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Abstract

Consider the problem of reconstructing a multidimensional signal from an underdetermined
set of measurements, as in the setting of compressed sensing. Without any additional as-
sumptions, this problem is ill-posed. However, for signals such as natural images or movies,
the minimal total variation estimate consistent with the measurements often produces a good
approximation to the underlying signal, even if the number of measurements is far smaller
than the ambient dimensionality. This paper extends recent reconstruction guarantees for two-

dimensional images x ∈ CN
2

to signals x ∈ CN
d

of arbitrary dimension d ≥ 2 and to isotropic

total variation problems. To be precise, we show that a multidimensional signal x ∈ CN
d

can
be reconstructed from O(sd log(Nd)) linear measurements y = Ax using total variation mini-
mization to within a factor of the best s-term approximation of its gradient. The reconstruction
guarantees we provide are necessarily optimal up to polynomial factors in the spatial dimension
d.

1 Introduction

Compressed sensing (CS) is an emerging signal processing methodology where signals are acquired
in compressed form as undersampled linear measurements. The applications of CS are abundant,
ranging from radar and error correction to many areas of image processing [18]. The underlying
assumption that makes such acquisition and reconstruction possible is that most natural signals
are sparse or compressible. We say that a signal x ∈ C

p is s-sparse when

‖x‖0 def
= | supp(x)| ≤ s ≪ p. (1)

Compressible signals are those which are well-approximated by sparse signals. In the CS framework,
we acquire m ≪ p nonadaptive linear measurements of the form

y = M(x) + ξ,
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where M : Cp → C
m is an appropriate linear operator and ξ is vector modeling additive noise.

The theory of CS ([22, 9, 21]) ensures that under suitable assumptions on M, compressible signals
can be approximately reconstructed by solving an ℓ1 minimization problem:

x̂ = argmin
w

‖w‖1 such that ‖M(w)− y‖2 ≤ ε; (L1)

above, ‖w‖1 =
∑

i |wi| and ‖w‖2 =
(
∑

i |wi|2
)1/2

denote the standard ℓ1 and Euclidean norms, ε
bounds the noise level ‖ξ‖2 ≤ ε, and argmin denotes the set of minimizers (we use the notation of
equality rather than set notation here and use the convention that if the minimizer is not unique, we
may choose a solution lexicographically; however, in this particular case under standard compressed
sensing assumptions it is known that the solution is indeed unique [51]). The program (L1) may be
cast as a second order cone program (SOCP) and can be solved efficiently using standard convex
programming methods (see e.g. [3, 17]).

One property of the operator M that guarantees sparse signal recovery via (L1), as introduced
by Candès and Tao in [9], is the restricted isometry property (RIP).

Definition 1. A linear operator M : Cp → C
m is said to have the restricted isometry property

(RIP) of order s ∈ N and level δ ∈ (0, 1) if

(1− δ)‖x‖22 ≤ ‖M(x)‖22 ≤ (1 + δ)‖x‖22 for all s-sparse x ∈ C
p. (2)

Many distributions of random matrices of dimensionm×p, including randomly subsampled rows
from the discrete Fourier transform [47] or from a bounded orthonormal system more generally [47,
45, 43, 44, 5], and randomly-generated circulant matrices [28], are known to generate RIP matrices
of order s and level δ ≤ c < 1 if the number of measurements satisfies m ≈ δ−2s log4(p). Note that
here and throughout we have used the notation u ≈ v (analogously u . v) to indicate that there
exists some absolute constant C > 0 such that u = Cv (u ≤ Cv). Moreover, a matrix whose entries
are independent and identical (i.i.d.) realizations of a properly-normalized subgaussian random
variable will have the RIP with probability exceeding 1−e−cm oncem ≈ δ−2s log(p/s) [10, 36, 47, 1].

Candès, Romberg, and Tao [8] showed that when the measurement operator M has the RIP of
order O(s) and sufficiently small constant δ, the program (L1) recovers an estimation x̂ to x that
satisfies the error bound

‖x̂− x‖2 ≤ C

(‖x− xs‖1√
s

+ ε

)

, (3)

where xs denotes the best s-sparse approximation to the signal x. Using properties about Gel’fand
widths of the ℓ1 ball due to Kashin [26] and Garnaev–Gluskin [23], this is the optimal minimax
reconstruction rate for ℓ1-minimization using m ≈ s log(p/s) nonadaptive linear measurements.
Due to the rotational-invariance of an RIP matrix with randomized column signs [29], a completely
analogous theory holds for signals that are compressible with respect to a known orthonormal
basis or tight frame D by replacing w with D∗w inside the ℓ1-norm of the minimization problem
(L1) [6, 31].

1.1 Imaging with CS

Natural images are highly compressible with respect to their gradient representation. For an image
x ∈ C

N2
one defines its discrete directional derivatives by

xu : CN2 → C
(N−1)×N , (xu)j,k = xj+1,k − xj,k (4)

xv : CN2 → C
N×(N−1), (xv)j,k = xj,k+1 − xj,k. (5)
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The discrete gradient transform ∇ : CN2 → C
N2×2 is defined in terms of the directional deriva-

tives,

(

(∇x)j,k,1, (∇x)j,k,2
) def
=















(

(xu)j,k, (xv)j,k
)

, 1 ≤ j ≤ N − 1, 1 ≤ k ≤ N − 1
(

0, (xv)j,k
)

, j = N, 1 ≤ k ≤ N − 1
(

(xu)j,k, 0
)

, k = N, 1 ≤ j ≤ N − 1
(

0, 0
)

, j = k = N

The anisotropic total variation seminorm is defined as

‖x‖TV1

def
=

N
∑

j,k=1

|(∇x)j,k,1|+ |(∇x)j,k,2| , (6)

and the isotropic total variation seminorm as

‖x‖TV2

def
=

N
∑

j,k=1

(

(∇x)2j,k,1 + (∇x)2j,k,2
)1/2

. (7)

The recovery guarantees we derive apply to both anisotropic and isotropic total variation semi
norms, and we use the notation ‖x‖TV to refer to either choice of seminorm. For brevity of
presentation, we provide details only for the isotropic total variation seminorm, but refer the reader
to [37] for the analysis of the anisotropic variant.

The total variation seminorm is a regularizer of choice in many image processing applications.
That is, given a collection of noisy linear measurements M(x) + ξ with ‖ξ‖2 ≤ ε of an underlying
image x ∈ C

N2
, total variation minimization is used to pick from among the possibly infinitely-many

images consistent with these measurements:

x̂ = argmin
z

‖z‖TV such that ‖M(z)− y‖2 ≤ ε (TV)

Properties of TV minimizers in inverse problems have been studied in the discrete and continuous
settings [2, 40, 20, 48, 46, 41, 12, 13], and convergence rates of stability measures for TV have also
been established [4, 24]. In the setting of compressed sensing and more broadly in other imaging
applications, total variation regularization has been used for denoising, deblurring, and inpainting
(see e.g. [8, 11, 7, 42, 14, 33, 34, 32, 39, 35, 25, 27, 50, 38] and the references therein). In this article,
we focus on recovery guarantees for (TV) in the compressed sensing setting. Along
the way, we derive strengthened Sobolev inequalities for discrete signals lying near the
null space of operators incoherent with the Haar wavelet basis, and we believe that
such bounds should be useful in a broader context for understanding the connection
between total variation minimization and ℓ1-wavelet coefficient minimization.

While (TV) is similar to the ℓ1-minimization program (L1), the RIP-based theoretical guaran-
tees for (L1) do not directly translate to recovery guarantees for (TV) because the gradient map
z → ∇z is not well-conditioned on the orthogonal complement of ker(∇). In fact, viewed as an in-
vertible operator over mean-zero images, the condition number of the gradient map is proportional
to the image side length N .1 For anisotropic (TV ), recovery guarantees in the compressed sensing
setting were obtained in [38] for two-dimensional images.

1One sees that the norm of ∇ is a constant whereas the norm of its inverse is proportional to N (one can observe
this scaling, for example, by noting it is obtained by the image whose entries are constant).
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Theorem A (from [38]). For a number of measurements m & s log(N2/s), there are choices of
linear operators M : CN2 → C

m for which the following holds for any image x ∈ C
N2

: Given noisy
measurements y = M(x) + ξ with noise level ‖ξ‖2 ≤ ε, the reconstructed image

x̂ = argmin
z

‖z‖TV1 such that ‖M(z) − y‖2 ≤ ε (8)

satisfies the error bound

‖x− x̂‖2 . log(N2/s)
(‖∇x− (∇x)s‖1√

s
+ ε
)

. (9)

Here and throughout, zs denotes the best s-term approximation to the array z.

In words, the total variation minimizer estimates x to within a factor of the noise level and
best s-term approximation error of its gradient. The bound in (9) is optimal up to the logarithmic
factor log(N2/s).

The contribution of this paper is twofold: We extend the recovery guarantees of
Theorem A to the multidimensional setting x ∈ C

Nd

and to the setting of isotropic total
variation minimization, for arbitrary dimension d ≥ 2. The precise statement of results is
given in Theorem 3. The proofs involve extending the Sobolev inequalities for random subspaces
from [38] to higher-dimensional signal structures, using bounds of Cohen, Dahmen, Daubechies, and
DeVore in [15] on the compressibility of wavelet representations in terms of the bounded variation
of a function, which hold for functions in dimension d ≥ 2. Hence, our results for total variation,
do not hold in dimension d = 1. See [49] for results on one-dimensional total variation under
assumptions other than the RIP.

1.2 Organization

The article is organized as follows. In Section 2 we recall relevant background material on the
multidimensional total variation seminorm and multidimensional orthonormal wavelet transform.
Section 3 states our main result: total variation minimization provides stable signal recovery for
signals of arbitrary dimension d ≥ 2. The proof of this result will occupy the remainder of the
paper; in Section 4 we prove that the signal gradient is recovered stably, while in Section 5 we
pass from stable gradient recovery to stable signal recovery using strengthened Sobolev inequalities
which we derive for random subspaces. The proofs of propositions and theorems used along the
way are contained in the appendix.

2 Preliminaries for multidimensional signal analysis

The setting for this article is the space C
Nd

of multidimensional arrays of complex numbers,

x = (xα) , α ≡ (α1, α2, . . . , αd) ∈ {1, 2, . . . , N}d.

From here on out, we will use the shorthand [N ]d = {1, 2, . . . , N}d. We will also use the convention
that vectors such as x (apart from index vectors α) are boldface and their scalar components such

as xα are normal typeface. We also treat CNd

as the Hilbert space equipped with inner product

〈x,y〉 =
∑

α∈[N ]d

xα · ȳα, (10)
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where ȳ denotes the conjugate of y. This Hilbert space is isometric2 to the subspace Σd
N ⊂

L2

(

[0, 1)d
)

of functions which are constant over cubes [αi−1
N , αi

N )di=1 of side length N−1, and the

isometry is provided by identifying xα ∈ C
Nd

with the function f ∈ Σd
N satisfying f(u) = Nd/2xα

for u ∈ [αi−1
N , αi

N )di=1. More generally, we denote by ‖x‖p =
(

∑

α∈[N ]d |xα|p
)1/p

the entrywise

ℓp-norm of the signal x.

For ℓ = 1, 2, . . . d, the discrete derivative of x in the direction of rℓ is the array xrℓ ∈ C
Nℓ−1×(N−1)×Nd−ℓ

defined component-wise by

(xrℓ)α
def
= x(α1,α2,...,αℓ+1,...,αd) − x(α1,α2,...,αℓ,...αd), (11)

and we define the d-dimensional discrete gradient transform ∇ : CNd → C
d×Nd

through its compo-
nents

(

∇x
)

α
=
(

∇x
)

α,ℓ

def
=

{

(xrℓ)α, αℓ ≤ N − 1,
0, else

(12)

The d-dimensional anisotropic total variation seminorm is defined as ‖x‖TV1

def
= ‖∇x‖1, while the

isotropic total variation seminorm is a mixed ℓ1-ℓ2 norm of the d-dimensional discrete gradient,

‖x‖TV2

def
=

∑

α∈[N ]d

(

d
∑

ℓ=1

(

∇x
)2

α,ℓ

)1/2

def
= ‖∇x‖1,2. (13)

A linear operator A : CNd → C
r can be regarded as a sequence of multidimensional arrays

componentwise,
yk = [A(x)]k = 〈ak,x〉 , (14)

and a linear operator A : CNd → C
Nd

can be expressed similarly through its components yα =
[A(x)]α = 〈aα,x〉. If A : C

Nd → C
r1 and B : C

Nd → C
r2 then the row direct sum operator

M = A ⊕r B is the linear operator from C
Nd

to C
r1+r2 with component arrays M = (mk)

r1+r2
k=1

given by

mk =

{

ak, 1 ≤ k ≤ r1,
bk−r1 , 1 + r1 ≤ k ≤ r1 + r2.

Alternatively, for linear operators A : C
Nd → C

r and B : C
Nd → C

r, the column direct sum
operator N = A⊕c B : CNd×2 → C

r has component arrays N = (nk)
r
k=1 given by

(nk)α,ℓ =

{

(ak)α, ℓ = 1,
(bk)α, ℓ = 2.

2.1 The multidimensional Haar wavelet transform

The Haar wavelet transform provides a sparsifying basis for natural signals such as images and
movies, and is closely related to the discrete gradient. For a comprehensive introduction to wavelets,
we refer the reader to [19].

2Recall that f ∈ L2(Q) if
∫
Q
|f(u)|2du < ∞, and L2(Q) is a Hilbert space equipped with the inner product

〈f, g〉 =
∫
Q
f(u) · ḡ(u)du.

5



The (continuous) multidimensional Haar wavelet basis is derived from a tensor-product repre-
sentation of the univariate Haar basis, which forms an orthonormal system for square-integrable
functions on the unit interval and consists of the constant function

h0(t) =

{

1 0 ≤ t < 1,
0, otherwise,

the step function

h1(t) =

{

1 0 ≤ t < 1/2,
−1 1/2 ≤ t < 1,

and dyadic dilations and translations of the step function,

hj,k(t) = 2j/2h1(2jt− k); j ∈ N, 0 ≤ k < 2j . (15)

The Haar basis for the higher dimensional space L2(Q) of square-integrable functions on the unit
cube Q = [0, 1)d consists of tensor-products of the univariate Haar wavelets. Concretely, for V =
{0, 1}d−{0}d and e = (e1, e2, . . . , ed) ∈ V , we define the multivariate functions he : L2(Q) → L2(Q)
by

he(u) =
∏

ei

hei(ui).

The orthonormal Haar system on L2(Q) is then comprised of the constant function along with all
functions of the form

hej,k(u) = 2jd/2he(2ju− k), e ∈ V, j ≥ 1, k ∈ Z
d ∩ 2jQ. (16)

The discrete multidimensional Haar transform is derived from the continuous construction via
the isometric identification between C

Nd

and ΣN ⊂ L2(Q): defining

h0(α) = N−d/2, hj,k,e(α) = N−d/2hej,k(α/N), α ∈ [N ]d, (17)

the matrix product computing the discrete Haar transform can be expressed asH(x) =
(

〈h0,x〉 , (〈hj,k,e,x〉)
)

,
where the indices (j, k, e) are in the range (16) but with j ≤ d− 1, which is a set of size [N ]d − 1.
Note that with this normalization, the transform is orthonormal.

2.2 Gradient versus wavelet sparsity

The following is a corollary of a remarkable result from Cohen, Dahmen, Daubechies, and De-
Vore [15] which bounds the compressibility of a function’s wavelet representation by its bounded
variation, and will be very useful in our analysis.

Proposition 2 (Corollary of Theorem 1.1 from [15]). There is a universal constant C > 0 such

that the following holds for any mean-zero x ∈ C
Nd

in dimension d ≥ 2: if the Haar transform
coefficients c = H(x) are partitioned by their support into blocks cj,k = (〈hj,k,e,x〉)e∈V of cardinality
|cj,k| = 2d−1, then the coefficient block of kth largest ℓ2-norm, denoted by c(k), has ℓ2-norm bounded
by

‖c(k)‖2 ≤ C
‖x‖TV1

k · 2d/2−1

Thus by equivalence of the anisotropic and isotropic total variation seminorms up to a factor of√
d,

‖c(k)‖2 ≤ C

√
d‖x‖TV2

k · 2d/2−1
.
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Proposition 2, whose derivation from Theorem 1.1 of [15] is outlined in the appendix, will be
crucial in our proofs of robust recovery via total variation.

3 The main result

Our main result concerns near-optimal recovery guarantees for multidimensional total variation
minimization from compressed measurements. Recall that a linear operator A : CNd → C

r is said
to have the restricted isometry property (RIP) of order s and level δ ∈ (0, 1) when

(1− δ)‖x‖22 ≤ ‖A(x)‖22 ≤ (1 + δ)‖x‖22 for all s-sparse x ∈ C
Nd

. (18)

A linear operator A = (ak) : C
Nd → C

r satisfies the RIP if and only if the r×Nd matrix A whose
kth row consists of the unraveled entries of the kth multidimensional array ak satisfies the classical
RIP, (1), and so without loss of generality we treat both definitions of the RIP as equivalent.

For our main result it will be convenient to define for a multidimensional array a ∈ C
Nℓ−1×(N−1)×Nd−ℓ

the associated arrays a0ℓ ∈ C
Nd

and a0ℓ ∈ C
Nd

obtained by concatenating a block of zeros to the
beginning and end of a oriented in the ℓth direction:

(a0ℓ)α =

{

0, αℓ = 1
aα1,...,αℓ−1,...,αd

, 2 ≤ αℓ ≤ N
(19)

and

(a0ℓ)α =

{

0, αℓ = N
aα1,...,αℓ,...,αd

, 1 ≤ αℓ ≤ N − 1.
(20)

The following lemma relating gradient measurements with a to signal measurements with a0ℓ and
a0ℓ can be verified by direct algebraic manipulation and thus the proof is omitted.

Lemma 3. Given x ∈ C
Nd

and a ∈ C
Nℓ−1×(N−1)×Nd−ℓ

,

〈a,xrℓ〉 =
〈

a0ℓ ,x
〉

− 〈a0ℓ ,x〉 ,

where the directional derivative xrℓ is defined in (11).

For a linear operator A = (ak) : C
Nℓ−1×(N−1)×Nd−ℓ → C

m we define the operators A0ℓ : CNd →
C
m and A0ℓ : CNd → C

m as the sequences of arrays (a0k
k )mk=1 and (a0kk)

m
k=1, respectively. We

conclude from Lemma 3 that A(xrℓ) = A0ℓ(x)−A0ℓ(x).
We are now prepared to state our main result which shows that total variation minimization

yields stable recovery of Nd-dimensional signals from RIP measurements.

Main Theorem. Let N = 2n. Fix integers p and q. Let A : CNd → C
p be such that, composed with

the orthonormal Haar wavelet transform, AH∗ : CNd → C
p has the restricted isometry property

of order 2ds and level δ < 1. Let B1,B2, . . . ,Bd with Bj : CNd−1(N−1) → C
q be such that B =

B1 ⊕c B2 ⊕c · · · ⊕c Bd : CNd−1(N−1) → C
dq has the restricted isometry property of order 5ds and

level δ < 1/3. Set m = 2dq + p, and consider the linear operator M : CNd → C
m given by

M = A⊕r

[

B1

]01 ⊕r

[

B1

]

01
⊕r · · · ⊕r

[

Bℓ

]0ℓ ⊕r

[

Bℓ

]

0ℓ
⊕r · · · ⊕r

[

Bd

]0d ⊕r

[

Bd

]

0d
. (21)
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The following holds for any x ∈ C
Nd

. From noisy measurements y = M(x) + ξ with noise level
‖ξ‖2 ≤ ε, the solution to

x̂ = argmin
z

‖x‖TV2 such that ‖M(z) − y‖2 ≤ ε (22)

satisfies:

i) ‖∇(x− x̂)‖2 . ‖∇x−(∇x)S‖1,2√
s

+
√
dε,

ii) ‖x− x̂‖TV2 . ‖∇x− (∇x)S‖1,2 +
√
sdε,

iii) ‖x− x̂‖2 . log(Nd)
(

‖∇x−(∇x)S‖1,2√
s

+
√
dε
)

,

where ‖z‖TV2 = ‖∇z‖1,2 is the isotropic total variation seminorm, ‖x‖1,2 =
∑

α∈[N ]d
(
∑d

ℓ=1 x
2
α,ℓ

)1/2

is the associated mixed ℓ1 − ℓ2 norm, and (∇x)S is the signal gradient ∇x restricted to the subset
S =

{

{α(1), . . . , α(s)} × [d]
}

of s largest-magnitude block norms ‖(∇x)α(k)
‖2.

Remarks.
1. Following the same lines of reasoning as the proof of this Main Theorem, one may derive

error bounds for anisotropic TV minimization that are a bit tighter, namely, one only requires RIP
of order 5s. We believe that the suboptimal bounds for isotropic TV are merely an artifact of our
proof technique, as isotropic TV minimization is preferred in practice.

2. The third bound shows that the reconstruction error is proportional (up to a logarithmic
factor) to the noise level ε and the tail of the gradient of the signal x. A number of m ≈ sd log(Nd)
i.i.d. and properly normalized Gaussian measurements can be used to construct the measurement
operator M which, with high probability, satisfies the required RIP conditions of the theorem
[1, 47]. From this number m of measurements, the error guarantees are optimal up to the factor
of d required RIP measurements, factor of

√
d on the noise dependence, and logarithmic factor in

the signal dimension Nd. We emphasize here that the specific construction of the measurement
ensemble is likely only an artifact of the proof, and that more general RIP measurements are likely
possible. See also [30] for results using Fourier measurements (for d = 2).

3. The main theorem recovers the total variation guarantees of [38] when d = 2 up to a log(1/s)
term. This term is lost only because in the higher-dimensional analysis, our proofs require blocking
of the wavelet coefficients. This term can be recovered by applying a more efficient blocking strategy
and by writing in terms of p in (32) of the proof. We write the bound as-is for simplicity.

4. The requirement of sidelength N = 2n is not an actual restriction, as signals with arbitrary
side-length N can be extended via reflections across each dimension to a signal of side-length
N = 2n without increasing the total variation by more than a factor of 2d. This requirement again
seems to be only an artifact of the proof and one need not perform such changes in practice.

We now turn to the proof of the main theorem. We will first prove the gradient-level recovery
bounds (i) and (ii), and then use these to prove the signal-level recovery bound (iii) via Sobolev
inequalities for incoherent subspaces. Along the way, we must take care to balance estimates
involving the gradient vectors (∇xα,ℓ)

d
ℓ=1 ∈ C

d and their block norms ‖∇xα‖2, as well as the

blocks of wavelet coefficients c(k) ∈ C
2d−1 associated to a dyadic cube and their block norms

‖c(k)‖2.

8



4 Stable gradient recovery

In this section we prove statements (i) and (ii) of the main theorem concerning stable gradient
recovery, using standard results in compressed sensing combined with a summation by parts trick
provided by the specific form of the measurements in the Main Theorem and Lemma 3.

Recall that when a signal obeys a tube and cone constraint we can bound the norm of the entire
signal, as in [11]. We refer the reader to Section A.1 of [38] for a complete proof.

Proposition 4. Suppose that B is a linear operator satisfying the restricted isometry property of
order 5ds and level δ < 1/3, and suppose that the signal h satisfies a tube constraint

‖B(h)‖2 ≤
√
2dε.

Suppose further that using the notation of the Main Theorem, for a subset R = R′×[d] of cardinality
|R| ≤ sd (meaning |R′| ≤ s), h satisfies a cone-constraint

‖hRc‖1,2 ≤ ‖hR‖1,2 + σ. (23)

Then
‖h‖2 .

σ√
s
+

√
dε (24)

and
‖h‖1,2 . σ +

√
sdε. (25)

Proposition 4 generalizes results in [8] and its proof is included in the appendix. Using Propo-
sition 4 and RIP assumptions on the operator B, the gradient-level recovery guarantees (i) and (ii)
reduce to proving that the discrete gradient of the residual signal error satisfies the tube and cone
constraints.

Proof. (Main Theorem, statements (i) and (ii).)

Let v = x− x̂ be the residual error, and set h = ∇v = ∇x−∇x̂ ∈ C
Nd×d.

Then we have

Cone Constraint. Consider the block norm ‖(∇x)α‖2 =
(
∑d

ℓ=1 x
2
α,ℓ

)1/2
associated to the index

α ∈ [N ]d, and denote by α(j) the index of the jth largest block norm ‖(∇x)α(j)
‖2, and let

S = {α(1), . . . , α(s)}×[d]. Since x̂ = x−v is a minimizer of (TV) and x satisfies the feasibility
constraint in (TV), we have that ‖∇x̂‖1,2 ≤ ‖∇x‖1,2. By the reverse triangle inequality,

‖(∇x)S‖1,2 − ‖hS‖1,2 − ‖(∇x)Sc‖1,2 + ‖hSc‖1,2
≤ ‖(∇x)S − hS‖1,2 + ‖(∇x)Sc − hSc‖1,2
= ‖∇x̂‖1,2
≤ ‖∇x‖1,2
= ‖(∇x)S‖1,2 + ‖(∇x)Sc‖1,2.

This yields the cone constraint

‖hSc‖1,2 ≤ ‖hS‖1,2 + 2‖(∇x)Sc‖1,2

9



Tube constraint. Recall that v = x − x̂. Since both x and x̂ are feasible solutions to (TV),
Jensen’s inequality gives

‖M(v)‖22 ≤ 2‖M(x) − y‖22 + 2‖M(x̂)− y‖22 ≤ 4ε2

By Lemma 3, we have for each component operator Bj,

Bj(vrj ) = [Bj]
0j (v)− [Bj ]0j (v) (26)

Then B(∇v) =
∑d

j=1Bj(vrj), (where we assume that ∇v is ordered appropriately) and

‖B(∇v)‖22 = ‖
d
∑

j=1

Bj(vrj)‖22

≤ d
d
∑

j=1

‖Bj(vrj )‖22

≤ 2d

d
∑

j=1

(

‖Bj ]
0j (v)‖22 + ‖Bj ]0j (v)‖22

)

≤ 2d‖M(v)‖22
≤ 8dε2. (27)

In light of Proposition 4 the proof is complete.

Remark 5. The component operator A from the main theorem was not used at all in deriving
properties (i) and (ii); on the other hand, only the measurements in A will be used to derive
property (iii) from (i) and (ii). We conjecture that all measurements in the main result apart from
those in the component operator A are artifacts of the proof techniques herein.

5 A Sobolev inequality for incoherent subspaces

We now derive a strengthened Sobolev inequality for signals lying near the null space of a matrix
which is incoherent to the Haar wavelet basis.

Theorem 6 (Sobolev inequality for incoherent subspaces). Let d ≥ 2 and let N = 2n. Let

A : CNd → C
m be a linear map such that, composed with the multivariate Haar wavelet transform

H : CNd → C
Nd

, the resulting operator AH∗ : CNd → C
m satisfies the restricted isometry property

of order 2s and level δ < 1. Then there is a universal constant C > 0 such that the following holds:
if v ∈ C

Nd
satisfies the tube constraint ‖A(v)‖2 ≤ ε, then

‖v‖2 ≤ C
‖v‖TV1√

s
log(Nd) + ε. (28)

and so, by equivalence of the isotropic and anisotropic total variation seminorms up to a factor of√
d,

‖v‖2 ≤ C
‖v‖TV2
√

s/d
log(Nd) + ε. (29)
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Remark 7. The RIP assumptions on AH∗ = AH−1 imply that for v with s-sparse wavelet repre-
sentation,

‖A(v)‖2 = ‖AH∗H(v)‖2 ≈ (1± δ)‖H(v)‖2 ≈ (1± δ)‖v‖2,
with the final equality holding because H is unitary. This implies that the null space of A cannot
contain any signals admitting an s-sparse wavelet expansion, apart from the zero vector. In partic-
ular, the null space of A contains no nontrivial constant signals and thus intersects the null space
of ∇ trivially.

Theorem 6 admits corollaries for various families of random matrices with restricted isometries.
For Gaussian random matrices, the theorem implies the following.

Corollary 8. Let A : CNd → C
m be a linear map realizable as an Nd ×m matrix whose entries

are mean-zero i.i.d. Gaussian random variables. Then there is a universal constant c > 0 such
that with probability exceeding 1 − e−cm, the following bound holds for any x ∈ C

Nd

lying in the
null-space of A:

‖x‖2 .
‖x‖TV1√

m
[log(Nd)]2. (30)

and

‖x‖2 .
√
d‖x‖TV2√

m
[log(Nd)]2. (31)

Proof of Corollary 8. From results on Gaussian matrices and the restricted isometry property (see
e.g. [9, 36, 1, 47]), A satisfies the RIP of order 2s and level δ < 1 with probability exceeding 1−e−cm

when s is proportional to m/ log(Nd). Substituting this value for s into (28) and (29) yields the
claim.

Proof of Theorem 6. Consider the signal error v = x−x̂, and consider its orthogonal decomposition
v = v0 + v1 where v0 = 〈h0,v〉h0 is constant and v1 = v − v0 is mean-zero (recall that h0 has

constant entries equal to N−d/2). Let c = H(v) ∈ C
Nd

represent the orthonormal Haar transform
of v. Suppose without loss of generality that the desired sparsity level s is either smaller than
2d − 1 or a positive multiple of 2d − 1, and write s = p(2d − 1) where either p ∈ N or p ∈ (0, 1) (for
arbitrary s ∈ N, we could consider s′ = ⌈s/(2d − 1)⌉ which satisfies s′ ≤ 2s).

Let S = S0 ⊂ [N ]d be the index set of cardinality s which includes the constant Haar coefficient
c0 = 〈h0,v〉 along with the s − 1 largest-magnitude entries of c (not including c0). Let S1 be the
set of s largest-magnitude entries of c in [N ]d \S0, and so on. Note that cS and similar expressions
above and below can have both the meaning of restricting c to the indices in S as well as being the
array whose entries are set to zero outside S.

Now, since v1 is mean-zero and cSc
0
= H(v1)Sc

0
, we may apply Proposition 2. To that end,

consider the decomposition of c into blocks c(k) of cardinality 2d − 1 as in Proposition 2, according
to the support of their wavelets. By definition, ‖cS0‖1 is at least as large as ‖cΩ‖1 for any other
Ω ⊂ [N ]d of cardinality s− 1. Consequently, ‖cSc

0
‖1 is smaller than ‖cΩc‖1 for any other Ω ⊂ [N ]d
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of cardinality s− 1. Thus, because s = p(2d − 1),

‖cSc
0
‖1 ≤

∑

j≥p+1

‖c(j)‖1

≤ (2d − 1)1/2
∑

j≥p+1

‖c(j)‖2

. ‖v‖TV1

Nd
∑

ℓ=p+1

1

ℓ

. ‖v‖TV1 log(N
d), (32)

where the second to last inequality follows from Proposition 2 and the last inequality from properties
of the geometric summation.

We use a similar procedure to bound the ℓ2-norm of the residual,

‖cSc
0
‖22 .

∑

j≥p+1

‖c(j)‖22

.
‖v‖2TV1

2d

Nd
∑

ℓ=p+1

1

ℓ2

.
(‖v‖TV1)

2

2d max (1, p)

.
(‖v‖TV1)

2

s
. (33)

Then, ‖cSc
0
‖2 . ‖v‖TV1/

√
s.

By assumption, v satisfies the tube constraint ‖A(v)‖2 ≤ ε and AH∗ = AH−1 satisfies the
restricted isometry property of order 5ds. We conclude that

ε ≥ ‖A(v)‖2 = ‖AH∗(c)‖2

≥ ‖AH∗(cS0 + cS1)‖2 −
r
∑

k=2

‖AH∗(cSk
)‖2

≥ (1− δ)‖cS0 + cS1‖2 − (1 + δ)
r
∑

k=2

‖cSk
‖2

≥ (1− δ)‖cS0‖2 − (1 + δ)
1√
s
‖cSc

0
‖1, (34)

the last inequality holding because the magnitude of each entry in the array cSk
is smaller than the

average magnitude of the entries in the array cSk−1
. Along with the tail bound (32), we can then

conclude that, up to a constant in the restricted isometry level δ,

‖cS0‖2 . ε+ log(Nd)
(‖v‖TV1√

s

)

. (35)

Combining this bound with the ℓ2-tail bound (33) and recalling that the Haar transform is unitary,
we find that

‖v‖2 = ‖H∗c‖2 = ‖c‖2 ≤ ‖cS0‖2 + ‖cSc
0
‖2 . ε+ log(Nd)

(‖v‖TV1√
s

)

, (36)
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which completes the proof.

5.1 Proof of the Main Theorem

Because we proved the bounds (i) and (ii) from the main theorem concerning gradient-level recovery
bounds in Section 4, it remains only to prove the signal recovery error bound (iii).

By feasibility of both x and x̂ for the constraint in the total variation minimization program,
the signal error v = x− x̂ obeys the tube-constraint ‖A(v)‖2 ≤ 2ε. Applying Theorem 6 with RIP
of order 2sd (in place of 2s) and the total variation bound (ii) yields

‖x− x̂‖2 = ‖v‖2

. ε+ log(Nd)
(‖v‖TV1√

ds

)

. ε+ log(Nd)
(‖v‖TV2√

s

)

. ε+
log(Nd)√

s

(

‖∇x− (∇x)S‖1,2 +
√
sdε
)

. log(Nd)

(√
dε+

‖∇x− (∇x)S‖1,2√
s

)

.

The proof completes.

.1 Derivation of Proposition 2

Recall that the space Lp(Ω) (1 ≤ p < ∞) for Ω ⊂ R
d consists of all functions f satisfying

‖f‖Lp(Ω) =
(

∫

Ω
|f(u)|pdu

)1/p
< ∞.

The space BV(Ω) of functions of bounded variation over the unit cube Q = [0, 1)d is often used
as a continuous model for natural images. Recall that a function f ∈ L1(Q) has finite bounded
variation if and only if its distributional gradient is a bounded Radon measure, and this measure
generates the BV seminorm |f |BV (Ω). More precisely,

Definition 9. For a vector v ∈ R
d, we define the difference operator ∆v in the direction of v by

∆v(f,x) := f(x+ v)− f(x).

We say that a function f ∈ L1(Q) is in BV (Q) if and only if

VQ(f)
def
= sup

h>0
h−1

d
∑

j=1

‖∆hej(f, ·)‖L1(Q(hej)) = lim
h→0

h−1
d
∑

j=1

‖∆hej(f, ·)‖L1(Q(hej)) < ∞

where ej denotes the jth coordinate vector. The function VQ(f) provides a seminorm for BV (Q):

|f |BV (Q)
def
= VQ(f).
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In particular, piecewise constant functions are in the space BV (Q), and we have

Lemma 10. Let N = 2n. Let x ∈ C
Nd

and let f ∈ Σd
N be its isometric embedding as a piecewise

constant function. Then |f |BV ≤ N−d/2+1‖x‖TV1 .

Proof. For h < 1
N ,

∆hek

(

f,u
)

=

{

Nd/2(x
ℓ
(k) − xℓ)

ℓi
N − h ≤ ui ≤ ℓi

N ,
0, else,

where

ℓ
(k)
i =

{

ℓi i 6= k,
ℓi + 1, i = k.

Thus

|f |BV = lim
h→0

1

h

d
∑

k=1

[
∫ 1

0

∫ 1

0
. . .

∫ 1

0
|f(u+ hek)− f(u)| du

]

=

d
∑

k=1

Nd/2

[

∑

ℓ

1

Nd−1
|x

ℓ(k)
− xℓ|

]

≤ N−d/2+1‖∇x‖1 = N−d/2+1‖x‖TV1 .

Cohen, Dahmen, Daubechies, and DeVore showed in [15] that the properly normalized sequence
of rearranged wavelet coefficients associated to a function f ∈ L2(Ω) of bounded variation is
in weak-ℓ1, and its weak-ℓ1 seminorm is bounded by the function BV seminorm. Using different
normalizations to those used in [15] — we use the L2-normalization for the Haar wavelets as opposed
to the L1-normalization — we consider the Haar wavelet coefficients f e

I = 〈f, heI〉 and consider the

wavelet coefficient block fI = (f e
I )e∈E ∈ C

2d−1 associated to those Haar wavelets supported on the
dyadic cube I. With this notation, Theorem 1.1 of [15] applied to the Haar wavelet system over
L2(Q) reads:

Proposition 11. Let d ≥ 2. Then there exists a constant C > 0 such that the following holds for
all mean-zero f ∈ BV (Q). Let the wavelet coefficient block with kth largest ℓ2-norm be denoted by
f(k), and suppose that this block is associated to the dyadic cube Ij,k with side-length 2−j . Then

‖f(k)‖2 ≤ C
2j(d−2)/2|f |BV

k
.

Proposition 2 results by translating Proposition 11 to the discrete setting of CNd

and appealing
to Lemma 10. We note that a stronger version of this result was provided for the 2-dimensional
Haar wavelet basis in [16] and used in the proofs in [38].
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.2 Proof of Proposition 4

Assume that the cone and tube constraints are in force. Let R1 = R′
1 × [d] ⊂ Rc contain the 4s

largest blocks of h on Rc, let R2 = R′
2 × [d] contain the next 4s largest, and so on. We write hRj

to mean the array h restricted to its elements indexed by Rj , and write hα to denote the array
(h(α,ℓ))

d
ℓ=1 at pixel α. Thus for any α ∈ R′

j+1,

‖hα‖2 ≤
1

4s

∑

β∈R′
j

‖hβ‖2 =
1

4s
‖hRj

‖1,2.

Therefore we have

‖hRj+1‖22 =
∑

α∈R′
j+1

‖hα‖22 ≤
∑

α∈R′
j+1

1

(4s)2
‖hRj

‖21,2 =
1

4s
‖hRj

‖21,2.

Combining this with the cone constraint yields

∑

j≥2

‖hRj
‖2 ≤

1√
4s

∑

j≥1

‖hRj
‖1,2 =

1√
4s

∑

α∈(R′)c

‖hα‖2

=
1√
4s

‖hRc‖1,2 ≤
1√
4s

‖hR‖1,2 +
1√
4s

σ ≤ 1

2
‖hR‖2 +

1√
4s

σ,

where in the last line we have utilized the fact that ‖hR‖1,2 ≤ √
s‖hR‖2. Next, the tube

constraint gives

√
2dε ≥ ‖B(h)‖2 ≥

√
1− δ‖hR + hR1‖2 −

√
1 + δ

∑

j≥2

‖hRj
‖2

≥
√
1− δ‖hR + hR1‖2 −

√
1 + δ

(

1

2
‖hR‖2 +

1√
4s

σ

)

≥
(√

1− δ − 1

2

√
1 + δ

)

‖hR + hR1‖2 −
√
1 + δ

(

1√
4s

σ

)

.

Using the fact that δ < 1/3, this implies that

‖hR + hR1‖2 ≤ 10
√
dε+

3√
s
σ.

The bound (24) then follows since

‖h‖2 ≤ ‖hR + hR1‖2 +
∑

j≥2

‖hRj
‖2

≤ ‖hR + hR1‖2 +
1

2
‖hR‖2 +

1√
4s

σ

.
√
dε+

1√
s
σ.
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Similarly, the bound (25) follows from the cone constraint,

‖h‖1,2 ≤ 2‖hR‖1,2 + σ

≤ 2
√
s‖hR‖2 + σ

.
√
s(
√
dε+

1√
s
σ) + σ

=
√
sdε+ σ,

which completes the proof.
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