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C4: A Real-time Object Detection Framework
Jianxin Wu, Member, IEEE, Nini Liu, Christopher Geyer, and James M. Rehg, Member, IEEE

Abstract

A real-time and accurate object detection framework, C4, is proposed in this paper. C4 achieves 20

fps speed and state-of-the-art detection accuracy, using only one processing thread without resorting to

special hardwares like GPU. Real-time accurate object detection is made possible by two contributions.

First, we conjecture (with supporting experiments) that contour is what we should capture and signs of

comparisons among neighboring pixels are the key information to capture contour cues. Second, we show

that the CENTRIST visual descriptor is suitable for contour based object detection, because it encodes the

sign information and can implicitly represent the global contour. When CENTRIST and linear classifier

are used, we propose a computational method that does not need to explicitly generate feature vectors.

It involves no image preprocessing or feature vector normalization, and only requires O(1) steps to test

an image patch. C4 is also friendly to further hardware acceleration. It has been applied to detect objects

such as pedestrians, faces, and cars on benchmark datasets. It has comparable detection accuracy with

state-of-the-art methods, and has a clear advantage in detection speed.

Index Terms
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I. INTRODUCTION

Object detection in images and videos is important in a wide range of applications that intersect

with many aspects of our lives: surveillance systems and airport security, automatic driving and driver

assistance systems in high-end cars, human-robot interaction and immersive, interactive entertainments,

smart homes and assistance for senior citizens that live alone, and people-finding for military applications.

The wide range of applications and underlying intellectual challenges of object detection have attracted

many researchers’ and developers’ attention from the very early age of computer vision and image

processing; and they continue to act as hot research topics in these fields.

The goal of this paper is to detect objects from grayscale images in real-time, with a high detection

rate, and few false positives. In particular, for certain applications with special hardware or environmental

constraints, e.g., human detection on-board a robot, the computational efficiency of the detector is of

paramount importance. Not only must human detection run at video rates, but it also can use only a

small number of CPU cores (or a small percentage of a single CPU core’s cycles) so that other important

tasks such as path planning and navigation will not be hindered. Thus, real-time or faster than real-time

object detection has high impact in both research and applications.

Recent progresses in object detection have advanced the frontiers of this problem in many aspects,

including features, classifiers, detection speed, and occlusion handling. For example, detection systems

for some object types have been quite accurate, like faces [1], [2], [3] and pedestrians [4], [5], [6], [7].

However, at least two important questions still remain open:

• Real-time detection. The speed issue is very important, because real-time detection is the prereq-

uisite in most of the real-world applications [8] and in a robot in particular.

• Identify the most important information source. Features like Haar [1], HOG [4] and LBP [7]

have been successful in practice. But we do not know clearly yet what is the critical information

encoded in these features, or why they achieve high detection performance in practice.

In this paper, we argue that these two problems are closely-related, and we demonstrate that an

appropriate feature choice can lead to an efficient detection framework. In fact, feature computation

is the major speed bottleneck in existing methods. Most of the time is spent in computing the features

(including image preprocessing, feature construction, and feature vector normalization, etc.)

This paper makes three contributions. First, we present conjectures (with supporting experiments) that

the contour defining the outline of an object is essential in many object detection problems (Sec. III-A).

Similarly, we conjecture that the signs of comparisons among neighboring pixels are critical to represent
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a contour, while the magnitudes of such comparisons are not as important. Thus, for objects that can be

distinguished mainly based on their contours, we need to capture this information.

Second, we propose to detect such objects using the contour cues, and show that the recently developed

CENTRIST [9] feature is suitable for this purpose (Sec. III-B). In particular, it encodes the signs of local

comparisons, and has the capability to capture global (or large scale) structures and contours. We also

compare CENTRIST and other features in Sec. III-C.

Third, CENTRIST is very appealing in terms of detection speed. In Sec. IV, we describe a method for

using CENTRIST and a linear classifier for object detection, which does not involve image preprocessing

or feature vector normalization. In fact, we show that it is not even necessary to explicitly compute the

CENTRIST feature vector, because it is seamlessly embedded into the classifier evaluation, achieving

video-rate detection speed. Beyond that, we use a cascade classifier. After fast rejections by the linear

classifier, we use an additional non-linear classifier to achieve quality detection. The proposed framework

is named as C4, since we are detecting objects emphasizing the human contour using a cascade classifier

and the CENTRIST visual descriptor. The complete C4 framework is presented in Sec. V. Pedestrian

detection using C4 was originally published in [10] as a conference presentation.

Finally, the C4 framework is applied to detect objects on benchmark datasets (pedestrians, faces, and

cars) in Sec. VI. Experimental results on benchmark datasets show that the C4 framework achieves

comparable detection quality as state-of-the-art detectors for these respective objects, and C4 has a clear

advantage in the detection speed. Using only one single CPU core (not involving GPU or other special

hardware), C4 achieves 20 fps detection speed on 640× 480 images, and 109 fps on 320× 240 images.

The limitations and drawbacks of C4 are also raised, with suggestions for future improvements.

The C4 detection software is available at https://sites.google.com/site/wujx2001/home/c4, with pre-

trained models for pedestrian detection.

II. RELATED WORK

There have been numerous works published on object detection. Before presenting the contributions

of this paper, we first briefly review a few closely related papers.

Accurate detection is still a major interest in object detection, especially in terms of high detection rate

with low FPPI (false positive per image) [5], [11]. Achievements have been made in two main directions:

features and classifiers.

Various features have been applied to detect objects, e.g., Haar features for faces [1] and pedestri-

ans [12], and edgelets for pedestrians [13]. However, HOG is probably the most popular feature in object
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detection [4], [6], [14], [15], [7]. The distribution of edge strength in various directions seem to efficiently

capture objects in images, especially for pedestrians. Recently, variants of Local Binary Pattern (LBP)

also show high potentials [7]. A recent trend in human detection is to combine multiple information

sources, e.g., color, local texture, edge, motion, etc. [16], [7], [17], [15]. Introducing more information

channels usually increases detection accuracy rates, at the cost of increased detection time.

In terms of classifiers, linear SVM is widely used, probably for its fast testing speed. With the fast

method to evaluate Histogram Intersection Kernel (HIK) [14], [18], HIK SVM was used to achieve higher

accuracies with slight increase in testing / detection time. Sophisticated machine learning algorithms also

play important roles in various object detection systems. A very influential approach is the part-based,

discriminatively trained latent SVM classifier by Felzenszwalb et al. [6]. This detector is a general object

detection framework that have been applied to detect tens of object types. The cascade classifier [1]

has been successfully used for detecting faces and pedestrians [12], [1]. In [19], [20], sparse learning

techniques is used to select a small number of features and construct cascade classifiers. Hough forests,

which performs a generalized Hough transform for object detection, was proposed in [21] and achieved

high detection accuracy in benchmark detection datasets.

Another important research topic in object detection is to improve the speed of detection systems. It

is a common practice to use extra hardware like the GPU to distribute the computing task to hundreds

of GPU cores in parallel, e.g., in [22], [7], [23]. The cascade classifier framework is an algorithmic

approach that first makes face detection run in real-time [1], by using a data structure called integral

images. The cascade classifier in [1], however, is only applicable to objects that has a fixed aspect ratio.

Another algorithmic advance, ESS (Efficient Subwindow Search) [24], can greatly accelerate the search

for objects with arbitrary aspect ratio, by using a branch and bound strategy.

III. CENTRIST BASED OBJECT DETECTION

In this section, we begin to present the C4 object detection framework, starting from the question

“which feature or visual representation is to be used?”

For this question, we present the following two conjectures and provide some supporting arguments:

contour is a key information for detection of many objects; and, the signs of comparisons among

neighboring pixels are key to capture useful information in the contour. Both hypotheses are supported

by experiments presented in this section, using pedestrian detection as an example.
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(a) Original image (b) Sobel image (c) Only signs

Fig. 1. Detecting humans from their contours (Fig. 1b) and signs of local comparisons (Fig. 1c).

A. Conjectures: Signs of local comparisons are critical for encoding contours and object detection

Hypothesis 1: For many object detection tasks, the important thing is to encode the contour, and it is

the information that the HOG descriptor is mostly focusing on. Local texture can be harmful, e.g., the

paintings on a person’s T-shirt may confuse a human detector. In Fig. 1b, we compute the Sobel gradient

of each pixel in Fig. 1a and replace a pixel with the gradient value (normalized to [0 255]). The Sobel

image smooths high frequency local texture information, and the remaining contour in Fig. 1b clearly

indicates the location of a human.

Fig. 6 in [4] also indicated that image blocks related to the human contour are important in the HOG

detector. However, we do not know clearly what information captured by HOG makes it successful in

human detection. Thus, we try to experimentally show that contour is the important information captured

by HOG. We used the original HOG detector in [4], but tested on the Sobel version of test images of

the INRIA dataset.1 The original HOG SVM detector was trained with features where contour and other

information (e.g., fine-scale textures on the clothes) are interwoven with each other (cf. Fig. 1a). It is

unusual that without modification it will detect humans on Sobel testing images where contour is the

main information (cf. Fig. 1b). Surprisingly, although training and testing images are different in nature,

the detection accuracy is 67% at 1 FPPI, higher than 7 out of 13 methods evaluated in [16]. Thus, our

conjecture is that contour is the key information captured by HOG for pedestrian.

Hypothesis 2: Signs of comparisons among neighboring pixels are key to encode the contour. The

community usually use image gradients to detect contours, which are computed by comparing neighboring

pixels. We suggest that the signs of such comparisons are key to encode contours while the magnitudes

of comparisons are not as important.

1The HOG detector is from http://pascal.inrialpes.fr/soft/olt/. Details of the INRIA dataset are presented in Sec. VI-B.
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In order to verify this hypothesis, for a given image I , we want to create a new image I ′ that retains

signs of local comparisons but ignores their magnitudes. In other words, we want to find an image I ′

such that

sgn
(
I(p1)− I(p2)

)
= sgn

(
I ′(p1)− I ′(p2)

)
, (1)

for any neighboring pair of pixels p1 and p2. An example is shown in Eq. 2.

I :

 32 2 8

38 96 64

 , I ′ :

 1 0 1

2 3 2

 . (2)

Note that the pixel 96 is converted to a value 3, because of the path of comparisons 2 < 32 < 38 < 96.

In other words, although the magnitude of comparisons in I are ignored in I ′, the spatial relationships

among multiple comparisons in I will enforce a “pseudo-magnitude” in I ′. Another important observation

is that gradients computed from I and I ′ will have quite different magnitudes. Fig. 1c shows such a sign

comparison image I ′ (in which pixel values are scaled to [0 255]) when I is Fig. 1b. We can easily detect

the human contour in Fig. 1c.

We can further support hypothesis 2 using human detection experiments. Applying the original HOG

detector to sign comparison testing images (like Fig. 1c) of the INRIA dataset, we achieved 61% detection

accuracy at 1 FPPI (better than 6 out of 13 methods evaluated in [16]).

Although we observe lower detection rates when the Sobel images or the sign comparison images

are used as test images, it is important to note that the classifier was trained using the original images

(that is, training and testing images are different in their characteristics.) The fact that we obtain higher

accuracies than many existing detectors without modifying the HOG detector is noteworthy.

Thus, we conjecture that the key information for human and many other object detection is the global

contour information, and the signs of comparisons among neighboring pixels are the key to capture useful

information in the contour.

B. The CENTRIST visual descriptor

We then propose to use the CENTRIST visual descriptor [9] to detect objects, because it succinctly

encodes the “signs of neighboring comparisons” information. We will compare CENTRIST with other

popular descriptors in Sec. III-C.

Census Transform (CT) is originally designed for establishing correspondence between local patches [25].

Census transform compares the intensity value of a pixel with its eight neighboring pixels, as illustrated
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in Eq. 3.
32 64 96

32 64 96

32 32 96

⇒

1 1 0

1 0

1 1 0

⇒ (11010110)2 ⇒ CT = 214. (3)

If the center pixel is bigger than (or equal to) one of its neighbors, a bit 1 is set in the corresponding

location. Otherwise a bit 0 is set. The eight bits generated from intensity comparisons can be put together

in any order (we collect bits from left to right, and top to bottom), which is consequently converted to

a base-10 number in [0 255]. This is the CT value for the center pixel. The CT image C of an input

image I is generated by replacing a pixel with its CT value. The CENTRIST descriptor is a histogram

with 256 bins, which is a histogram of these CT values in an entire image or a rectangular region in an

image [9].

As shown in Eq. 3, CT values succinctly encode the signs of comparisons between neighboring pixels.

What seems to be missing from CENTRIST, however, is the power to capture global (or larger scale)

structures and contours beyond the small 3× 3 range.

More importantly, if we are given an image I with CENTRIST f , then among the small number of

images I ′ that has a matching CENTRIST descriptor, we expect that I ′ will be similar to I , especially

in terms of global structure or contour, which we illustrate in Fig. 2. Fig. 2a shows a 108 × 36 human

contour. We divide this image into 12 × 4 blocks, thus each block has 81 pixels. For each block I , we

want to find an image I ′ that has the same pixel intensity histogram and CENTRIST descriptor as I .2

As shown in Fig. 2b, the reconstructed image is similar to the original image. The global characteristic

of the human contour is well preserved in spite of errors in the left part of the image.

The fact that CENTRIST not only encodes important information (signs of local comparisons) but

also implicitly encodes the global contour encourages us to use it as a suitable representation for object

detection.

C. Comparing CENTRIST with HOG and LBP

Now we will compare CENTRIST with HOG and LBP, two visual descriptors that are popular in

object detection.

For classification tasks, the feature vectors of examples in the same class should be similar to each

other, while examples in different classes should have dissimilar descriptors. For any example x, we will

2We choose to work with small blocks with 81 pixels and binary images to make simulated annealing converge in a reasonable

amount of time. Please refer to [9] for details of the reconstruction algorithm.
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Fig. 2. Reconstruct human contour from CENTRIST.

compute the similarity score between x and all other examples. Let xin be the most similar example to

x within the same class. Similarly, let xout be the most similar example that is in a different class (e.g.,

background). Obviously we want sNN = s(x,xin)− s(x,xout) to be positive and large, where s(x,y) is

the similarity score between x and y. A positive sNN means that x is correctly classified by a nearest

neighbor (1-NN) rule. Thus, sNN is an intuitive and easy-to-compute measure to determine whether a

descriptor suits certain tasks.

Fig. 3 compares CENTRIST (on Sobel images) and HOG (on original input images) using the INRIA

human detection dataset [4]. In Fig. 3a we use all the 2416 human examples, and randomly generate

2 non-human examples from each negative training image which leads to 2436 non-human examples.

Fig. 3a shows the distribution (histogram) of sNN for CENTRIST and HOG. A negative sNN (i.e., in the

left side of the black dashed line) is an error of 1-NN classifier. It is obvious that the CENTRIST curve

resides almost entirely in the correct side (2.9% 1-NN error), while a large portion of the HOG curve is

wrong (28.6% 1-NN error). Fig. 3b plots the sNN values for CENTRIST and HOG, and further shows

that HOG errors (i.e., any value that is below the black dashed line) are mostly in the first half of the

dataset, which are human examples.3

It is argued in [9] that visual descriptors such as HOG or SIFT [26] pays more attention to detailed

3We provide more experimental details here. HOG feature vectors are extracted using the source code from [4], with its

default settings (so HOG feature vectors are normalized using the L2-Hys strategy.) sNN values are normalized to the range

[−1 1], by dividing the maximum |sNN| value of all 4852 examples of a given descriptor (HOG or CENTRIST). We tried both

the dot product kernel and the histogram intersection kernel as the similarity metric. Fig. 3 shows the best sNN result for each

descriptor: by using dot product for HOG and HIK for CENTRIST. If we use HIK for HOG, the 1-NN error is very high

(46%). A possible reason is that HOG encodes the magnitudes of gradients, which expects unequal `1 or `2 norm of the vectors.

However, normalized versions of such vectors are not suitable for HIK. If we use the Laplace kernel exp(−|x− y|) on HOG,

the 1-NN error of HOG can be reduced to 23.3%.
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Fig. 3. Histogram and plot of similarity score differences (best viewed in color).

local textural information instead of structural properties (e.g., contour) of an image. We further speculate

that this is due to the fact that the magnitudes of local comparisons used in HOG pay more attention to

local textures. It is also obvious that we can not reconstruct an image from its HOG or SIFT descriptor.

CENTRIST has close relationship with LBP, another popular feature for object detection. If we switch

all bits ‘1’ to ‘0’ and vice versa in Eq. 3, the revised formula is an intermediate step to compute the

LBP value for the same 3 × 3 region [27]. However, the more important difference is how the LBP

values are utilized. Object detection methods use “uniform LBP” [28], [7], in which certain LBP values

that are called “non-uniform” are lumped together. We are, however, not able to reconstruct the global

contour because the non-uniform values are missing. In addition, [28] and [7] involve interpolation of

pixel intensities. These procedures make their descriptors to encode a blurred version of the signs of

neighboring pixel comparisons. We computed the distribution of sNN for the uniform LBP descriptor. It
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had an error rate of 6.4% for the 1-NN classifier (using HIK, which outperforms the dot product kernel

in this experiment), more than twice of the error rate for CENTRIST (2.9%). However, LBP has better

sNN distribution than HOG (28.6% 1-NN error). Our conjecture is that the incomplete and blurred local

sign information in LBP is still less sensitive than HOG in the presence of noise and distractions from

local textures.

We trained linear SVM classifiers for the CENTRIST and uniform LBP dataset for further comparison.4

The Fisher separation criterion applied to the SVM decision values can also provide a way to compare

these two descriptors in this context:
(m+ −m−)2

σ2+ + σ2−
, (4)

where m± and σ2± are the mean and variance of the SVM decision value on positive (pedestrian) and

negative (background) examples, respectively. The Fisher criterion value for CENTRIST is 2.03, which

is also better than the value for uniform LBP (1.62).

Finally, we want to add a note of caution that designing visual feature is an integral and complex

task. In different designs, various types of information may play different roles other than their roles in

CENTRIST. For example, experiments in [4] showed that “unsigned” HOG has slightly higher accuracy

than the “signed” HOG descriptors. In other words, when the magnitude information is used in HOG,

merging the 18 directional voting bins of HOG (“signed”) into 9 bins without direction information

(“unsigned”) is useful.

IV. LINEAR CLASSIFIERS FOR FAST REJECTION

One additional virtue of using the CENTRIST feature for object detection is that: when CENTRIST is

used together with a linear classifier to classify an image patch as the object of interest or the background,

we can design algorithms that are extremely efficient. Specifically, only a constant number of operations

are needed (i.e., O(1) complexity) per pixel. Before presenting the full details of C4, we first introduce

these algorithms.

A. Fast rejection for the holistic case

Given an image I , its corresponding Sobel image S, and CT image (of S) C, suppose an image patch

(detection window) is represented by a CENTRIST vector f ∈ R256 extracted from this patch. If we

4In order to avoid overfitting, for each dataset we trained two linear classifiers through two-fold cross validation (CV). The

CV procedure produced an SVM decision value for every example.
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Fig. 4. Illustration of ways to compute wTf . For simplicity, we assume only 4 different CT values.

have already trained a linear classifier w ∈ R256, an image patch is classified as an object of interest if

and only if wTf ≥ θ. Inspired by [24], we propose an algorithm to compute wTf using a fixed number

of machine instructions for each image patch.

If there are k pixels in the CT image’s detection window that have value i, the CENTRIST histogram

will satisfy fi = k. Furthermore, all such pixels will contribute wifi = kwi to wTf , since wTf =∑256
i=1wifi. If we distribute this contribution to every such pixel, that is, assign a value wi to every pixel

with CT value i, all these k pixels will sum up to the same value kwi.

Let us build an auxiliary image A which directly combines the CT image C and the classifier w. The

auxiliary image has the same size as the CT image, and is defined as:

A(x, y) = wC(x,y), (5)

that is, if a pixel has CT value i, we assign a value wi to the auxiliary image. According to the

above analysis, if we sum the assigned values in the auxiliary image in the entire detection window,

the summation result is exactly equal to wTf , the term we want to compute. Note that with the auxiliary

image A, we do not need to compute the CENTRIST vector f . Fig. 4 illustrates how to compute wTf

by computing f (Fig. 4a), or by avoiding the computation of f (Fig. 4b).

Thus, computing wTf is equivalent to summing the values in a rectangular region. It is now a classic

result that if we build an integral image of the auxiliary image A, it only requires 4 memory access and 3

summations or subtractions to find the sum of values in any rectangular region [1]. Furthermore, building

the integral image requires only 2 memory access and 2 summations per pixel location. In summary,
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applying a linear classifier for object detection with CENTRIST requires only a small constant amount

of machine instructions per detection window.

It is worth noting that the proposed algorithm is inspired by and similar to the method in [24]. In [24],

pixel-wise contribution is summed at sparse locations to compute a bound for a set of linear classifiers;

while we use this strategy to sum up values densely at all pixel locations to compute the decision value

of a single linear classifier. The advantage of using CENTRIST is that it does not require normalization

of the feature vector, thus we can distribute the contribution to every pixel without explicitly generating

the CENTRIST vector f . In contrast, normalization is essential in the HOG-based detectors [4].

A linear classifier may not be powerful enough to produce accurate detections alone. However, because

of its efficiency, we can learn a linear classifier to quickly reject most of (e.g. 99%) the detection windows

that are not objects, while keeping most of the objects of interest for further scrutiny.

B. Fast rejection for objects with multiple parts

In the above, we consider the detection window as a whole, and extract a single holistic CENTRIST

from it. However, a holistic representation is usually lacking in representational power, and an object is

better encoded by using multiple parts. In this section, we show that the efficiency of linear classifiers is

maintained when the object of interest contains multiple parts.

Suppose the object of interest contains K parts, specified by rigid rectangular regions R1, . . . , RK .

We extract a CENTRIST from each of them. Thus, the object is now represented as f = [f1, . . . ,fK ],

where f i is a CENTRIST vector extracted from Ri, f i ∈ R256, and f ∈ R256K . Correspondingly, a

linear classifier has decision boundary w = [w1, . . . ,wK ] ∈ R256K , and the decision value is wTf =∑K
i=1(w

i)T (f i). Fig. 5a illustrates an example with K = 2 parts.

A straightforward way to compute wTf is similar to the method for ESS with spatial pyramid matching

in [24]. We can generate K auxiliary images A1, . . . , AK , where Ai is generated by combining the CT

image C with part of the classifier wi, which is corresponding to the i-th part, in the same way as in

the holistic case. That is, Ai(x, y) = wi
C(x,y), where C(x, y) is the CT value, wi ∈ R256, and wi

C(x,y) is

the entry in wi corresponding to this CT value. In Ai, pixels outside of Ri are set to 0.

By summing the values in region Ri of the auxiliary image Ai respectively for 1 ≤ i ≤ K into K

sums, wTf is simply the sum of all the K partial sums. This strategy is illustrated in Fig. 5a. Using

this strategy, K auxiliary images (and their integral images) are needed. For a detection window, 4K

memory access and 4K summations or subtractions are needed to compute the partial sums, and K − 1

additional summations are required for the final result. When K is big, a large number of instructions
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Fig. 5. Illustration of ways to compute wTf with K = 2 parts.

are needed per detection window.

We propose a new strategy, illustrated in Fig. 5b, to reduce the complexity. In Fig. 5b, we show the

entire auxiliary image (same size as the CT image C), an detection window inside it, and two parts within

the detection window. After building the auxiliary images Ai, except for A1, all other Ai are shifted such

that the top-left corner of the region Ri (i > 1) in Ai is shifted to the same position as that of R1 in A1

(cf. Fig. 5b, the filled circle.) The part of shifted Ai that is overlapping with A1 (that is, starting from

the hollow circle in Fig. 5b) is added to A1 in a pixel-wise manner. After all Ai (i > 1) are added to

A1, the new A1 is a sum of all properly shifted auxiliary images (according to offsets of the parts Ri).

Then, comparing Fig. 5a and Fig. 5b, it is also obvious that wTf is simply the sum of values in the

detection window inside the new A1.

Thus, we first build a grand auxiliary image A (which is exactly the new A1 as described above) and
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its integral image, then wTf requires only 4 memory access and 3 summations or subtractions, which

is fewer than 1/K of that of the method with K auxiliary images.

It is worthwhile to note that although Fig. 5 shows two non-overlapping, equal-size parts, in reality

the parts can overlap with each other, and can have different sizes.

C. Organization of parts in C4

In our C4 detection framework, we use multiple rigid parts to detect objects. The parts are organized

following [4]. Suppose a detection window is of fixed size h× w, we first divide the detection window

into nx×ny non-overlapping equal-size blocks. Every block has size (hs, ws) = (h/nx, w/ny). Then, any

adjacent 2× 2 blocks are combined into a superblock. There are in total (nx− 1)× (ny− 1) superblocks

that may overlap with each other, and each superblock has size (2h/nx, 2w/ny). We use a superblock

as a part. Thus, the C4 framework contains (nx − 1)× (ny − 1) parts in a detection window.

We then create auxiliary images Ai,j for 1 ≤ i ≤ nx − 1, 1 ≤ j ≤ ny − 1 with the same size as the

input image I . Note that now we use a pair (i, j) to index a part or an auxiliary image. The (x, y) pixel

of Ai,j is set to Ai,j
x,y = wi,j

C(x,y) as described above.

The grand auxiliary image A is then defined as:

A(x, y) =

nx−1∑
i=1

ny−1∑
j=1

wi,j
C((i−1)hs+x,(j−1)ws+y). (6)

Note that (i− 1)hs and (j − 1)ws in Eq. 6 are the offsets between the part Ri,j and the first part R1,1,

which shift Ai,j to properly align with A1,1. Then, a detection window with top-left corner (t, l) has a

decision value

wTf =

2hs−1∑
x=2

2ws−1∑
y=2

A(t+ x, l + y). (7)

Note that because the Census Transform is not defined for border pixels in a rectangle, for a size

(2hs, 2ws) part, we only sum in the region 2 ≤ x ≤ 2hs − 1, 2 ≤ y ≤ 2hw − 1.

Only one grand integral image is needed to compute Eq. 7, which saves not only large storage space

but also computation time. In practice, Eq. 7 runs about 3 to 4 times faster than using one auxiliary

image for each part. Also note that the proposed technique is general, and can be used to accelerate other

related computations, e.g., ESS with spatial pyramid matching in [24].

One final note is about the grand auxiliary image A. Based on Eq. 6, we only need the CT image C and

the classifier w, and do not need to compute the separate auxiliary images Ai,j . In practice, generating

A using Eq. 6 is about twice faster than computing all auxiliary images Ai,j .
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In summary, the proposed method for linear classifier and CENTRIST does not involve image pre-

processing (e.g., smoothing) or feature normalization. The feature extraction component is seamlessly

embedded into classifier evaluation and f is not even generated. These properties together contribute to

a real-time object detection system.

V. THE C4 DETECTION FRAMEWORK

After the representation of a detection window and the classification with a linear classifier (early

rejection) are introduced, in this section, we present all the details of the C4 framework. The framework

is first described in Sec. V-A, and Sec. V-B specifies how the two classifiers used in C4 are trained.

A. Description of the C4 detection framework

C4 uses a brute-force search strategy for object detection. That is, C4 examines all possible detection

windows (of size h×w) in the input image, and classifies each detection window as the object of interest

or the background. The top-left corners of all possible detection windows form a regular grid with step

size g. If faster detection speed (and potentially lower accuracy) is desired, g can be set to a larger value.

In order to detect objects bigger than h×w, the input image is successively scaled down by a ratio 0.8,

until the image is smaller than h× w. Brute-force search is also performed in every resized version.

Two classifiers are used to classify a detection window. The input image I is converted to a Sobel

version S, and the CT image C (of S). By building a grand integral image of C using Eq. 6, the result

of linear classifier (which we name as Hlin) for each detection window just requires O(1) operations.

Note that Eq. 6 requires O(1) operations per detection window, and we only need to fill its values on

the grid of top-left corners (that is, only 1/g2 values of the grand auxiliary image need to be calculated).

A cascade structure [1] is used in C4. The linear classifier Hlin is very fast, but not powerful enough for

accurate object detection. The threshold of Hlin is adjusted such that a large portion (e.g., 99%) of objects

will be correctly classified as objects by Hlin. Any detection window that is considered as background

by Hlin is immediately rejected, and only the small number of windows that pass the test of Hlin will

be further considered by a more powerful classifier. Note that no CENTRIST vector is generated at this

stage.

Since the CENTRIST representation of a detection window is a natural histogram, the histogram

intersection kernel (HIK) will lead to high accuracy [29]. In C4, the second classifier is an SVM classifier

using the non-linear histogram intersection kernel. For the small number of detection windows that pass

the test of Hlin, the CENTRIST representation is now calculated, and acts as the input for the HIK SVM
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classifier Hhik. An HIK SVM has the same complexity as a linear classifier during the test time [29],

which also contributes to the real-time detection speed of C4. Only if a detection window is classified

as object by both Hlin and Hhik, it is considered as an object of interest.

The last step of C4 is non-maximal suppression (NMS) or post-processing. In C4, we use a slightly

more aggressive variant of the NMS strategy in [6]. A detected object contains a rectangle (i.e., detected

location) and a score (decision value of Hhik). First, we sort all detections in the decreasing order of their

scores. Then, given any two detections Di and Dj with i > j (that is, Di has higher score than Dj),

if they have large intersections (intersection region size more than 60% of size of either Di or Dj), we

remove the Dj detection.

Finally, a detection with rectangle Rd and a groundtruth with rectangle Rg is considered as a true

match if
Area(Rd ∩Rg)

Area(Rd ∪Rg)
> 0.5. (8)

We also require that one groundtruth rectangle can only match to at most one detected window in one

input image. These matching criteria are commonly used in object detection [11].

B. Training classifiers

An important part of C4 is to train accurate classifiers Hlin and Hhik, which we present in this section.

In the training phase, we have a set of h × w positive training image patches P and a set of larger

negative images N that do not contain any object of interest. We first randomly choose a small set of

patches from the images in N to form a negative training set N1. Using P
⋃
N1, we train a linear SVM

classifier H1.

A bootstrap process is used to generate a new negative training set N2: H1 is applied to all patches

in the images in N , and any detection (i.e., false positives) are added to N2. We then train H2 using

P and N2. This process is repeated until all patches in N are classified as negative by at least one of

H1, H2, . . . We then train a linear SVM classifier using P and the combined negative set
⋃

iNi, which

is Hlin.

The threshold of Hlin is adjusted to classify a large portion of the objects as positive. We then use Hlin

on N to bootstrap a new negative training set Nfinal, and train an SVM classifier using the libHIK HIK

SVM solver of [29], which is Hhik. In the testing / detection phase, the cascade with two nodes Hlin and

Hhik is used.

Finally, we call the proposed method C4, as we are detecting objects based on their contour information

using a cascade classifier and the CENTRIST representation.
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VI. EXPERIMENTAL RESULTS

In this section, we empirically show the performance of the C4 detection framework on 4 different

objects detection benchmark datasets: INRIA pedestrian, Caltech pedestrian, face and car. The same C4

framework is used for detecting different objects, by applying to different training images. There are five

parameters in C4: detection window size h and w, number of blocks in the detection window nx and

ny, and brute-force searching’s grid step size g. For each dataset, the parameters are adjusted to suit its

characteristic, e.g., faces and cars have different aspect ratios. The parameter setup will be detailed with

each dataset.

We will first present experiments illustrating the detection speed of C4 in Sec. VI-A using pedestrian

detection as an example, followed by reports of C4’s detection accuracy (Sec. VI-B to Sec. VI-E). Finally,

we discuss the limitations and drawbacks of the proposed C4 detection framework in Sec. VI-F, and their

possible improvements.

A. Detection speed

1) Running on a desktop computer: It is obvious that C4’s detection speed is independent of the type

of objects to detect. Thus, we use pedestrian detection as an example to study its detection speed.

C4 achieves faster speed than existing pedestrian detectors. On a 640 × 480 video, its speed is 20.0

fps, using only 1 processing core of a 2.8GHz CPU.5 As far as we know, this is the fastest detector on

CPU, which has a reasonably low false alarm rate and high detection rate. Existing system, in order to

achieve real-time detection speed, has to resort to the parallel processing cores of a GPU hardware. Using

CPU+GPU, the state-of-the-art detection speed is 50 fps [23], with a Nvidia GeForce GTX 470 (448

cores). The major computations in C4, including building the grand auxiliary image and its integral image,

linear rejection, building CENTRIST for remaining detection windows, Hhik testing, resizing images, and

NMS, can all be easily adapted to further GPU acceleration. When multiple CPU cores and GPU are

used, it is expected that C4 will run at least 10 to 20 times faster than the current CPU version, according

to results on published system [22].

Real-time processing is a must-have property in most object detection applications. Our system is

already applicable in some domains, e.g., robot systems. However, there is still huge space for speed

improvements, which will make C4 suitable even for the most demanding applications, e.g., automatic

5This is also the default hardware environment of all experiments in this paper, if not otherwise specified.
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TABLE I

DISTRIBUTION OF C4 COMPUTING TIME (IN PERCENTAGE).

Processing module Percent of used time

Sobel gradients 16.55%

Computing CT values 9.36%

Grand Auxiliary & Integral Image 44.65%

Resizing image 5.68%

Brute-force scan 23.75%

Post-processing 0.02%

driver assistance. Table I is the break-down of time spent in different components of C4. Most of these

components are very friendly to acceleration using special hardware (e.g., GPU).

The fact that we do not need to explicitly construct feature vectors for Hlin is not the only factor

that makes our system extremely fast. Hlin is also a powerful classifier. It filters away about 99.43% of

the candidate detection windows, only less than 0.6% patches require attentions of the expensive Hhik

classifier on the INRIA pedestrian dataset.

C4 runs faster in smaller images. In a 480×360 YouTube video with many pedestrians in most frames,

its speed is 36.3 fps. Its speed is 109 fps on 320× 240 frames.

2) Running on a Robot: We integrated the C4 pedestrian detection algorithm onto an iRobot PackBot in

order to achieve on-board pedestrian detection and to enable pedestrian following. The implementation

first captured images from a TYZX G2 stereo camera system and then processed the imagery using

an Intel 1.2 GHz Core 2 Duo embedded in an add-on computational payload. We used the raw camera

imagery to perform the detection and used the stereo range data to estimate the distance to the pedestrian.

Note that it is not feasible to use GPU processing on board a robot.

From the stereo data we used RANSAC to estimate a ground plane, and we sampled the depths along

the ground plane’s horizon. With the depth and coordinates of the plane we can calculate a box that

would contain a pedestrian standing on the plane at the given position on the horizon and given distance.

This gives us far fewer windows to test with the detector. Note that the C4 detector was tailored to work

with the robot to a 3-layer cascade instead of 2-layer for faster speed (but less accurate).

The combined approach is at approximately 20 frames per second (50 milliseconds) on the embedded

Intel 1.2 GHz Core 2 Duo. Alone, the C4 runs at approximately 8 frames per second (120 milliseconds)
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Fig. 6. Pedestrian detection results on the INRIA dataset (best viewed in color).

on the same hardware.

B. Detecting pedestrians (INRIA benchmark)

For pedestrian detection, we first experiment on the INRIA dataset [4]. There are 2416 positive training

image patches and 1218 negative training images for bootstrapping in the INRIA dataset. This dataset

contains large pedestrian images: 90% of the pedestrians in it are taller than 139 pixels [11]. The training

positive patches are 128× 64, but we crop the examples to 108× 48 pixels, which allows a reasonable

sized margin on all sides around a pedestrian. The C4 parameters are h = 108, w = 48, nx = 12, ny = 6,

and g = 3. The entire C4 training process took 530 seconds (less than 9 minutes) on this dataset.

During testing time, we use the converted test frames and evaluation code in [11] to calculate the

detection performance. Fig. 6 compares the performance of C4 with a few state-of-the-art detectors. Note

that Fig. 6 only lists those detectors with their features extracted from a single grayscale frame. Detectors

using other information (such as color and motion) can achieve better accuracy, which we will further

discuss in Sec. VI-C. 6

Besides the detection accuracy curves, Fig. 6 also shows the log-average miss rate of each method,

which is the “averaging miss rate at nine FPPI rates evenly spaced in log-space in the range 10−2 to

6Results of these detectors in both Fig. 6 and Fig. 7 are downloaded from http://www.vision.caltech.edu/Image Datasets/

CaltechPedestrians/, from where the details about every detector can also be found. The PLS method used a 3-bin color histogram,

but Fig. 4 in [15] showed that color (although useful) is not the major working force in this method.
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Fig. 7. Pedestrian detection results on the INRIA dataset (best viewed in color).

100” [11] (the smaller this value the better a detector is). C4 outperforms HOG (which uses the HOG

descriptor), HIKSVM (which uses a multi-level version of HOG), PLS (which uses HOG, color frequency

histogram, and texture), and HOGLBP (which uses HOG and LBP histogram). This result verifies the

usefulness of the CENTRIST descriptor to pedestrian detection.

C4’s detection accuracy is lower than that of LATSVM-V2 (the part-based latent SVM detector in [6]

which uses PCA of HOG features), which suggests that a deformable part-based approach may be used

in C4 to seek better detection results in the future. One advantage of C4 is that it strives a balance

between detection accuracy and speed: C4 has real-time detection speed; however, in the evaluation

of [11], LATSVM-V2 has a speed of 0.629 fps; and other detectors in Fig. 6 ranged from 0.062 fps

(HOGLBP) to 0.239 fps (HOG).

C. Detecting pedestrians (Caltech benchmark)

We further experiment C4 pedestrian detection on the Caltech pedestrian detection dataset, which is

more challenging than the INRIA dataset. It contains 128k training video frames (with 640×480 pixels),

which contains 192k pedestrians. The testing data contains 121k video frames (640 × 480 pixels) and

155k pedestrians. The pedestrians in this dataset are low resolution ones: half of them have heights lower

than 48 pixels [11], which makes this dataset challenging.

The same C4 detector as the one used in Sec. VI-B is used for this dataset. We test on all videos

(including both training and testing videos) and follow the standard testing protocol of the Caltech dataset.

Several subsets of tests are defined in this dataset, according to different conditions (e.g., pedestrian

heights). C4 detection results are shown in Fig. 7, which is generated by the evaluation code provided by

this dataset. Fig. 7a shows results on the NEAR subset. This subset include pedestrians whose heights are
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larger than 80 pixels; and in the C4 detector we not only scales a testing image down in order to detect

larger pedestrians, but also scale it up by 0.8−1 = 1.25 to detect pedestrians shorter than 108 pixels.

Fig. 7b contains results for the subset of pedestrians which are 50 pixels or taller (the REASONABLE

subset), and Fig. 7c are results for all pedestrians in the Caltech dataset (the ALL subset). In the latter

two subsets, images are scaled up by 0.8−2 in C4 to detect smaller pedestrians.

C4 outperforms LATSVM-V1 and HIKSVM in all cases. HOG has mixed results compared to C4: C4

wins in the NEAR subset while HOG takes over in the REASONABLE and ALL subsets. However, C4

still maintains the advantage in testing speed. In the REASONABLE subset, C4 detects at 6.6 fps speed;

while the fastest method evaluated in [11] is 2.67 fps.

One common trend in Fig. 7 is that all detectors’ accuracy rates degenerate when pedestrians become

smaller. However, when we compare Fig. 6 and the sub-figures in Fig. 7, it is obvious that both HOGLBP

and PLS improved their accuracy rank among the methods when pedestrians become smaller; while

LATSVM-V2 gradually loses its advantage over other methods. Our interpretation to this phenomenon

is that when the pedestrians become smaller, using more information channels is a good boost to the

detectors’ accuracy: HOGLBP adds LBP to HOG and PLS adds color and texture. The color and texture

information seems more effective since PLS is the most accurate method in Fig. 7c, although its accuracy

is only in the middle of Fig. 6. Thus, adding more information channels to C4 seems a promising way

to improve it for low resolution pedestrian detection applications.

In fact, if we do not restrict ourselves to application scenarios where only grayscale images are available,

C4 could be further improved by integrating other information such as color [16], [15], 3D [23], and

motion [30].

D. Detecting Faces

Next, we test C4 on face detection tasks. The test set is FDDB, a new multi-pose face detection

benchmark [31]. The FDDB dataset has 2845 images with 5171 faces taken under various conditions

(illumination, pose, resolution, size, etc.) While training the C4 detector, a subset of images (EXPRESSION

and LIGHTS) from the CMU PIE database [32] are used. For every positive example, its left-right flipped

image is also used. Furthermore, a resized version is included (i.e., every positive training example is

expanded to three. For details about resizing the images, please refer to [33].) The C4 parameters are

h = w = 30, nx = ny = 6, g = 2. The entire C4 training process took 771 seconds on this dataset.

We use the evaluation groundtruth, protocol (10 fold cross validation), and software provided by FDDB

to generate two kinds of scores: discrete and continuous, as shown in Fig. 8. In the discrete case, C4
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(b) Discrete score

Fig. 8. Face detection results on the FDDB dataset (best viewed in color).

outputs a binary decision (face or not) using Eq. 8, and the discrete score measures the commonly used

number of false positives vs. true positive rate, as shown in Fig. 8b. The continuous score in Fig. 8a,

however, takes into account the ratio of overlap between C4’s output and the groundtruth annotation.

In Fig. 8, we compare C4 with previous state-of-the-art on the FDDB dataset.7 The continuous score

of C4 is consistently higher than the compared methods. However, the comparison is more complicated

in the discrete case. C4 consistently outperforms the CVPR11 method [31] and the ECCVW10 method.

When comparing with the LI INTEL method [33], C4 has an edge when there are only very few false

positives, while LI INTEL is the winner when there are roughly 50–1100 false positives; finally, C4 wins

again with >1100 false positives.

The difference in relative performance between C4 and the LI INTEL method is due to the different

metrics. Our conjecture is that: when consider the quality of detected faces, these two methods are

7Available at http://vis-www.cs.umass.edu/fddb/results.html. This page also contains more details of the methods compared

in Fig. 8.
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comparable to each other. However, the higher continuous score of C4 indicates that the detected bounding

boxes of C4 overlaps more with the groundtruth. That is, C4’s localization of faces is more accurate. If

the threshold in Eq. 8 is raised to a higher overlapping ratio, C4 will have better detection accuracy than

the LI INTEL method in the discrete case too.

Note that the CMU PIE database contains pictures from only 68 subjects. If a larger multiple pose

training set is used, we expect C4 to achieve higher detection accuracy. It is also worth noting that Fig. 8

only compares C4 with a few best performing methods on the FDDB dataset. Results of other methods,

such as the classic cascade detector by Viola and Jones [1], are also provided by the FDDB dataset’s

homepage. For simplicity of presentation, we omitted these results, because their scores are significantly

lower than those presented in Fig. 8.

E. Detecting cars

Car is another important type of objects to detect, e.g., in surveillance applications. We use the UIUC

side view car dataset [34] for both training and testing. We use the positive (car) training images from the

UIUC dataset, and the negative images in the INRIA pedestrian dataset [4] as negative training images.

Similar to Sec. VI-E, flipped and resized versions of positive examples are also used. The C4 parameters

are h = 36, w = 96, nx = 6, ny = 8. This dataset has two setup: Single scale (UIUC-Single) and

multiple scale car images (UIUC-Multi). We use grid step size g = 2 for UIUC-Single and g = 1 for

UIUC-Multi. The entire C4 training process took 199 and 196 seconds for the two setups on this dataset,

respectively.

This dataset also provides software for evaluating various detectors’ performance, using the accuracy

at a specific point on the ROC curve (EER, when the false positive rate equals the false negative rate)

as the evaluation metric. Table II shows the accuracy of C4 and existing methods.

From Table II, C4 is slightly inferior to the methods in [24] and [21], but better than other methods.

In the UIUC-Multi case, C4 has 4 false detections and 3 missed cars. However, one of the false detection

(in the image TEST-95.PGM, top-right of the image) is in fact a positive (car). This car is missed in the

annotations of cars in this dataset’s groundtruth.

F. Limitations and drawbacks of C4

As seen in the above experimental results, the major drawback of C4 is that it produces more false

positives in some cases, comparing to the state-of-the-art detector for specific objects. In detecting faces,

when C4 has mixed results with competing methods, C4 is inferior when the number of false positives
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TABLE II

CAR DETECTION ACCURACY (AT EER) ON THE UIUC DATASET

UIUC-Single UIUC-Multi

C4 97.5% 97.8%

Leibe et al. [35] 97.5% 95%

Mutch and Lowe [36] 99.9% 90.6%

Lampert et al. [24] 98.5% 98.6%

Gall et al. [21] 98.5% 98.6%

are small (Fig. 8b); but C4 gradually becomes the winning method, when the number of false positives

increases. In the pedestrian case, C4 also has more false positives than the best pedestrian detectors.

The possible cause is that the classifiers Hlin and Hhik are not powerful enough to distinguish the false

positives from true object patches. Since the major purpose of Hlin is to reject most negative patches

quickly, we may improve the discrimination power of Hhik, or adding a third classifier after it. Currently,

although we treat every superblock as a “part”, Hhik is trained in a way that treats each image patch as

a whole. One possible improvement is to discriminatively train these parts as in the LATSVM way [6].

Another possibility is to use a representation that is complementary to CENTRIST, and train a third

classifier in the cascade to further remove false detections. For example, when color, 3D, motion or other

information sources are available, we expect that C4 object detection accuracy will be further improved.

The C4 framework’s capacity is also limited by the representational power of the CENTRIST visual

descriptor. For example, if some objects are to be distinguished by textures instead of contours, the C4

framework is expected to have poor detection results, since it is designed to detect object mainly based

on the contour information. Similarly, we expect that adding more information channels will help C4

overcome this difficulty.

VII. CONCLUSIONS

In this paper, we proposed a real-time and accurate object detection framework C4: detecting objects

based on their contour information using a cascade classifier and the CENTRIST representation. C4

detects various objects using the contour cues, a cascade classifier, and the CENTRIST visual descriptor.

Examples of objects that are detected by C4, including pedestrians, faces and cars, are shown in this

paper through experiments.

First, we conjecture that contour is the key information source for pedestrian detection, and the signs of
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comparisons among neighboring pixels are the key to encode contours. These conjectures are accompanied

with supporting experiments.

We then show that CENTRIST [9] is suitable for object detection, because it succinctly encodes the

sign information during neighboring pixel comparisons, and is able to capture large scale structures or

contours.

A major contribution of this paper is an extremely fast object detection component in the C4 framework.

A linear classifier in the C4 framework can quickly reject background detection windows, using only a

small number of instructions per detection window. Time consuming preprocessing and feature vector

normalization are not needed in C4. Furthermore, we do not need to explicitly generate the CENTRIST

feature vectors in the linear rejection stage.

Drawbacks and potential improvements to C4 are also discussed. In a part-based object detection

system, we can use C4 to detect object parts and enable C4 to detect object with non-constant aspect

ratios. C4 can also be further accelerated by reducing computations, e.g., accelerating the Hhik evaluation

by branch and bound [24], [37], or by resizing the features instead of resizing images [23] (thus the

grand integral image, whose computation currently covers about half of C4’s running time, is required

for only 1 scale).
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[27] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-scale and rotation invariant texture classification with

local binary patterns,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971–987, 2002.

[28] Y. Mu, S. Yan, Y. Liu, T. Huang, and B. Zhou, “Discriminative local binary patterns for human detection in personal

album,” in Proc. IEEE Int’l Conf. on Computer Vision and Pattern Recognition, 2008.

[29] J. Wu, “Efficient HIK SVM learning for image classification,” IEEE Trans. on Image Processing, vol. 21, no. 10, pp.

4442–4453, 2012.

[30] S. Walk, N. Majer, K. Schindler, and B. Schiele, “New features and insights for pedestrian detection,” in Proc. IEEE Int’l

Conf. on Computer Vision and Pattern Recognition, 2010.

[31] V. Jain and E. Learned-Miller, “Online domain adaptation of a pre-trained cascade of classiers,” in Proc. IEEE Int’l Conf.

on Computer Vision and Pattern Recognition, 2011, pp. 577–584.

[32] T. Sim, S. Baker, and M. Bsat, “The CMU pose, illumination, and expression database,” IEEE Trans. on Pattern Analysis

and Machine Intelligence, vol. 25, no. 12, pp. 1615–1618, 2003.

[33] J. Li, T. Wang, and Y. Zhang, “Face detection using SURF cascade,” in Proc. ICCV 2011 BeFIT workshop, 2011.

[34] S. Agarwal, A. Awan, and D. Roth, “Learning to detect objects in images via a sparse, part-based representation,” IEEE

Trans. on Pattern Analysis and Machine Intelligence, vol. 26, no. 11, pp. 1475–1490, 2004.

[35] B. Leibe, A. Leonardis, and B. Schiele, “Robust object detection with interleaved categorization and segmentation,”

International Journal of Computer Vision, vol. 77, no. 1-3, pp. 259–289, 2008.

[36] J. Mutch and D. G. Lowe, “Multiclass object recognition with sparse, localized features,” in Proc. IEEE Int’l Conf. on

Computer Vision and Pattern Recognition, 2006, pp. 11–18.

[37] A. Lehmann, P. Gehler, , and L. V. Gool, “Branch&rank: Non-linear object detection,” in British Machine Vision Conference,

September 2011, pp. 8.1–8.11.

Jianxin Wu received his BS and MS degrees in computer science from Nanjing University, and his

PhD degree in computer science from the Georgia Institute of Technology. He is currently a professor

in the Department of Computer Science and Technology at Nanjing University, China. Previously he

was an assistant professor in the Nanyang Technological University, Singapore. His research interests are

computer vision and machine learning. He is a member of the IEEE.

June 15, 2013 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING 28

Nini Liu received her BS degree in information engineering from Shanghai Jiao Tong University, China, in

2007, and her PhD degree in information engineering from Nanyang Technological University, Singapore,

in 2012, respectively. She was a research staff at Nanyang Technological University. Her research interests

include biometrics, pattern detection and recognition.

Christopher Geyer is a Senior Principal Research Scientist at iRobot Corporation. Dr. Geyer started his

career in computer vision in the GRASP Lab at the University of Pennsylvania, where he received his

B.S.E. and Ph.D. in Computer Science in 1999 and 2002, respectively. As a post-doctoral researcher at the

University of California, Berkeley from 2002 to 2005, he led a team to develop an autonomous landing

capability for unmanned rotorcraft for the U.S. Defense Advanced Research Projects Agency (DARPA).

From 2005 to 2008, he lead research in perception for aerial vehicles at Carnegie Mellon University

(CMU), and developed technology for sensing and avoiding general aviation aircraft for unmanned aerial vehicles (UAVs).

While at CMU, he was also a member of the CMUs Tartan Racing team, the team that won first place in the DARPA Urban

Challenge. He joined iRobot in 2008 where he leads research and development in perception for unmanned and robotic systems.

His interests include computer vision, robotics, human machine interaction, and autonomy.

James M. Rehg received his PhD degree in Electrical and Computer Engineering from the Carnegie

Mellon University. He is a Professor in the College of Computing at the Georgia Institute of Technology.

He is a member of the Graphics, Visualization, and Usability Center and co-directs the Computational

Perception Lab. His research interests are computer vision, robotics, machine learning, and computer

graphics. He is a member of the IEEE.

June 15, 2013 DRAFT


