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Dual Discriminative Observations
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Abstract

We propose a new gait recognition method that combines holistic and model-based features. Both

types of features are extracted automatically from gait silhouette sequences and their combination takes

place by means of a pair of HMMs. In the proposed system, holistic features are initially used for

capturing general gait dynamics while, subsequently, model-based features are deployed for capturing

more detailed sub-dynamics by refining upon the preceding general dynamics. Furthermore, holistic

and model-based features are suitably processed in order to improve the discriminatory capacity of the

final system. Experimental results show that the proposed method exhibits performance advantages in

comparison to popular existing methods.
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I. INTRODUCTION

The appeal of gait recognition [1] as biometric trait originates from its unobtrusiveness and its

possibility of operation using image sequences that are of lower resolution than those required

by other visual biometrics. On the other hand, gait is not as reliable as other biometric traits
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and, therefore, the development of efficient gait recognition systems still remains a formidable

challenge and an area of active research.

Gait recognition methods can be broadly classified into two categories, i.e., those that use

holistic features and others that use model-based features. Holistic methods [2], [3], [4] presume

the availability of sequences of binary silhouettes representing walking individuals. Other such

methods assume the availability of further information, e.g., depth [5]. Holistic methods have

much less stringent requirements than model-based methods due to the fact that the accurate

extraction of holistic features is usually simpler and easier. For example, some holistic methods

use temporal silhouette averaging [6] while others (e.g., the method in [3]) use alternative

templates calculated directly from the original silhouettes. The classification methods used in

holistic approaches can be generic or tailored to the features used [7], [8], [9].

Model-based methods [10], [11], [12] assume a model for the human body and extract model

parameters that are subsequently used in the recognition process. Such methods would generally

be applicable only in cases the quality of gait video sequences is relatively good. Unlike holistic

feature extraction methods, the application of which is simple, model-based methods rely on

the availability of suitable algorithms for the construction of a human model and the efficient

subsequent exploitation of model parameters in recognition. Attempts have been made towards

the construction and exploitation of human models for gait recognition. In [11], the importance

of each body component of a walking subject was investigated using the pre-labelled silhouettes

from [10]. In addition, methodologies have been proposed for the efficient combination of results

obtained using labelled body components. In [12], silhouettes were formed using a Layered

Deformable Model (LDM) before the recognition process is applied.

Both holistic and model-based1 approaches have advantages and disadvantages and have

been used in the literature on a case by case basis, depending on the specific requirements

of their applications scenarios. In this work, we exploit the advantages of both approaches by

combining them using two Hidden Markov Models. A past work that used Hidden Markov

Models was presented in [13]. That work did not use person specific HMMs but, instead, it

deployed a population HMM model, which was used for the alignment of the frames of two

1In this section, the term “model” can refer to either a human body model or a Hidden Markov model. The meaning of the

term should be easy to deduce form the context. In the rest of the paper, however, “model” will refer to HMM while features

related to the human body model will be referred to as “labelled component features”.
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(a)

(b)

Fig. 1. Block diagram of the proposed algorithm: (a) training, (b) testing.

gait sequences rather than for recognition. A more recent work based on population HMMs

for gait recognition was presented in [14]. In [15], a gait-based gender classification scheme

was proposed based on the integration of shape appearance and temporal dynamics of both

genders into a sequential model called mixed conditional random field (MCRF). In analogy to

maximum likelihood decision used in HMMs, several classification strategies on the MCRF were

assessed and discussed. Further, an HMM-based method for gait recognition was proposed in

[16]. That method proposes an incremental framework based on optimal flow, dynamics learning,

and recognition. The natural way of learning is simulated using a HMM, which represents the

gait dynamics of a single subject and evolves incrementally from a population model that reflects

the average motion process of human gait.

Other past works that have relied on HMMs for gait recognition were the methods in [17]

and [18]. The features used by these methods are holistic and the associated HMMs are based

on exemplars. Their classification approach is conventional, with the difference that, in [18], a
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factorial HMM is used. Unlike these methods, the present work uses both types of features and

makes the following contributions:

• An efficient method is introduced for the automatic labelling of body components in gait

silhouettes and the extraction of body-related features from them.

• A novel method is proposed for gait recognition based on the combination of holistic

and labelled body component features. Two distinct HMM models are used: a dominant

(conventional) HMM that generates only holistic observations and a refinement Hierarchical

HMM that generates only labelled component features that constitute detailed refinements

of the holistic observations. In this way, the present system not only exploits holistically

the general appearance of walking (as captured by raw binary silhouettes) but is also able

to focus on details of walking style that are evident by processing human-model based

features. In case labelled component features are not available, the system can operate

efficiently using only the dominant HMM.

• A novel approach is proposed for improving the discriminatory capacity of the HMM-based

scheme. Using this approach, the version of the features that is used for the estimation of

HMM parameters is different from that used for recognition. Specifically, the features used

for recognition are discriminative versions of the original features.

The proposed algorithm is experimentally assessed and its efficiency is shown in comparison to

other popular methods.

The rest of this paper is organized as follows: Section II presents an overview of the proposed

system. Sections III and IV present the automatic body-component labelling and the extraction

of features respectively. Section V details the HMM-based modelling for gait recognition, using

the features of the previous section. Section VI describes the proposed classification framework

for gait recognition. Experimental results are presented in Section VII and, finally, conclusions

are drawn in Section VIII.

II. PROPOSED GAIT RECOGNITION SYSTEM

The first step in gait recognition is to detect the walking individual based on the originally

available gait sequence of frames. Considering that human detection constitutes a separate

research area by itself, in most gait recognition research it is presumed that silhouettes have

been extracted from gait sequences using known methods for background subtraction [19]. For
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this reason, some gait databases only provide silhouettes. Therefore, as usual in gait recognition

research, we assume that binary silhouettes are available and we focus our efforts on improving

recognition performance by efficient feature extraction and HMM-based gait modelling.

The proposed system is based on a dominant and a refinement HMM. The block diagram

of the proposed system is shown in Fig. 1 and consists of a training and a testing module.

In training, based on a set of scale-normalized gait silhouettes, body components are labelled

using an automatic algorithm and three features are extracted from each labelled component in

each frame. In order to train the dominant HMM, the original silhouettes themselves are used,

while the refinement Hierarchical HMM is trained subsequently using the labelled component

features. It should be noted that, as the general stages of gait can be far better modelled using

the holistic silhouette feature, the upper level of the refinement HMM inherits its state transition

probabilities from the dominant model. This resembles an architecture involving tied states [20],

with the upper-level states in the refinement HHMM being tied to the states of the dominant

HMM. Furthermore, a discriminative transform is applied and discrimination parameters are

extracted in order to be used in the recognition process.

In the recognition stage, frames in a test gait sequence are automatically labelled and features

are extracted from labelled components. The original silhouettes along with their associated

labelled component features are assumed to be observations that are generated by their respective

HMMs. Specifically, silhouettes are assumed to be observations generated by the dominant

HMM while labelled component features corresponding to these silhouettes are assumed to

be observations generated by the refinement HMM. In addition, the observations themselves

(silhouettes and labelled component features), are different forms of the same raw data and

their meaning is dual, depending on the HMM through which they are observed. The proposed

algorithm will be described in detail in the following sections.

III. AUTOMATIC BODY-COMPONENT LABELLING

The refinement HMM of our system relies on the availability of information about distinct body

components in each silhouette. There are a few existing methods performing this task [12], [21].

The Layered Deformable Model (LDM) introduced in [12] is the most comprehensive approach

for reconstructing body components based on both automatically-segmented silhouettes and

manually-labelled silhouettes. However, the drawbacks of the LDM method are that it involves a
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large number (22) of parameters while good performance can be achieved only when manually-

labelled silhouettes are available. In this work, we propose a method for automatically labelling

components in silhouettes.

Initially, we segment a gait cycle out of a gait silhouette sequence using the method proposed

in [22], i.e., by constructing a signal representing the number of pixels in each silhouette, filtering

the signal by taking into account its autocorrelation, and locating the “peaks” in the filtered signal.

The silhouettes between the first and the third “peak” constitute one gait cycle. The subject in

the silhouettes corresponding to those three “peaks” is in stride posture, and those silhouettes

are used as the key silhouettes for the extraction of body component features.

Subsequently, assuming that the walking subject is facing the left side of the scene2 the right

arm and the right thigh of the subject are severely occluded. Therefore, in our body model, we

only consider six body components - head, torso, left arm, left thigh, left leg, and right leg. In

order to label the above six body parts, we extract seven parameters (see fig. 2) - torso width

(lto), left upper arm angle (θua), left upper arm length (lua), left forearm angle (θfa), left forearm

length (lfa), left thigh length (lth), and left thigh angle (θth). The above parameters are calculated

using the steps detailed in Table I by taking into account human anatomy [23].

Taking the above seven parameters into account, a body block mask, as shown in Fig. 3(a), is

constructed for each frame. In particular, with the knowledge of the torso width, a rectangular

block for the torso area is formed while a trapeziform block for the left thigh is constructed

based on the knowledge of lto, hk, lth and θth. If (x1, y1), (x2, y2), (x3, y3) and (x4, y4) denote

the coordinates of the top-left, bottom-left, top-right and bottom-right corners of the trapeziform

block respectively, the area indicating the left thigh is easily labeled as shown in Fig. 3(b).

Finally, by applying the block mask on the original gait silhouette, we can obtain the labelled

silhouette with six automatically-labelled body components. In Fig. 4, some examples of the

automatically labelled silhouettes are shown. As seen, the six body components are correctly

labelled in all frames. Interestingly, even when a bag is carried, it is correctly excluded from the

torso area, which is due to the accurate calculation of the torso’s width based on the average

silhouette. It is also worth pointing out that, although the torso is occluded by the left arm in

2we take the mirror sequence in case it does not.
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TABLE I

STEPS FOR THE LABELLING OF BODY COMPONENTS

Step 1: Based on anatomy [23], the heights of a human’s neck, shoulder, elbow, pelvis, and knee are taken as in Fig. 2(a).

Step 2: In order to calculate the width of the torso, we calculate the average silhouette, Iavg , of the subject. Within the upper torso

area of the average silhouette, we locate the leftmost xl and rightmost xr column of that includes pixels with intensity

larger than α · 255, i.e., satisfying p {(x, y)| Iavg(x, y) > α · 255, x < xl or x > xr} = 0. In our experiments

we set α = 0.9. The width of the torso is calculated as lto = xr − xl. This step is graphically depicted in Fig. 2(b).

Furthermore, the width of the arm (ha) and the knee (hk) are set to equal a fixed proportion of the width of the torso,

i.e., ha = αatlto and hk = αktlto. In our work we set αat = 0.35 and αkt = 0.75 based on experimentation.

Step 3: At shoulder level, the shoulder point of the left arm (xs, ys) on that row is located by applying an offset equal to lto/4 from

the silhouette centre. Similarly, the elbow point of the left arm (xe, ye) is located at elbow level. Besides, the left-hand point (xh, yh)

is detected as the left-most point between elbow level and hand level. The locations of the above points are shown in Fig. 2(c) and (d).

Step 4: The lengths of the left upper arm and the left forearm can be calculated as lua =
√

(xe − xs)2 + (ye − ys)2

and lfa =
√

(xh − xe)2 + (yh − ye)2, respectively. The corresponding angles are calculated as

θua = arctan xe−xs
ye−ys

and θfa = arctan xh−xe

yh−ye
, respectively.

Step 5: By applying steps 3 and 4 on the three key silhouettes we obtain three sets of lua, lfa, θua and θfa. In order to get a robust

estimate of these parameters, we take the mean value of those three lua(lfa) as the length of the upper arm (forearm) in all frames.

The parameters θua and θfa in the rest of the silhouettes of the gait cycle are calculated using linear interpolation.

Step 6: Using the same approach that was followed in steps 3 - 5, we locate the knee point and calculate the length lth and

the angle θth of the left thigh in the three key silhouettes, and subsequently in all silhouettes of the gait cycle.

most frames, using the torso block information in the body block mask, we can easily retrieve

the full torso area without any occlusion.

IV. FEATURE EXTRACTION FROM LABELLED SILHOUETTES

Feature extraction is a very important process in a gait recognition system. In this work, we

investigate three main features that are suitable for capturing discriminatory gait information

from sequences of automatically-labelled silhouettes. The three features that we extract are the

component area, the component centre, and the component orientation. In this way, it is expected

that differences in walking style will be reflected in at least one of the above features. The

extraction of the features is detailed below.

1) Component area: The first feature that we consider is the area Al, of each body component

Cl, i.e., the number of pixels x in Cl, l = 1, . . . , L. These component areas are calculated for
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Fig. 2. The construction of the body model.

(a) (b)

Fig. 3. (a) Labelling the body components based on the body block mask, (b) labelling left thigh using a trapeziform model.

each frame of a gait sequence, in order to obtain a feature vector, defined for the tth frame as:

fat = [A1t, A2t, . . . , Alt, . . . , ALt]
T (1)

where Alt is the area for the lth component, l = 1, . . . , L, in the tth frame, t = 1, . . . , T . The

superscript T denotes transposition.

2) Component centre: Due to the availability of labelling information for each pixel, it is

possible to calculate the gravity centre gl of the lth body component. After calculating the
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Fig. 4. Examples of automatically-labelled gait silhouettes.

gravity centres for all components, we calculate the vector distances vl = gl − g between each

one of the body component centres gl and the centre g of the entire silhouette.

Subsequently, similar to Eq. (1), a feature vector, fvt , is calculated based on the relative distance

between the gravity centre of each body part to the centre of the whole body. This feature vector

is defined for the tth frame as:

fvt = [v1t,v2t, . . . ,vlt, . . . ,vLt]
T (2)

3) Component orientation: Although the features described above capture important discrim-

inatory information, there is additional information that can further improve the accuracy of our

gait representation. In order to capture the structure of the silhouettes in a more accurate way,

we extract a third feature - the orientation of each body component. The calculation of the

orientation feature takes place in two steps. We calculate the covariance of the pixel coordinates

in each component followed by the application of Principal Component Analysis (PCA) [24] in

order to find the principal orientation of each component. Similar to Eq. (1), a feature vector f ot
is calculated, defined for the tth frame as:

fot = [o1t,o2t, . . . ,olt, . . . ,oLt]
T (3)

where l, t are component and frame indices respectively, with |olt| = 1.

V. GAIT REPRESENTATION USING A DOMINANT AND A REFINEMENT HMM

A. Motivation

After having extracted the features presented in the previous sections, we use Hidden Markov

Models for gait representation, training, and classification based on gait dynamics and sub-

dynamics. In order to determine the HMM framework to be used, we consider that these two
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types of gait dynamics are better captured by two different types of features since coarse holistic

features cannot be used for determining detailed sub-dynamics while detailed features cannot

be used for determining general gait dynamics. This necessitates that first general dynamics are

modelled and subsequently detailed shape/sub-dynamics are modelled based on the previously

modelled general gait dynamics. In this context, having a single HMM structure emitting one

type of features would be inefficient while an HMM emitting both types of features would be

highly unconventional and difficult to analyze. Instead, we use two Hidden Markov Models (fig.

5), each generating a different type of features (i.e., holistic or labelled component features):

• The first HMM, called the dominant HMM is a conventional HMM generating the holistic

observations. This model is meant to represent the general shape and dynamics of gait and

this is why it relies exclusively on holistic observations, which are most suitable for the

purpose of modeling the walking style of a person as a whole.

• The second HMM, called the refinement HMM, is a two-level Hierarchical HMM [25]

the lower level of which is generating detailed observations in the form of labelled body

component features, extracted as described in the previous sections. The rationale for using

a refinement HMM is that it can use the detailed labelled body component features in order

to refine the general shape/dynamics that were captured previously through the dominant

HMM. In this way, further accuracy is achieved by taking into account the detailed structure

and motion of body components.

Several approaches for the actual implementation of the above HMMs can be conceived. One

option would be to use semi-HMMs [26]. But in this case the number of model parameters

would be very large and almost impossible to determine using the training gait data that are

normally available. For this reason, we chose a simpler HMM modelling approach based on the

two proposed HMMs shown in Fig 5.

The detailed labelled component features are formed by extracting (from each frame) six body

components each of which is represented by the three features (area, centre, orientation) of the

previous section. These more detailed features are compactly represented in a feature vector

ft = [fat fvt fot ]
T (4)

which is a concatenation of the vectors representing each of the three features. Note that each of

the three vectors in eq. (4) includes the values of the respective feature for each body component.
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Fig. 5. The two HMMs used for gait recognition (four states instead of the actual five are shown). (a) The dominant HMM,

which represents general shape and dynamics of gait using holistic features (observations). All states generate observations. (b)

The refinement Hierarchical HMM that represents shape details and sub-dynamics of gait using detailed labelled component

features. Note that only states at the lower level of the refinement HMM generate observations. The states labelled “E” in the

lower level of the refinement HMM are “end” pseudo-states and do not generate observations. The “end” states indicate a return

to the upper level and a transition to the next upper-level state. For this reason, transition to an “end” state (indicated using

dotted arrows) practically means a transition to the first lower-level state of the next HMM.

These features do not exhibit the same changes throughout a gait cycle or within the same walking

stage. For example, the value of the area feature is constant when the body part is visible but

becomes less important when the body part is partly occluded.

Essentially, the detailed lower-level observations, i.e., labelled component features, are

obtained by taking a closer look at the holistic observations. In this sense, the observation

of a gait sequence has a dual interpretation based on the level of detail at which observations

are studied. The duality of gait observations means that each frame in a gait sequence can be

conceived of as being generated by a state of the dominant HMM, with the associated probability

determined solely based on holistic observations, while the detailed body component features

extracted from each frame are assumed to have been generated (in a more detailed way) by a

state at the lower level of the refinement HHMM. It should be noted that, since not all lower-level

states need to be visited, all possible upper-level state sequences can lead to feasible lower-level

state sequences. As in all HMM-based gait recognition research, left-to-right HMMs are used, a
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choice which is aligned with the physiological process of walking. The advantage of the proposed

approach is that it combines holistic and model-based gait representation and recognition within

a common framework that is consistent with the process of walking.

B. Gait representation

Consider a sequence of dual gait observations. The sequence of holistic observations, generated

by the dominant HMM, is

H = h1,h2,h3, . . . ,hT

where ht, t = 1, . . . , T is a vector extracted holistically from each silhouette in the gait sequence.

In this work, the binary silhouettes themselves, rearranged as vectors, are the holistic feature

vectors used for each frame. The sequence of labelled component features (observations),

generated by the states at the lower level of the refinement HHMM, is

F = f1, f2, f3, . . . , fT

where ft, t = 1, . . . , T is a vector, defined as in eq. (4), that includes the body-component

features of the frame at time t. The two main tasks associated with the above formulation for

gait recognition are the determination of HMM parameters in both dominant and refinement

HMMs (training) as well as the process for making recognition decisions (testing). In order to

make the above tasks computationally tractable, we follow an exemplar-based approach, similar

to that followed in [17], [13], [18]. This implies that each state that generates observations (in the

dominant HMM or the lower level of the refinement HMM) is represented by an exemplar and

the probability that an observation is generated by that state is a function of the distance between

the observation and that state’s exemplar. As will be explained in the next section, despite some

limitations, this approach is suitable due to the high dimensionality of the input data and the

limited availability of training samples. Since the probabilities of observations being generated

by HMM states depend on the exemplars, the HMM parameters that need to be determined are

the initial state probabilities, the state transition probabilities, and the exemplars. The way to

determine these parameters is presented below. All notation that is used in our analysis below

is summarized in Table II.
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TABLE II

NOTATION

Symbol Dominant HMM

T number of frames in gait sequence (half-cycle)

N number of states

n state index

πn initial state probability

A state transition probability matrix

en exemplar for the nth state

λ dominant Hidden Markov Model parameters

Q state sequence

qt state variable at time t

H sequence of holistic gait observations

ht holistic observation at time t

aq1q2 probability of transition from state q1 to state q2

bqt(ht) probability of holistic observation ht from state qt at time t

Refinement HHMM

N number of HMMs in the lower level

M number of states in each lower HMM (excl. “end” states)

m state index for the lower HMMs

ζmn initial state probability for mth state of the nth lower HMM

Cn state transition probability matrix for the nth lower HMM

µn lower HMM associated with the nth upper state

µ {µ1, µ2, . . . µN} ∪ {π,A}

Sn state sequence in the nth lower HMM

snt state variable at time t for the nth lower HMM

F sequence of gait features based on a human model

ft observation at time t for lower HMM

cns1s2 probability of transition from state sn1 to state sn2

in the nth HMM of the lower level

umn exemplar for the mth state of the nth lower-level HMM

gnst(ft) probability of observation ft from state snt

C. Definition and training of the dominant HMM

The calculation of the parameters of the dominant HMM is straightforward and follows that

in [17]. The parameters of the dominant HMM will be denoted λ = {π,A, e}, where π denotes
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the initial state probabilities, A denotes the matrix of state transition probabilities, and e is the

set of state exemplars. Since the order with which poses are assumed during walking is defined

naturally, a left-to-right HMM is considered, the initial state probabilities of which are

πn =

1 if n = 1

0 otherwise
(5)

where πn is the initial state probability for the nth state, n = 1, . . . , N , of the dominant HMM.

The probability that the holistic observation ht at time t is generated by state qt is denoted

bqt(ht). Since feature vectors (silhouettes) are of very high dimensionality, the calculation of the

output density function would be very difficult using the limited number of available training

samples. For this reason, the output probability distribution is calculated, similar to [17], [13],

[18], based on the distance of ht from the state exemplar eqt

bqt(ht) = P (ht|eqt) = V e−vD(ht,eqt ) (6)

where V and v are normalization parameters. The parameters of the dominant HMM are

calculated using expectation-maximization. Exemplars are calculated as in [17], in which the

inner product distance was used for this calculation as it was found to be very efficient.

D. Definition and training of the refinement Hierarchical HMM

Once the dominant HMM has been trained using holistic observations, we proceed with the

calculation of the parameters of the refinement Hierarchical HMM. In this case, observations

(labelled component features) are generated by lower-level states of the refinement Hierarchical

HMM. However, these observations are meant to capture gait sub-dynamics by further analyzing

the general gait dynamics observed at the dominant HMM. For this reason, we assume that

the initial state probabilities and the transition probabilities in the upper level of states of the

refinement HHMM are inherited from the dominant HMM as they refer to general dynamics of

gait, which are expressed best in the holistic features. This approach, which resembles parameter

tying [20], acknowledges the fact that general gait dynamics should be the same regardless of

whether they are observed in the dominant HMM or the upper level of the refinement HHMM.

This simplifies parameter calculation and makes it more robust in our case, where modelling

general gait dynamics is more reliable based on holistic features rather than detailed labelled

component features (see caption of fig. 5).

May 30, 2013 DRAFT



15

Considering the above formulation, what remains to be determined in the refinement HHMM

is the set of model parameters µn, n = 1, . . . , N of the HMMs comprising the lower level of the

refinement HHMM. Henceforth, the parameters of the nth lower-level HMM will be denoted

µn = {ζn, Cn, un}, n = 1, . . . , N , while the ensemble of parameters of the refinement HMM

will be denoted µ = {µ1, µ2, . . . µN} ∪ {π,A}. Note that µ includes the upper-level initial state

probabilities and transition probabilities, which have been inherited from the dominant HMM.

It should also be noted that the last state in each lower-level HMM is an “end” state that does

not generate observations. Such states essentially lead to the first lower-level state of the next

HMM. Therefore, transition to the “end” state takes place whenever an upper-level transition

takes place. As a result, the probabilities of transition to an “end” state are identical to the

probability of an upper-level transition from the current upper-level state to the next. This is

why these probabilities do not have to be calculated and the respective transitions are indicated

with dotted line in fig. 5(b).

Since left-to-right models are used, the initial state probabilities for the lower level of the

refinement HMM are

ζmn =

1 if m = 1

0 otherwise
(7)

where ζmn,m = 1, . . . ,M is the initial state probability for the mth state of the nth HMM at

the lower level of the refinement HMM.

Similar to [17], [13], [18], the probability that the lower-level observation ft at t is generated

by the lower-level state snt is calculated using the distance of ft from the state’s exemplar usnt

gsnt (ft) = P (ft|usnt
) = Ṽ e−ṽD∗(ft,usnt

) (8)

where Ṽ and ṽ are normalization parameters. The distance D∗ in eq. (8) involves comparison

between labelled component features and exemplars and has been applied using the method in

[27].

The parameter calculation for the refinement lower-level HMMs is based on the observations

F. Since the initial state probabilities are as in eq. (7), the parameters that are to be determined

are the state-transition probabilities as well as the exemplars for each of the HMMs at the lower

level of the refinement HMM. In order to calculate these probabilities, we use the forward

May 30, 2013 DRAFT



16

Fig. 6. Three cases during probability calculation in the refinement HMM. (a) transition to the first state of the nth HMM,

(b) transition within the nth HMM, (c) transition to the last state of the nth HMM. Note that the “end” states of fig. 5 do not

need to be shown here.

variable α defined as

αt(n,m) = P (f1, f2, . . . , ft, s
n
t = m|µ)

which represents the probability that the partial observation sequence f1, f2, . . . , ft is observed

and the observation ft, at time t, is generated by the mth state of the nth lower-level HMM.

In order to calculate the forward variable for each time instant t, we consider that, at each

given state in the lower level of the refinement HMM there are three cases at a specific time

instant t. These are explained below:

• The state generating the observation at time t + 1 is the first state of the nth lower-level

HMM. This means that the transition was either from the same state of the nth HMM or

from one of the states of the previous HMM (fig. 6(a)).

• The state generating the observation at time t+ 1 is the same or one of the previous states

in the same HMM that generated the observation at t (fig. 6(b)).

• The state generating the observation at t + 1 is the last state of the nth HMM (fig. 6(c)).

Essentially, this is a subcase of the second case above.

Based on the above, the forward variable can be calculated recursively as follows (see fig. 7):

1) Initialization. Considering that ζ1,1 = 1,

α1(n,m) =

 gsn1 (f1), if n = 1,m = 1

0 otherwise
(9)
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Fig. 7. Trellis for probability calculation. Arrows indicate allowable transitions between lower-level HMM states.

This is due to the fact that the first observation has to be generated by the first lower-level

state of the first HMM.

2) Induction. Based on the three cases depicted in fig. 6, the forward variable at t+ 1 is

αt+1(n,m) =


(
αt(n,m)annc

n
1,1 +

∑M
m̃=1 αt(n− 1, m̃)an−1,n

)
gsnt+1

(ft+1) if m = 1(∑m
m̃=1 αt(n, m̃)cnm̃,m

)
anngsnt+1

(ft+1) if m = 2, . . . ,M

(10)

for t = 1, 2, . . . , T − 1, where a and cn are, respectively, state transition probabilities for

the upper and the nth lower-level model in the refinement HMM. It should be noted that

cnMM = 1 since transition from the last state of each lower-level HMM is produced only

through a state-transition at the higher level.

Similarly, a backward variable can be defined as:

βt(n,m) = P (ft+1, ft+2, . . . , fT |snt = m,µ)

which represents the probability of observing the partial observation sequence ft+1, ft+2, . . . , fT

while at time t the upper-level state is n and the lower-level state is m. Using the forward
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and backward variables, the transition probabilities are calculated through the use of variable ξ,

calculated as

ξnt (m,m′) = P (snt = m, snt+1 = m′|F, µ) =

=
P (snt = m, snt+1 = m′,F|µ)

P (F|µ)
=

=
αt(n,m)anncmm′gnm′(ft+1)βt+1(n,m

′)

P (F|µ)
. (11)

The total number of transitions, at time t, from the mth state of the nth HMM to the m′th

state of the nth HMM is

γn
t (m) =

M∑
m′=1

ξnt (m,m′), n = 1, 2, . . . N, m = 1, 2, . . . M (12)

Using equations (11) and (12), the transition probability from state m to state m′ within the nth

HMM is naturally calculated as the ratio of the total number of transitions from state m to state

m′ over the total number of transitions from state m:

cnmm′ =

∑T
t=1 ξ

n
t (m,m′)∑T

t=1 γ
n
t (m)

, m = 1 . . . ,M − 1, n = 1 . . . , N (13)

It should be noted that transitions to “end” states are not counted in eqs (11), (12), and (13),

as these are effectively transitions to the next HMM. The resultant transition probabilities

cnmm′ within the same HMM as well as the way they are combined with upper-level transition

probabilities ann′ are shown in fig. 5(b).

Once the state transition probabilities have been updated, each vector in the sequence of feature

vectors is classified to the state that most likely generated it. Subsequently, the exemplars for

each state are re-calculated as the averages of the feature vectors classified to that state. Using

the state transition probabilities as well as the newly-updated exemplars, a new iteration of

the preceding steps takes place, which further refines state transition probabilities (using eqs.

(9)-(13)) and exemplars. A few iterations are sufficient for convergence.

Each gait cycle in a gait sequence consists of two half-cycles that may or may not be

similar (gait is not always symmetric). In our system this means that two pairs of HMMs, a

dominant/refinement HMM pair for each half-cycle, need to be built for each reference subject.

As will be explained at the end of the next section, explicit labelling of the half-cycles is not

needed during classification.
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VI. CLASSIFICATION

Recognition when HMMs are used is usually achieved by determining the reference model that

maximizes the probability of the observations. In our system, we use two HMMs and therefore

we can calculate two probabilities, one for each type of observations. In this work, we fuse the

two probabilities into a single similarity measure by forming their product. If z∗ is the index of

the recognized subject, then

z∗ = argmax
z

P (H|λz)P (F|µz) (14)

where λz are the dominant HMM parameters and µz are the refinement HMM parameters for

the zth subject in the reference database. The probability terms in the right-hand side of eq. (14)

can be calculated using standard HMM theory. In the sequel, we discuss ways for the application

of eq. (14) in our gait recognition framework. The present approach partly follows that in [15],

where several classification methods were applied on mixed conditional random fields for gender

classification.

A. Recognition using original features

Given the HMM parameters in both the dominant and refinement HMMs of a reference

subject, the probabilities that the associated observation (feature) sequences from a test subject

are generated by the given reference pair of models is straightforward. Specifically, following

the derivations in [20], the probability that observations H are generated by the dominant HMM

model λ is

P (H|λ) =
∑
allQ

P (H,Q|λ) (15)

where Q is a sequence of states in the dominant HMM that can generate the observations. The

probability in eq. (15) can be trivially calculated using the forward (or backward) algorithm

in [20]. Similarly, the probability P (F|µ) in the refinement HMM is calculated like in a

conventional two-layer Hierarchical HMM, in which only the terminal states (i.e., states in the

lower level) are emitting observations. Based on the above calculation of P (H|λ) and P (F|µ),

we define

P1 = P (H|λ)P (F|µ) (16)
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This probability is calculated as above in order to assess the performance of the combination

of the independent application of the two features sequences. In this case, the index of the

recognized subject will be determined using eq. (14).

In eq. (16), the holistic and non-holistic features are used independently and sub-dynamics

(taken into account through P (F|µ)) are determined using only the detailed labelled component

features. Essentially, this means that “details” are determined without considering the “general

picture”. However, the labelled component features are not meant to act alone but rather to refine

the general gait dynamics, determined previously through the holistic features. In order to take

this fact into account, we tested a scheme in which the refinement HHMM inherits its upper

level state sequence from the dominant HMM. This leads to a modified probability

P2 = P (H|λ)P (F|Q̂, µ) (17)

where Q̂ is the most probable state sequence Q̂, calculated through the dominant HMM:

Q̂ = argmax
Q

P (H,Q|λ) (18)

Using eq. (17), the holistic observations contribute to the subsequent interpretation of the labelled

component features and the determination of sub-dynamics. For this reason, eq. (17) yields

roughly equal performance as eq. (16) and may be a good practical choice due to its marginally

simpler implementation.

B. Recognition using discriminative probability calculation

The original features extracted from the gait sequences, namely the silhouettes and the labelled

component features, are suitable for modelling general gait dynamics and sub-dynamics by means

of the dominant and refinement HMMs that generated these features. In the recognition stage,

however, using discriminative versions of the original features can yield significant gains.

In order to highlight subtle discriminative differences in the dominant HMM, we apply Fisher’s

linear discriminant analysis (LDA) [24] on the exemplars corresponding to each state (walking

stage) in the Gallery (training) set. This means that, although the original exemplars are used

when HMM parameters and probabilities are determined, for recognition purposes we project

the test features and reference exemplars to a low-dimensional discriminative space and calculate
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probabilities based on the projected features. In particular, a matrix Wn is calculated for each

state n in the dominant HMM, such that the Fisher’s criterion is maximized:

J(Wn) =
|WT

n · Sbn · Wn|
|WT

n · Swn · Wn|
(19)

where Sbn is the between-class scatter matrix, and Swn is the within-class scatter matrix for the

nth HMM state. In this way, discriminative features are produced and, instead of using eq. (6),

a new discriminatory distance measure is defined as

D̃(ht, en) = D(h̃t, ẽn) = D(WTht,WTen) (20)

where h̃ and ẽ are the projected holistic features and exemplars. For the application of LDA,

intra-class variation was obtained by using consecutive half-cycles as well as by applying the

artificial rotations in [28].

A discriminative approach is also taken for the features (observations) generated by the

refinement HHMM. However, in this case LDA cannot be applied due to the short length (six

elements) of the vector describing each labelled component feature. Alternatively, for each state

and feature in the lower-level of the refinement HHMM, the distance between test and reference

labelled component features is based on feature values that have been scaled using the ratio

of the intra-subject over inter-subject variance among gait sequences in the reference database.

Variances are calculated per state and feature. This is equivalent to applying discriminative

weighting in order to promote discrimination despite the fact that the feature vectors are short

and have elements that represent different quantities.

Using the above strategy, the probability in eq. (16) can be modified in order to include

discriminating features:

P3 = P (H̃|λ)P (F̃|µ) (21)

where H̃ and F̃ are the sequences of discriminative features that are assumed to be emitted by

the dominant HMM and the lower-level of the refinement HHMM respectively.

The discriminative transform was applied on exemplars from each model, i.e., the exemplars

from the 1st state in all models were taken together in order to calculate a discriminative transform

for the 1st state. Similarly, discriminative transforms were calculated for the 2nd, 3rd, 4th, and

5th and state. Frame-to-exemplar distances, as in eq. (20) are calculated based on discriminative

versions of frames and exemplars. But since the exemplars represent specific walking poses, the
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discriminative transform derived from these exemplars indicate the discriminative differences

in that specific pose. This means that the discriminative transform is pose-dependent and,

consequently, it will not be discriminative in case the frame is dissimilar to the pose represented

by the respective state exemplar. Essentially, the discriminative transform is most efficient only

when the frames are similar to the exemplars. For this reason, we propose calculating eq. (21)

along the optimal path because this is when the observations (frames) are most relevant to the

states (exemplars) from which they are assumed to have been generated. Therefore, we define a

new metric as

P4 = P (H̃|Q̂, λ)P (F̃|Ŝ, Q̂, µ) (22)

where Q̂ is given in eq. (18) and the most probable lower-level state sequences in the refinement

HHMM are calculated as

Ŝn = argmax
Sn

P (F,Sn|Q̂, µ), n = 1, . . . , N (23)

where Ŝ = {Ŝ1, Ŝ2, . . . , ŜN}, with Sn being a state sequence corresponding to the nth HMM

in the lower level of the refinement HHMM.3 Metrics P1, P2, P3, P4, defined above, will be

assessed in the experimental results section.

C. Gait half-cycle fusion

A gait cycle consists of two half-cycles that have to be compared to the two reference half-

cycle models that have been built for each reference subject. The calculation of probabilities

P1, P2, P3, P4, defined earlier, is performed separately for each of two consecutive half-cycles

in a test gait sequence. Specifically, each test half-cycle yields two probabilities, against each

of the two half-cycle reference models of a reference subject. As a result, four probabilities are

calculated from each test gait (full) cycle. In the classification module of our system, we consider

the highest of the four probabilities as the most efficient measure of similarity between a test

and a reference subject. This obviates the need to label explicitly the half-cycles according to

which starts with the strike of the left or right heel.

3It should be noted that all possible optimal state sequences calculated in the dominant HMM (and inherited by the upper

refinement model) lead to valid lower-level state sequences in the refinement model.
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TABLE III

EIGHT DIFFERENT SETS IN THE ACTIBIO DATABASE.

Set Day Rep. Subjects Condition

Gallery 1 1 28 Normal walking

Probe A 1 1 28 Carrying a bag

Probe B 1 1 27 Wearing a coat

Probe C 1 1 28 Wearing slippers or socks only

Probe D 1 1 28 Walking diagonally

Probe E 1 2 28 Normal walking

Probe F 2 1 27 Normal walking

Probe G 2 2 27 Stop for a while

VII. EXPERIMENTAL RESULTS

For the application of our system, we used a dominant HMM with N = 5 states and a

refinement Hierarchical HMM comprising N HMMs with M = 3 states each (fig. 5(b)). Note that

“end” states do not count as real states. For the evaluation of recognition performance, Cumulative

Match Scores (CMS) were calculated. In CMS, a Rank k score represents the percentage of probe

(test) subjects whose corresponding gallery (reference) subject is within the top k matches.

We conducted a detailed evaluation of our methods using the ACTIBIO gait database

(representative results on other databases also confirm our conclusions). The ACTIBIO database

was recorded in the framework of the ACTIBIO project4. In this database, there are 28 subjects

walking in an indoor environment. For each subject, there are up to eight gait sequences,

captured on two recordings with the second recording taking place one month after the first.

Two repetitions were captured in each day and several walking conditions were recorded in each

repetition. A full description of each recorded condition is presented in Table III.

For each subject in our experiments, one of the eight sequences is used as a gallery (reference)

sequence and the others are probe (test) sequences. Similar to [15], where several classification

methods were tested on mixed conditional random fields for gender classification, we compared

several classification approaches, based on eqs. (16), (17), (21), and (22). For the sake of

comparison, the key recognition rates for all above experiments are summarized in Table IV.

4http://www.actibio.eu/
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The tabulated results indicate that substantial improvements over the simple fusion of holistic

and model-based features (based on P1) are achieved using discriminative features (based on

P3,P4). In accordance with the discussion in Section VI.B, the results in Table IV confirm that

classification based on P4 is more efficient than that using P3.

Detailed CMS curves are shown in fig. 8. In figs. 8(a),(b) we present detailed results using

holistic features only. In this case, no analysis of sub-dynamics took place. In figs. 8(c),(d), we

present detailed results using our final scheme in which combination of holistic and model-based

features has taken place. As seen, the best performing system is the one that combines analysis

of sub-dynamics and discriminative features (bottom right corner of fig. 8).

Based on the above experiments, the following conclusions can be drawn:

• System performance based on the combination of holistic and labelled component features,

presented in figs. 8(c) and 8(d), is superior to that achieved by the application of the holistic

features alone, shown in figs. 8(a) and 8(b). This confirms that the combination of holistic

and detailed (non-holistic) features in our system is able to capture gait sub-dynamics

and improve recognition efficiency. It should be noted that the independent application of

labelled component features does not yield competitive results. This implies that general gait

dynamics (captured through holistic features) are essential for good recognition performance.

• The versions of the system that use discriminative features and state exemplars (P4 in Table

IV, right column of Fig. 8) are superior to those based only on the original features (left

column of fig. 1). The practical significance of this conclusion is that the application of

discriminative techniques in HMM-based gait recognition systems can yield considerable

performance improvements.

After assessing the efficiency of the proposed classification approaches within our HMM

framework, we compare the best-performing of our algorithms with other methods. The two

variants of our system that we compare are: a Holistic (HL) method based only on holistic

features (silhouettes), i.e., using only the dominant HMM in fig. 5(a) (with classification based

only on the first term on the right-hand side of eq. (22)), and another method involving both

holistic and labelled component features, which is based on eq. (22) and is named Discriminant

HMM (DHM). Both are using discriminative features for similarity calculation. We compare

our methods with the Dynamic Time Warping (DTW) approach [29], an HMM system (named
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Fig. 8. Cumulative match scores for gait recognition. Top row: system based on holistic features only. (a) original features,

(b) discriminative features (HL method). Bottom row: system based on the combination of holistic and labelled component

features for analysis of sub-dynamics. (c) original features, (d) discriminative features (DHM method).

S15) based on a single layer with 15 states that emit holistic features (using our discriminative

approach in classification), the model-based method FGF, the benchmark Gait Energy Image

(GEI) method [6], the HMM-based method in [17] as well as the Gait Entropy Image (GEnI)

method [3].

Our comparisons allow the assessment of the impact on system performance of a variety

of characteristics, e.g., the number of HMM states, the use of labelled component features,

the similarity calculation approach, and the use of discriminative features. Recognition results

for our proposed HL, DHM methods in comparison to the DTW, S15, FGF, GEI, HMM, and

GEnI are shown in Table V. The holistic method (HL), despite not using model-based features,
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TABLE IV

RECOGNITION RATES ACHIEVED BY THE PROPOSED METHOD USING SIMILARITY MEASURES BASED ON EQUATIONS (16),

(17),(21), AND (22).

Probe
P1 P2 P3 P4

R1 R5 R1 R5 R1 R5 R1 R5

A 46 75 54 86 46 75 54 86

B 26 74 30 74 29 67 37 70

C 52 95 47 81 67 95 67 95

D 57 82 50 89 79 89 75 93

E 78 96 82 96 96 100 96 100

F 37 74 37 74 37 67 48 74

G 33 59 33 59 37 52 41 67

exhibits excellent performance. Once more, this indicates that the discriminative projection per

HMM state constitutes a powerful tool for improving the performance of HMM-based systems

in gait recognition. The comparison between HL and S15 shows that using a higher number of

states does not necessarily lead to increased ability to extract discriminatory information from

gait sequences. The best performing version (DHM) of our proposed system improves on HL,

providing further evidence that the additional deployment of labelled component features can

improve the performance of holistic systems by analyzing gait sub-dynamics. Most importantly,

the DHM invariably outperforms all other methods by achieving, in almost every rank, a higher

average recognition rate than that achieved by the other methods in the comparison.

VIII. CONCLUSIONS

We proposed a new gait recognition method that combines holistic and model-based features

by means of a pair of HMMs. Holistic features were initially used for capturing general gait

dynamics while, subsequently, model-based features were deployed for capturing more detailed

sub-dynamics by refining upon the preceding general dynamics. Furthermore, holistic and model-

based features were suitably processed with the purpose of enhancing the discriminatory capacity

of the final system. Experimental results showed that the proposed method exhibits performance

advantages in comparison to popular existing methods.
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TABLE V

RECOGNITION RATES IN COMPARISON TO OTHER METHODS ON THE ACTIBIO DATABASE. TWO VARIANTS OF OUR

PROPOSED SYSTEM ARE COMPARED: ONE (HL) BASED ONLY ON HOLISTIC FEATURES AND ANOTHER (DHM) BASED ON

BOTH HOLISTIC AND MODEL-BASED FEATURES.

Probe
Rank 1 (%) Rank 5 (%)

DTW S15 FGF

[27]

GEI

[6]

HMM

[17]

GEnI

[3]
HL DHM

DTW S15 FGF

[27]

GEI

[6]

HMM

[17]

GEnI

[3]
HL DHM

A 30 53 42 32 39 28 42 54 50 75 79 47 68 42 67 86

B 17 29 9 19 22 36 37 37 61 70 52 49 74 51 70 70

C 22 42 52 29 48 34 48 67 57 95 81 61 71 58 95 95

D 40 64 50 39 43 42 68 75 75 92 87 68 79 67 86 93

E 57 89 58 64 71 50 93 96 82 96 89 82 93 60 100 100

F 28 44 15 41 44 40 37 48 58 59 39 67 70 66 70 74

G 15 26 25 19 22 14 33 41 33 51 50 40 41 29 56 67

ACKNOWLEDGEMENT

The authors would also like to thank the anonymous reviewers for their feedback, which

resulted in an improved manuscript.

REFERENCES

[1] N.V. Boulgouris, D. Hatzinakos, and K.N. Plataniotis, “Gait recognition: a challenging signal processing technology for

biometric identification,” IEEE Signal Processing Magazine, vol. 22, pp. 78–90, Nov. 2005.

[2] S. Sarkar, P.J. Phillips, Z. Liu, I.R. Vega, P. Grother, and K.W. Bowyer, “The HumanID gait challenge problem: data sets,

performance, and analysis,” IEEE Trans. Pattern Anal. and Machine Intell., vol. 27, no. 2, pp. 162–176, Feb. 2005.

[3] K. Bashir, T. Xiang, and S. Gong, “Gait recognition without subject cooperation,” Pattern Recognition Letters, vol. 31,

no. 13, pp. 2052–2060, Oct. 2010.

[4] M. Goffredo, J.N.Carter, and M.S. Nixon, “Front-view gait recognition,” in IEEE Second Int. Conf. on Biometrics: Theory,

Applications and Systems, Washington D.C., USA, Sep. 2008.

[5] D. Ioannidis, D. Tzovaras, I. G. Damousis, S. Argyropoulos, and K. Moustakas, “Gait recognition using compact feature

extraction transforms and depth information,” IEEE Trans. Information Forensics and Security, vol. 2, no. 3, pp. 623–630,

Sep. 2007.

[6] J. Han and B. Bhanu, “Individual recognition using gait energy image,” IEEE Trans. Pattern Anal. Machine Intell., vol.

28, no. 2, pp. 316–322, 2006.

[7] I. Kotsia and I. Patras, “Support tucker machines,” in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), USA, June 2011, pp. 633–640.

[8] D. Tao, X. Li, X. Wu, and S. J. Maybank, “General tensor discriminant analysis and gabor features for gait recognition,”

IEEE Trans. on Pattern Anal. and Machine Intell., vol. 29, no. 10, pp. 1700 – 1715, 2007.

May 30, 2013 DRAFT



28

[9] D. Tao, X. Li, S. J. Maybank, and X. Wu, “Human carrying status in visual surveillance,” in Proc. CVPR, 2006, vol. 2,

pp. 1670–1677.

[10] Z. Liu and S. Sarkar, “Effect of silhouette quality on hard problems in gait recognition,” IEEE Trans. on Systems, Man,

and Cybernetics, Part B: Cybernetics, vol. 35, no. 2, pp. 170–183, 2005.

[11] N. V. Boulgouris and Z. X. Chi, “Human gait recognition based on matching of body components,” Pattern Recognition,

vol. 40, no. 6, pp. 1763–1770, 2007.

[12] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “A full-body layered deformable model for automatic model-based

gait recognition,” EURASIP Journal on Advances in Signal Processing, 2008.

[13] Z. Liu and S. Sarkar, “Improved gait recognition by gait dynamics normalization,” IEEE Trans. on Pattern Anal. and

Machine Intell., vol. 28, no. 6, pp. 863–876, 2006.

[14] M. Hu, Y. Wang, Z. Zhang, and D. Zhang, “Multi-view multi-stance gait identification,” in Image Processing (ICIP), 2011

18th IEEE International Conference on, Sept. 2011, pp. 541 –544.

[15] M. Hu, Y. Wang, Z. Zhang, and D. Zhang, “Gait-based gender classification using mixed conditional random field,” IEEE

Trans. Systems, Man, and Cybernetics, Part B, vol. 41, no. 5, pp. 1429–1439, Oct. 2011.

[16] M. Hu, Y. Wang, Z. Zhang, D. Zhang, and J. Little, “Incremental learning for video-based gait recognition with lbp flow,”

IEEE Trans. Systems, Man, and Cybernetics, Part B, vol. 43, no. 1, pp. 77–89, Feb. 2013.

[17] A. Kale, A. Sundaresan, A. N. Rajagopalan, N. Cuntoor, A. K. Roy-Chowdhury, V. Krueger, and R. Chellappa,

“Identification of humans using gait,” IEEE Trans. Image Processing, vol. 13, no. 9, pp. 1163–6173, Sep. 2004.

[18] C. Chen, J.-Liang, H.-Zhao, H.-Hu, and J.-Tian, “Factorial hmm and parallel hmm for gait recognition,” IEEE Trans.

Systems, Man, and Cybernetics-Part C: applications and reviews, vol. 39, pp. 114–123, 2009.

[19] M. Piccardi, “Background subtraction techniques: a review,” in Proc. IEEE Int. Conf. Systems, Man and Cybernetics, Oct.

2004, pp. 3099–3104.

[20] L. Rabiner and B. Juang, Fundamentals of Speech Recognition, Prentice Hall, Englewood Cliffs, NJ, 1993.

[21] C. Panagiotakis and G. Tziritas, “Recognition and tracking of the members of a moving human body,” Articulated Motion

and Deformable Objects, pp. 86–98, 2004.

[22] N.V. Boulgouris, K.N. Plataniotis, and D. Hatzinakos, “Gait recognition using dynamic time warping,” in Proc. IEEE Int.

Symp. Multimedia Signal Processing, Siena, Italy, Sep. 2004, pp. 263–266.

[23] D. A. Winter, The Biomechanics and Motor Control of Human Movement, John Wiley & Sons, 2 edition, 1990.

[24] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, John Wiley & Sons, Inc., 2001.

[25] S. Fine, Y. Singer, and N. Tishby, “The hierarchical hidden markov model: Analysis and applications,” Machine Learning,

, no. 32, pp. 41–62, 1998.

[26] S.-Z. Yu, “Hidden semi-markov models,” Artificial intelligence, vol. 174, pp. 215–243, 2010.

[27] X. Huang and N. V. Boulgouris, “Model-based human gait recognition using fusion of features,” in IEEE Int. Conf. on

Acoustics, Speech, and Signal Processing, Taipei, Apr. 2009, pp. 1469–1472.

[28] X. Huang and N. V. Boulgouris, “Gait recognition using linear discriminant analysis with artificial walking conditions,”

in IEEE International Conference on Image Processing, September 2010, pp. 2461–2464.

[29] B.-H. Juang, “On the hidden markov model and dynamic time warping for speech recognition,” ATT Technical jnl, vol.

63, pp. 1213–1243, 1984.

May 30, 2013 DRAFT



29

PLACE

PHOTO

HERE

Nikolaos V. Boulgouris (S’96 M’04 SM’09) is a Senior Lecturer with the Department of Electronic and

Computer Engineering at Brunel University, U.K. From December 2004 to August 2010 he served as a

Lecturer and a Senior Lecturer at King’s College London, London, U.K. From 2003 to 2004, he was a

Post-Doctoral Fellow with the Department of Electrical and Computer Engineering of the University of

Toronto, Canada. He received the Ph.D. degree from the Electrical and Computer Engineering department

of the University of Thessaloniki, Greece, in 2002.

Dr Boulgouris served as a guest co-editor for two journal special issues and was co-editor of the book Biometrics: Theory,

Methods, and Applications that was published by Wiley - IEEE Press in 2009.

Dr. Boulgouris is an Associate Editor for the IEEE TRANSACTIONS ON IMAGE PROCESSING. He served as an Associate

Editor for the IEEE SIGNAL PROCESSING LETTERS between 2007 and 2011.

PLACE

PHOTO

HERE

Xiaxi Huang received the BEng degree in Control Science and Engineering from Zhejiang University,

China, in 2004, the MSc degree in Electrical and Electronic Engineering from University of Bath, Bath,

U.K, in 2005, and the PhD degree in Electronic Engineering from King’s College London, U.K, in 2010.

His research interests include digital image/video processing and gait biometrics based on computer vision.

May 30, 2013 DRAFT


