS-Reg 
[21] 

28.70 
0.9053 

30.80 
0.9236 

28.08 
0.8950 

34.03 
0.9337 

31.22 
0.9306 

29.92 
0.9256 

27.86 
0.9088 

29.72 
0.9208 

29.48 
0.9203 

28.59 
0.9075 

29.84 
0.9171 

NCSR 29.68 
0.9271 

31.08 
0.9294 

28.62 
0.9026 

34.31 
0.9415 

31.95 
0.9411 

29.96 
0.9254 

28.10 
0.9117 

30.28 
0.9293 

29.66 
0.9220 

29.98 
0.9341 

30.36 
0.9263 

 Gaussian blur, σn= 2  

FISTA [36] 30.36 
0.9452 

29.36 
0.9024 

26.81 
0.8845 

31.50 
0.8968 

31.23 
0.9290 

29.47 
0.9011 

25.03 
0.8415 

29.65 
0.9256 

29.42 
0.9057 

29.36 
0.9393 

29.22 
0.9071 

IDD-BM3D 
[42] 

30.73 
0.9442 

31.68 
0.9426

28.17 
0.9136 

34.08 
0.9359

32.89 
0.9561 

31.45 
0.9430

27.19 
0.8986 

31.66 
0.9496 

29.99 
0.9373 

31.40 
0.9512 

30.92 
0.9372 

ASDS-Reg 
[21] 

29.83 
0.9126 

30.27 
0.9064 

27.29 
0.8637 

31.87 
0.8978 

32.93 
0.9576 

30.36 
0.9058 

27.05 
0.8881 

31.91 
0.9491 

28.95 
0.9039 

30.62 
0.9304 

30.11 
0.9115 

NCSR 30.84 
0.9381 

31.49 
0.9371 

28.34 
0.9078 

33.63 
0.9333 

33.39 
0.9587 

31.26 
0.9389 

27.91 
0.9088 

32.27 
0.9551 

30.16 
0.9331 

31.57 
0.9508 

31.09 
0.9362 

 

We compared the NCSR deblurring method with four state-of-the-art deblurring methods, including the 

constrained TV deblurring (denoted by FISTA) method [36], the l0-sparsity based deblurring (denoted by 

l0-SPAR) method [37], the IDD-BM3D deblurring method [42], and the adaptive sparse domain selection 

method (denoted by ASDS-Reg) [21]. Note that FISTA is a TV-based deblurring approach that can well 

reconstruct the piecewise smooth regions but often fail to recover fine image details. The l0-SPAR is a 

sparsity-based deblurring method where a fixed sparse domain is used. (Since l0-SPAR does not work well 

for Gaussian blur kernel, we do not present its deblurring results for Gaussian blur kernel in Table 2). The 

recently proposed IDD-BM3D method is an improved version of BM3D deblurring method [20], and 
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ASDS-Reg is a very competitive sparsity-based deblurring method with adaptive sparse domain selection.  

The PSNR and FSIM results on a set of 10 photographic images are reported in Table 2. From Table 2, 

we can conclude that the proposed NCSR deblurring method outperforms much the other competing 

methods. In average NCSR outperforms IDD-BM3D by 0.3 dB and 0.17 dB for the uniform blur and 

Gaussian blur, respectively. The NCSR also outperforms ASDS-Reg in average by 0.52 dB and 0.98 dB for 

the two different kernels, respectively. The visual comparisons of the deblurring methods are shown in Figs. 

5~6, from which we can see that the NCSR method produces much cleaner and sharper image edges and 

textures than other methods.  

Table 3 Comparison of the PSNR (dB) results of the deblurring methods.  

 Scenario Scenario 
 1 2 3 4 5 6 1 2 3 4 5 6 

Method Cameraman (256×256) House (256×256) 

BSNR 31.87 25.85 40.00 18.53 29.19 17.76 29.16 23.14 40.00 15.99 26.61 15.15 
Input PSNR 22.23 22.16 20.76 24.62 23.36 29.82 25.61 25.46 24.11 28.06 27.81 29.98 
TVMM [7] 7.41 5.17 8.54 2.57 3.36 1.30 7.98 6.57 10.39 4.12 4.54 2.44 

L0-Spar [37] 7.70 5.55 9.10 2.93 3.49 1.77 8.40 7.12 11.06 4.55 4.80 2.15 
IDD-BM3D[42] 8.85 7.12 10.45 3.98 4.31 4.89 9.95 8.55 12.89 5.79 5.74 7.13 

NCSR  8.78 6.69 10.33 3.78 4.60 4.50 9.96 8.48 13.12 5.81 5.67 6.94 

 Lena (512×512) Barbara (512×512) 

BSNR 29.89 23.87 40.00 16.47 27.18 15.52 30.81 24.79 40.00 17.35 28.07 16.59 
Input PSNR 27.25 27.04 25.84 28.81 29.16 30.03 23.34 23.25 22.49 24.22 23.77 29.78 
TVMM [7] 6.36 4.98 7.47 3.52 3.61 2.79 3.10 1.33 3.49 0.41 0.75 0.59 

L0-Spar [37] 6.66 5.71 7.79 4.09 4.22 1.93 3.51 1.53 3.98 0.73 0.81 1.17 
IDD-BM3D[42] 7.97 6.61 8.91 4.97 4.85 6.34 7.64 3.96 6.05 1.88 1.16 5.45 

NCSR  8.03 6.54 9.25 4.93 4.86 6.19 7.76 3.64 5.92 2.06 1.43 5.50 
 

The PSNR results for the 6 typical deblurring experiments presented in [37, 42] are reported in Table 3. 

For fair comparison, the PSNR results of other competing methods are direct obtained from [42]. We 

optimize the parameters of the proposed deblurring method for each experiment. From Table 3, we can see 

that both the IDD-BM3D method of [42] and the proposed NCSR method can achieve significant PSNR 

improvement over other competing methods. Parts of the deblurred Barbara image (scenario 4) by the 

competing methods are shown in Fig. 7. We can see that IDD-BM3D and the proposed NCSR method can 

better recover the fine textures than other competing methods. Moreover, the textures recovered by the 

proposed NCSR method are better than those by the IDD-BM3D method. 
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We also test the proposed NCSR deblurring method on real motion blurred images. Since the blur kernel 

estimation is a non-trivial task, we borrowed the kernel estimation method from [35] to estimate the blur 

kernel and apply the estimated blur kernel in NCSR to restore the original images. In Fig. 8 we present the 

deblurring results of two real blurred images by the blind deblurring method of [35] and the proposed NCSR 

method. We can see that the images restored by our approach are much clearer and much more details are 

recovered. Considering that the estimated kernel will have bias from the true unknown blurring kernel, these 

experiments validate that NCSR is robust to the kernel estimation errors. More motion deblurring results can 

be found in the website of this paper. 

 

 

   

   
 
Figure 5: Deblurring performance comparison on the Cameraman image. From left to right and top to bottom: noisy 
and blurred image (9×9 uniform blur, σn= 2 ), the deblurred images by FISTA [36] (PSNR=26.82dB; FSIM=0.8627), 
l0-SPAR [37] (PSNR=28.56dB; FSIM= 0.9007), IDD-BM3D [42] (PSNR=28.56dB; FSIM=0.9007), ASDS-Reg [21] 
(PSNR=28.08dB; FSIM=0.8950), and the proposed NCSR (PSNR=28.62dB; FSIM= 0.9026).  
 



19 
 

   

   
 
Figure 6: Deblurring performance comparison on the Starfish image. From left to right and top to bottom: noisy and 
blurred image (9×9 uniform blur, σn= 2 ), the deblurred images by FISTA [36] (PSNR=27.75dB; FSIM=0.8775), 
l0-SPAR [37] (PSNR=28.11dB; FSIM=0.8951), IDD-BM3D [42] (PSNR=29.48dB; FSIM=0.9167), ASDS-Reg [21] 
(PSNR=29.72 dB; FSIM=0.9208), and the proposed NCSR (PSNR=30.28dB; FSIM=0.9293). 
 

   

   
Figure 7: Deblurring performance comparison on the Barbara (512×512) image. From left to right and top to bottom: 
original image, noisy and blurred image (scenario 4: PSF=[1 4 6 4 1]T[1 4 6 4 1]/256, σn=7), the deblurred images by 
TVMM [7] (PSNR=24.63dB), l0-SPAR [37] (PSNR=24.95dB), IDD-BM3D [42] (PSNR=26.10dB), and the proposed 
NCSR (PSNR=26.28dB). 
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Figure 8: Deblurring performance comparison on real motion blurred images with the blur kernel estimated using the 
kernel estimation approach from [35]. From left to right: motion blurred image, deblurred image by [35], deblurred 
image by proposed NCSR, and close-up views.  
 

C. Image super-resolution 

In image super-resolution, the low-resolution (LR) image is obtained by first blurring the high-resolution 

(HR) image with a blur kernel and then downsampling by a scaling factor. Hence, recovering the HR image 

from a single LR image is more severely underdetermined than image deblurring. In this subsection, we test 

the proposed NCSR based IR for image super-resolution. The simulated LR image is generated by first 

blurring an HR image with a 7×7 Gaussian kernel with standard deviation 1.6, and then downsampling the 

blurred image by a scaling factor 3 in both horizontal and vertical directions. The additive Gaussian noises 

of standard deviation 5 are also added to the LR images, making the IR problem more challenging. Since 

human visual system is more sensitive to luminance changes, we only apply the IR methods to the 

luminance component and use the simple bicubic interpolator for the chromatic components.  

We compare the proposed NCSR approach with three recently developed image super-resolution 

methods, including the TV-based method [26], the sparse representation based method [23], and the 

ASDS-Reg method [21]2. Since the sparsity-based method in [23] cannot perform the resolution upscaling 

                                                        
2 We thank the authors of [18], [21], [23], [34-37], [40-42] for providing their source codes or experimental results. 

The code associated with this work will be available online.  
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and deblurring simultaneously, as suggested by the authors [23] we apply the iterative back-projection [38] 

to the output of method [23] to remove the blur. 

The PSNR results of the test methods on a set of 9 natural images are reported in Table 4, from which 

we can conclude that the proposed NCSR approach significantly outperforms the TV [26] and sparsity-based 

methods [23]. In average the NCSR approach also outperforms the state-of-the-art ASDS-Reg method [21] 

by up to 0.25 dB and 0.32 dB for the noiseless and noisy cases, respectively. This demonstrates the 

superiority of the NCSR method for image inverse problems. The subjective comparison between the NCSR 

and other methods are shown in Figs. 9~11. We can see that the TV-based method [26] tends to generate 

piecewise constant structures; the image edges reconstructed by the sparsity-based method [23] contain 

some visible artifacts. Obviously, the NCSR approach reconstruct the best visually pleasant HR images. The 

reconstructed edges are much sharper than all the other three competing methods, and more image fine 

structures are recovered.  

 

   

   
 
Figure 9: Image super-resolution performance comparison on Plant image (scaling factor 3, σn=0). From left to right 
and top to bottom: original image, LR image, the reconstructed images by TV [26] (PSNR=31.34dB; FSIM=0.8909), 
sparsity-based [23] (PSNR=31.55dB; FSIM=0.8964), ASDS-Reg [21] (PSNR=33.44dB; FSIM=0.9242), and the 
proposed NCSR (PSNR= 34.00dB; FSIM= 0.9369).  
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Figure 10: Image super-resolution performance comparison on Monarch image (scaling factor 3, σn=0). From left to 
right and top to bottom: original image, LR image, the reconstructed images by TV [26] (PSNR=26.57dB; 
FSIM=0.8970), sparsity-based [23] (PSNR=24.70dB; FSIM=0.7995), ASDS-Reg [21] (PSNR=27.28dB; FSIM=0.8789) 
and the proposed NCSR (PSNR= 28.10 dB; FSIM=0.9031).  
 

   

   
 
Figure 11: Image super-resolution performance comparison on Parrot image (scaling factor 3, σn=5). From left to right 
and top to bottom: original image, LR image, the reconstructed images by TV [26] (PSNR=27.01dB; FSIM=0.8562), 
sparsity-based [23] (PSNR=27.15dB; FSIM=0.8632), ASDS-Reg [21] (PSNR=29.01dB; FSIM=0.9182), and the 
proposed NCSR (PSNR= 29.51dB; FSIM= 0.9210).  
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Table 4: PSNR (dB) and FSIM results (luminance components) of the reconstructed HR images. 

 

 Noiseless 

Images Butterfly flower Girl Pathenon Parrot Raccoon Bike Hat Plants Average 

TV [26] 26.56 
0.8970 

27.51 
0.8295 

31.24 
0.8598 

26.00 
0.7701 

27.85 
0.9081 

27.54 
0.7950 

23.66 
0.8032 

29.20 
0.8623 

31.34 
0.8909 

27.88 
0.8462 

Sparsity [23] 24.70 
0.7995 

27.87 
0.8611 

32.87 
0.8989 

26.27 
0.8018 

28.70 
0.9233 

28.51 
0.8490 

23.23 
0.8138 

29.63 
0.8705 

31.55 
0.8964 

28.15 
0.8571 

ASDS-Reg 
[21] 

27.28 
0.8789 

29.33 
0.8960 

33.50 
0.9117 

27.00 
0.8235 

30.45 
0.9421 

29.25 
0.8750 

24.67 
0.8566 

30.99 
0.9018 

33.44 
0.9242 

29.55 
0.8900 

NCSR 28.10 
0.9031 

29.50 
0.9004 

33.65 
0.9210 

27.19 
0.8367 

30.50 
0.9452 

29.28 
0.8796 

24.74 
0.8606 

31.27 
0.9093 

34.00 
0.9369 

29.80 
0.8992 

 Noisy 

TV [26] 25.49 
0.8707 

26.57 
0.8147 

29.86 
0.8342 

25.35 
0.7706 

27.01 
0.8562 

26.74 
0.7888 

23.11 
0.7890 

28.13 
0.8340 

29.70 
0.8561 

26.88 
0.8238 

Sparsity [23] 23.61 
0.7764 

26.60 
0.8208 

30.71 
0.8685 

25.40 
0.7814 

27.15 
0.8632 

27.22 
0.8243 

22.45 
0.7807 

28.31 
0.8237 

29.57 
0.8524 

26.78 
0.8213 

ASDS-Reg 
[21] 

26.06 
0.8530 

27.83 
0.8601 

31.87 
0.8731 

26.22 
0.7904 

29.01 
0.9182 

28.01 
0.8202 

23.62 
0.8200 

29.61 
0.8630 

31.18 
0.8837 

28.16 
0.8535 

NCSR 26.86 
0.8860 

28.08 
0.8633 

32.03 
0.8741 

26.38 
0.7969 

29.51 
0.9210 

28.03 
0.8113 

23.80 
0.8241 

29.94 
0.8700 

31.73 
0.8955 

28.48 
0.8602 

 

V. Conclusion 

In this paper we presented a novel nonlocally centralized sparse representation (NCSR) model for image 

restoration. The sparse coding noise (SCN), which is defined as the difference between the sparse code of 

the degraded image and the sparse code of the unknown original image, should be minimized to improve the 

performance of sparsity-based image restoration. To this end, we proposed a centralized sparse constraint, 

which exploits the image nonlocal redundancy, to reduce the SCN. The Bayesian interpretation of the NCSR 

model was provided and this endows the NCSR model an iteratively reweighted implementation. An 

efficient iterative shrinkage function was presented for solving the l1-regularized NCSR minimization 

problem. Experimental results on image denoising, deblurring and super-resolution demonstrated that the 

NCSR approach can achieve highly competitive performance to other leading denoising methods, and 

outperform much other leading image deblurring and super-resolution methods.  

 

References  

[1] E. Candès and T. Tao, “Near optimal signal recovery from random projections: Universal encoding 
strategies?” IEEE Trans. on Information Theory, vol. 52, no. 12, pp. 5406 - 5425, December 2006. 



24 
 

[2] D. Donoho, “Compressed sensing,” IEEE Trans. on Information Theory, vol. 52, no. 4, pp. 1289-1306, 
April 2006.  

[3] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from 
highly incomplete frequency information,” IEEE Trans. on Information Theory, vol. 52, no. 2, pp. 489 - 
509, February 2006. 

[4] M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging. Bristol, U.K.: IOP, 1998. 
[5] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D, 

vol. 60, pp. 259–268, 1992. 
[6] T. Chan, S. Esedoglu, F. Park, and A. Yip, “Recent developments in total variation image restoration,” 

in Mathematical Models of Computer Vision, N. Paragios, Y. Chen, and O. Faugeras, Eds. New York: 
Springer Verlag, 2005.  

[7] J. Oliveira, J. M. Bioucas-Dias, and M. Figueiredo, “Adaptive total variation image deblurring: a 
majorization-minimization approach,” Signal Processing, vol. 89, no. 9, pp. 1683-1693, Sep. 2009. 

[8] A. N. Tikhonov, “Solution of incorrectly formulated problems and regularization method,” In Soviet 
Math. Dokl., vol. 4, pp. 1035-1038, 1963. 

[9] I. Daubechies, M. Defriese, and C. DeMol, “An iterative thresholding algorithm for linear inverse 
problems with a sparsity constraint,” Commun. Pure Appl. Math., vol.57, pp.1413-1457, 2004. 

[10] P. Combettes, and V. Wajs, “Signal recovery by proximal forward-backward splitting,” SIAM 
J.Multiscale Model.Simul., vol.4, pp.1168-1200, 2005.  

[11] M. Zibulevsky and M. Elad, “l1-l2 optimization in signal and image processing,” IEEE Signal 
Processing Magazine, vol. 27, no. 3, pp. 76-88, May, 2010. 

[12] J. A. Tropp and S. J. Wright, “Computational methods for sparse solution of linear inverse 
problems,” Proceedings of IEEE, Special Issue on Applications of Compressive Sensing & Sparse 
Representation, vol. 98, no. 6, pp. 948-958, June, 2010. 

[13] J. M. Bioucas-Dias, and M.A.T. Figueiredo. “A new TwIST: two-step iterative shrinkage/thresholding 
algorithms for image restoration,” IEEE Trans. Image Proc., vol.16, no.12, pp.2992-3004, 2007. 

[14] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse 
modeling of signals and images,” SIAM Review, vol. 51, no. 1, pp. 34-81, Feb. 2009.  

[15] M. Elad, M.A.T. Figueiredo, and Y. Ma, “On the Role of Sparse and Redundant Representations in 
Image Processing,” Proceedings of IEEE, Special Issue on Applications of Compressive Sensing & 
Sparse Representation, June 2010.  

[16] J. Mairal, M. Elad, and G. Sapiro, “Sparse Representation for Color Image Restoration,” IEEE Trans. 
on Image Processing, vol. 17, no. 1, pages 53-69, Jan. 2008. 

[17] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain 
collaborative filtering,” IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080-2095, Aug. 2007. 

[18] J. Mairal, F. Bach, J. Ponce, G. Sapiro and A. Zisserman, “Non-Local Sparse Models for Image 
Restoration,” in Proc. IEEE International Conference on Computer Vision, Tokyo, Japan, 2009.  

[19] M. Elad and M. Aharon, “Image denoising via sparse and redundant representations over learned 
dictionaries,” IEEE Trans. Image Process., vol. 15, no. 12, pp. 3736-3745, Dec. 2006. 

[20] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image restoration by sparse 3D transform-domain 
collaborative filtering,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 
vol. 6812, 2008.  

[21] W. Dong, L. Zhang, G. Shi, and X. Wu, “Image deblurring and super-resolution by adaptive sparse 
domain selection and adaptive regularization,” IEEE Trans. On Image Processing, vol. 20, no. 7, pp. 
1838-1857, July 2011.  

[22] W. Dong, L. Zhang and G. Shi, “Centralized sparse representation for image restoration,” in Proc. 
IEEE Int. Conf. on Computer Vision (ICCV), 2011.  

[23] Jianchao Yang, John Wright, Thomas Huang and Yi Ma, “Image Super-Resolution via Sparse 
Representation”, IEEE Trans. Image Process., vol. 19, no. 11, pp. 2861-2873, Nov. 2010.  

[24] S. Chen, D. Donoho, and M. Saunders, “Atomic decompositions by basis pursuit,” SIAM Review, vol. 
43, pp. 129-159, 2001.  

[25] X. Zhang, M. Burger, X. Bresson, and S. Osher, “Bregmanized nonlocal regularization for 
deconvolution and sparse reconstruction,” SIAM J. Imaging Sci., vol. 3, no. 3, pp. 253-276, 2010. 

[26] A. Marquina, and S. J. Osher, “Image super-resolution by TV-regularization and Bregman iteration,” J. 
Sci. Comput., vol. 37, pp. 367-382, 2008. 



25 
 

[27] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: an algorithm for designing overcomplete dictionaries 
for sparse representation,” IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4311-4322, Nov. 2006. 

[28] R. Rubinstein, A.M. Bruckstein, and M. Elad, “Dictionaries for sparse representation modeling,” 
Proceedings of IEEE, Special Issue on Applications of Compressive Sensing & Sparse Representation, 
vol. 98, no. 6, pp. 1045-1057, June, 2010.  

[29] L. Sendur and I. W. Selesnick, “Bivariate shrinkage functions for wavelet-based denoising exploiting 
interscale dependency,” IEEE Trans. Signal Process., vol. 50, no. 11, pp. 2744-2756, Nov. 2002.  

[30] I. Ramirez and G. Sapiro, “Universal regularizers for robust sparse coding and modeling,” arXiv: 
1003.2941.  

[31] A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms, with a new one,” 
Multisc. Model. Simulat., vol. 4, no. 2, pp. 490.530, 2005.  

[32] D. Glasner, S. Bagon, and M. Irani, “Super-resolution from a single image,” IEEE International 
Conference on Computer Vision, Tokyo, Japan, 2009.  

[33] L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: A Feature Similarity Index for Image Quality 
Assessment,” IEEE Trans. on Image Process., vol. 20, no. 8, pp. 2378-2386, Aug. 2011.  

[34] D. Zoran and Y. Weiss, “From learning models of natural image patches to whole image restoration,” in 
Proc. IEEE Int. Conf. on Computer Vision (ICCV), 2011.  

[35] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a 
single image,” ACM Trans. Graph. (SIGGRAPH), pages 787-794, 2006.  

[36] A. Beck and M. Teboulle, “Fast gradient-based algorithms for constrained total variation image 
denoising and deblurring problems,” IEEE Trans. On Image Process., vol. 18, no. 11, pp. 2419-2434, 
Nov. 2009. 

[37] J. Portilla, “Image restoration through l0 analysis-based sparse optimization in tight frames,” in Proc. 
IEEE Int. conf. Image Process., pp. 3909-3912, Nov. 2009.  

[38] M. Irani and S. Peleg, “Motion Analysis for Image Enhancement: Resolution, Occlusion, and 
Transparency,” Journal of Visual Communication and Image Representation, vol. 4, no. 4, pp. 324-335, 
Dec. 1993.  

[39] E. Candès, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted l1 minimization,” Journal 
of Fourier Analysis and Applications, vol. 14, pp. 877-905, 2008.  

[40] V. Katkovnik, A. Foi, K. Egiazarian, and J. Astola, “From local kernel to nonlocal multiple-model 
image denoising,” Int. J. Computer Vision, vol. 86, no. 1, pp. 1-32, Jan. 2010.  

[41] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “BM3D  image denoising with shape-adaptive 
principal component analysis,” Proc. Workshop on Signal Processing with Adaptive Sparse Structured 
Representation (SPARS’09), Saint-Malo, Fance, Apr. 2009.  

[42] A. Danielyan, V. Katkovnik, and K. Egiazarian, “BM3D frames and variational image deblurring,” 
IEEE Trans. On Image Processing, vol. 21, no. 4, Apr. 2012.  

[43] M. Elad and I. Yavneh, “A plurality of sparse representation is better than the sparsest one alone,” IEEE 
Trans. Information Theory, vol. 55, no. 10, pp. 4701-4714, Oct. 2009.  


