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. Introduction

Reconstructing a high quality image from one or several of its degraded (e.g., noisy, blurred and/or
down-sampled) versions has many important applications, such as medical imaging, remote sensing,
surveillance and entertainment, etc. For an observed image y, the problem of image restoration (IR) can be
generally formulated by

y=Hx+v, Q)
where H is a degradation matrix, x is the original image vector and o is the additive noise vector. With
different settings of matrix H, Eq. (1) can represent different IR problems; for example, image denoising
when H is an identity matrix, image deblurring when H is a blurring operator, image superresolution when
H is a composite operator of blurring and down-sampling, and compressive sensing when H is a random
projection matrix [1-3]. In the past decades, extensive studies have been conducted on developing various IR
approaches [4-23]. Due to the ill-posed nature of IR, the regularization-based techniques have been widely
used by regularizing the solution spaces [5-9, 12-22]. In order for an effective regularizer, it is of great
importance to find and model the appropriate prior knowledge of natural images, and various image prior
models have been developed [5-8, 14, 17-18, 22].

The classic regularization models, such as the quadratic Tikhonov regularization [8] and the TV
regularization [5-7] are effective in removing the noise artifacts but tend to over-smooth the images due to
the piecewise constant assumption. As an alternative, in recent years the sparsity-based regularization [9-23]
has led to promising results for various image restoration problems [1-3, 16-23]. Mathematically, the sparse
representation model assumes that a signal x<R" can be represented as x~®a, where @R
(N<M) is an over-complete dictionary, and most entries of the coding vector a are zero or close to zero. The
sparse decomposition of x can be obtained by solving an /l-minimization problem, formulated as
a =argmin, || a|,, st.|x-@a|, <&, where ||*||o is a pseudo norm that counts the number of non-zero
entries in @, and ¢ is a small constant controlling the approximation error. Since /,-minimization is an
NP-hard combinatorial optimization problem, it is often relaxed to the convex /;-minimization. The /;-norm
based sparse coding problem can be generally formulated in the following Lagrangian form:

a, =argmin,{||x - @a|; +A [ al}, @)
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where constant A denotes the regularization parameter. With an appropriate selection of the regularization
parameter A, we can get a good balance between the sparse approximation error of x and the sparsity of «,
and the term “sparse coding” refer to this sparse approximation process of x. Many efficient /;-minimization
techniques have been proposed to solve Eqg. (2), such as iterative thresholding algorithms [9-11] and
Bregman split algorithms [25-26]. In addition, compared with the analytically designed dictionaries (e.g.,
wavelet/curvelet dictionary), the dictionaries learned from example image patches can improve much the

sparse representation performance since they can better characterize the image structures [27-28].

Figure 1: Examples of the sparse coding coefficients by using the KSVD [27] approach. The first row shows some
natural images; the second row shows the corresponding distributions of the sparse coding coefficients (associated with
the 3" atom of the dictionary in KSVD) of the patches extracted at each pixel. Note that the coefficients are not
randomly distributed but highly correlated.

In the scenario of IR, what we observed is the degraded image signal y via y= Hx+uv. To recover x
from y, first y is sparsely coded with respect to @by solving the following minimization problem:

a, =argmin{||ly-Hoa|; +A| |}, @)

and then x is reconstructed by x = @, . Clearly, it is expected that g, could be close enough to a,. Due to

the degradation of the observed image (e.g., the image is blurry and noisy), however, it is very challenging to
recover the true sparse code a, from y. Using only the local sparsity constraint ||a]|; in Eq. (3) may not lead
to an accurate enough image reconstruction. On the other hand, it is known that image sparse coding
coefficients a are not randomly distributed due to the local and nonlocal correlations existing in natural

images. In Fig. 1, we visualize the sparse coding coefficients of several example images. One can see that
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the sparse coding coefficients are correlated, while the strong correlations allow us to develop a much more
accurate sparse model by exploiting the local and nonlocal redundancies. Indeed, some recent works, such as
[17] and [18], are based on such considerations. For example, in [18] a group sparse coding scheme was
proposed to code similar patches simultaneously, and it achieves impressive denoising results.

In this paper we improve the sparse representation performance by proposing a nonlocally centralized
sparse representation (NCSR) model. To faithfully reconstruct the original image, the sparse code a; (refer
to Eq. (3)) should be as close as possible to the sparse codes e, (refer to Eq. (2)) of the original image. In
other words, the difference v,= a,—a. (called as sparse coding noise, SCN in short, in this work) should be

reduced and hence the quality of reconstructed image x= @, can be improved because
x-x~®a,-Pa, =dv,. To reduce the SCN, we centralize the sparse codes to some good estimation of

a,. In practice, a good estimation of a, can be obtained by exploiting the rich amount of nonlocal
redundancies in the observed image.

The proposed NCSR model can be solved effectively by conventional iterative shrinkage algorithm [9],
which allows us to adaptively adjust the regularization parameters from a Bayesian viewpoint. The extensive
experiments conducted on typical IR problems, including image denoising, deblurring and super-resolution,
demonstrate that the proposed NCSR based IR method can achieve highly competitive performance to
state-of-the-art denoising methods (e.g., BM3D [17, 40-42], LSSC [18]), and outperforms state-of-the-art
image deblurring and super-resolution methods.

The rest of the paper is organized as follows. Section Il presents the modeling of NCSR. Section Il1
provides the iterative shrinkage algorithm for solving the NCSR model. Section IV presents extensive

experimental results and Section V concludes the paper.

II. Nonlocally centralized sparse representation (NCSR)

Following the notation used in [19], for an image xeR", let x, = R.x denote an image patch of size
Jnx~/n extracted at location i, where R; is the matrix extracting patch x; from x at location i. Given an

dictionary @ eR™ n<M , each patch can be sparsely represented as x, ~®@e, , by solving an



l;-minimization problem e« ; =argmin, {|lx, - ¢, I>+A0le; |} . Then the entire image x can be
represented by the set of sparse codes {a,,}. The patches can be overlapped to suppress the boundary
artifacts, and we obtain a redundant patch-based representation. Reconstructing x from {e, .} is an
over-determined system, and a straightforward least-square solution is [19]:

X~ (ZLRI.TRI.)’lzl_]il(Rf@a”) . For the convenience of expression, we let

N _ N
X~ ¢ © ax = (Z[:]_RiTRi) 121':1 (RiT¢ax,i) ' (4)

where a, denotes the concatenation of all &, ; The above equation is nothing but telling that the overall
image is reconstructed by averaging each reconstructed patch of x;.

In the scenario of image restoration (IR), the observed image is modeled as y=Hx+v. The
sparsity-based IR method recovers x from y by solving the following minimization problem:

a,=argmin {||y- H®-a|; +2|| ||} (®)
The image x is then reconstructed as x = Doa,.

A. The sparse coding noise
In order for an effective IR, the sparse codes ¢, obtained by solving the objective function in Eq. (5) are
expected to be as close as possible to the true sparse codes a, of the original image x. However, due to the
degradation of the observed image y (e.g., noisy and blurred), the sparse code «, will deviate from e, and
the IR quality depends on the level of the sparse coding noise (SCN), which is defined as the difference
between g, and a:
VF G0 . (6)
To investigate the statistical property of SCN v,, we perform some experiments on typical IR problems.
We use the image Lena as an example. In the first experiment, we add Gaussian white noise to the original
image x to get the noisy image y (the noise level 5,=15). Then we compute e, and g, by solving Eq. (2) and
Eq. (5), respectively. The DCT bases are adopted in the experiment. Then the SCN o, is computed. In Fig.
2(a-1), we plot the distribution of v, corresponding to the 4" atom in the dictionary. Similarly, in Fig. 2(a-2)

and Fig. 2(a-3) we plot the distributions of v, when the observed data y is blurred (by a Gaussian blur kernel
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with standard deviation 1.6) and down-sampled by factor 3 in both horizontal and vertical directions (after
blurred by a Gaussian blur kernel with standard deviation 1.6), respectively. We can see that the empirical
distributions of SCN v, can be well characterized by Laplacian distributions, while the Gaussian
distributions have much larger fitting errors. To better observe the fitting of the tails, we also plot the these
distributions in log domain in Figs. 2(b-1)~(b-3). This observation motivates us to model v, with a

Laplacian prior, as will be further discussed in Section H1-A.
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Figure 2: The distributions of SCN when the Lena image is (a-1) noisy; (a-2) noisy and blurred; and (a-3)
down-sampled. (b-1), (b-2) and (b-3) show the same distributions of (a-1), (a-2) and (a-3) in log domain, respectively.
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B. Modeling of nonlocally centralized sparse representation (NCSR)

The definition of SCN v, indicates that by suppressing the SCN v, we could improve the IR output x.
However, the difficulty lies in that the sparse coding vector e, is unknown so that v, cannot be directly
measured. Nonetheless, if we could have some reasonably good estimation of a,, denoted by B, available,
then a,—f can be a good estimation of the SCN wv,. To suppress v, and improve the accuracy of ¢, and thus

further improve the objective function of Eqg. (5), we can propose the following centralized sparse

representation (CSR) model [22]:

a, =argminly - H al; *a2 Nl +72 lle =B 1} ()

where £ is some good estimation of a;, y is the regularization parameter and p can be 1 or 2. In the above
CSR model, while enforcing the sparsity of coding coefficients e, the sparse codes are also centralized to
some estimate of e, (i.e., f) so that SCN v, can be suppressed.

One important issue of sparsity-based IR is the selection of dictionary @. Conventional analytically
designed dictionaries, such as DCT, wavelet and curvelet dictionaries, are insufficient to characterize the so
many complex structures of natural images. The universal dictionaries learned from example image patches
by using algorithms such as KSVD [27] can better adapt to local image structures. In general the learned
dictionaries are required to be very redundant such that they can represent various image local structures.
However, it has been shown that sparse coding with an overcomplete dictionary is unstable [43], especially
in the scenario of image restoration. In our previous work [21], we cluster the training patches extracted
from a set of example images into K clusters, and learn a PCA sub-dictionary for each cluster. Then for a
given patch, one compact PCA sub-dictionary is adaptively selected to code it, leading to a more stable and
sparser representation, and consequently better image restoration results. In this paper, we adopt this
adaptive sparse domain selection strategy but learn the sub-dictionaries from the given image itself instead
of the example images.

We extract image patches from image x and cluster the patches into K clusters (typically K=70) by using
the K-means clustering method. Since the patches in a cluster are similar to each other, there is no need to
learn an over-complete dictionary for each cluster. Therefore, for each cluster we learn a dictionary of PCA

bases and use this compact PCA dictionary to code the patches in this cluster. (For the details of PCA
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dictionary learning, please refer to [21].) These K PCA sub-dictionaries construct a large over-complete
dictionary to characterize all the possible local structures of natural images.

In the conventional sparse representation models as well as the model in Eq. (7), the local sparsity term
|ler;|l, is used to ensure that only a small number of atoms are selected from the over-complete dictionary @
to represent the input image patch. In our algorithm (please refer to Algorithm 1 in Section 111-C), for each
patch to be coded, we adaptively select one sub-dictionary from the trained K PCA sub-dictionaries to code
it. This actually enforces the coding coefficients of this patch over the other sub-dictionaries to be 0, leading
to a very sparse representation of the given patch. In other words, our algorithm will naturally ensure the

sparsity of the coding coefficients, and thus the local sparsity regularization term ||e||, can be removed.

Hence we propose the following sparse coding model:
. 2
There is only one regularization term ||a, — B ||, in the above model. In the case that p=1, and the estimate

B is obtained by using the nonlocal redundancy of natural images, this regularization term will become a
nonlocally centralized sparsity term, and we call this model nonlocally centralized sparse representation

(NCSR). Next let’s discuss how to obtain a good estimation g of the unknown sparse coding vectors a;.

C. The nonlocal estimate of unknown sparse code

Generally, there can be various ways to make an estimate of a,, depending on how much the prior
knowledge of a, we have. If we have many training images that are similar to the original image x, we could
learn the estimate S of a, from the training set. However, in many practical situations the training images are
simply not available. On the other hand, the strong nonlocal correlation between the sparse coding
coefficients, as shown in Fig. 1, allows us to learn the estimate £ from the input data. Based on the fact that
natural images often contain repetitive structures, i.e., the rich amount of nonlocal redundancies [31], we
search the nonlocal similar patches to the given patch i in a large window centered at pixel i. For higher
performance, the search of similar patches can also be carried out across different scales at the expense of
higher computational complexity, as shown in [32]. Then a good estimation of e, i.e., £, can be computed

as the weighted average of those sparse codes associated with the nonlocal similar patches (including patch 7)
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to patch i. For each patch x;, we have a set of its similar patches, denoted by 2. Finally £ can be computed
from the sparse codes of the patches within £2.
Denote by «;, the sparse codes of patch x;, within set €2. Then £ can be computed as the weighted
average of a;
B=Y @O (9)
where @, , is the weight. Similar to the nonlocal means approach [31], we set the weights to be inversely

proportional to the distance between patches x; and x; ;:

1 SN
O =5 PN X - %, I 17), (10)

Lq
where x, =®a, and x, =de,, are the estimates of the patches x; and x;,, 4 is a pre-determined scalar

and W is the normalization factor. In the case of orthogonal dictionaries (e.g., the local PCA dictionaries

used in this work), the sparse codes @, and &, can be easily computedas @, =®'x, and @, ,=®'x,

-
Our experimental results show that by exploiting the nonlocal redundancies of natural images, we are able to
achieve good estimation of the unknown sparse vectors g;, and the NCSR model of Eg. (8) can significantly
improve the performance of the sparsity-based IR results.

Eqg. (8) can be solved iteratively. We first initialize g, as 0, i.e., g =0, and solve for the sparse coding
vector, denoted bya;‘” , using some standard sparse coding algorithm. Then we can get the initial estimation
of x, denoted by x®, via x® =@-a. Based on x”, we search for the similar patches to each patch i, and

hence the nonlocal estimate of g; can be updated using Egs. (9) and (10). The updated estimation of e,
denoted by £, will then be used to improve the accuracy of the sparse codes and thus improve the IR

quality. Such a procedure is iterated until convergence. In the /" iteration, the sparse vector is obtained by

solving the following minimization problem

o =argmin{| y - H@ o} +2 || @, ~ " 1|} (1)

The restored image is then updated as x*) =(Doa}(f). In the above iterative process, the accuracy of sparse

coding coefficient af’ is gradually improved, which in turn improves the accuracy of g;. The improved g



are then used to improve the accuracy of e, and so on. Finally, the desired sparse code vector ¢, is obtained
when the alternative optimization process falls into a local minimum. The detailed algorithm will be

presented in Section I11.

[I. Algorithm of NCSR

A. Parameters determination

In Eq. (8) or Eq. (11) the parameter A that balances the fidelity term and the centralized sparsity term should
be adaptively determined for better IR performance. In this subsection we provide a Bayesian interpretation
of the NCSR model, which also provides us an explicit way to set the regularization parameter A. In the
literature of wavelet denoising, the connection between Maximum a Posterior (MAP) estimator and sparse
representation has been established, and here we extend the connection from the local sparsity to nonlocally
centralized sparsity.

For the convenience of expression, let’s define 8=a—p. For a given B, the MAP estimation of @ can be
formulated as

0, =argmax, log (0| y)

12
=arg max,{log P(y|0)+log P(0)}. (12)
The likelihood term is characterized by the Gaussian distribution:
Pyl0)=P(y|ea, HDoa 13
(y10)=P(yla.p)= \/—6 5 s lly- 15, (13)

where @ and g are assumed to be independent. In the prior probability A 6), @reflects the variation of & from
its estimation B. If we take # as a very good estimation of the sparse coding coefficient of unknown true
signal, then 6, =a,—fis basically the SCN associated with e, and we have seen in Fig. 2 that the SCN signal
can be well characterized by the Laplacian distribution. Thus, we can assume that @ follows i.i.d. Laplacian

distribution, and the joint prior distribution P(8) can be modeled as

P(0) - HH{ '”;(j My, (14)

z J i
where ;) are the /" elements of @, and o;, is the standard deviations of ;).

Substituting Eq. (13) and (14) into Eg. (12), we obtain
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. 1 .
8, =argmin{|| y - H® || +2ﬁa@§;|am I (15)

LJ

Hence, for a given Bthe sparse codes a can then be obtained by minimizing the following objective function

a, =arg main{]|y ~H® oa||§ +2\EG§ZZ% le, () - BT (16)

L
Compared with Eg. (8), we can see that the /;-norm (i.e., p=1) should be chosen to characterize the SCN

term a—pB. Comparing Eq. (16) with Eq. (8), we have

4 =N (17)

In order to have robust estimations of o;;, the image nonlocal redundancies can be exploited. In practice, we
estimate o;, using the set of & computed from the nonlocal similar patches. 4;; is then updated with the
updated @in each iteration or in several iterations to save computational cost. Next we present the detailed

algorithm of the proposed NCSR scheme.

B. Iterative shrinkage algorithm

As discussed in Section I, we use an iterative algorithm to solve the NCSR objective function in Eq. (8) or

(16). In each iteration, for fixed £ we solve the following /;-norm minimization problem
a, =argmin{|y-H®oal,+>.> 4, 1a,())~ B() D, (18)
i
which is convex and can be solved efficiently. In this paper we adopt the surrogate algorithm in [9] to solve
Eq. (18). In the (/+1)-h iteration, the proposed shrinkage operator for the j element of «; is
o () =5, () - BUN+ B (). (19)
where S_(-) is the classic soft-thresholding operator and v* = K" (y—Koa"”)/c+a” , where K=H®,

K" =®" o H" | =1, /c, and c is an auxiliary parameter guaranteeing the convexity of the surrogate function.
The derivation of the above shrinkage operator follows the standard surrogate algorithm in [9]. The

interesting readers may refer to [9] for details.
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C. Summary of the algorithm

As we mentioned in Section 1I-B, in our NCSR algorithm the adaptive sparse domain selection strategy [21]
is used to code each patch. We cluster the patches of image x into K clusters and learn a PCA sub-dictionary
@, for each cluster. For a given patch, we first check which cluster it falls into by calculating its distances to
means of the clusters, and then select the PCA sub-dictionary of this cluster to code it. The proposed NCSR
based IR algorithm is summarized in Algorithm 1.

In Algorithm 1, for fixed parameters 4;; and {4} the objective function in Eq. (18) is convex and can be
efficiently solved by the iterative shrinkage algorithm in the inner loop, and its convergence has been well
established in [9]. Since we update the regularization parameter A;; and {£} in every J, iterations after
solving a sub-optimization problem, Algorithm 1 is empirically convergent in general, as those presented in

[39].

Algorithm 1

1. Initialization:
(a) Set the initial estimate as x=y for image denoising and deblurring, or initialize x by
bicubic interpolator for image super-resolution;
(b) Set initial regularization parameter 1 and ¢,
2. Outer loop (dictionary learning and clustering): iterate on /=1,2,..., L
(a) Update the dictionaries { @} via k-means and PCA;
(b) Inner loop (clustering): iterate on j=1,2,..., J
(1) xU2 =3 1 sH" (y— Hx"), where Sis the pre-determined constant;

~

(1) Compute v =[®] R xV""?,.... @] R, x"'?], where @, is the dictionary assigned to
patch X, = RxV*"?;

(1) Compute @™ using the shrinkage operator given in Eq. (19);

(IV) If mod(j, Jo)=0 update the parameters 4;; and {4} using Eqgs. (17) and (9), respectively;

(V) Image estimate update: xV*? =@ oa!*" using Eq. (4).

IV. Experimental results

To verify the IR performance of the proposed NCSR algorithm we conduct extensive experiments on image
denoising, deblurring and super-resolution. The basic parameter setting of NCSR is as follows: the patch size
is 7x7 and K=70. The parameters L, J, and &in Algorithm 1 are set accordingly for different IR applications.

For image denoising, ¢=0.02, L=3, and J=3; for image deblurring and super-resolution, 5&=2.4, L=5, and
12



J=160. To evaluate the quality of the restored images, the PSNR and the recently proposed powerful
perceptual quality metric FSIM [33] are calculated. Due to the limited page space, we only show part of the
results in this paper, and all the experimental results can be downloaded on the website:

http://www.comp.polyu.edu.hk/~cslzhang/NCSR.htm.

A. Image denoising

Table 1: The PSNR (dB) results by different denoising methods. In each cell, the results of the four denoising methods
are reported in the following order: top left - SAPCA-BM3D [40]; top right — LSSC [18]; bottom left — EPLL [34];
bottom right — NCSR.

o 5 10 15 20 50 100
Lena 38.86 | 38.68 | 36.07 | 35.83 | 34.43 | 34.14 | 33.20 | 32.88 | 29.07 | 28.95 | 25.37 | 25.96
38.52 | 38.70 | 35.56 | 35.81 | 33.85 | 34.09 | 32.60 | 32.92 | 28.42 | 28.89 | 25.30 | 25.66
Monarch 38.69 | 38.53 | 34.74 | 3448 | 3246 | 32.15 | 30.92 | 30.58 | 26.28 | 2559 | 22.31 | 21.82
38.22 | 38.49 | 34.27 | 3457 | 32.04 | 32.34 | 30.48 | 30.69 | 25.67 | 25.68 | 22.04 | 22.05
Barbara 38.38 | 38.44 | 35.07 | 34.95 | 33.27 | 3296 | 31.97 | 3153 | 2751 | 27.13 | 23.05 | 23.56
37.56 | 38.36 | 33.59 | 34.98 | 31.33 | 33.02 | 29.75 | 31.72 | 24.83 | 27.10 | 22.10 | 23.30
Boat 37.50 | 37.34 | 34.10 | 33.99 | 32.29 | 32.17 | 31.02 | 30.87 | 26.89 | 26.76 | 23.71 | 23.94
36.78 | 37.35 | 33.63 | 33.90 | 31.89 | 32.03 | 30.63 | 30.74 | 26.64 | 26.60 | 23.78 | 23.64
C. Man 38.54 | 38.24 | 3452 | 3414 | 32.31 | 31.96 | 30.86 | 30.54 | 26.59 | 26.36 | 2291 | 23.14
38.04 | 38.17 | 33.94 | 3412 | 31.73 | 31.99 | 30.28 | 30.48 | 26.08 | 26.16 | 22.87 | 22.89
Couple 37.60 | 37.41 | 34.13 | 33.96 | 32.20 | 32.06 | 30.83 | 30.70 | 26.48 | 26.31 | 23.19 | 23.34
3732 | 37.44 | 33.78 | 33.94 | 31.83 | 31.95 | 30.47 | 30.56 | 26.22 | 26.21 | 23.34 | 23.22
E print 36.67 | 36.71 | 32.65 | 32.57 | 30.46 | 30.31 | 28.97 | 28.78 | 2453 | 24.21 | 21.07 | 21.18
36.41 | 36.81 | 32.13 | 32.70 | 29.83 | 30.46 | 28.29 | 28.99 | 23.58 | 2453 | 19.80 | 21.29
Hill 37.31 | 37.16 | 33.84 | 33.68 | 32.06 | 31.89 | 30.85 | 30.71 | 27.13 | 26.99 | 24.10 | 24.30
37.00 | 37.17 | 33.49 | 33.69 | 31.67 | 31.86 | 30.47 | 30.61 | 26.91 | 26.86 | 24.37 | 24.13
House 40.13 | 40.00 | 37.06 | 37.05 | 35.31 | 35.32 | 34.03 | 34.16 | 29.53 | 29.90 | 25.20 | 25.63
39.04 | 39.91 | 3581 | 36.80 | 34.21 | 35.11 | 33.08 | 33.97 | 2891 | 29.63 | 25.44 | 25.65
Man 37.99 | 37.84 | 34.18 | 34.03 | 32.12 | 31.98 | 30.73 | 30.61 | 26.84 | 26.72 | 23.86 | 24.00
37.67 | 37.78 | 33.90 | 33.96 | 31.89 | 31.89 | 30.53 | 30.52 | 26.63 | 26.60 | 23.96 | 23.97
Peppers 38.30 | 38.15 | 34.94 | 3480 | 33.01 | 32.87 | 31.61 | 31.47 | 26.94 | 26.87 | 23.05 | 23.14
37.93 | 38.06 | 3451 | 3466 | 32.56 | 32.70 | 31.18 | 31.26 | 26.60 | 26.53 | 22.93 | 22.64
Straw 35.81 | 35.92 | 3146 | 31.39 | 29.13 | 28.95 | 27.52 | 27.36 | 22.79 | 22.67 | 19.42 | 19.50
35.36 | 35.87 | 30.84 | 31.50 | 28.50 | 29.13 | 26.93 | 27.50 | 22.00 | 22.48 | 18.95 | 19.23
Average 37.98 | 37.87 | 3440 | 34.24 | 3242 | 32.23 | 31.04 | 30.85 | 26.71 | 26.54 | 23.10 | 23.29
3749 | 37.84 | 33.79 | 3422 | 31.78 | 32.21 | 30.39 | 30.83 | 26.04 | 26.44 | 2291 | 23.14
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Figure 3: Denoising performance comparison on the Monarch image with moderate noise corruption. From left to right
and top to bottom: original image, noisy image (0=20), denoised images by SAPCA-BM3D [40] (PSNR=30.91 dB;
FSIM=0.9404), LSSC [18] (PSNR=30.58 dB; FSIM=0.9310), EPLL [34] (PSNR=30.48 dB; FSIM=0.9330), and NCSR
(PSNR=30.69 dB, FSIM=0.9316).

We compare the proposed NCSR method with three recently developed state-of-the-art denoising methods,
including the shape-adaptive PCA based BM3D (SAPCA-BM3D) [40, 41] (which outperforms the
benchmark BM3D algorithm [17]), the learned simultaneously sparse coding (LSSC) method [18] and the
expected patch log likelihood (EPLL) based denoising method [34]. A set of 12 natural images commonly
used in the literature of image denoising are used for the comparison study. The PSNR results of the test
methods are reported in Table 1 (the highest PSNR values among the four are highlighted). Due to the
limited space, the FSIM results are not reported here but they are available in the website of this work. From
Table 1, we can see that the proposed NCSR achieves highly competitive denoising performance. In term of
average PSNR results, NCSR performs almost the same as LSSC, and is slightly lower than SAPCA-BM3D,
which is the best among the competitors.

Let’s then focus on the visual quality of the denoised images by the four competing methods. In Fig. 3
and Fig. 4 we show the denoising results on two typical images with moderate noise corruption and strong

noise corruption, respectively. It can be seen that NCSR is very effective in reconstructing both the smooth
14



and the texture/edge regions. When the noise level is not very high, as shown in Fig. 3 (0=20), all the four
competing methods can achieve very good denoising outputs. When the noise level is high, as shown in Fig.
4 (0=100), however, the SAPCA-BM3D and EPLL methods tend to generate many visual artifacts. LSSC
and NCSR work much better in this case. In particular, the denoised image by the proposed NCSR has much

less artifacts than other methods, and is visually more pleasant. More denoised images can be downloaded in

the website associated with this paper.
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Figure 4: Denoising performance comparison on the House image with strong noise corruption. From left to right and
top to bottom: original image, noisy image (0=100), denoised images by SAPCA-BM3D [40] (PSNR=25.20 dB;
FSIM=0.8065), LSSC [18] (PSNR=25.63 dB; FSIM=0.8017), EPLL [34] (PSNR=25.44 dB; FSIM= 0.8100), and
NCSR (PSNR=25.65 dB; FSIM=0.8068).

B. Image deblurring

In this sub-section, we conduct experiments to verify the performance of the proposed NCSR method for
image deblurring in comparison with some competitive image deblurring methods. The deblurring methods
are applied to both the simulated blurred images and real motion blurred images. For the simulated blurred
images, the blurred images are generated by first applying a blur kernel and then adding additive Gaussian

noise. Two sets of non-blind image deblurring experiments are conducted. Fist, two commonly used blur
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kernels, i.e., 9x9 uniform blur and 2D Gaussian function (non-truncated) with standard deviation 1.6, are
used for simulations. Additive Gaussian noise with noise levels o,=+/2 is added to the blurred images.
Second, 6 typical non-blind deblurring image experiments presented in [37, 42] are conducted to further test
the deblurring performance of the proposed NCSR method under different image blurry conditions. For the
real motion blurred images, we borrowed the motion blur kernel estimation method from [35] to estimate the
blur kernel and then fed the estimated blur kernel into the NCSR deblurring method. For color images, we

only apply the deblurring operation to the luminance component.

Table 2: The PSNR (dB) and FSIM results by different deblurring methods.

9x9 uniform blur, ¢;,=~/2

Images Butterfly | Boats | C. Man | House | Parrot | Lena | Barbara | Starfish | Peppers | Leaves | Average

FISTA [36] 28.37 29.04 | 26.82 | 31.99 | 29.11 | 28.33 25.75 27.75 28.43 26.49 28.21
0.9119 | 0.8858 | 0.8627 | 0.9017 | 0.9002 | 0.8798 | 0.8375 | 0.8775 | 0.8813 | 0.8958 | 0.8834

lo-SPAR 27.10 29.86 | 26.97 | 32.98 | 29.34 | 28.72 26.42 28.11 28.66 26.30 28.44
[37] 0.8879 | 0.9094 | 0.8689 | 0.9225 | 0.9262 | 0.9063 | 0.8691 | 0.8951 | 0.9066 | 0.8776 | 0.8970

IDD-BM3D | 29.21 31.20 | 28.56 | 34.44 | 31.06 | 29.70 27.98 29.48 29.62 29.38 30.06
[42] 0.9287 | 0.9304 | 0.9007 | 0.9369 | 0.9364 | 0.9197 | 0.9014 | 0.9167 | 0.9200 | 0.9295 | 0.9220

ASDS-Reg 28.70 30.80 | 28.08 | 34.03 | 31.22 | 29.92 27.86 29.72 29.48 28.59 29.84
[21] 0.9053 | 0.9236 | 0.8950 | 0.9337 | 0.9306 | 0.9256 | 0.9088 | 0.9208 | 0.9203 | 0.9075 | 0.9171

NCSR 29.68 31.08 | 28.62 | 3431 | 31.95 | 29.96 28.10 30.28 29.66 29.98 30.36
0.9271 | 0.9294 | 0.9026 | 0.9415 | 0.9411 | 0.9254 | 0.9117 | 0.9293 | 0.9220 | 0.9341 | 0.9263

Gaussian blur, g,=/2

FISTA [36] 30.36 29.36 | 26.81 | 31.50 | 31.23 | 29.47 25.03 29.65 29.42 29.36 29.22
0.9452 | 0.9024 | 0.8845 | 0.8968 | 0.9290 | 0.9011 | 0.8415 | 0.9256 | 0.9057 | 0.9393 | 0.9071

IDD-BM3D | 30.73 31.68 | 28.17 | 34.08 | 32.89 | 31.45 27.19 31.66 29.99 31.40 30.92
[42] 0.9442 | 0.9426 | 0.9136 | 0.9359 | 0.9561 | 0.9430 | 0.8986 | 0.9496 | 0.9373 | 0.9512 | 0.9372

ASDS-Reg 29.83 30.27 | 27.29 | 31.87 | 32.93 | 30.36 27.05 31.91 28.95 30.62 30.11
[21] 0.9126 | 0.9064 | 0.8637 | 0.8978 | 0.9576 | 0.9058 | 0.8881 | 0.9491 | 0.9039 | 0.9304 | 0.9115

NCSR 30.84 3149 | 28.34 | 33.63 | 33.39 | 31.26 27.91 32.27 30.16 31.57 31.09
0.9381 | 0.9371 | 0.9078 | 0.9333 | 0.9587 | 0.9389 | 0.9088 | 0.9551 | 0.9331 | 0.9508 | 0.9362

We compared the NCSR deblurring method with four state-of-the-art deblurring methods, including the
constrained TV deblurring (denoted by FISTA) method [36], the /-sparsity based deblurring (denoted by
lo-SPAR) method [37], the IDD-BM3D deblurring method [42], and the adaptive sparse domain selection
method (denoted by ASDS-Reg) [21]. Note that FISTA is a TV-based deblurring approach that can well
reconstruct the piecewise smooth regions but often fail to recover fine image details. The /,-SPAR is a
sparsity-based deblurring method where a fixed sparse domain is used. (Since /,-SPAR does not work well
for Gaussian blur kernel, we do not present its deblurring results for Gaussian blur kernel in Table 2). The

recently proposed IDD-BM3D method is an improved version of BM3D deblurring method [20], and
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ASDS-Reg is a very competitive sparsity-based deblurring method with adaptive sparse domain selection.
The PSNR and FSIM results on a set of 10 photographic images are reported in Table 2. From Table 2,
we can conclude that the proposed NCSR deblurring method outperforms much the other competing
methods. In average NCSR outperforms IDD-BM3D by 0.3 dB and 0.17 dB for the uniform blur and
Gaussian blur, respectively. The NCSR also outperforms ASDS-Reg in average by 0.52 dB and 0.98 dB for
the two different kernels, respectively. The visual comparisons of the deblurring methods are shown in Figs.
5~6, from which we can see that the NCSR method produces much cleaner and sharper image edges and

textures than other methods.

Table 3 Comparison of the PSNR (dB) results of the deblurring methods.

Scenario Scenario
1 2 3 4 5 6 1 2 3 4 5 6
Method Cameraman (256x256) House (256x256)
BSNR 31.87 | 25.85 | 40.00 | 18.53 | 29.19 | 17.76 || 29.16 | 23.14 | 40.00 | 15.99 | 26.61 | 15.15

Input PSNR 22.23 | 22.16 | 20.76 | 24.62 | 23.36 | 29.82 || 25.61 | 25.46 | 24.11 | 28.06 | 27.81 | 29.98
TVMM [7] 741 | 517 | 854 | 257 | 3.36 | 130 || 7.98 | 6.57 | 1039 | 4.12 | 454 | 2.44
LO-Spar [37] 770 | 555 | 9.10 | 293 | 349 | 177 || 840 | 7.12 | 11.06 | 455 | 480 | 2.15
IDD-BM3D[42] || 8.85 | 7.12 | 10.45| 3.98 | 431 | 489 || 9.95 | 855 | 1289 | 579 | 574 | 7.13

NCSR 8.78 | 6.69 | 10.33 | 3.78 | 460 | 450 || 9.96 | 8.48 | 13.12 | 581 | 567 | 6.94
Lena (512x512) Barbara (512x512)
BSNR 29.89 | 23.87 | 40.00 | 16.47 | 27.18 | 15.52 | 30.81 | 24.79 | 40.00 | 17.35 | 28.07 | 16.59

Input PSNR 27.25 | 27.04 | 25.84 | 28.81 | 29.16 | 30.03 || 23.34 | 23.25 | 22.49 | 24.22 | 23.77 | 29.78
TVMM [7] 636 | 498 | 747 | 352 | 361 | 279 || 3.10 | 1.33 | 3.49 | 041 | 0.75 | 0.59
LO-Spar [37] 6.66 | 571 | 779 | 409 | 422 | 193 || 351 | 153 | 398 | 0.73 | 0.81 | 1.17
IDD-BM3D[42] | 7.97 | 6.61 | 891 | 497 | 485 | 6.34 || 7.64 | 3.96 | 6.05 | 1.88 | 1.16 | 545
NCSR 803 | 654 | 925 | 493 | 486 | 6.19 || 7.76 | 3.64 | 592 | 206 | 143 | 550

The PSNR results for the 6 typical deblurring experiments presented in [37, 42] are reported in Table 3.
For fair comparison, the PSNR results of other competing methods are direct obtained from [42]. We
optimize the parameters of the proposed deblurring method for each experiment. From Table 3, we can see
that both the IDD-BM3D method of [42] and the proposed NCSR method can achieve significant PSNR
improvement over other competing methods. Parts of the deblurred Barbara image (scenario 4) by the
competing methods are shown in Fig. 7. We can see that IDD-BM3D and the proposed NCSR method can
better recover the fine textures than other competing methods. Moreover, the textures recovered by the

proposed NCSR method are better than those by the IDD-BM3D method.
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We also test the proposed NCSR deblurring method on real motion blurred images. Since the blur kernel
estimation is a non-trivial task, we borrowed the kernel estimation method from [35] to estimate the blur
kernel and apply the estimated blur kernel in NCSR to restore the original images. In Fig. 8 we present the
deblurring results of two real blurred images by the blind deblurring method of [35] and the proposed NCSR
method. We can see that the images restored by our approach are much clearer and much more details are
recovered. Considering that the estimated kernel will have bias from the true unknown blurring kernel, these
experiments validate that NCSR is robust to the kernel estimation errors. More motion deblurring results can

be found in the website of this paper.

Figure 5: Deblurring performance comparison on the Cameraman image. From left to right and top to bottom: noisy
and blurred image (9x9 uniform blur, 5,=~/2 ), the deblurred images by FISTA [36] (PSNR=26.82dB; FSIM=0.8627),

Io-SPAR [37] (PSNR=28.56dB; FSIM= 0.9007), IDD-BM3D [42] (PSNR=28.56dB; FSIM=0.9007), ASDS-Reg [21]
(PSNR=28.08dB; FSIM=0.8950), and the proposed NCSR (PSNR=28.62dB; FSIM= 0.9026).
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Figure 6: Deblurring performance comparison on the Starfish image. From left to right and top to bottom: noisy and
blurred image (9x9 uniform blur, o,=~/2), the deblurred images by FISTA [36] (PSNR=27.75dB; FSIM=0.8775),
lo-SPAR [37] (PSNR=28.11dB; FSIM=0.8951), IDD-BM3D [42] (PSNR=29.48dB; FSIM=0.9167), ASDS-Reg [21]
(PSNR=29.72 dB; FSIM=0.9208), and the proposed NCSR (PSNR=30.28dB; FSIM=0.9293).

Figure 7: Deblurring performance comparison on the Barbara (512x512) image. From left to right and top to bottom:
original image, noisy and blurred image (scenario 4: PSF=[1 4 6 4 1]'[1 4 6 4 1]/256, 5,=7), the deblurred images by
TVMM [7] (PSNR=24.63dB), /,-SPAR [37] (PSNR=24.95dB), IDD-BM3D [42] (PSNR=26.10dB), and the proposed

NCSR (PSNR=26.28dB).
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Figure 8: Deblurring performance comparison on real motion blurred images with the blur kernel estimated using the
kernel estimation approach from [35]. From left to right: motion blurred image, deblurred image by [35], deblurred
image by proposed NCSR, and close-up views.

C. Image super-resolution

In image super-resolution, the low-resolution (LR) image is obtained by first blurring the high-resolution
(HR) image with a blur kernel and then downsampling by a scaling factor. Hence, recovering the HR image
from a single LR image is more severely underdetermined than image deblurring. In this subsection, we test
the proposed NCSR based IR for image super-resolution. The simulated LR image is generated by first
blurring an HR image with a 7x7 Gaussian kernel with standard deviation 1.6, and then downsampling the
blurred image by a scaling factor 3 in both horizontal and vertical directions. The additive Gaussian noises
of standard deviation 5 are also added to the LR images, making the IR problem more challenging. Since
human visual system is more sensitive to luminance changes, we only apply the IR methods to the
luminance component and use the simple bicubic interpolator for the chromatic components.

We compare the proposed NCSR approach with three recently developed image super-resolution
methods, including the TV-based method [26], the sparse representation based method [23], and the

ASDS-Reg method [21]. Since the sparsity-based method in [23] cannot perform the resolution upscaling

2 We thank the authors of [18], [21], [23], [34-37], [40-42] for providing their source codes or experimental results.

The code associated with this work will be available online.
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and deblurring simultaneously, as suggested by the authors [23] we apply the iterative back-projection [38]
to the output of method [23] to remove the blur.

The PSNR results of the test methods on a set of 9 natural images are reported in Table 4, from which
we can conclude that the proposed NCSR approach significantly outperforms the TV [26] and sparsity-based
methods [23]. In average the NCSR approach also outperforms the state-of-the-art ASDS-Reg method [21]
by up to 0.25 dB and 0.32 dB for the noiseless and noisy cases, respectively. This demonstrates the
superiority of the NCSR method for image inverse problems. The subjective comparison between the NCSR
and other methods are shown in Figs. 9~11. We can see that the TV-based method [26] tends to generate
piecewise constant structures; the image edges reconstructed by the sparsity-based method [23] contain
some visible artifacts. Obviously, the NCSR approach reconstruct the best visually pleasant HR images. The
reconstructed edges are much sharper than all the other three competing methods, and more image fine

structures are recovered.

Figure 9: Image super-resolution performance comparison on Plant image (scaling factor 3, ¢,=0). From left to right
and top to bottom: original image, LR image, the reconstructed images by TV [26] (PSNR=31.34dB; FSIM=0.8909),
sparsity-based [23] (PSNR=31.55dB; FSIM=0.8964), ASDS-Reg [21] (PSNR=33.44dB; FSIM=0.9242), and the
proposed NCSR (PSNR= 34.00dB; FSIM= 0.9369).
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right and top to bottom: original image, LR image, the reconstructed images by TV [26] (PSNR=26.57dB;
FSIM=0.8970), sparsity-based [23] (PSNR=24.70dB; FSIM=0.7995), ASDS-Reg [21] (PSNR=27.28dB; FSIM=0.8789)
and the proposed NCSR (PSNR= 28.10 dB; FSIM=0.9031).

Figure 11: Image super-resolution performance comparison on Parrot image (scaling factor 3, ¢;,=5). From left to right
and top to bottom: original image, LR image, the reconstructed images by TV [26] (PSNR=27.01dB; FSIM=0.8562),
sparsity-based [23] (PSNR=27.15dB; FSIM=0.8632), ASDS-Reg [21] (PSNR=29.01dB; FSIM=0.9182), and the
proposed NCSR (PSNR= 29.51dB; FSIM=0.9210).
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Table 4: PSNR (dB) and FSIM results (luminance components) of the reconstructed HR images.

Noiseless

Images Butterfly | flower | Girl | Pathenon | Parrot | Raccoon | Bike Hat | Plants | Average
TV [26] 26.56 2751 | 31.24 26.00 27.85 27.54 23.66 | 29.20 | 31.34 27.88
0.8970 | 0.8295 | 0.8598 | 0.7701 | 0.9081 | 0.7950 | 0.8032 | 0.8623 | 0.8909 | 0.8462

Sparsity [23] 24.70 27.87 | 32.87 26.27 28.70 28.51 23.23 | 29.63 | 31.55 28.15
0.7995 | 0.8611 | 0.8989 | 0.8018 | 0.9233 | 0.8490 | 0.8138 | 0.8705 | 0.8964 | 0.8571

ASDS-Reg 27.28 29.33 | 33.50 27.00 30.45 29.25 24.67 | 30.99 | 33.44 29.55
[21] 0.8789 | 0.8960 | 0.9117 | 0.8235 | 0.9421 | 0.8750 | 0.8566 | 0.9018 | 0.9242 | 0.8900
NCSR 28.10 29.50 | 33.65 27.19 30.50 29.28 24.74 | 31.27 | 34.00 29.80
0.9031 | 0.9004 | 0.9210 | 0.8367 | 0.9452 | 0.8796 | 0.8606 | 0.9093 | 0.9369 | 0.8992

Noisy

TV [26] 25.49 26.57 | 29.86 25.35 27.01 26.74 23.11 | 28.13 | 29.70 26.88
0.8707 | 0.8147 | 0.8342 | 0.7706 | 0.8562 | 0.7888 | 0.7890 | 0.8340 | 0.8561 | 0.8238

Sparsity [23] 23.61 26.60 | 30.71 25.40 27.15 271.22 2245 | 28.31 | 29.57 26.78
0.7764 | 0.8208 | 0.8685 | 0.7814 | 0.8632 | 0.8243 | 0.7807 | 0.8237 | 0.8524 | 0.8213

ASDS-Reg 26.06 27.83 | 31.87 26.22 29.01 28.01 23.62 | 29.61 | 31.18 28.16
[21] 0.8530 | 0.8601 | 0.8731 | 0.7904 | 0.9182 | 0.8202 | 0.8200 | 0.8630 | 0.8837 | 0.8535
NCSR 26.86 28.08 | 32.03 26.38 29.51 28.03 23.80 | 29.94 | 31.73 28.48
0.8860 | 0.8633 | 0.8741 | 0.7969 | 0.9210 | 0.8113 | 0.8241 | 0.8700 | 0.8955 | 0.8602

V. Conclusion

In this paper we presented a novel nonlocally centralized sparse representation (NCSR) model for image

restoration. The sparse coding noise (SCN), which is defined as the difference between the sparse code of

the degraded image and the sparse code of the unknown original image, should be minimized to improve the

performance of sparsity-based image restoration. To this end, we proposed a centralized sparse constraint,

which exploits the image nonlocal redundancy, to reduce the SCN. The Bayesian interpretation of the NCSR

model was provided and this endows the NCSR model an iteratively reweighted implementation. An

efficient iterative shrinkage function was presented for solving the /;-regularized NCSR minimization

problem. Experimental results on image denoising, deblurring and super-resolution demonstrated that the

NCSR approach can achieve highly competitive performance to other leading denoising methods, and

outperform much other leading image deblurring and super-resolution methods.
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