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Abstract
Meaningful representation and effective retrieval of video shots in a large-scale database has been
a profound challenge for the image/video processing and computer vision communities. A great
deal of effort has been devoted to the extraction of low-level visual features such as color, shape,
texture, and motion for characterizing and retrieving video shots. However, the accuracy of these
feature descriptors is still far from satisfaction due to the well-known semantic gap. In order to
alleviate the problem, this paper investigates a novel methodology of representing and retrieving
video shots using human-centric high-level features derived in brain imaging space (BIS) where
brain responses to natural stimulus of video watching can be explored and interpreted. At first, our
recently developed Dense Individualized and Common Connectivity-based Cortical Landmarks
(DICCCOL) system is employed to locate large-scale functional brain networks and their ROIs
(regions of interests) that are involved in the comprehension of video stimulus. Then, functional
connectivities between various functional ROI pairs are utilized as BIS features to characterize the
brain’s comprehension of video semantics. Then an effective feature selection procedure is applied
to learn the most relevant features while removing redundancy, which results in the formation of
the final BIS features. Afterwards, a mapping from low-level visual features to high-level
semantic features in the BIS is built via the Gaussian Process Regression (GPR) algorithm, and a
manifold structure is then inferred in which video key frames are represented by the mapped
feature vectors in the BIS. Finally, the manifold-ranking algorithm concerning the relationship
among all data is applied to measure the similarity between key frames of video shots.
Experimental results on the TRECVID 2005 dataset have demonstrated the superiority of the
proposed work in comparison with traditional methods.
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1. Introduction
With the explosive growth of digital video data, efficient management and retrieval of large-
scale video databases have become increasingly important in recent years. A typical content-
based video retrieval system involves a series of key techniques such as video structural
analysis, feature representation, and similarity measurement. A video generally consists of
sequences or stories, which are composed of numerous scenes [1]. Scenes can be further
parsed into a set of shots. As the actual physical basic layer in video, a shot contains a
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number of frames describing a continuous action. Shot-based retrieval serves as the basis for
video retrieval [55, 29], where two crucial issues need to be solved: how to meaningfully
represent shots and how to measure similarity between shots. Most existing approaches
extract key frames from each shot and measure the similarity between shots based on their
key frames. Key frames are still images which can reasonably represent the content of video
shots in an abstracted manner.

The capability of current methodologies of video representation and retrieval is rather
limited due to the insurmountable gap between low-level features used by machines and
high-level semantics perceived by the human brain’s cognitive systems. To alleviate this
problem, first, many researchers attempted to design sophisticated feature descriptors that
are more accurate and richer to describe visual content such as SIFT [2], SURF [3], and
Bag-of-Words (BoW) [4]. The second line of research is to design biologically plausible
features that can mimic human vision perception mechanisms, for example, cortex-like
features and visual attention-based features [5–6]. The third school of approaches applied
supervised learning algorithms to select the most relevant or discriminative features from the
feature bank with the motivation of keeping the human in the loop. In these methods, human
subjects can manually offer classification labels, preferences, and ranks to visual data [8].
Therefore, the semantic gap may be narrowed by taking the advantage of human’s guidance.
Nevertheless, this type of human guidance generally can only provide subjective, rough, and
sometimes ambiguous and incomplete information, which may lead to a weak learning
performance. Moreover, traditional computational methods rely on data mining technique
and totally ignore the human brain behaviors in visual understanding, and thus are incapable
of leveraging the intrinsic mechanisms of human brain perception and cognition. The limited
space in this paper does not allow us to extensively review existing work. A systemic
summary of techniques used in video retrieval can be found in a recent survey [10].

Essentially, human brains are the end users and evaluators of video content and
representation, and quantitative modeling of the interactions between video streams and the
brain’s responses can provide meaningful guidance for video representation and retrieval. In
recognition of this potential, in recent years, exploring the functional interactions among
brain networks under the natural stimulus of watching video and applying neuroscience
principles to deeply understand semantics of visual content have become a newly arising
trend, which is potentially promising to offer a superior mechanism to bridge the semantic
gaps. For instance, the work of [11–12] proposed an electroencephalography (EEG)-based
brain machine interface system to achieve image annotation and retrieval where human
brain responses while viewing images captured by an EEG and image visual features are
combined. In [13], Kapoor et al. adopted the Pyramid Match Kernel to integrated image
visual features and EEG responses from various subject brains for image object
categorization.

However, in-vivo EEG usually collects brain signals via electrodes placed around human
scalp, resulting in limited spatial resolutions and inability to capture the full-length
comprehensive semantics of brain responses to videos. In contrast, functional magnetic
resonance imaging (fMRI) is a powerful tool to probe and monitor human full-brain activity
for cognition. For example, the milestone work in [14] has demonstrated that there are high
temporal correlations between relevant fMRI signals and semantic content in the movie
stream, which has provided strong evidence that fMRI time series data is potentially able to
model the functional interaction between the human brain and multimedia information. In
[16], Walther et al. performed pattern analysis using fMRI data to study which set of regions
of the brain can differentiate natural scene categories. The work of [17] explored the
decoding method based on correlations between visual stimuli and fMRI activity in early
visual areas for image identification. Recently, Hu et al. [19, 54] developed a video
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classification model by correlating fMRI-derived brain responses and low-level features by
using the PCA-CCA algorithm. Li et al. [20] built a human-centric video summarization
framework via the optimization of attentional models by using fMRI data as the benchmark.

In general, fMRI-derived functional brain activity in response to video stimuli can
quantitatively, objectively, and effectively reflect the brain’s comprehension of video
content. In BIS, we are able to look into the functional interactions among relevant brain
networks involved in video comprehension, and thus derive a wealth of high-level
semantics. This motivates us to develop a generalized human-centric video representation
and retrieval framework based on brain cognition related features inferred in BIS. In this
paper, we extensively extended our preliminary work in [21] and designed a novel
computational framework as illustrated in Fig. 1. The proposed computational framework is
composed of two components: video shot representation and video shot retrieval. To
represent video shots in the BIS, we firstly randomly select a subset of video shots from a
large-scale video database and use them as the natural stimulus for fMRI scanning when the
human subjects are watching video streams. Afterwards, 358 consistent and dense brain
ROIs defined by our DICCCOL system [22] are located in each subject’s brain via our brain
ROI prediction methods [35]. The relevant fMRI signals associated with 358 ROIs are then
acquired. Subsequently, functional connectivities between various DICCCOL ROI pairs are
utilized as BIS features to represent the brain’s comprehension of video semantics. An
effective two-stage feature selection procedure is applied to derive the most relevant features
while removing redundancy, which results in the formation of the finally obtained BIS
features. Meanwhile, the feature selection provides a data-driven scheme to identify
DICCCOL ROIs that are most relevant to video comprehension. Since fMRI scanning is
quite expensive and time-consuming, we can only acquire a relatively small amount of fMRI
datasets for predictive model learning. However, we can yield plenty of low-level visual
features easily. Thus, we aim to build a mapping from low-level visual features to high-level
fMRI-derived semantic features by using the GPR [30, 31], given a small number of
scanned fMRI datasets in the training stage. Essentially, the mapping substantively realizes
the identification and selection of visual features that most correlate with the human
cognition of video understanding. The learned mapping can then be regarded as a primitive
form of “mind-reading”, which predicts BIS features for any video shots without fMRI
scanning data. In this way, each video shot in the database can be represented in BIS. In the
component of video shot retrieval, a manifold structure is inferred where video key frames
are represented in BIS. Given a query of video shot, the manifold-ranking [23, 25] algorithm
concerning the relationship among all data on the manifold is applied to measure the
similarity between key frames and rank the retrieved shots.

The work in this paper is a substantial extension of our preliminary study in [21] and there
are several major novelties and differences as follows. First, we combined the powerful
diffusion tensor imaging (DTI) data with fMRI brain imaging data to accurately map and
annotate the large-scale functional networks that are potentially involved in the perception
and cognition of video clips. This brain imaging method significantly improved the
quantitative measurement of functional brain responses so that our high-level brain imaging
features could be much more comprehensive and systematic. Second, this work proposes a
generalized methodology for representing video shots in the BIS, whereas the study in [21]
only considered a special case of two classes of videos. To build the generalized
methodology, the feature selection is an essential component and we develop a two-stage
approach in this paper, whereas the feature selection was not explored in [21]. Third, in [21],
30 ROIs identified by task-based fMRI were used to measure the brain responses to video
stimulus. In this work, we propose a novel data-driven approach, named DICCCOL as
mentioned previously, to systematically identify and locate large-scale ROIs involved in
video comprehension. Specifically, we apply the DICCCOL system to collect 358 dense and
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consistent ROIs and then use feature selection algorithms to select a set of pairwise
functional connectivities to measure the distinct brain responses involved in the
comprehension of different video categories. Comparing with [21], this work avoids large-
scale task-based fMRI acquisition, which is very time-consuming and expensive. More
importantly, the DICCCOLs can provide more comprehensive, accurate, and reliable ROIs
to measure the brain responses during video comprehension. Therefore, this work can
further improve the performance of [21], which will be demonstrated in subsection 4.1 (Fig.
5). Fourth, in this work, we explore and present more in-depth theoretic analysis, provide a
more extensive discussion of related literatures, and perform more comprehensive
experimental evaluations.

The rest of this paper is organized as follows. Section 2 describes video key frame
representation in the BIS. Section 3 introduces video shot retrieval by using manifold-
ranking approaches. The experiments and results are reported in Section 4. Finally, the
conclusions are drawn in Section 5.

2. Representing key frames in the BIS
2.1 Brain ROI identification and localization

In principle, brain function is realized via large-scale structural and functional connectivities
[36–38]. The functional connectivities and interactions among relevant brain networks
reflect the brain’s comprehension of video stimuli [36–38]. In particular, the working
memory [45], vision [47], language [48], emotion [49], semantics [50], attention [53], and
motor [52] brain networks are among the most relevant functional systems that are involved
in the comprehension of natural movies.

In the functional brain imaging field, task-based fMRI has been widely regarded and used as
a benchmark approach to localizing functionally-specialized brain regions. As a result, a
large amount of fMRI tasks have been designed and published in the fMRI community [15]
to map functional brain networks and their ROIs. However, it is impractical to acquire large-
scale task-based fMRI data for the same group of subjects due to the cost and time
constraints. In addition, the human brain’s responses to the natural stimulus of watching
videos could be very complex and involve many different functional networks such as
visual, auditory, emotion, working memory, attention, language, and many others. It is
infeasible to localize relevant large-scale functional networks involved in the comprehension
of movie watching via traditional task-based fMRI analysis.

Recently, we developed and validated a novel data-driven strategy [22, 56] that identified
358 consistent and corresponding structural landmarks in multiple brains (colored bubbles in
Fig. 2), in which each identified landmark was optimized to possess maximal group-wise
consistency of DTI-derived fiber connection patterns [22, 35, 56]. The neuroscience
foundation is that each brain’s cytoarchitectonic area has a unique set of extrinsic inputs and
outputs, named the “connectional fingerprint” in [51], which principally determines the
functions that each brain area could perform. This close relationship between structural
connection pattern and brain function has been confirmed and replicated in a variety of
recent studies in the literature [51] and our own works in [22, 35, 56]. This set of 358
structural brain landmarks is named DICCCOL and has been replicated in four separate
healthy populations [22]. Importantly, this set of 358 ROIs can be accurately and reliably
predicted in an individual subject based only on DTI data [35], demonstrating the
remarkable reproducibility and predictability of DICCCOLs. The collection of 358
DICCCOLs has already been released online at: http://dicccol.cs.uga.edu for additional
visual examination and evaluation online.
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In addition, we have used six different multimodal DTI and fMRI datasets (including both
task-based fMRI and resting state fMRI) to functionally label these DICCCOL ROIs [22] (as
shown in Fig. 2). In our current collection of DICCCOL ROIs [22], there are 95 ROIs that
have already been functionally annotated into the brain regions in nine functional networks
including working memory, visual, auditory, semantics, attention, emotion, fear, empathy,
and default mode networks. DICCCOL enables us to measure functional interactions among
large-scale relevant brain networks (particularly those involved in video processing and
comprehension [19–21, 54]) without the need to perform large-scale costly task-based fMRI
scans on the participating subjects.

This paper proposes to employ our DICCCOL system to localize large-scale relevant
functional networks involved in the comprehension of movie watching as follows. First, we
predict the set of 358 dense and consistent DICCCOL landmarks that provide a common and
individualized brain reference system in each participant’s brain based on DTI data.
Afterwards, the data-driven method of feature selection (Subsection 2.3) is adopted to infer
the brain’s functional interaction patterns from natural stimulus fMRI data, which can
simultaneously identify and localize the most relevant DICCCOL brain ROIs involved in
video comprehension.

2.2 FMRI data acquisition and ROI prediction
To explore brain comprehension to video contents, we developed an experimental paradigm
to perform fMRI scanning when human subjects were watching video stimulus. Four healthy
young adults were recruited at The University of Georgia (UGA) under IRB approvals to
participate in this study. MRI data was acquired in a GE 3T Signa HDx MRI system using
an 8-channel head coil at the UGA. The multimodal DTI and fMRI scans were performed in
three separate scan sessions for each participating subject. DTI scans were performed for
each participant to localize their DICCCOL ROIs. DTI data was acquired using the isotropic
spatial resolution 2mm×2mm×2mm; parameters were: TR=15.5s, TE=min-full, b-
value=1000 for 30 DWIs and 3 B0 volumes. DTI data preprocessing includes skull removal,
motion correction and eddy current correction [56]. T1-weighted structural MRI data with
1mm×1mm×1mm isotropic resolution was acquired for each subject for anatomical
reference.

To perform natural stimulus fMRI scanning, 51 video shots belonging to the semantic
categories of sports, weather report and commercial advertisement (20 sports, 19 weather
reports and 12 commercial advertisements, respectively) were randomly selected from the
TRECVID 2005 database and were composed into 8 clips. Each clip is about 11 minutes
long. These clips were presented to the four subjects during fMRI scan via MRI-compatible
goggles. The scan parameters are as follows: 30 axial slices, matrix size 64×64, 4mm slice
thickness, 220mm FOV, TR=1.5s, TE=25ms, ASSET=2. The strict synchronization between
movie viewing and fMRI scan was achieved via the E-prime software [18].

The preprocessing of fMRI data includes skull removal, motion correction, spatial
smoothing, temporal prewhitening, slice time correction, and global drift removal. The brain
ROI prediction approach in [35] was used to localize the 358 DICCCOLs in the scanned
subjects with DTI data. Then, natural stimulus fMRI signals were extracted for each of these
358 DICCCOLs after linearly transforming the ROIs to the fMRI image space. Afterwards,
the PCA (principal component analysis) was applied on the multiple fMRI time series within
each ROI for extracting a representative fMRI signal [56]. The eigenvector corresponding to
the largest eigenvalue was defined as the representative fMRI signal for this ROI.
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2.3 Feature extraction in the BIS
In the neuroscience field, functional connectivities [26] among relevant brain ROIs have
been widely used to reflect meaningful interactions within brain networks. In this paper, we
also adopt the functional connectivities of brain ROIs within each video shot time interval as
the high-level semantic features in the BIS to model and describe the human brain’s
responses to natural stimulus of watching video streams. Typically, the functional
connectivity between two ROIs is measured as the Pearson correlation coefficient between
their fMRI time series. As a result, for each scanned video shot, we constructed a 358×358
connectivity matrix. Fig. 3 shows two randomly selected examples of the connectivity
matrix corresponding to two different types of video shots (sports and commercial). As can
be seen, the connectivity patterns for the two shots are quite different. For example, the
functional interactions are globally much stronger when watching the commercial shot
compared with that when watching the sport shot. This observation is reasonable given the
fact that the content in commercial videos is typically much more complex for participant to
comprehend, in comparison with that in sport videos.

In our previous work [21], we used a functional connectivity matrix built on 30 functional
brain ROIs to form the BIS and represent video shots. However, video is typically a
synthesis of visual, aural, textual information. The functional brain mechanism for video
comprehension may be far beyond what 30 brain ROIs can account for. In this paper, we
employ a data-driven approach to select relevant fMRI response features from 358
consistent and dense ROIs that can cover the whole brain to represent video shots. We
expect that an effective feature selection procedure can pick up the most relevant brain
networks and their ROIs that are involved in video comprehension. If we directly use all
elements in the 358×358 connectivity matrix as the high-level features in the BIS, the size of
the feature vector is 63,903 dimensions, which is apparently not a concise and informative
representation. Our strategy is to use the 358 ROIs to construct an over-complete ROI set.
Then, we employ supervised feature selection upon the over-complete set to seek the most
relevant features that are able to differentiate various video classes while removing
redundant features. The selected features finally form the BIS and are used as the feature
vector to represent video shots. At the same time, this feature selection procedure provides a
data-driven method to automatically identify brain ROIs that are most involved in video
perception and cognition. It can overcome the shortcoming of traditional methods that apply
task-based fMRI to derive brain activations and identify ROIs under the hypothesis that
brain networks activated by tasks can represent the complex content of video streams.

In general, the objectives of feature selection are twofold. One is to maximize feature
relevance. The other is to minimize feature redundancy. It is worth noting that most current
feature selection algorithms are incapable of achieving the above two objectives upon a very
large dimensional feature set (for example, 63,903) in practice. Accordingly, this paper
implements a two-stage procedure to fulfill the relevance maximization and the redundancy
minimization of feature selection separately, which has been demonstrated to be effective
for our study by experiments (subsection 4.2).

The first stage of feature selection mainly attempts to achieve relevance maximization. In
this paper, we adopt a statistical test of Analysis of Variance (ANOVA) [27]. It treats each
dimensional feature as an independent variable and determines each dimensional feature’s
relevance individually by evaluating its correlation with the target class. Given a
dimensional feature with the sample fi,j for the i th class and j th data point, the core idea is
to perform the F-test [27, 57] to assess whether the expected values of this dimensional
feature within several target classes differ from each other, which can be formulated as [27,
57]:
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(1)

(2)

(3)

Here, C is the number of classes and Bi is the number of samples in the i th class.
Essentially, a feature resulting in significant differences between classes indicates a trend
that it has a high impact on classification, which is called the feature relevance. Then, the
results of F are tested for statistical significance or p -value [27, 58], where the p -value is
the estimated probability of rejecting the null hypothesis of a study question when that
hypothesis is true. If the p -value of a feature is small, it implies there is strong evidence that
the differences between classes are big, i.e. the feature is relevant. Therefore, we achieve the
feature relevance maximization by comparing the p -value against a significance level γ [27,
57]. The set of features whose p -values are less than γ is considered as the most relevant
features and then is selected to be processed at the second stage. The implementation details
of one-way ANOVA can be found in [27].

Since the first stage of feature selection evaluates each dimensional feature individually, it
cannot handle feature redundancy. This problem is left to be tackled at the second stage. In
the proposed work, the Correlation-based Feature Selection (CFS) algorithm [28] is adopted
as the second stage of feature selection because of its good performance. It is a heuristic
method for evaluating the worth of a subset of features by taking into account feature-class
and feature-feature correlations simultaneously. The hypothesis behind the heuristic can be
simply described as: good feature subsets consist of features of highly correlating with the
class while uncorrelating with each other. Given a feature subset S consisting of k features,
its CFS can be calculated by [28]:

(4)

Here, f ∈ S is a feature and CL denotes a class.  and  are the mean
feature-class correlation and the mean feature-feature correlation, which can be computed
according to symmetrical uncertainty [28]. By following [28], the feature subset S* with the
maximal Merit (Eq. (4)) can be efficiently found and is selected as the final features. The
maximal Merit often corresponds to the minimal feature-feature correlation. In this way, the
feature redundancy minimization is achieved.

2.4 Mapping from visual space to BIS via GPR
As mentioned before, the acquisition of high-level features in the BIS via fMRI scanning
under natural stimulus is expensive and costly indeed. It is impractical to carry out fMRI
scan for all video shots of a large-scale video collection. On the other hand, machines can
produce plenty of visual features easily by current image processing and computer vision
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techniques. Therefore, we propose to learn a mapping from the visual features to the
semantic features in the BIS using some training data, which results in predictions of
semantic features given corresponding visual features. The mapping from the visual features
to the fMRI-derived semantic features can be regarded as a primitive form of “mind-
reading” that can find low-level features strongly correlating to brain behavior in
differentiating video shots. The learning of this mapping can be mathematically formulated
as a linear regression problem:

(5)

where x is the low-level visual feature vector, y is the high-level BIS feature vector, ϕ(x) is
the basis functions, and ε is Gaussian noises. The weight vector w is the objective of
learning. GPR allows a simple analytical treatment of exact Bayesian inference, is powerful
for modeling non-linear dependencies, and has been demonstrated to achieve good
performance. It is therefore used in our framework for learning the mapping. As described in
[30, 31], the GPR can be efficiently implemented by defining the kernel function instead of
directly choosing basis functions. However, the standard GPR algorithm [30] mainly aims at
the prediction of a single output and ignores the correlations among output components.
Recently, an improved GPR algorithm called Twin Gaussian Process (TGP) [31] was
presented to remove these drawbacks. In our work, we utilized TGP to implement the
regression. The details of TGP were provided in [31] whereas this paper only described the
basic implementation process in Algorithm 1.

Algorithm 1

TGP Regression to Map Features from Visual Space to BIS [31]

Input: N training data represented by visual features as: X = (x1,x2,…,xN), with xi = (xi,1, xi,2,…,xi,d1) and represented
by BIS features as: Y = (y1,y2,…,yN), with yi = (yi,1, yi,2,…, yi,d2);

 A test data with only visual features, xN+1.

Output: Predicted BIS features of the test data, yN+1.

Step1: Compute the kernel matrix KX and KY, where

(KX )
i, j

= ϕ(xi)
Tϕ(x j) = KX (xi, x j) = exp ( - θx xi - x j

2) + λxδi, j

 Here, θx ≥ 0 is the kernel width parameter, λx ≥ 0 is the noise variance, and δi,j is the Kronecker delta function. KY is
defined in the same way;

Step2: For xN+1, predict yN+1 by optimizing the following function [31]:

F (yN +1) = KY (yN +1, yN +1) - 2μ T KY

yN +1 - ν log KY (yN +1, yN +1) - (KY

yN +1)
T

KY
-1KY

yN +1

 where  and Equation.  is a

N × 1 column vector with ;

Return: yN+1.
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3. Retrieving video shots in BIS using manifold-ranking
Recently, manifold learning has been successfully applied to image retrieval tasks [23, 24],
which works under the assumption that manifold structure is more powerful than traditional
Euclidean structure to represent data. Instead of assuming that the image space is a
Euclidean space and estimating similarity between images based on their Euclidean
distance, the works [23, 24] weakly assume that the image space is a Riemannian manifold
embedded in the feature space, which is called image manifold. Then, these works mainly
focus on discovering the intrinsic geometrical structure of the image manifold and
estimating the similarity between images based on the geodesic distance on the image
manifold. In this paper, we basically follow the idea of [23, 24] whereas we explore the
video manifold in BIS rather than in low-level visual feature space or the space based on
limited and subjective user interactions.

3.1 Geometrical structure of video manifold in BIS
We suppose that the key frame yi = (yi,1,…,yi,D) be a point in BIS, where D is the
dimensionality of BIS feature.

1. For each point yi, find its K nearest neighbors based on Euclidean distance;
Connect any two points with an edge if they are neighbors.

2. Define the affinity matrix M whose element is

 if there is an edge linking yi and yj. Note
that self-reinforcement should be avoided, thus let Mi,i = 0.

Repeating the above steps results in constructing a graph, which models the local
geometrical structure of the video manifold. The geodesic distances between all pairs of
video shots on the video manifold are defined as the shortest-path distances on the
constructed graph.

3.2 Performing retrieval in BIS using manifold-ranking
We adopted a manifold-ranking algorithm [25] to perform retrieval, which measures the
similarity between the query and the shots in the database via examining the relationship of
all data upon the intrinsic global manifold structure in the BIS, instead of the traditional way
of using local pair-wise Euclidean distances based on low-level features. Its basic idea is to
spread a positive ranking score assigned to the query to its nearby unlabeled neighbors on
the manifold structure until a global stable stage is achieved. The details of the algorithm are
summarized below.

Algorithm 2

Manifold-Ranking for Retrieving Video Shots

Input: The query key frame set q, geometrical structure of video manifold in BIS including N points each representing
a key frame in the database.

Output: Ranking score vector r = (r1,…,rN) in which ri denotes the ranking score of i th key frame to q.

Step 1: Normalize M in subsection 3.1 by U = P−1/2MP−1/2 where P is a diagonal matrix with ;

Step 2: The theorem in [32] can guarantee that {ri} converges to r = β(1−αU)−1L. Here β = 1−α, L = [l1,…,lN]T is a
binary vector that can indicate whether a key frame is a query or not, where li = 1 if i th point is a query, and li = 0
otherwise.
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Return: r = (r1,…,rN)

4. Experiments
The NIST TRECVID is a common, well-known, and publicly available video dataset [33]. It
has been widely used as the benchmark for evaluating tasks such as video retrieval, video
shot boundary detection, video summarization, video instance search, video copy detection,
and so on, since it is large, diverse, and contains full-length video sequences. In this paper,
we constructed our evaluations on the TRECVID 2005 video streams [33], which are mainly
selected from the television news and NASA science programming. As summarized by [34],
these data is categorized into 7 concepts such as politics, finance/business, science/
technology, sports, entertainment, weather, and commercial/advertisement. TRECVID
provides annotations for three concepts of videos, including sports, weather, and
commercial, which were thus collected as the test data in this paper. TRECVID 2005 has
provided key frames for each video shot, which were therefore used in our evaluations. As
reported in [33], these key frames are extracted by a group at Dublin City University using
an automatic approach. Specifically, the shot boundaries are first automatically detected by
using a system developed in [59]. Then, the I-Frame nearest to the middle frame of the shot
boundary is selected as a key frame.

Totally, 581 sports, 383 weather, and 343 commercial video shots from TRECVID 2005
were adopted to evaluate the proposed work. This data was randomly split into the training
set and the testing set. The training set consists of 51 video shots and was utilized as the
natural stimuli presented to subjects for fMRI brain imaging. This set of training data was
also applied to supervised feature selection and GPR training. The rest of 1256 video shots
construct the testing data. It is clear that the training data set is much smaller than the testing
data set because fMRI scanning is expensive and time-consuming.

For each key frame of video shots, its original BIS feature vector is 63,903 dimensional. It
becomes 5613 dimensional after using ANOVA and eventually becomes 65 dimensional
after performing CFS. In recent years, the model of bag of visual words (BoW) [4] has
become one of most successful methods to represent images according to local features,
which was also adopted as the low-level visual features in our work. In this work, firstly, a
set of SIFT [2] descriptors each being 128 dimensionality were extracted from each key
frame. Then, the K-means clustering algorithm was applied to cluster all SIFT descriptors to
a number of visual words. At last, each key frame was characterized by a feature vector to
reflect the probabilistic distribution of those words. Here, considering that our BIS feature is
65 dimensional and the size of our training set is relatively small, in order to obtain a GPR
model with good performance, we need the size of visual low-level feature vector is
comparable to the size of BIS feature vector. Hence, in our implementation, the number of
words in BoW was set to 65.

4.1 Mapping of brain networks and ROIs involved in video comprehension and
discrimination

This work used the DICCCOL system and feature selection to identify a set of brain ROIs
that are involved in video comprehension and discrimination. In our work, 65 features from
the functional connectivity matrix were selected, which are associated with 93 brain ROIs in
the DICCCOL system. Fig. 4 visualizes the identified functional connections and brain ROIs
overlaid on a cortical surface. It is apparent that a large portion of the whole brain, including
the visual, auditory, language, attention, emotion, working memory and motor systems, are
involved in video comprehension, as we expected.
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We also labeled the functions of those 93 selected ROIs into different brain networks
according to the DICCCOL system’s functional annotations. The top 10 functional networks
that have the largest percentages of those selected ROIs are listed in Table 1. It turns out that
the selected functional networks are quite reasonable and meaningful given current
neuroscience knowledge. For instance, the attention, speech, semantics, emotion, execution,
and working memory systems are among the most relevant brain networks in video
comprehension. This result suggests that video comprehension involves the functional
interaction of large-scale brain networks, as demonstrated by the widespread brain ROIs in
Fig. 4, and that our feature selection can pick up the relevant brain networks, as listed in
Table 1. Therefore, our experimental and computational framework can extract meaningful
and descriptive BIS features from the fMRI data in order to characterize and describe the
brain’s responses to video shots.

This paper proposes to use our DICCCOL system to systematically localize functional brain
networks, based on which the brain responses during free viewing of video stream are
quantified. Then, feature selection is used to identify distinct brain responses during the
comprehension of video stream in different categories. Traditionally, task-based fMRI is a
standard method to localize functionally-specialized ROIs, which was also used in our
previous work [21, 54]. Comparing with task-based fMRI, the proposed method can provide
large-scale, comprehensive, accurate, and reliable brain ROIs and thus offer effective
measurement of brain responses involved in video comprehension. To demonstrate this
point, we followed the experiment designs in [21, 54] and constructed three two-class
classification experiments including Sports VS Weather Report (S-W), Sports VS
Commercial (S-C), and Weather Report VS Commercial (W-C) to compare the performance
by using 30 ROIs [21, 54] with that by using 358 ROIs. The experiments were performed on
51 training videos. First, the most relevant elements in the connectivity matrices were
selected by a two-tailed t-test [21]. Then, we used the KNN classifier and the leave-one-out
strategy to perform the classification. The results are summarized in Fig. 5. As can be seen,
substantially higher classification accuracies were achieved by using 358 ROIs, which
demonstrates the proposed method of brain ROIs localization is superior.

4.2 Evaluation of BIS feature
We designed and conducted three experiments of video classification to evaluate the
performance of the proposed BIS features. It is worth noting that we used K-nearest
neighbor (K-NN) classifiers in our test because it is a naïve classifier, which has no inherent
feature selection mechanism inside unlike other advanced classifiers such as SVM. The
classification performance by using simple classifiers is more likely to reflect the
effectiveness of the proposed video representation in BIS.

The first experiment was to test the supervised two-stage approach of feature selection used
in this work. We adopted those 51 video shots which have BIS features and used the leave-
one-out cross-validation to accomplish the classification. Fig. 6 shows the classification
comparison results based on the original BIS features, selected features after the first stage
(ANOVA), and selected features after the second stage (CFS), respectively. It can be clearly
seen that our feature selection procedure is effective and achieves much better results. The
classification accuracy by using 63,903 dimensional BIS features can be improved by more
than 40% by using selected 65 dimensional features. It is worth noting that our experimental
results do not imply that the classification accuracy will become higher as we use smaller
number of features. We also show the classification accuracy using 5 and 10 dimensional
features to demonstrate this point in Fig. 6.

In this work, a two-stage of approach consisting of ANOVA and CFS (AC) were utilized to
select features to form the BIS. To further evaluate the effectiveness of AC, we designed
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two experiments to compare it with other classical feature selection algorithms such as
Gentle Adaboost (GA) [46], Fisher Score (FS) [7, 43], Relief (RE) [9, 43], and Fuzzy
Entropy (FE) [44]. The GA was selected here since it is simple to implement, robust, and
has been shown to outperform other boosting variants experimentally. The first experiment
used those 51 video shots and the leave-one-out cross-validation to accomplish the
classification task in the BIS. For FS, RE, and FE, we utilized K-NN as classifier. For GA,
we utilized its original strong classifier consisting of a number of selected weak classifiers
as the classifier, where each weak classifier corresponds to a selected feature. The
classification accuracies using GA by varying the number of weak classifiers (the number of
selected features), T, are listed as follows: 78.43% (T=5), 78.43% (T=10), 80.39% (T=15),
76.47% (T=20). The average accuracy is 78.43%. Fig. 7 shows comparison results of AC,
FS, FE, and RE. As can be seen, FE did not obtain good performance. AC improves FS and
RE by about 5%. AC is slightly better than GA with the improvement of 2.5%. However,
the computational complexity of AC is much lower than that of GA according to our
experiments. By using Matlab code, the running time of GA (T=15) is 3 hours on a Duo
Core 2.93 GHZ machine with 2GB RAM, whereas the running time of AC is 15 minutes.
Moreover, we list the time costs of AC in different settings by varying p-value in Table 2.
As can be seen, the time cost of ANOVA is relatively small and constant across various
settings whereas the time cost of CFS is considerably affected by the number of input
features.

In the second experiment, we used SVM classifier to measure the classification performance
using various feature selection approaches. The classification accuracies of AC, FS, FE, and
RE are 82.35%, 76.47%, 76.47%, and 41.18%, respectively. The results of these two
experiments were basically similar and can demonstrate that AC used in this work is
effective and efficient for selecting informative features from fMRI data.

The third experiment was constructed to compare the classification performance of BIS
features and state-of-the-art low-level visual features. We also used those 51 video shots
with fMRI data. Fig. 8 displays the comparison results. As can be seen, the classification
performance in the BIS is better than that using BoW. Averagely, the improvement is 7.7%.

4.3 Evaluation of model consistency across subjects
We performed two experiments to assess if the obtained result is consistent across various
subjects. In these experiments, fMRI scanning data of three subjects when watching those 51
video shots were used. As described in subsection 4.1, 65 pair-wise functional connectivities
involved in video comprehension were identified via DICCCOL and feature selection. The
first experiment was to evaluate the consistency of identified ROIs and connectivity across
subjects. For each of 51 video shots, we collected 65 pair-wise connectivities for each
subject. We then calculated the variance of each element across three subjects. Totally,
65×51 variances were obtained and the distribution is illustrated in Fig. 9. The statistical
result reflects that those identified ROIs and connectivities by using the proposed scheme
have consistent responses to video stimulus across various subjects.

The second experiment was designed to test the consistency of performance of feature
selection and classification across various subjects. We applied the leave-one-out cross-
validation and K-NN classifier to compute the classification performance. For each subject,
we repeated the feature selection to obtain BIS features and classification using these BIS
features. Fig. 10 shows the classification results for three subjects. As can be seen, the
classification performance associated with each subject is generally pretty good and
performance variance across subjects is minor, which demonstrate the feature selection and
classification proposed in this paper are relatively robust to different subjects.
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4.4 Evaluation of GPR
Two experiments were designed and performed to evaluate the GPR algorithm. In the first
experiment, we compared the classification capability by using estimated BIS features and
by using original BIS features. In our test data, 51 video shots have fMRI data and thus BIS
features. We call these BIS features “original BIS features”. We trained a mapping from the
BoW features to the BIS features by using the GPR algorithm described in subsection 2.4
upon these 51 video shots. These BIS features are called “estimated BIS features”.
Subsequently, we applied the original BIS features and the estimated BIS features to classify
video shots by using the K-NN algorithm, respectively. The classification comparison is
shown in Fig. 11. As can be seen from the results, the classification precisions by using the
original BIS features and the estimated BIS features are quite close. Their precision
difference is only about 0.0176. This result suggests that the GPR algorithm can effective
map the two features spaces of BoW and BIS features, and exhibits remarkable
predictability power. In this sense, the GPR serves as a bridge that links the two feature
spaces (BoW and BIS), enabling us to apply the learned model on video shots without fMRI
scans. This capability is critically important to apply the proposed work of representing and
retrieving video shots in BIS in large-scale real-world video shot databases.

The second experiment aims to measure the average classification precision using the
estimated BIS features. We suppose lable i be the classified label for the ith video shot by
using K-NN and the original BIS features, and  be the classified label for the ith video
shot by using K-NN and the “estimated” BIS features. The classification using the
“estimated” BIS features is correct if . The average classification precision is
then defined as the correction rate for all the data. We also used the K-NN classifier. The
overall average classification by varying K from 1 to 10 is about 0.89. The above two
aspects of quantitative experimental results together demonstrate that the estimation
capability of GPR algorithm is superior, which can effectively bridge the two feature spaces
of BoW and BIS and enables us to perform large-scale video shot retrieval in the BIS space.

4.5 Evaluation of video retrieval
Similar to most retrieval systems [23, 24], our retrieval is also based on the query-by-
example paradigm. Given a query video represented by key frames, the similarity between
every video in the database and the query is measured. Then, all videos in the database are
sorted in descending order of similarity. Finally, a number of video results that are most
similar to the query are returned. Our evaluation is to compare those returned results with
the ground truth data and quantitatively compute the retrieval accuracy. Specifically, this
paper constructed the video retrieval experiment on our testing dataset that consists of 1256
video shots from TRECVID 2005. The GPR model was learned by using training video set
as described in subsection 2.4. It was applied to build the mapping from low-level visual
space to BIS for each testing video data. The manifold structure was generated in BIS for
1256 videos as described in subsection 3.1. Afterwards, given a video query, the similarity
between every video in the database and the query was measured upon the BIS manifold
using the manifold ranking algorithm as described in subsection 3.2. Following [23, 24], the
retrieval accuracy was calculated as

. In our experiment, we adopted
every one of 1256 videos in our database as the query to perform the retrieval, which results
in 1256 retrieval sessions totally. The average retrieval accuracy of those 1256 retrieval
sessions was used to measure the retrieval performance of the proposed method. For
comparison, we also created the manifold structure and retrieved video shots in the low-
level visual space using BoW features. Fig. 12 shows three sets of retrieval examples by
using the proposed BIS features and low-level BoW features, respectively. In these retrieval
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examples, 10 results that are most similar to the query from the database were returned. It
can be easily seen that the retrieved results in BIS are more similar to the corresponding
query than those in the visual low-level feature space. Additionally, it is worth noting that
some correct results retrieved in BIS are visually different from the query (especially in the
third example). This observation can highlight the difference between the proposed work
and traditional work and demonstrate that understanding videos in BIS can capture the
semantics of brain cognition. Quantitatively, Fig. 13 presents the performance by comparing
the proposed retrieval in BIS with the retrieval in low-level visual space described by BoW
features. Here, the dimensionality of BIS features is 65 and the dimensionalities of BoW
features are 65, 200, 300, respectively. As can be seen, our method can improve the
accuracy of the traditional method by about 20%, which is considered substantial.

In the above experiment, we built the BIS via mapping from BoW feature, and demonstrated
that using BIS feature significantly improved the retrieval performance of using BoW
feature. To further test the effectiveness of the derived BIS features, we constructed another
experiment which compared the proposed approach using BIS features with the state-of-the-
art method presented in TRECVID 2011. Currently, the popular solution for video retrieval/
indexing in TRECVID 2011 is to combine global, local, and motion features to yield a more
powerful visual representation for video shots, and then calculate the similarity between
videos using the combined video representation. As reported in [40, 41], the combination of
different features generally can obtain better performance. Therefore, it is reasonable to
regard the method based on the combined features as the state-of-the-art approach. Based on
reports of TRECVID 2011 [39–41], we selected a number of features that were mostly used
and also achieved better retrieval performance experimentally to form the video
representation. To be specific, SURF [3, 41] was selected as the global feature. SIFT based
BoW [4, 39–41] and GIST [39, 41] were selected as the local feature. STIP [39, 41, 42] was
selected as the motion feature. The dimensionalities of SURF, BoW, GIST, and STIP features
in our experiments are 9, 65, 512, and 65, respectively. We compared two retrieval systems
by using the proposed BIS features and the combined low-level features (SURF+BoW+GIST
+STIP), respectively, and both using manifold ranking algorithm as the similarity measure.
For each of those two retrieval systems, 1256 retrieval sessions that used each video in the
database as the query were performed and the average retrieval accuracy was calculated.
Fig. 13 shows the quantitative comparison results on the test dataset. It is easy to see that
state-of-the-art approach by using combined features achieved better accuracy than that
using BoW features (the best one) only with the improvement of 5%. However, on average,
it is still worse than the proposed approach using BIS features by 8.3%. Especially, the
proposed approach has much higher performance than the approach using combined features
when the number of returned results is small (V=5 and 10). The average improvement is
around 12.3%. Therefore, the experimental results demonstrate that our proposed video
retrieval framework is effective.

In all experiments, a unified set of parameters was used. In ANOVA, the threshold γ was set
to 0.005. In the calculation of the affinity matrix M, σ was set to 3. In the manifold ranking
algorithm, α was set to 0.99 and β = 1−α. The proposed retrieval framework was
implemented by Matlab. The computational speeds of off-line feature selection took a few
tens of minutes, the GPR training took less than one minute, and the manifold construction
took a few seconds. The online manifold-ranking retrieval took a few seconds.

5. Conclusions
In this paper, we have explored and evaluated a novel and generalized framework to
represent and retrieve video shots in BIS where human brain cognition of video semantics
can be captured and represented. Our major contributions can be summarized as follows. 1)

Han et al. Page 14

IEEE Trans Image Process. Author manuscript; available in PMC 2014 April 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The proposed work established the link between two research areas of brain science and
video computing via fMRI technology. It developed an innovative brain-computer interface
to investigate and leverage the high-level brain imaging space associated with brain
behaviors in video perception and cognition, which can significantly boost video
understanding and computing. 2) We firstly employed the DICCCOOL system to generate
an over-complete set of functional brain ROIs. A data-driven strategy of feature selection
was then developed to select the most relevant features, which simultaneously plays an
important role in identifying the appropriate ROIs regarded as being involved in video
cognition from the over-complete set. In contrast, the traditional method relies on task-based
fMRI and is incapable of describing and representing the complicated video content
comprehension. The proposed data-driven strategy is more systematic and comprehensive.
3) A computational model using GPR was used to build the mapping from the low-level
visual space to the high-level BIS where the maximal correlations between low-level
features and human-centric BIS features can be achieved. The computational model can
alleviate the burden of lacking fMRI scanning data in the application stage. 4) The manifold-
ranking algorithm was applied to retrieve video shots represented by BIS features.
Evaluations on a publicly available benchmark video database have demonstrated the
effectiveness of the proposed work.

In future work, we will improve the proposed work in three aspects. First, more types of BIS
features reflecting the brain’s comprehension of video stimuli, e.g., functional interactions
among cortical and subcortical regions, will be derived. Second, more categories of videos
will be used to perform large-scale natural stimulus fMRI scanning and construct a broader
BIS feature space. Finally, other alternative computational learning techniques will be
investigated and compared. We envision that the combination of functional brain imaging
and multimedia research will offer novel perspectives on both fields and advance our
understanding of their interactions.
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Fig. 1.
The overall architecture of the proposed framework.
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Fig. 2.
Nine different functionally-specialized brain networks ((b)-(j)) identified from different
fMRI datasets are integrated into the same universal brain reference system (a) via the 358
DICCCOL ROIs. Then, the functionally-labeled landmarks in the universal space can be
predicted in each individual brain with DTI data such that DICCCOL ROIs and their
functional identities can be transferred to a local coordinate system (k).
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Fig. 3.
Two randomly selected examples of functional connectivity matrices upon 358 brain ROIs
from one subject for two video shots. (a) A sport shot. (b) A commercial shot.
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Fig. 4.
Localization visualization of identified functional connections for video comprehension and
discrimination in DICCCOL system on a cortical surface. The spheres (both green and
white) are the DICCCOL landmarks. The green ones are the landmarks involved in the
indentified function connections. The detailed annotations of these ROIs are referred to [22].
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Fig. 5.
The comparison of KNN-based classification using features of brain responses from the 30
ROIs and the 358 ROIs. p is the p-value of the t-test in feature selection.
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Fig. 6.
Evaluations of the proposed feature selection for BIS features using K-NN classifier. (the
numbers following “BIS” indicate the numbers of feature dimensions)

Han et al. Page 23

IEEE Trans Image Process. Author manuscript; available in PMC 2014 April 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
Comparisons of classification using various feature selection algorithms in the BIS.
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Fig. 8.
Comparisons of classification in BIS and in low-level feature space. (Numbers following
“BoW” indicate the numbers of feature dimensions)
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Fig. 9.
The statistical consistency of identified functional connectivities across subjects.
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Fig. 10.
Classification in the BIS using the proposed approach across various subjects.
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Fig. 11.
Classification comparison by using the original BIS features and the estimated BIS features.
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Fig. 12.
Three examples of retrieving video shots using BIS features and BoW features, respectively.
In each example, the top-left image shows the key frame of the query video. The retrieved
results by using BIS features are shown in the top two rows and the retrieved results by
using BoW features are shown in the bottom two rows. The images labeled by the red boxes
are irrelevant retrieved examples.
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Fig. 13.
Performance comparisons of video retrieval in the BIS and in low-level visual space.
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Table 1

Top 10 brain networks involved in video comprehension and discrimination.

# Brain networks Percentage

1 Attention 9.15%

2 Execution.speech 7.19%

3 Language.semantics 7.19%

4 Emotion 6.54%

5 Language.speech 6.54%

6 Memory.explicit 6.54%

7 Execution 4.58%

8 UGA.emotion 3.92%

9 Cognition 3.27%

10 Memory.working 3.27%
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Table 2

Time costs of AC in different settings. (FD indicates the feature dimensionality)

p(×10−3 FD after ANOVA Time cost of ANOVA (min) FD after CFS Time cost of CFS (min)

4.1 4792 0.5103 62 8.4138

4.2 4889 0.5142 62 8.6974

4.3 4990 0.5090 62 9.0913

4.4 5079 0.5168 65 9.9737

4.5 5146 0.5087 62 9.8319

4.6 5234 0.5123 66 11.0924

4.7 5336 0.5090 65 11.5336

4.8 5440 0.5140 65 11.7384

4.9 5527 0.5088 65 12.9674

5 5613 0.5130 65 15.0000
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