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Efficient algorithms for robust recovery of images
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Abstract—Compressed sensing is an important theory for sub-
Nyquist sampling and recovery of compressible data. Recently,
it has been extended by Pham and Venkatesh [35] to cope with
the case where corruption to the Cs data is modeled as impulsive
noise. The new formulation, termed as robust CS, combines
robust statistics and CS into a single framework to suppress
outliers in the CS recovery. To solve the newly formulated robust
CS problem, Pham and Venkatesh suggested a scheme that
iteratively solve a number of CS problems, the solutions from
which provably converge to the true robust compressed sensing
solution. However, this scheme is rather inefficient as it has to
use existing CS solvers as a proxy. To overcome limitation with
the original robust CS algorithm, we propose in this paper more
computationally efficient algorithms by following latest advances
in large-scale convex optimization for non-smooth regularization.
Furthermore, we also extend the robust CS formulation to
various settings, including additional affine constraints, ℓ1-norm
loss function, mix-norm regularization, and multi-tasking, so as
to further improve robust CS and derive simple but effective
algorithms to solve these extensions. We demonstrate that the new
algorithms provide much better computational advantage over
the original robust compressed sensing method on the original
robust CS formulation, and effectively solve more sophisticated
extensions where the original methods simply cannot. We demon-
strate the usefulness of the extensions on several CS imaging
tasks.

Index Terms—robust compressed sensing, optimization algo-
rithms, ADMM, FISTA, IRLS, ℓ1 regularization

I. INTRODUCTION

Compressed sensing (CS) [7], [14] is a powerful sub-

Nyquist sampling theory for the acquisition and recovery of

sparse signals, that has received special attention in signal

and image processing as well as other related fields such as

statistics and computer science. The CS theory states that if

the unknown signal is inherently sparse then it is possible to

acquire and reconstruct signal (by solving a convex optimiza-

tion problem) with a much lower number of measurements

that would be otherwise needed using the existing Nyquist

sampling scheme. In image processing, the CS theory is

particularly relevant in several applications, such as magnetic

resonant imaging (MRI) [29] or hyper-spectral imaging [11],

[18], where acquisition time or sensing hardware cost plays a

significant role. Also, the sparsity assumption typically holds

due to, for example inherent wavelet structure in images [37].

In recent years, the CS literature has seen seen significant

advances in both theory [3], [8], [15], [24] and applications
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[17], [21], [23], [32], [36], [38], [42] (many of which are

collected in the CS repository1). There are also a variety of

specialized solvers for the CS recovery problem, which are

developed from different angles, such as pursuit algorithms

[13], [31], [33], optimization algorithms [19], [28], a com-

plexity regularization algorithm [22], and Bayesian methods

[27].

In this work, we focus on a particular aspect of CS recovery

wherein the emphasis is on the robustness. This is originally

raised by Pham and Venkatesh [35] who recognize that whilst

existing CS recovery schemes may still be stable when the

corruption of CS measurements is modeled as impulsive noise,

they can be statistically inefficient. Such impulsive corruption

can occur due to bit errors in transmission, malfunctioning

pixels, faulty memory locations [10], and buffer overflow [20],

and has been raised in many image processing works [2],

[12], [40]. To address this problem, Pham and Venkatesh

[35] have proposed a new formulation, known as robust CS,

which combines traditional robust statistics [25] and existing

CS into a single framework to effectively suppress outliers

in the recovery. Whilst the focus of [35] is on the theoret-

ical justification of the new formulation, they also suggest

a provably convergent algorithm to solve their robust CS

formulation. This majorization minimization (MM) algorithm

finds the robust CS solution by iteratively solving a number of

CS problems, which converge to the true solution. However,

this is not computationally efficient because each iteration

involves a full CS recovery, which is always iterative in nature.

To overcome the computational limitation of the original

robust CS algorithm proposed in [35], we propose two new

algorithms that iteratively majorize the original robust CS

objective function, but they only have one main loop. One

algorithm is adapted from the fast iterative shrinkage thresh-

olding (FISTA) framework developed by Beck and Teboulle

[4], which shares the same spirit as an unpublished work of

Nesterov [34]. The other algorithm is based on a framework

known as alternative direction method of multipliers (ADMM)

[5]. Even though the original FISTA scheme was derived for

the CS problem, it can be used for robust CS. Our contribution

is a theoretical result that allows one to computes the Lipchitz

constant for the application of FISTA. Additionally, we also

derive a generalized ADMM algorithm for solving the robust

CS formulation efficiently, which differs from the FISTA

algorithm in that operator splitting and approximation updates

are used. This results in a method that has same update

complexity as FISTA, but is more flexible to extend.

Furthermore, we also extend robust CS in a number of

1http://dsp.rice.edu/cs

http://dsp.rice.edu/cs
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directions, including additional affine constraints, ℓ1-norm loss

function, mixed-norm regularization, and multi-tasking. We

show that the ADMM is a powerful optimization framework

for the robust CS problem as it can be modified or generalized

to cope with these extensions where often other CS techniques,

including FISTA, find impossible to do so. We show that

the derived algorithms are simple to implement, provably

convergent under the ADMM theory, and that effectively solve

complex robust CS formulations.

The organization of the paper is as follows. Section II

gives some background on robust CS, whilst Section III

describes the FISTA and ADMM algorithms for solving robust

CS formulation. Section IV presents four extensions of the

robust CS formulation and derive computationally efficient

algorithms for solving them. Section V contains numerical

experiments to demonstrate the computational efficiency of the

proposed algorithms. Finally, Section VI concludes the paper.

All Matlab code to implement our methods described in this

paper and reproduce our results are readily available at the fol-

lowing website http://www.computing.edu.au/∼dsp/code.php.

II. BACKGROUND

In compressed sensing (CS), one is interested in the re-

covery of a sparse signal x ∈ R
N though the compressed

measurement

y = Φx + n. (1)

Here, Φ ∈ R
M×N is the CS matrix that represents the

compressive sampling operation and n is additive noise. The

CS matrix is required to some stable embedding conditions

for stable recovery [6]. As M < N in the CS setting, the

recovery of x from y is generally ill-posed. The CS theory

has established that under an assumption that x is sparse, it

is possible to recover x reliably from y with an error upper

bounded by the noise strength. Among various approaches to

solve the CS recovery problem, the optimization formulation

often provides the best achievability for a given CS matrix

x̂ = arg min
x∈RN

{

1

2
‖y − Φx‖2

2 + λ‖x‖1

}

. (2)

In the normal CS setting, the noise in (1) is often considered

Gaussian with bounded norm ‖n‖2 ≤ ξ and thus the maximum

error induced by a CS recovery is O(‖n‖2). However, Pham

and Venkatesh [35] have discovered that when the noise is

indeed impulsive, such a result will still hold for normal

CS recovery but is rather inefficient. Thus, they propose a

modification to the CS formulation, known as robust CS,

to appropriately address the characteristics of the underlying

additive noise. This is achieved by considering the robust loss

function instead of the quadratic cost function in (2)

x̂ = arg min
x∈RN

{g(x) + λ‖x‖1} . (3)

Here, g(x) =
∑M

i=1
ρ(yi − (Φx)i) and ρ(r) is the Huber’s

penalty function (soft limiter) given as follows

ρ(r) =

{

r2

2
|r| ≤ kν2

−k2ν4

2
+ kν2|r| |r| > kν2,

(4)

and its derivative is given by

ψ(r) = ρ′(r) =

{

r |r| ≤ kν2

kν2sgn(r) |r| > kν2.
(5)

The parameter k of the Huber’s penalty function is determined

by the fraction of the outliers whilst the scale parameter ν is

often estimated from some statistic of the median, such as the

median of the absolute deviation (MAD). For detail, see [25].

As ρ(r) is quadratic or linear depending on the actual

value of r, solving (3) directly is hard. Pham and Venkatesh

suggested that instead of solving (3), a better alternative is

to solve a series of the normal CS problems. The idea is to

replace g(x) with an approximate quadratic function at every

outer iteration with the general form

lk(x) = (1/2)(vk − Φx)T W(vk − Φx) + C (6)

= (1/2)‖W1/2vk − W1/2Φx‖2
2 + C, (7)

where

C = g(x̂k) − (1/2)ψ(y − Φx̂k)T W−1ψ(y − Φx̂k), (8)

vk = W−1ψ(y − Φx̂k) + Φx̂k. (9)

Pham and Venkatesh detailed two options for W, which are

commonly used in the robust statistics literature

• Modified residuals (MR): W = µI
• Iteratively reweighted: wii = ψ(rk

i )/rk
i , wij=0, i 6= j.

When using lk(x) as shown in (7) for g(x) in (3), the

resultant problem is essentially a normal CS problem and thus

considered solved.

Whilst the above strategy will work, it is inefficient because

each outer iteration involves a full CS problem and it is

known that the CS problem needs to be solved iteratively as

well. The double loops are therefore the main computational

deficiency of the above strategy. To address this limitation,

we consider bypassing the inner CS step and thus there will

be only one loop for the overall algorithm. There are two

powerful optimization frameworks that are suitable for this

purpose which we describe next.

III. PROPOSED ALGORITHMS

A. FISTA Algorithm

Fast iterative shrinkage thresholding (FISTA) is an optimiza-

tion approach that effectively decouples the variables from the

smooth loss function in the compressed sensing objective. This

approach was proposed by [4], which also shares the same phi-

losophy as an unpublished work of [34]. Technically, FISTA is

a variant of majorization minimization (MM) algorithms [26]

and has a special choice for the quadratic majorization as well

updates that involve historical points.

Consider minimizing a convex optimization of the form

arg minx f(x) where

f(x) = g(x) +R(x). (10)

Here, g(x) is a smooth loss function but the variables in

this loss function are coupled. The core idea of FISTA is

to consider a quadratic majorization of g(x), denotes as

http://www.computing.edu.au/~dsp/code.php
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h(x), such that it effectively decouples the variables. If such

decoupling is possible, the approximate problem is then easier

to solve even when the regularization term R(x) is possibly

non-smooth (such as ‖x‖1), because it can be decomposed into

a number of univariate optimization problems whose solution

is analytical.

The first trick of FISTA is to decouple the variables by

considering the majorization at iteration k and approximation

point zk

h(x; zk) = g(zk) + ∇g(zk)T (x − zk) +
L

2
‖x − zk‖2

2. (11)

Here, zk is used as the approximation point rather than xk as

it involves historical updates of xk by a careful choice, which

is subsequently show in (17). Also, L is the Lipchitz constant

of the gradient of the loss function g(x) to ensure that h(x)
is a proper majorization of g(x). Thus, at iteration k, FISTA

finds xk via

xk = arg min
x

{

L

2
‖x − vk‖2

2 +R(x)

}

(12)

where vk = zk−(1/L)∇g(zk). For the quadratic loss function

g(x) = 1

2
‖y−Φx‖2

2, it can be shown that L = 2λmax(Φ
T Φ),

and v = zk − (1/L)(ΦT Φzk − y). For the ℓ1-norm regular-

ization as in the case of CS, this results in

xk = arg min
x

{

L

2
‖x − v‖2

2 + λ‖x‖1

}

. (13)

This problem can be solved element-wise and its solution is

xk = Sλ/L(v), (14)

where the soft-thresholding shrinkage operator is defined as

Sτ (x) = {t : ti = sign(xi)max(|xi| − τ, 0)}. (15)

The second trick of FISTA is to use a clever update of the

approximation point to speed up convergence

tk+1 =
1 +

√

1 + 4(tk)2

2
(16)

zk+1 = xk +

(

tk − 1

tk+1

)

(xk − xk−1). (17)

The original FISTA framework can be readily used for ro-

bust CS case if vk and the Lipchitz constant can be computed

for the robust loss function. In case of vk, it can be easily

seen that

vk = zk −
1

L
ΦTψ(Φzk − y). (18)

It remains to compute the Lipchitz constant. To do so, we rely

on the following result:

Lemma 1: Let f(x) be a smooth convex function on X
and suppose that the domain X is divided into two regions

X1 and X2 such that X1 ∪ X2 = X , and that g(x) = h(x)
for x ∈ X1 ∩X2. Denote as Lg and Lh the Lipchitz constants

of g and h respectively on the domains X1 and X2. Then the

Lipchitz constant of f is bounded by

Lf ≤ {Lg + Lh}.

The proof of this Lemma is detailed in the Appendix. The

result implies that for mixed function like the robust CS

cost functions being considered, we just take the sum of

Lipchitz constants over each continuous and bounded domain.

The Lipchitz constant for the quadratic part is as before, i.e.

L1 = 2λmax(Φ
T Φ), whilst for the linear part we can split

into negative and positive domain. In both cases, the Lipchitz

constant is zero due to the fact that ψ is a constant. Thus,

the Lipchitz constant for the robust CS cost function is still

2λmax(Φ
T Φ).

B. ADMM Algorithm

Alternating direction method of multipliers (ADMM) is

a simple but powerful framework in optimization, which is

suited for today’s large-scale problems arising in machine

learning and signal processing. The method was in fact devel-

oped a long ago before advanced computing power was avail-

able, and re-discovered many times under different perspec-

tives. Recently, [5] has unified the framework in a simple and

concise explanation. In either the CS or robust CS problem,

the main technical challenge is that the variables are coupled

through Φ in either the quadratic or robust loss function. This

makes it rather difficult when the extra constraint with non-

smooth ℓ1 norm is introduced. In principle, the problem is

easier to tackle if the variables can be decoupled, so that

the problem can be solved element-wise or group-wise. Using

a clever trick, known as operator splitting [16], the ADMM

framework suggests to separate the regularization term from

the smooth term by introducing an additional variable z, which

is tied to the original variable via an affine constraint:

minx,z g(x) + ‖z‖1 s.t x − z = 0. (19)

Here, g(x) is the robust CS loss function. For this type of

regularized objective function, ADMM considers the following

augmented Lagrangian

L(x, z,y) = g(x) + λ‖z‖1 + wT (x − z) +
η

2
‖x − z‖2

2. (20)

Here, η is the parameter associated with the augmentation
η
2
‖x − z‖2

2, and this is to improve the numerical stability of

the algorithm. The strategy for minimizing this augmented La-

grangian is iterative updating of the primal and dual variables.

With a further normalization on the dual variable u = (1/η)w,

it is shown [5] that as far as the primal and dual variables x

and z are concerned

L(x, z;u) = g(x) + λ‖z‖1 +
η

2
‖x − z + u‖2

2 + const. (21)

where the constant is independent of x and z (actually

const = −η‖u‖2
2/2). Note of the semi-colon, which treats

u as a parameter rather than a variable when solving for other

variables. Thus, the optimality point of the Lagrangian can be

found by iteratively updating the variables as follows:

xk+1 = arg min
x

{

g(x) +
η

2
‖x − zk + uk‖2

2

}

(22)

zk+1 = arg min
z

{

λ‖z‖1 +
η

2
‖xk+1 − z + uk‖2

2

}

(23)

uk+1 = uk + xk+1 − zk+1. (24)
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We note that the update steps for u and z are straightforward.

In particular, for z it is known that it is a soft-thresholding

shrinkage operation

zk+1 = Sλ/η(xk+1 + uk). (25)

Due to the nature of g(x), there is no exact solution for (22),

and finding it always necessitates iterative algorithms. This

will increase computational burden to the overall algorithm in

a similar way as the previous robust CS algorithms introduced

in [35]. To alleviate the computational problem, we propose

to follow a novel framework, known as generalized ADMM

and developed by Eckstein and Bertsekas [16]. In generalized

ADMM, the update steps can be solved approximately as long

as the differences between the exact and approximate solutions

generate a summable sequence. When such a condition is

satisfied, the generalized ADMM theory has proved that the

algorithm will converge to the solution [16, Theorem 8].

To utilize the generalized ADMM theory, once again we

adapt an MM algorithm to solve (22), which is in the same

spirit as the original robust CS [35]. In essence, this replaces

g(x) with a suitable quadratic majorization as discussed

previously. The major difference is that we only perform

the minimization of the majorization once, as opposed to

iteratively as in [35]. Specifically, we propose to modify the

update step for x in (22) by using the quadratic approximation

of g(x) at iteration k as lk(x) (shown in (7))

xk+1 = arg min
x

(1/2)‖W1/2vk − W1/2Φx‖2
2

+
η

2
‖x − zk + uk‖2

2. (26)

It can be easily recognized that the solution of this problem

is exact

xk+1 = (ΦT WΦT + ηI)−1(ΦT Wvk + η(zk − uk)). (27)

We note that the quadratic approximation of FISTA can

also be used. However, the choice above leads to a better

approximation and hence will converge to the true solution

faster. It is also easily seen that for the MR choice of the

quadratic approximation where W = µI, the matrix under

inversion in (28) is fixed

xk+1 = (µΦT ΦT + ηI)−1(µΦT vk + η(zk − uk)). (28)

Hence, the inversion (µΦT ΦT +ηI)−1 can be computed once

and cached so that the update step in subsequent iterations can

be fast.

The generalized ADMM for the specific case being consid-

ered can be stated as follows:

Theorem 1: Consider an ADMM algorithm that solves the

convex problem (3) via the updates (28), (23), (24). Denote as

xk+1
∗ the exact solution of (22), and as xk+1 the approximate

of (22) via (28). If the sequence {µk+1 : µk+1 = ‖xk+1 −
xk+1
∗ ‖2} is summable, i.e.,

∑∞

k=1
µk ≤ ∞, then the above

updates will generate a sequence {xk+1} that converge to the

true solution of (3).

Next, we discuss the convergence aspect of the proposed

generalized ADMM algorithm. When the update steps are

solved exactly, the existing ADMM theory [5] states that the

penalty parameter η affects both the primal residual (defined

as sk+1 = η(zk+1 − zk)), and the primal residual (defined as

rk+1 = xk+1 − zk+1) in an opposite manner: a large η tends

to generate a small primal residual and a large dual residual

and vice versa. Thus, selecting the optimal penalty parameter

is typically a trade-off between primal and residual residuals

with an ADMM algorithm, and η = 1 generally works for

most cases. However, more emphasis should be made to the

primal residual in the case of the proposed generalized ADMM

algorithm because the update step of the primal variable x is

not solved exactly. This will ensure that the approximation

error in the primal variable is promptly compensated by the

dual update, at the small sacrifice in convergence rate due

to the residual error being slightly larger. Intensive numerical

studies suggest that a value for η of between 2 and 5 for η
works rather well in many cases. We shall examine this in

more detail in the experimental section, where we use η = 2.

IV. BEYOND ROBUST CS

The FISTA and ADMM algorithms for robust CS presented

tackle the optimization from slightly different angles. Whilst

FISTA solves the problem by replacing the robust cost function

with a simpler quadratic approximation that decouples the

variables, the ADMM decouples the ℓ1 regularization norm via

operator splitting. Whilst FISTA has only one approximation,

ADMM involves operator splitting and quadratic approxima-

tion at the step that updates x. Thus it appears that FISTA

may have a convergence advantageous due to being simpler

and having less tuning requirements. However, numerical

experience indicates that for a given tolerance, the ADMM

algorithm is actually faster than FISTA in terms of both

number of iterations or computational time to reach a given

tolerance. This will be illustrated further in the experiments.

The advantage of ADMM is better realized when one needs

to extend robust CS in similar ways as many extensions on

the basic CS have been made in the literature. This is difficult,

if not impossible, with the FISTA scheme. Next, we discuss

several possible extensions that can be simply achieved with

the proposed ADMM algorithm. We shall omit the arguments

of the Lagrangian, which are obvious in the context, for

notational simplicity and space reduction.

A. Additional Affine Constraints

In some cases, one would like to impose additional affine

constraints on the optimization problem cT x = 1. This could

be of prior knowledge on the power modeling and this could

potentially improve stabilization of the CS solution. Thus, the

Lagrangian (20) could be altered as follows

L = g(x) + λ‖z‖1 + wT
1 (x − z) +

η1
2
‖x − z‖2

2

+w2(c
T x − 1) +

η2
2
‖cT x − 1‖2

2. (29)

Here, w1 and w2 are the dual variables for the equality

constraints. Again, by scaling the dual variables u1 = w1/η1
and u2 = w2/η2 we obtain

L = g(x) + λ‖z‖1 +
η1
2
‖x − z + u1‖

2
2

+
η2
2
‖cT x − 1 + u2‖

2
2 + const. (30)



IEEE TRANSACTIONS ON IMAGE PROCESSING-MANUSCRIPT 5

Thus, the ADMM update step for x is the solution of

xk+1 = arg min
x

{

g(x) +
η1
2
‖x − zk + uk

1‖
2
2

+
η2
2
‖cT x − 1 + uk

2‖
2
2

}

. (31)

Once again, if this step is to be solved approximately using a

quadratic majorization with W = µI as discussed previously

then it can be shown that

xk+1 = H(µΦT vk + η1(z
k − uk) + η2(1 − uk

2)c), (32)

where H = (µΦT WΦ + η1I + η2cc
T )−1.

It can be shown that the updates step for z remains the

same as (25) except that u and η are replaced with u1 and η1
respectively. Finally, the updates of the dual variables are

uk+1

1 = uk
1 + xk+1 − zk+1, (33)

uk+1

2 = uk
2 + cT xk+1 − 1. (34)

Just like the basic ADMM algorithm, convergence is de-

termined when both the primal and dual residuals are suf-

ficiently small. Whilst the dual residual is as before, i.e.,

s = η1(z
k+1 − zk), there are effectively two residual vectors

rk
1 = xk − zk and rk

2 = cT xk − 1. Depending on the desired

accuracy requirement of a particular application, the stopping

criterion can be determined accordingly (see [5, p.19]).

B. Mixed-Norm Regularization

In certain situations, one may wish to impose ℓ2 regulariza-

tion on the solution of the recovery. Such a motivation may

arise from the fact that the absolute sparse model may not be

realistic, and thus it is more desirable to consider

x̂ = arg min
x∈RN

{

g(x) + λ‖x‖1 + β‖x‖2
2

}

. (35)

In the case of quadratic loss function, i.e., g(x) = 1

2
‖y −

Φx‖2
2, this is known as elastic-net [43]. Thus, the proposed

formulation could be interpreted as a robust version of elastic-

net. The robust CS formulation is treated a special case when

β = 0.

For the original elastic-net, it is easily recognized that a

simple algebra can convert it to a Lasso (or CS) form, and

thus it can be solved with many efficient ℓ1-regularization

algorithms. For the proposed robust elastic-net, it is not

possible because of the loss function g(x) being not quadratic.

However, it is trivial to show that it is possible to modify the

FISTA and generalized ADMM algorithms discussed in the

previous section to cater for this additional regularization term.

Indeed, this regularization term only affects the update step of

x. In both FISTA and generalized ADMM, the majorization

is a quadratic function and thus absorbing this extra quadratic

term is straightforward. For example, in the case of the FISTA

algorithm, we need to solve (c.f. (13)

min
x

(1/2)‖v − x‖2
2 + (λ/L)‖x‖1 + (β/L)‖x‖2

2, (36)

which is equivalent to

min
x

1

2

∥

∥

∥

∥

v

1 + (β/L)
− x

∥

∥

∥

∥

2

2

+
λ

L+ β
‖x‖1, (37)

which is of the same form and this induces the soft-

thresholding shrinkage operation. Likewise, in the case of the

generalized ADMM algorithm, we need to to solve (c.f (26))

xk+1 = arg min
x

(1/2)‖W1/2vk − W1/2Φx‖2
2

+
η

2
‖x − zk + uk‖2

2 + ‖β‖2
2, (38)

which has a slight modification compared with (28)

xk+1 = (µΦT ΦT + (η + β)I)−1(µΦT vk + η(zk − uk)). (39)

Thus, extension to mixed-norm regularization is straightfor-

ward of the proposed ADMM algorithm.

C. ℓ1 Loss Function

In the original robust CS paper [35], the Huber loss is

selected. This is suitable for impulsive noise being modeled

as a contaminated mixture [25]. However, the robust CS

framework is not necessarily restricted to the Huber loss

function and indeed many loss functions in the robust statistics

can be used to cater for different noise types. One particular

interest is the ℓ1-norm loss function, which is optimal when

the impulsive noise is modeled as a Cauchy distribution [25].

In this case, it is desirable to solve

x̂ = arg min
x∈RN

{‖y − Φx‖1 + λ‖x‖1} . (40)

It has come to our attention that a specific case where λ = 1
is proposed in [39] where a hybrid algorithm using FISTA and

alternative Lagrangian multiplier (ALM) algorithm is derived.

In what follows, we propose an ADMM algorithm inspired by

the recent framework [5], [41].

We note that the FISTA algorithm is not easily derived,

because the loss function is not differentiable. To overcome the

difficulty associated with two parts of the objective function

that are both non-differentiable, we propose to apply the

operator splitting mechanism of the ADMM framework twice.

Specifically, we introduce two additional variables v and z and

rewrite the formulation as

arg min
x,v,z

‖v‖1 + λ‖z‖1

s.t. Φx − v − y = 0, x − z = 0. (41)

Thus, the augmented Lagrangian is

L = ‖v‖1 + λ‖z‖1 + wT
1 (Φx − v − y) +

η1
2
‖Φx − v − y‖2

2

+wT
2 (x − z) +

η2
2
‖x − z‖2

2. (42)

With the scaled dual variables u1 = w1/η1 and u2 = w2/η2

L = ‖v‖1 + λ‖z‖1 +
η1
2
‖Φx − v − y + u1‖

2
2

+
η2
2
‖x − z + u2‖

2
2 + const. (43)

With this form, the updates for the variables are easily com-

puted under the ADMM principle. For x, the update solves

xk+1 = arg min
x

η1
2
‖Φx − vk − y + uk

1‖
2
2

+
η2
2
‖x − zk + uk

2‖
2
2 (44)
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which yields the exact solution

xk+1 = (η1Φ
T Φ + η2I)

−1(η1Φ
T (vk + y − uk

1)

+η2(z
k − uk

2)). (45)

For both v and z, the update steps are simple soft-thresholding

operations. For v, the update step solves

vk+1 = arg min
v

‖v‖1 +
η1
2
‖tk − v‖2

2, (46)

where tk = Φxk+1 −y +uk
1 . Likewise, for z the update step

solves

zk+1 = arg min
z
λ‖z‖1 +

η2
2
‖xk+1 + uk

2 − z‖2
2. (47)

They both have a similar form as (23), and thus from (25) we

deduce (c.f. (15))

vk+1 = S1/η1
(tk), (48)

zk+1 = Sλ/η2
(xk+1 + uk

2), (49)

as the updates for v and z. Finally, the dual updates are

uk+1

1 = uk
1 + Φxk+1 − vk+1 − y (50)

uk+1

2 = uk
2 + xk+1 − zk+1. (51)

The stopping criterion is when the residual vectors are suffi-

ciently small, including sk
1 = η1(v

k+1−vk), sk
2 = η2(z

k+1−
zk), rk

1 = xk − zk, and rk
2 = Φxk − y − vk.

D. Multi-Task Setting

The recent literature on CS also reveals that the basic

sparsity recovery scheme can be improved if one exploits

further domain knowledge. Such an exploitation could be

base on the constraint of the sparsity models. Extensions,

such as model-based CS [3] and group sparsity [24], are key

examples of the exploitation that can effectively reduce the CS

requirements for a comparable recovery error when compared

with conventional CS. Here, we focus on a slight variation

where there are multiple CS tasks are to be performed: there

are multiple CS measurements yi, i = 1, . . . , L, each follows

the model yi = Φxi + ni.

In the image processing context, this could arise in, for

example, compressed sensing of multiple video images. In

these circumstances, there many be similarities between im-

ages. For example, moving images likely consist of relatively

same large background and small moving objects. Thus, the

sparse representation of these original images may have similar

sparse coefficients representing the common background part

(see Fig. 9 for an illustration of a sequence of random bars

images used later in the experiment). For that reason, it follows

from the existing results on advanced CS [24] that exploiting

the shared structure between tasks is likely to improve CS

recovery compared to the case where the tasks are performed

independently.

Denote as X = [x1, . . . ,xL] the collection of sparse vectors

to be recovered from the tasks, and Y = [y1, . . . ,yL] the

collection of CS measurements. Extending the single-task

robust CS, the multi-task robust CS can be formulated as

follows

x̂ = arg min
X∈RN×L

{

g(X) + λ‖XT ‖ℓ2/ℓ1

}

. (52)

Here, g(X) =
∑L

i=1
ρ(yi − Φxi) and ‖A‖ℓ2/ℓ1 =

∑

i ‖ai‖2

where ai’s denote the columns of A. Clearly the loss term

is the same, whilst for the regularization terms, we seek

sparsity along the columns of X but denseness along the rows

of X. This clearly reflects the prior assumption that sparse

coefficients of the common parts are likely to be similar, hence

the corresponding rows of X should be dense, whilst it is

sparse column-wise to respect the single-task CS’s assumption.

When g(X) is a quadratic loss function, this is a special matrix

formulation of group Lasso in the statistics literature [1], [30].

We now show that it is possible to extend both the FISTA

and generalized ADMM algorithms to cater for this formu-

lation. Before doing so, we present a generalization of the

soft-thresholding shrinkage operation as follows:

Lemma 2: The optimization problem

arg min
z

{

λ‖z‖2 +
η

2
‖v − z‖2

2

}

. (53)

has the solution z = v max(‖v‖2 − λ/η, 0)/‖v‖2

This result can be proved by simple geometrical arguments.

Indeed, denote z∗ as the solution of (53), then we consider

all points z such that ‖v − z‖2 = ‖v − z∗‖2 = R. It turns

out that these points are lying on the ball with center at v and

radius R. Among these points, only the point that satisfies

z = αv, i.e., intersection of the ball and the vector v, will

have minimum ℓ2 norm, which minimizes the second term

in (53). Substituting this into (53) yields the form of the

soft-thresholding shrinkage problem, for which the result is

obtained after simple manipulations.

1) FISTA algorithm.: Generalizing (13) for the multi-task

settings, denote as Vk = [vk
1 , . . . ,v

k
L], where vk

i = zk
i −

1

LΦTψ(Φzk
i − yi). Then, the update step for X solves

arg min
X

1

2
‖V − X‖2

F + λ‖XT ‖ℓ2/ℓ1 . (54)

This problem can be written row-wise in the form of (53) and

thus the solution is exact. Meanwhile, the update step for Z

is also similar

Zk+1 = Xk +
tk − 1

tk+1

(Xk − Xk−1), (55)

with tk+1 = (1 +
√

1 + 4(tk)2)/2.

2) ADMM algorithm.: We rewrite the Lagrangian for the

current setting as follows

L(X,Z;U) = g(X) + λ‖ZT ‖ℓ2/ℓ1 +
η

2
‖X − Z + U‖2

F

+const. (56)

Thus, the ADMM update steps are

Xk+1 = arg min
X

{

g(X) +
η

2
‖X − Zk + Uk‖2

F

}

(57)

Zk+1 = arg min
z

{

λ‖ZT ‖ℓ2/ℓ1 +
η

2
‖Xk+1 + Uk

−Z‖2
F

}

(58)

Uk+1 = Uk + Xk+1 − Zk+1. (59)
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Fig. 1. Regularization path of robust CS for random bars example

Like FISTA, the update step of Z can easily be decomposed

row-wise, each has the form of (53), and thus the solution

for each row of Zk+1 can be obtained immediately. For the

update step of X, again we resort to the generalized ADMM

principle. That is, we approximate g(X) with a quadratic loss

at Xk

h(X;Xk) = g(Xk) + ∇Xg(X
k)T (X − Xk)

+
µ

2
‖X − Xk‖2

F . (60)

Thus, the generalized ADMM algorithm finds the update via

Xk+1 = arg min
X

{

∇Xg(X
k)T (X − Xk) +

µ

2
‖X − Xk‖2

F

+
η

2
‖X − Zk + Uk‖2

F

}

, (61)

which yields the following solution

Xk+1 = (µΦT Φ + ηI)−1(µΦT Vk + η(Zk − Uk)), (62)

where Vk = [vk
1 , . . . ,v

k
L], vk = 1

µψ(yi − Φxk
i ) + Φxk

i .

The stopping criterion is when all primal and dual residual

matrices are small, they include

Sk+1 = η(Zk+1 − Zk) (63)

Rk+1 = Xk+1 − Zk+1. (64)

Like the single-task case, one should set η sufficiently large

to obtain a smooth decrease of the objective function.

E. Discussion

Further extensions. We have presented some fundamental

extensions of the CS formulation. Under the ADMM frame-

works, it appears that it is possible to consider extensions

based on the combination of the basics extensions presented.

For example, the ℓ1 loss could be used with affine constraint or

in multi-task setting, etc. Such extensions will be worthwhile

investigation for future work.

Regularization Path. In practice, the optimal value of the

regularization λ is not known in advance, and thus one needs

to select a proper value to do robust CS recovery. Such a

problem is known in statistics as model selection. Typically,

one needs to compute the recovery along the regularization

path, and select the one which meets the ℓ1 norm constraint.

This is discussed in detail in [35]. Essentially, some estimates

of the noise statistics must be obtained in order to construct

the bound on the residual ε. It is well-known that there

exist a λmax = ‖ΦT y‖∞ above which the solution is zero.

For decreasing values of λ, the residual r = y − Φx̂ will

become smaller whilst the recovery becomes denser. The

optimal λ is the maximum value of λ such that the bound

constraint on the residual vector is met. In CS recovery, this

happens when ‖r‖2
2 ≤ ε, whilst in robust CS recovery, Pham

and Venkatesh [35] have suggested ρ(r) ≤ ε, which is a

generalization of the CS selection criteria for the robust case.

In our implementation, we combine a coarse grid search and

a fine bi-section search to find this optimal λ (see Fig. 1 for

an illustration).

Cholesky Factorization. As can be seen, most update step of

x in different ADMM variants involves the computation of the

form xk+1 = (µΦT Φ+Q)−1q where Q is an positive definite

matrix. The matrix under inversion has a size of N×N and it

is large in image processing application. Thus, it is inefficient

to compute the inversion directly to obtain the update. A much

more efficient approach is to use Cholesky decomposition to

achieve the goal. It is known from linear algebra that if H

is a positive definite matrix then it admits the factorization

H = LLT and thus H−1q can be efficiently computed by

solving Lx1 = q first, then LT x = x1, which can be written

as x = LT \(L\q). For compressed sensing applications where

Φ is a fat matrix, further exploitation can be made by reducing

the dimension of the matrix for Cholesky factorization. Indeed,

according to the matrix inversion lemma

(µΦT Φ + Q)−1 = Q−1 − Q−1ΦT P−1 (µΦQ−1),

where P = I + µΦQ−1ΦT . Suppose that the Cholesky

factorization of P is P = LLT then

(µΦT Φ + Q)−1q = Q−1(q − ΦT (LT \ (L \ (µΦQ−1q)))).

We can avoid the direct inversion of Q by exploiting the fact

that if Q = ρ1I + ρ2cc
T then the matrix inversion lemma

once again gives

Q−1 = ρ−1

1 I − γccT ,

where γ = ρ−2

1 (ρ−1

2 + ρ−1

1 cT c). Finally, we note that this

Cholesky factorization is independent of the regularization

parameter λ and thus it can be cached for the whole regu-

larization path to reduce computation.

V. EXPERIMENTS

A. Numerical Properties

1) Algorithmically Efficient Robust CS Algorithms: First,

we examine the convergence property of the FISTA and

ADMM algorithms and compare them with the previously

proposed method in [35], which we refer to as nested robust

CS algorithm due to the nature of the double loops inside that

algorithm. As the nested robust CS algorithm [35] is dependent
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on the particular CS solver being used for the inner loop,

we select the ADMM implementation as the CS solver as

it provides the best computational accuracy and speed. Note

that Pham and Venkatesh [35] used the l1_ls algorithm

originally, which is known for high-accuracy but computation-

ally expensive. However, numerical experience shows that the

inner steps do not required to be solved with high accuracy.

Thus, the ADMM implementation as a CS solver for the

nested robust CS algorithm is better overall. In this case, it

can be seen that the computational complexity per iteration

(regardless of inner or outer) in all compared algorithms are

approximately the same: they all involve the computation

of the majorization point and the soft-thresholding shrinkage

operation.

To compare the algorithms, we examine two aspects: the

error versus the iterations and the computational time taken

to achieve a particular tolerance. Whilst the former indicates

how fast an algorithm converges, the latter provides a much

valuable insight for practical purpose. To do so, we let all

algorithms run for sufficiently large number of iterations and

measure the error (with respect to the true value of the

robust CS solution) as iterations go on, and the computational

time taken when the error reaches certain thresholds. For the

ADMM-based CS solver used in the inner loop of the nested

robust CS algorithm, we select the termination with relative

tolerance of 10−2 and absolute tolerance of 10−4 (see [5,

p.19]). This allows a reasonable convergence within the inner

loops. We also choose the modified residual approach for

nested robust CS as it is simpler without loosing convergence

advantage. All algorithms are implemented in Matlab, and

roughly optimized.

We revisit the random bars example in [35] and the results

of this study is shown in Fig. 2. In this example, the signal

to noise ratio is 20dB and the impulsive noise is modeled as

a two-component Gaussian mixture model where the there is

10% contamination whose variance is κ = 100 times that of

the main component. Here, the left subplot shows the reduction

of the error versus the iterations, whilst the right plot shows

the time taken to achieve the relative accuracy from initialized

zeros (as indicated by 1E0) to as small as 10−10 of the initial

error (as indicated by 1E-10). We note the error profile of

the nested robust CS algorithm ranges considerably due to the

fact that we measure with respect to the global solution of the

outer loop and that within each CS inner loop the algorithm

still converges normally.

Clearly the error profile plot indicates that the ADMM

algorithm offers the best convergence speed per iteration,

followed by the FISTA algorithm. For example, to achieve an

accuracy of 10−5 of the initial error, it only takes the ADMM

algorithm less than 100 iterations, whilst the FISTA algorithm

needs to spend more than 20 times, and the nested algorithm

would need 200 times the number of iterations. In terms of

the actual time taken to achieve a particular tolerance, the

right subplot further indicates the advantage of ADMM and

FISTA algorithms over the nested one. In practice, one would

be interested in the tolerance of between 10−2 to 10−6, over

which the ADMM and FISTA algorithms are observed to be

100 and 10 times faster than the nested algorithm respectively.

2) Affine Robust CS Algorithm: Next, we examine how

much improvement can be made to robust CS if the power is

known. The affine robust CS formulation is slightly different to

the robust CS formulation in that additional constraint cT x =
1 is imposed, and here we select c = 1/(1T x) = 1/

∑

i xi

and assume that
∑

i xi is known.

We study the convergence behavior of the affine ADMM

robust CS algorithm to solve this formulation by revisiting

the random bars example. In this case, we select ρ1 = ρ2 = 1
and let the algorithm run over sufficient number of iterations.

The results are shown in Fig. 3. Again, the left subplot

shows the absolute error against the iterations whilst the

right subplots indicates computational time taken to reach

a particular accuracy. Compared with those of the ADMM

robust CS algorithm, it can be clearly seen that the affine

ADMM robust CS algorithm takes more time to reach. This

is as expected because there are only minor changes to the

update steps of the primal and dual variables.

3) Robust CS with ℓ1 loss: Next, we demonstrate the robust

CS algorithm with ℓ1 loss function rather than the Huber’s

loss function used in [35]. This is useful in situations with

very impulsive corruption, where the noise is best modeled by

a Cauchy distribution. To do so, we revisit the random bars

example, but we use Cauchy noise instead. For the ℓ1 ADMM

robust CS algorithm, the model selection criteria is the ℓ1 norm

of the residual, rather than the Huber’s loss function to reflect

the new formulation. Other than that, all other experimental

settings remain the same.

We examine the convergence behavior of the ADMM ro-

bust CS algorithm with ℓ1 loss. Fig. 4 shows the typical

convergence behavior of the algorithm in terms of accuracy

versus iterations (left) and computational time taken to reach

certain accuracy (right). It is observed that the convergence is

slower with modest accuracy as compared with the formulation

using Huber’s loss function. This is as expected from ADMM

optimization theory due to an increasing number of variables

to solve the ℓ1 loss formulation. Nevertheless, modest accuracy

might be sufficient for many practical situations.

B. Image Recovery in Impulsive Noise

Whilst the primary interest is on improving robust CS, it

is also relevant to examine the compressed image recovery

qualitatively in the presence of impulsive noise. We compare

image recovery of the following method: original compressed

sensing formulation (CS), robust CS using the nested algo-

rithm [35], robust CS using the ADMM algorithm, affine

robust CS, ℓ1 robust CS. In addition, we also compare against

two related formulations: one is Wagner et al [39] and the

other is Lorentzian BP [9], which have recently been brought

to our attention. The former is a special case of the ℓ1 robust

CS formulation and is solved via a hybrid algorithm that

combines both alternative Lagrangian multiplier (ALM) and

FISTA. The latter uses a special Lorentzian loss function. For

Lorentizan BP, it is noted that the authors did not explicitly

indicate how to solve the formulation, and thus we solve it

using the FISTA framework.

Again, we revisit the random bars example as in the

previous experiments with the same settings. Here, we do
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Fig. 3. Convergence behavior of affine robust CS

extra modeling of impulsive noise using both the Gaussian

mixture ε-contaminated model, and the Cauchy distribution.

The recovery results for Gaussian mixture and Cauchy noise

are shown in Figs. 5 and 6 respectively.

We make the following observations from the results

• The recovery of robust CS implemented using the ef-

ficient ADMM scheme is similar to that of the nested

algorithm in [35]. This is as expected because they both

solve the same formulation. In practice, we observe that

the ADMM implementation is at least twice faster than

the nested algorithm for similar accuracy, taking into

acount all overheads. So the ADMM implementation is

prefered for robust CS.

• The affine formulation does not provide significant benefit

for the cases being considered.

• The original CS formulation fails in the case of Cauchy

noise, which is evidenced by its very noisey recovery.

• The best performer in both cases is the robust CS with

ℓ1 loss. This is interesting as it performs well also in

Gaussian mixture noise and suggests that further study

to help understand this will be needed. The variation

proposed in Wagner et al. [39] is also close. This suggests

that it is the choice of the loss that is most important

and the regularization parameter provides small additional

benefit.

• Suprisingly, the Lorentizan BP performs quite poorly. It

is only slightly better than the original CS formulation.

In addition, we found in practice that Lorentzian BP

converges rather slowly, even when the FISTA algorithm

is used, and that very careful initialization is required.
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Fig. 4. Convergence of the ℓ1-loss ADMM robust CS algorithm
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Fig. 5. Image recovery in impulsive Gaussian mixture noise

C. CS Sampling Factor

It is well known from CS theory that in order for good

recovery, the CS sampling factor M/N , which is the ratio

between the dimension of the compressed and the original

data, must be sufficiently large. The minimum number of

measurements M is often shown in CS theoretical work to

be dependent on N by a factor whose order is governed

by the sparsity of the underlying signal. Here, we aim to

study the dependence of recovery on the CS sampling factor

M/N for all methods. With the same settings as above,

the random bars example is revisited. But now we vary the

sampling factor M/N from 0.05 to 0.4. The recovery PSNRs

for both the Gaussian mixture and Cauchy noise case are

graphically shown in Figs. 7 and 8 respectively. Here, we

observe that the quality of the recovery degrades somewhat

linearly as the CS sampling factor become smaller for the

region smaller than 0.3. In both cases, the robust CS with

ℓ1 loss demonstrates the overall best recovery performance,

followed by the method by Wagner et al.. Both CS and

Lorentzian BP struggle considerably in Cauchy noise, whilst

other robust method exhibit similar dependency pattern over

the range. Unless a pre-defined threshold is available, the

experimental results suggest that there is no sharp turning

(break-down) point for the CS sampling factor. Rather, the

larger the value the better PSNR a given robust CS recovery

algorithm can achieve.
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D. Recovery of A Sequence of Compressed Images

Finally, we demonstrate the usefulness of the multi-task

robust CS formulation when a sequence of 10 compressed

images corrupted by impulsive noise needs to be recovered.

Whilst each image in the sequence can be recovered separately,

the multi-task robust CS formulation suggests that exploiting

the shared structure between the tasks may provide better

recovery. To do so, we consider a sequence of random bars

frames shown in the top row of Fig. 10. Here, there are

common static random bars and a moving block across the

frames. Obviously, the wavelet coefficients for common static

bars are shared between the CS tasks. Only the coefficients

corresponding to the moving block distinguish between tasks.

This is clearly illustrated in Fig. 9 which shows an image
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Fig. 8. Recovery dependency on CS sampling factor - impulsive Cauchy noise

plot of Haar wavelet coefficients of all 10 random bars image

in a sequence: the horizontal lines correspond to common

coefficients.

The settings for the recovery are the same as previous

experiment. For robust CS, we select the ADMM algorithm,

and similarly for multi-task robust CS we also select the

corresponding multi-task ADMM algorithm. The first 4 re-

covered images are shown in Fig. 10: the second row shows

CS recovery, the third row shows robust CS recovery, and

finally the last row shows multi-task robust CS recovery. The

actual PSNRs for every frame are shown on Fig. 11. Here,

we observe clearly that, on average, the multi-task robust CS

formulation does provide significant improvement over the

robust CS formulation, both of which outperform CS recovery

considerably.
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VI. CONCLUSION

We have presented more computationally efficient and

extendable approaches to the recently proposed robust CS

algorithm. We have also extended robust CS formulation in a

number of ways, including affine constraints, ℓ1-loss function,

and multi-task formulation. For improving computational effi-

ciency of robust CS, we found that the (generalized) ADMM

robust CS algorithm is the best, then followed by the FISTA

robust CS algorithm. We also found that imposing affine

constraint can provide improvement, though slightly. The

striking result is that ℓ1 loss formulation for robust CS seems

to offer considerable gain over the Huber’s loss formulation,

despite the fact that its convergence seems slower. Finally, in

the case where one needs to robustly recover a sequence of

compressed images, the multi-task formulation is proved to

provide additional advantages in terms of both PSNR output

and computational speed.
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Fig. 11. PSNR Comparison of CS, robust CS, and multi-task (MT) robust CS

APPENDICES

Proof of Lemma 1

We start from the definition of the Lipchitz constant as a

term such as

sup
x1,x2∈X

|f(x1) − f(x2)| ≤ Lf |x1 − x2|. (65)

As there are two possible scenarios x1, x2 ∈ X1, x1, x2 ∈ X2,

and x1 ∈ X1, x2 ∈ X2 and from the definition of Lg and Lh,

we immediately have

Lf ≤ max{Lg, Lh, L12}, (66)

where L12 is defined as the minimum constant such that

sup
x1∈X1,x2∈X2

|g(x1) − h(x2)| ≤ L12|x1 − x2|. (67)

Let X3 = X1 ∩ X2. For arbitrary x1 ∈ X1 and x2 ∈ X2 we

construct x3 ∈ X3 such that it is a convex combination of x1

and x2, so that |x2−x3| ≤ |x1−x2| and |x1−x3| ≤ |x1−x2|.
Then using triangle inequalities and definitions of Lg and Lh,

we have

sup |g(x1) − h(x2)| = sup |g(x1) − g(x3) + g(x3) + h(x2)|

= sup |g(x1) − g(x3) + h(x3) − h(x2)|

≤ sup |g(x1) − g(x3)| + |h(x3) − h(x2)|

≤ sup |g(x1) − g(x3)| + sup |h(x2) − h(x3)|

≤ Lg|x1 − x3| + Lh|x2 − x3|

≤ Lg|x1 − x2| + Lh|x2 − x1|

≤ (Lg + Lh)|x1 − x2|. (68)

The proof immediate follows from (66) and (68).
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Fig. 10. Recovery of sequence of compressed images
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