Abstract:
The sensitivity of the human visual system decreases dramatically with increasing distance from the fixation location in a video frame. Accurate prediction of a viewer's ...Show MoreMetadata
Abstract:
The sensitivity of the human visual system decreases dramatically with increasing distance from the fixation location in a video frame. Accurate prediction of a viewer's gaze location has the potential to improve bit allocation, rate control, error resilience, and quality evaluation in video compression. Commercially, delivery of football video content is of great interest because of the very high number of consumers. In this paper, we propose a gaze location prediction system for high definition broadcast football video. The proposed system uses knowledge about the context, extracted through analysis of a gaze tracking study that we performed, to build a suitable prior map. We further classify the complex context into different categories through shot classification thus allowing our model to prelearn the task pertinence of each object category and build the prior map automatically. We thus avoid the limitation of assigning the viewers a specific task, allowing our gaze prediction system to work under free-viewing conditions. Bayesian integration of bottom-up features and top-down priors is finally applied to predict the gaze locations. Results show that the prediction performance of the proposed model is better than that of other top-down models that we adapted to this context.
Published in: IEEE Transactions on Image Processing ( Volume: 22, Issue: 12, December 2013)