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Abstract

With the development of numbers of high resolution data acquisition systems and the global re-

quirement to lower the energy consumption, the development of efficient sensing techniques becomes

critical. Recently, Compressed Sampling (CS) techniques, which exploit the sparsity of signals, have

allowed to reconstruct signal and images with less measurements than the traditional Nyquist sensing

approach. However, multichannel signals like Hyperspectral images (HSI) have additional structures, like

inter-channel correlations, that are not taken into account in the classical CS scheme.

In this paper we exploit the linear mixture of sources model, that is the assumption that the mul-

tichannel signal is composed of a linear combination of sources, each of them having its own spectral

signature, and propose new sampling schemes exploiting this model to considerably decrease the number

of measurements needed for the acquisition and source separation. Moreover, we give theoretical lower

bounds on the number of measurements required to perform reconstruction of both the multichannel

signal and its sources. We also proposed optimization algorithms and extensive experimentation on our

target application which is HSI, and show that our approach recovers HSI with far less measurements

and computational effort than traditional CS approaches.

Index Terms

Compressed sensing, source separation, hyperspectral image, linear mixture model, sparsity,

proximal splitting method.
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I. INTRODUCTION

A Hyperspectral Image (HSI) is a collection of hundreds of images that have been acquired simultane-

ously in narrow and adjacent spectral bands, typically by airborne sensors. HSI are produced by expensive

spectrometers that sample the light reflected from a two-dimensional area. An HSI data set is thus a “cube”

with two spatial and one spectral dimensions. Hyperspectral imagery has many applications including

environmental monitoring, agriculture planning or mineral exploration. The plurality of channels in HSI

makes it possible to discriminate among the various materials that make up a geographical area: each of

them is represented by a unique spectral signature. Accordingly, HSI are often processed via clustering

or source separation methods to obtain segmentation maps locating and labeling the various materials

appearing in the image. Unfortunately, having multiple channels comes at a price: the sheer volume

of data makes acquisition, transmission, storage and analysis of HSI computationally very challenging.

Therefore, the problem addressed in this paper is to reduce the complexity of manipulating HSI via a

suitable compression or dimensionality reduction technique.

In this context the emerging Compressive sensing (CS) theory, which addresses the problem of recover-

ing signals from few linear measurements, seems ideally suited [1], [2]. The main assumption underlying

CS is that the signal is sparse or compressible when expressed in a convenient basis. A signal x ∈ Rn

is said k-sparse in a basis Ψ if it is a linear combination of only k basis vectors of Ψ. The signal x

is said sparse when k � n and compressible if the coefficient’s magnitudes, when sorted, have a fast

power-law decay, meaning that the signal has few large coefficients and many small coefficients. The

recent literature abounds with examples of sparse models for signals and images.

While the CS-community has mostly focused on 1D or 2D signals, few works have been done on

higher dimensional signals, in particular multi-array signals such as HSI. Extensions of wavelets basis

for 3D data have been proposed [3] and rather generic sparse models have been exploited in [4], [5]

for designing innovative compressive hyperspectral imagers. However, multi-array signals such as HSI

have usually some structures that go beyond the sparsity assumption. Indeed, HSI can be interpreted

as a mixture of sources, each of them having a specific spectral signature. This model is widely used

for unmixing HSI [6]–[10], that is extracting, form the HSI, each source and their respective spectral

signatures.

The main focus of this paper is to exploit, beyond the sparsity assumption, an additional structured

model, the linear mixture model, so as to reconstruct and separate the sources of multi-array signals

assuming we know their spectra (or mixing parameters) as side information. Note that this hypothesis is
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validated in many applications where the elements or materials composing the data are known and their

spectra tabulated. This idea was first introduced in two of our conference papers [11], [12]. In this paper,

we introduce and analyze a new sampling scheme, which exploits this structured model, and that has the

following important properties:

• the number of measurements, or samples, does not scale with the number of channels,

• the recovery results do not depend on the conditioning of the mixing matrix (as long as the mixing

spectra are linearly independent).

We propose new algorithms for HSI compressive source separation (CSS), that is source separation and

data reconstruction from compressed measurements, which are based on exploiting the linear mixture

structure and TV, `1 or `0 regularization. We establish that sources can be efficiently separated directly on

the compressed measurements, i.e avoiding to run a source separation algorithm on this high-dimensional

raw data, thereby eliminating this important bottleneck and providing a rather striking example of

compressed domain data processing. We provide theoretical guaranties and intensive experiments which

show that, with this approach, we can reconstruct a multi-array signal from compressed measurements

with a far better accuracy than traditional CS approaches. For example, we are able to reconstruct HSI

datasets with only 3% relative error from 3% of measurements and less than 1h of data transmission,

with an algorithm that is more than 40 times faster. While the main target application of this paper is

HSI, our model and the theoretical analysis is general and could be applied to other multi-array signals

like e.g. Positive Emission Tomography (PET) or distributed sensing.

The remainder of this paper is structured as follows. The necessary background and notations are

first introduced in Section II. We then propose, in Section III, two acquisition schemes that exploit

the prior knowledge of the mixing parameters so as to perform a decorrelation step. In Section IV,

we provide theoretical guarantees for both source identification and data reconstruction. We determine

the number of CS measurements sufficient for robust source identification and signal reconstruction as a

function of the sparsity of the sources, sampling SNR and the conditioning of their corresponding mixture

parameters. In Section V we discuss in further details the application of our acquisition and recovery

schemes for HSI. We introduce different recovery algorithms that we compare with the classical methods,

for various CS acquisition schemes on two sets of HSI. Finally, in the spirit of reproducible research,

the code and data needed to reproduce the experimental sections of this paper is openly available at

http://infoscience.epfl.ch/record/180911.
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II. BACKGROUND AND NOTATIONS

A. CS of Multichannel Signals

We represent a multichannel signal with a matrix X ∈ Rn1×n2 where n2 is the number of channels

and n1 is the dimension of signal in each channel. The CS acquisition protocol of a multichannel signal

X is a linear mapping A : Rn1×n2 → Rm of X into a CS measurement vector y ∈ Rm contaminated by

the measurement noise z ∈ Rm:

y = A(X) + z.

When m � n1n2 the signal is effectively compressed. The main goal of CS is to recover the signal

X from the fewest amount of measurements m. Note that any linear mapping A(X) can be written in

matrix form AXvec := A(X), where A ∈ Rm×n1n2 and Xvec ∈ Rn1n2 is the vectorized form of matrix

X ∈ Rn1×n2 :

y = AXvec + z. (1)

In order to recover Xvec, we can search for the sparsest vector Xvec which is consistent with the

measurement error, leading to the following `0-minimization problem:

arg min
Xvec

‖Xvec‖`0 s.t. ‖y −AXvec‖2 ≤ ε, (2)

where ε is an upper bound on the norm of the noise vector (i.e. ‖z‖2 ≤ ε), ‖·‖`0 denotes the `0 quasi-norm

of a vector (i.e., the number of its nonzero coefficients). Unfortunately, this combinatorial minimization

problem is NP-hard in general [13], [14]. However, there are two tractable alternatives to solve problem

(2): The convex relaxation leading to `1-minimization and greedy algorithms such as matching pursuits

(MP) [13] or Iterative Hard Thresholding (IHT) [15]. Both types of approaches provide conditions on

the matrix A and on the sparsity k such that the recovered solution coincides with the original signal

Xvec, and consequently also with the solution of (2).

The `1 minimization approach consists in solving the following non-smooth convex optimization

problem called Basis Pursuit DeNoising (BPDN):

arg min
Xvec

‖Xvec‖1 s.t. ‖y −AXvec‖2 ≤ ε, (3)

where ‖ · ‖1 denotes the `1 norm, which is equal to the sum of the absolute values of the vector entries,

‖ · ‖2 denotes the `2 or Euclidean norm.

It has been shown in [1], [2], [16] that approximating the sparse recovery problem by the `1 minimiza-

tion (3) can stably recover the kn2-sparse original solution (i.e. k-sparse signal per channel) whenever A
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satisfies the so-called restricted isometry property (RIP). This result guarantees that sparse signals can be

perfectly recovered from noise-free measurements and that the recovery process is robust to the presence

of noise. The computation of the isometry constants for a given matrix is prohibitive in practice, but

certain classes of matrices, such as matrices with independent Gaussian or Bernoulli entries, obey the

RIP condition with high probability (see Theorem 5.2 in [17]) as long as:

m ≥ c n2k log(n1/k). (4)

for a fixed constant c.

B. Sparse Regularization of a Multichannel Signal

Usually the data Xvec is not directly sparse, but sparse in a basis Ψ ∈ Rn1n2×n1n2 . In that case, the

`1 regularization approach consists in solving the following problem which generalizes problem (3):

arg min
Θvec

‖Θvec‖1 s.t. ‖y −AΨΘvec‖2 ≤ ε, (5)

with Xvec = ΨΘvec. Stable reconstruction by solving problem (5) is guaranteed as long as the AΨ matrix

satisfies the RIP. When the data is a multichannel image, a classical basis is a block diagonal orthonormal

basis Ψ = Idn2
⊗Ψ2D

1 where Ψ2D ∈ Rn1×n1 denotes a proper 2-dimensional wavelet basis.

Another classical approach to regularize the data (specially images) is the total variation (TV) penalty

[18], which tends to generate images with piecewise smooth regions and sharp boundaries. Replacing the

`1 norm with the TV norm on each channel Xj of the multichannel in problem (5) leads to the Total

Variation De-Noising (TVDN) problem:

arg min
X

n2∑
j=1

‖Xj‖TV s.t. ‖y −AXvec‖2 ≤ ε. (6)

C. The Linear Mixture Model

One of the most practical setups of a multichannel signal is when the multichannel data matrix X is

derived by a sparse linear mixture model as follows:

X = SHT . (7)

Here, S ∈ Rn1×ρ denotes the source matrix whose ith column contains the proportion of the source i at

each pixel. Each source is mixed with the corresponding column of the mixing matrix H ∈ Rn2×ρ in order

1Idn2 is the n2 × n2 identity matrix and ⊗ denotes the matrix Kronecker product.
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to generate the full multichannel data. Each column of H contains the spectrum of the corresponding

source. The observed signal in any channel j ∈ {1, . . . , n2} is thus a linear combination of ρ source

signals:

Xj =

ρ∑
i=1

[H]j,i Si.

D. Mixing Parameters as Side Information for Multichannel CS Recovery

In certain multichannel signal acquisition setups the mixing parameters H are known at both decoder

and encoder sides. In particular, this is the case in many remote sensing applications where the spectra of

common materials are tabulated. Such prior efficiently restricts the degrees of freedom of the entire data

matrix to the sparse coefficients of the underlying sources. Indeed, we will show that, when we know the

mixing parameters H, the inverse problem consisting in recovering the multichannel signal X from the

measurements y in (1) is equivalent to the problem of recovering the sources Svec from the following

measurements:

y = AΦSvec + z, (8)

with Φ = H ⊗ Idn1
. The source coefficients can then be recovered by solving a convex optimization

problem such as (5), where A is replaced by AΦ and the multichannel signal can be reconstructed

by applying the mixing matrix to the recovered source matrix according to the linear mixture model

(7). This approach has the advantage of solving two problems: i) source separation directly from the

compressive measurements, ii) data compressive sampling via source separation or, equivalently, via a

particular structured sparse model.

III. COMPRESSIVE MULTICHANNEL SIGNAL ACQUISITION SCHEMES

If the multichannel signal follows the linear mixture model (7), the knowledge of the mixing matrix

can be used efficiently. The sparse source coefficients can be directly recovered from the measurements.

In this section we introduce a decorrelation mechanism, applied at the acquisition process or as a post-

processing step, which has two main advantages: first it leads to strong dimensionality reduction and

secondly it improves the conditioning of the recovery problem.
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A. Multichannel Recovery via Source Recovery

When we know the mixing matrix H, and thanks to the property ((BCD)vec = (DT ⊗ B)Cvec) of

the Kronecker product, the sampling equation (1) (in the noise free case) can be written as:

AXvec = A(SHT )vec = A (H⊗ Idn1
)︸ ︷︷ ︸

,Φ

Svec = AΦSvec. (9)

Then, the `1 regularization approach for the recovery of the whole data consists in finding the sparsest

coefficients vector Θvec ∈ Rρn1 of the sources vector Svec = ΨΘvec in a basis Ψ ∈ Rρn1×ρn1 , where

e.g. Ψ = Idρ⊗Ψ2D is a block diagonal orthonormal basis, through the following minimization:

arg min
Θvec

‖Θvec‖1 s.t. ‖y −AΦΨΘvec‖2 ≤ ε. (10)

This corresponds to a “synthesis” formulation of BPDN using a basis Ψ. The “analysis” formulation,

which is equivalent to the synthesis one when Ψ is a basis but different when Ψ is a redundant dictionary,

consists in solving the following problem with respect to the sources instead of its coefficients:

arg min
Svec

‖Ψ∗Svec‖1 s.t. ‖y −AΦSvec‖2 ≤ ε, (11)

where Ψ∗ is the adjoint of the operator Ψ.

The data X can then be recovered via the mixture model X̂ = ŜHT , with Ŝvec being either the

solution of the analysis problem (11) or Ŝvec being equal to Ŝvec = ΨΘ̂vec with Θ̂vec, solution of the

synthesis problem (10).

B. Decorrelation Scheme

We have seen in section II-A, that the conditions to recover the signal from the noisy measurements

y = AXvec + z depend on properties (such as RIP) of the sensing matrix A. We introduce a particular

structure for the sampling matrix A which benefits from the available knowledge of the mixture parameters

H and incorporates data decorrelation into the compressive acquisition.

1) Decorrelating Multichannel CS Acquisition: The decorrelation mechanism consists of applying

the Moore-Penrose pseudo inverse matrix H† = (HTH)−1HT in order to remove the underlying

dependencies among CS measurements. We therefore propose the following sampling matrix:

A = H† ⊗ Ã. (12)

The main sampling matrix is generated from a smaller-size m̂ × n1 core sampling matrix Ã. Note that

CS imposes m̂� n1.
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The total number of measurements is m = ρ m̂. Applying the sampling matrix A of (12) on multi-

channel data results in the following CS measurements:

y = AΦSvec + z (13)

= (H† ⊗ Ã)︸ ︷︷ ︸
A

(H⊗ Idn1
)︸ ︷︷ ︸

Φ

Svec + z,

= (Idρ⊗Ã)︸ ︷︷ ︸
,Ãρ

Svec + z. (14)

The third equality comes from the following property: (B ⊗ C)(D ⊗ F ) = BD ⊗ CF , and Ãρ is a

block diagonal matrix whose ρ diagonal blocks are populated with Ã: Ãρ , Idρ⊗ Ã.

As we can observe in (14) and thanks to the specific structure of the sampling matrix, the mixing

parameters H are discarded from the formulation and each source (each column of S) is directly

subsampled by the same matrix Ã.

2) Uniform Multichannel CS Acquisition: In many practical setups the acquisition scheme can not be

arbitrarily chosen and is rather determined by various constraints posed by the physics of the signals

and the implementation technology. Certain acquisition systems such as Rice’s single-pixel hyperspectral

imager [4] are using a universal random matrix to sample independently data in each channel. In this

case, acquisition models such as (12), which require inter-channel interactions for compressed sampling,

simply cannot be implemented. Here, the sampling matrix A in (1) is block diagonal with n2 blocks

(each applies on a certain channel) that are populated by a unique m̂ × n1 matrix (similarly as Ã in

(14)):

A = Ãn2
, Idn2

⊗ Ã. (15)

The total number of measurements is then m = n2 m̂. Reshaping y and z correspondingly into m̂ ×

n2 matrices Y (the measurement matrix) and Z (the noise matrix) leads to the following equivalent

formulation:

Y = ÃX + Z.

3) Decorrelation-based Uniform Sampling: A decorrelation step similar to the one introduced in

Section III-B1 can be applied on the CS measurements. It consists in multiplying the rows of the

measurement matrix by (H†)T and reducing the dimensionality of Y to an m̂× ρ matrix as follows:

Y ∗ = Y (H†)T

= ÃS + Z∗,
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where, Z∗ = Z(H†)T . By reshaping Y ∗ and Z∗ into the vectors y∗ and z∗, we can observe that the

outcome of such decorrelation-based uniform sampling leads to an expression similar to (14) i.e.,

y∗ = ÃρSvec + z∗. (16)

This decorrelating scheme favorably reduces the dimension of the data: at the acquisition stage, the

total number of samples is n2 m̂ but at the transmission and decoding stages the number of samples is

only ρ m̂� n2 m̂.

For the decorrelating sampling schemes described in section III-B1 and III-B3, the `1 minimization

(e.g. the ”synthesis” problem (10)) of section III-A takes the following form:

arg min
Θvec

‖Θvec‖1 s.t. ‖y − Ãρ ΨΘvec‖2 ≤ ε, (17)

which, in the noiseless case can be decoupled into ρ independent `1 minimizations, each of them

corresponding to a certain source compressed by a universal matrix Ã. In Section IV we provide the

theoretical analysis of such recovery scheme for various acquisition schemes.

IV. MAIN THEORETICAL ANALYSIS

Compressive sparse source recovery is closely related to the problem of compressed sensing with

redundant dictionaries [19], [20]. Indeed, the later problem has the same formulation as in (10) by

replacing Φ by an overcomplete dictionary matrix. The first part of this section provides an overview of

the CS literature on redundant dictionaries. In the second part, we derive new performance bounds that

extend the former results for a larger class of dictionaries. In the third part, we cast the sparse source

separation problem as a particular case of CS recovery using redundant dictionaries and we give a bound

on the performance of the `1 minimization for each of the considered CS acquisition schemes (dense,

uniform and decorrelated).

A. Compressed Sensing and Redundant Dictionaries

Let x ∈ Rn be a vector that is sparse in a dictionary D ∈ Rn×d (i.e., x = D θ with, θ ∈ Rd). The `1

minimization approach for recovering θ (equivalently x) from the compressive measurements y = Ax+z

consists in solving:

arg min
θ

‖θ‖1 s.t. ‖y −ADθ‖2 ≤ ε, (18)

where, ‖z‖2 ≤ ε. Note that in this section A is a sampling matrix of size m × n and the dictionary D

typically contains a large number of columns (d� n).
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It has been shown in [1], [2] that the `1 minimization (18) can stably recover the original solution

whenever AD satisfies the restricted isometry property (RIP). More precisely, if for all k-sparse vectors

θ the following RIP property holds:(
1− δk(AD)

)
‖θ‖22 ≤ ‖AD θ‖22 ≤

(
1 + δk(AD)

)
‖θ‖22 (19)

with the RIP constant of order k, δk(AD) ≤
√

2− 1, then the solution θ̂ to (18) satisfies the following

error bound:

‖θ − θ̂‖2 ≤ c0 k
−1/2 ‖θ − θk‖1 + c1ε, (20)

for some positive constants c0, c1, and where θk is the best k-sparse approximation of θ. Now the question

is how many CS measurements are sufficient so that AD satisfies the RIP ? It has been shown in [19] that,

for a certain class of random sampling matrices A (e.g., with i.i.d. Gaussian, Bernoulli or subgaussian

elements), with very high probability the RIP constant δk(AD) is bounded by:

δk(AD) ≤ δk(A) + δk(D) + δk(A)δk(D). (21)

If D is an orthonormal basis, then δk(D) = 0 and AD becomes another subgaussian matrix with a

similar distribution as for A and thus (21) holds with equality i.e., δk(AD) = δk(A).

Considering the recovery condition using `1 minimization (i.e., δk(AD) ≤
√

2− 1) and the bound in

(21), we can conclude that A must satisfy RIP with the following constant:

δk(A) ≤
√

2− 1− δk(D)

1 + δk(D)
. (22)

Moreover, using the Johnson-Lindenstrauss lemma, it has been shown that (see Theorem 5.2 in [17])

a random matrix A whose elements are drawn independently at random from Gaussian, Bernoulli or

subgaussian distributions satisfies RIP as long as we have:

m ≥ c k log(n/k), (23)

for a constant c depending on the RIP constant of A i.e., the higher δk(A), the smaller c. If D is not a

unitary matrix, δk(D) becomes a positive constant and the more coherent the columns of D, the larger

its RIP constant. Therefore, there is a tradeoff for compressed sensing using redundant dictionaries:

redundancy can result in a more compact representations of the signals i.e., smaller k, and thus less

measurements are required for CS recovery using (18). Meanwhile, too much redundancy can lead to

an awfully large constant in (23) implying that more CS measurements are required to overcome the

uncertainties brought by over completeness.
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B. Performance Bounds for Compressed Sensing using Asymmetric-RIP Dictionaries

In Section IV-C we will show that applying the classical RIP based analysis results in conditions that

are too restrictive to guaranty the source recovery. Therefore in this part and in order to overcome such

limitations, we derive a new theoretical performance bound that uses different notions of RIP. We begin

by introducing the notions of the asymmetric restricted isometry property (A-RIP) and the restricted

condition number of a dictionary D.

Definition 1. For a positive integer k ∈ N , an n×d matrix D satisfies the asymmetric restricted isometry

property, if for all k-sparse x ∈ Rd the following inequalities hold:

Lk(D)‖x‖2 ≤ ‖Dx‖2 ≤ Uk(D)‖x‖2, (24)

where, Lk(D) and Uk(D) are correspondingly the largest and the smallest constants for which the

inequalities above hold. The restricted condition number of D is defined as:

ξk(D) ,
Uk(D)

Lk(D)
. (25)

In addition, we use a different notion of RIP for the compression matrix A, namely, the Dictionary

Restricted Isometry Property (D-RIP), proposed by Candes et al. in [20]:

Definition 2. For a positive integer k ∈ N, a matrix A satisfies the D-RIP adapted to a dictionary D as

long as for all k-sparse vectors x the following inequalities hold:

(1− δ∗k)‖Dx‖22 ≤ ‖ADx‖22 ≤ (1 + δ∗k)‖Dx‖22. (26)

The D-RIP constant δ∗k is the smallest constant for which the property above holds.

This definition extends the classical RIP (which deals with signals that are sparse in the canonical

basis) to linear mappings that are able to stably embed all low dimensional subspaces spanned by every

k columns of a redundant dictionary D.

As in [20], we suppose that A is an m × n matrix drawn at random from certain distributions that

satisfy the following concentration bound for any vector x:

Pr
( ∣∣‖Ax‖22 − ‖x‖22∣∣ > t‖x‖22

)
≤ C exp (−cm) , (27)

for some constants C and c > 0 that are only depending on t. Then, A will satisfy the D-RIP for any

n× d dictionary D with overwhelming probability if

m & O(k log(d/k)).
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Remark 1. Matrices A ∈ Rm×n whose elements are independently drawn at random from Gaussian,

Bernoulli or (in general) subgaussian distributions satisfy the concentration bound in (27) and therefore

satisfy D-RIP for any n× d dictionary as long as m & O(k log(d/k)).

Based on these definitions we establish the following theorem in order to bound the performance of

the `1 minimization in (18):

Theorem 1. Given a matrix A that satisfies the D-RIP adapted to a dictionary D, with the constant

δ∗γk < 1/3 where γ ≥ 1 + 2ξ2
γk(D), then the solution θ̂ to (18) obeys the following bound:

‖θ − θ̂‖2 ≤ c′0 k−1/2 ‖θ − θk‖1 + c′1ε, (28)

for some positive constants c′0, c
′
1.

The proof of this theorem is given in Appendix. Using Remark 1, the following result is straightforward:

Corollary 1. For A whose elements are drawn independently at random from Gaussian, Bernoulli

or subgaussian distributions, the solution to (18) obeys the error bound (28) with an overwhelming

probability and for any dictionary with a finite Restricted Condition Number ξγk(D), if

m & γk log (d/γk). (29)

Comparing to the bound (23) based on the classical RIP analysis, we see that (29) features the same

scaling-order for the number of measurements. In addition, for both types of analysis the constant factors

grow as the atoms of the dictionary become more coherent and therefore, more CS measurement are

required.

Note that this result requires neither AD nor the dictionary D to satisfy the classical RIP. In the next

section, we apply these results to guaranty the performance of the `1 minimization approach (10) for

source identification and in particular, for the case where H is not well-conditioned.

C. Theoretical Guaranties for Source Recovery using `1 Minimization

Sparse source recovery from compressive measurements using `1 minimization (10) is a particular case

of the compressed sensing problem using dictionaries (18). Indeed, for the source recovery problem, θ

and the dictionary matrix D are replaced respectively with Θvec and Φ′ , ΦΨ = (H ⊗ Idn1
)Ψ, and

consequently, n = n1n2 and d = ρn1. The only difference here is that Φ′ is a tall matrix (i.e., d ≤ n)

due to its specific construction and the assumption of having few number of sources (i.e., ρ ≤ n2).
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Though there is no redundancy in Φ′ in terms of the number of columns, there is uncertainty at the

sparse decoder because of coherent columns. The following lemma which has been proven in [3] (see

Lemma 2 in [3]) shows that the conditioning of Φ′ is directly related to the conditioning of the underlying

mixture parameters i.e., intuitively, if the columns of H become coherent, so become the columns of Φ′.

Lemma 1. For matrices V1, V2, . . . , V` with restricted isometry constants δk(V1), δk(V1), . . . , δk(V`)

respectively, we have:

δk(V1 ⊗ V2 ⊗ . . .⊗ V`) ≤
∏̀
i=1

(
1 + δk(Vi)

)
− 1. (30)

Since the RIP constant of any orthonormal basis is zero (e.g., δk(Idn1
) = 0), and since Ψ is an

orthogonal matrix, we can deduce the following bound on the RIP constant of Φ′ = (H ⊗ Idn1
)Ψ by

applying Lemma 1:

δk(Φ
′) = δk(Φ)

≤ δk(H) (31)

≤ η , max
(

1− σ2
min(H), σ2

max(H)− 1
)
. (32)

For k ≤ ρ one can use (31) (which then holds with equality), and more generally (32) for any k. Note

that (32) follows by the definition of the RIP constant and it only holds if H is properly normalized so

that 1 ≤ σmax(H) < 2 and 0 < σmin(H) ≤ 1. 2

Moreover, due to the properties of the extreme singular values of the Kronecker product of two matrices:

σmax(V1 ⊗ V2) = σmax(V1)σmax(V2),

σmin(V1 ⊗ V2) = σmin(V1)σmin(V2),

and according to Definition 1, we can bound the restricted condition number of Φ′ as follows:

ξk(Φ
′) ≤ σmax(Φ′)

σmin(Φ′)
=
σmax(H)

σmin(H)
, ξ(H), (33)

where, ξ(.) (without subscript) denotes the standard definition of the condition number of a matrix. With

those descriptions, the performance of the sparse source recovery using (10) can be easily characterized

by any of the previous types of performance bound of sections IV-A and IV-B.

2This can be done by dividing H and multiplying S by
(
σmax(H) + σmin(H)

)
/2, respectively.
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According to the standard definition of the RIP for the matrix Φ′, we can bound its restricted condition

number ξk(Φ′) as follows:

ξk(Φ
′) ≤

√
1 + δk(Φ′)

1− δk(Φ′)
.

Recall that, the classical RIP based analysis in section IV-A requires δk(Φ′) <
√

2 − 1 (in order to

have δk(A) > 0 in (22)), which implies ξk(Φ′) <
√√

2 + 1, or consequently ξ(H) <
√√

2 + 1. This

severely restricts the application of such analysis for a limited class of relatively well-conditioned mixture

parameters.

To address this limitation, we use the second theoretical analysis based on the D-RIP of the compression

matrix presented in section IV-B. The following theorem is a corollary of Theorem 1:

Theorem 2. Given a mixture matrix H whose condition number is ξ(H), and a matrix A that satisfies

the D-RIP adapted to H⊗ Idn1
with the constant δ∗γ′k < 1/3 where γ′ = 1 + 2ξ2(H), then the solution

Θ̂vec to (10) obeys the following bound for the same constants c′0, c
′
1 as in (28):

‖Θvec − Θ̂vec‖2 ≤ c′0 k−1/2‖Θvec − (Θvec)k‖1 + c′1ε. (34)

Comparing to Theorem 1, D is replaced by Φ′ and γ is set to γ′ which satisfies the requirement of

Theorem 1 i.e., according to (33) we have γ′ ≥ 1 + 2ξ2
γ′k(H). As we can see, this analysis is valid for

a much wider range of condition number namely, ξ(H) ≤
√

n1n2/k−1
2 . 3

Now, if we use this approximation to recover the multichannel data i.e., X̂ = ŜHT , the reconstruction

error can be bounded using (34) and the following inequality:

‖X − X̂‖F ≤ σmax(H)‖S− Ŝ‖F

= σmax(H)‖Θ− Θ̂‖F . (35)

Theorem 2 indicates δ∗γ′k ≤ 1/3 as the sufficient condition for the sparse source recovery. In the

following we investigate the implication of this condition for the previously mentioned acquisition

schemes to bound the number of CS measurements.

3As for γ′k ≥ n1n2 an n1n2 × n1n2 identity matrix A always satisfies δ∗γ′k = 0 (i.e. there is no advantage by replacing the

full Nyquist sampling with CS), Theorem 2 becomes useful only when we have γ′k < n1n2 which for the value of γ′ in the

theorem implies ξ(H) ≤
√

n1n2/k−1
2

.

July 31, 2018 DRAFT



15

1) Dense Random Sampling: Assume the compression matrix A that is used for subsampling data

in (1) is an m × n1n2 matrix whose elements are drawn independently at random from the Gaussian,

Bernoulli or subgaussian distributions. According to Remark 1, such matrices satisfy D-RIP adapted to

Φ (with the constant δ∗γ′k ≤ 1/3) provided by:

m & γ′k log(ρn1/γ
′k)). (36)

2) Uniform Random Sampling: The same type of analysis indicates a very poor performance for the

uniform random acquisition scheme described in section III-B2. The corresponding sampling matrix has

a block-diagonal form A = Idn2
⊗Ã. Here, we assume that the core compression matrix Ã that separately

applies to each channel is an m̂ × n1 matrix whose elements are drawn independently at random from

Gaussian, Bernoulli or subgaussian distributions.

According to the theoretical analysis provided in section IV-A, the sufficient condition for source

recovery via (10) is δk(A) ≤
√

2−1−δk(Φ′)
1+δk(Φ′) which, by considering (32) can be rephrased as:

δk(A) ≤
√

2− 1− η
1 + η

.

For a compression matrix with this structure and by using Lemma 1 we can deduce δk(A) ≤ δk(Ã).

Now similarly as for the bound (23), Ã satisfies the RIP with the constant above (and so does A) as

long as m̂ ≥ c k log(n1/k)) or equivalently,

m ≥ c n2 k log(n1/k)). (37)

The constant c depends on the conditioning of the mixture matrix H. When the columns of H are

very coherent, the extreme singular values spread away from each other and η becomes large. As a

consequence, Ã (or equivalently A) must satisfy RIP for a smaller constant which, as discussed earlier

in section IV-A, implies c to be large and more CS measurements are required for source recovery.

3) Decorrelating Random Sampling: When a decorrelation step is incorporated into the compressive

acquisition process, H is discarded in the recovery formulation, and then we can use the standard RIP

analysis in [1], [2] to evaluate the source recovery performance. Therefore, if A = Idρ⊗Ã satisfies the

RIP with a constant δk(A) ≤
√

2− 1, then the solution Θ̂ to (17) obeys the following error bound:

‖Θvec − Θ̂vec‖2 ≤ c0 k
−1/2‖Θvec − (Θvec)k‖1 + c1ε,

where the constants c0, c1 are the same as in (20).

Now, since A is a block diagonal matrix, we can proceed along the exact same steps as for the

uniform sampling scheme (Section IV-C2) to bound the minimum number of CS measurements such that
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CS Acquisition Scheme Dense Dense Uniform Decorrelating
CS Recovery Approach BPDN SS-`1 SS-`1 SS-`1
CS measurements m & O

(
n2k log(n1/k)

)
O
(
k log(ρn1/k)

)
O
(
n2k log(n1/k)

)
O
(
k log(ρn1/k)

)
Constant depends on H - Yes Yes No

TABLE I: Measurement bounds for random sampling schemes: dense, uniform and decorrelating, and

for recovery approaches: BPDN and SS-`1 (i.e. source separation based recovery using (10) or (17)). The

last row shows if the bounds for the SS-`1 are sensitive to the conditioning of the mixing matrix H.

A satisfies the RIP:

m̂ ≥ c k log(n1/k).

Unlike the previous measurement bounds for the non-decorrelating sampling schemes, here c is a fixed

constant independent of the mixture matrix H. Consequently, the total number of CS measurements used

for source recovery is:

m ≥ c ρ k log(n1/k)). (38)

Note that, for a noiseless sampling scenario (ε = 0) the minimization (17) can be decoupled into ρ

independent `1 minimizations, each of them corresponding to a sparse recovery of a certain source. Now,

if we assume that each source has exactly k′ = k/ρ nonzero coefficients, then a perfect recovery can

be guaranteed as long as δk′(Ã) ≤
√

2− 1 which, for a matrix Ã drawn form the previously-mentioned

distributions, implies that m̂ ≥ c k′ log(n1/k
′) and consequently:

m = ρm̂ ≥ c k log(ρn1/k). (39)

Comparing to (38) where m is roughly proportional to ρk, here the measurement bound improves by

a factor ρ and it is mainly proportional to the sparsity level k of all sources.

D. Conclusions on the Theoretical Bounds

Consider a multichannel data derived by the linear mixture (7) of ρ sources, each having a k′-

sparse representation i.e. S is k = ρk′ sparse. Table I summarizes the scaling-orders of the number

of CS measurements sufficient for an exact data reconstruction for different noiseless random acquisition

schemes and sparse recovery approaches. As we can observe, compressed sensing via source recovery

using (10) once it is coupled with a proper CS acquisition (i.e., Dense i.i.d. subgaussian A, or a random

decorrelating sampling scheme as in sections III-B1 and III-B3) leads to a significantly improved bound
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compared to standard methods such as BPDN. More remarkably, the number of CS measurements turns

out to be independent of the number n2 of channels.

Finally note that the measurement bound for the source-separation-based reconstruction approach,

which uses a non-decorrelating random compression matrix, depends on the conditioning of the mixture

parameters via the constant factor γ′ in (36). Therefore, when the columns of H are highly coherent, the

condition number of H becomes relatively large, and so does γ′. This limitation can be circumvented

thanks to the decorrelating acquisition scheme.

V. APPLICATIONS IN COMPRESSIVE HYPERSPECTRAL IMAGERY

Compressed sensing is particularly promising for hyperspectral imagery where the acquisition procedure

is very costly. This type of images can be approximated by a linear mixture model as in (7) where each

spatial pixel is populated with a very few number of materials (i.e. sources). In this regard, S ∈ [0, 1]n1×ρ

is a matrix whose ρ columns are source images (vectorized 2D images) indicating the percentage of each

material in one of the n1 spatial pixels, and therefore
ρ∑
j=1

[S]i,j = 1 ∀i ∈ {1, . . . , n1}. (40)

Moreover, H ∈ Rn2×ρ
+ is a matrix whose columns contain the spectral signatures of the corresponding

sources of S. Note that in some particular applications and specially when the spatial resolution is high

enough, the source images become disjoint, meaning that each spatial pixel contains only one material

and [S]i,j ∈ {0, 1}.

The two key priors that will be essential for compressive source identification are the following: i)

Each source image contains piecewise smooth variations along the spatial domain, implying a sparse

representation in a wavelet basis, or sparsity of its gradient, and ii) each spatial pixel is a non-negative

linear combination of a small number of sources.

In the next two sections we introduce two classes of source separation based recovery approaches that

are particularly adapted to hyperspectral compressive imagery.

A. Compressive HSI Source Separation via Convex Minimization

According to our earlier assumptions, source images are spatially piecewise smooth, which means the

coefficients Θ of S = Ψ2DΘ are sparse in a 2-dimensional wavelet basis Ψ2D ∈ Rn1×n1 . We conveniently

rephrase this representation in a vectorized form Svec = ΨΘvec with Ψ = Idρ⊗Ψ2D as described in

Section II-B.
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Taking into account the sparsity of Θvec and by incorporating specific assumptions such as (40) and

non-negativity we can extend the `1 minimization approach in (10) as follows:

arg min
Θ

‖Θvec‖1 (41)

subject to ‖y −AΦΨΘvec‖2 ≤ ε

Ψ2D Θ Iρ = In1

ΨΘvec ≥ 0.

Where, In denotes an all one n-dimensional vector. The first constraint is the same as the fidelity constraint

in (10). The last two constraints impose the element-wise non-negativity of S and the “percentage”

normalization (40) i.e., each row of S belongs to the positive face of the simplex in Rρ. Minimizing the

`1 norm together with the last two constraints (that is equivalent to an additional `1 norm constraint)

gives solutions that contain both desired sorts of sparsity: i) along the 2D wavelet coefficients of S and,

ii) along each row of S.

Note that the theoretical analysis given in Section IV-C can also apply here to bound the performance

of (41). Although we bound the error similarly as for (10), one can naturally expect a much better

performance for (41) thanks to the two additional constrains.

Alternatively, problem (41) can be formulated in a more general “analysis” formulation with an analysis

sparsity prior P(S):

arg min
S

P(S) (42)

subject to ‖y −AΦSvec‖2 ≤ ε

S Iρ = In1

Svec ≥ 0.

which is equivalent to (41) when P(S) = ‖Ψ∗Svec‖1 and Ψ is a square and invertible operator. Another

efficient analysis prior for image regularization is the Total Variation which can be applied on each

source image of the HSI with the prior: P(S) =
∑

j ‖Sj‖TV . The problem formulation (42) is general

and includes the decorrelating schemes discussed in sections III-B1 and III-B3. Indeed inserting the

matrix A of (12) in (42) leads to the following fidelity term ‖y − Ãρ Svec‖2 ≤ ε while the other terms

remain unchanged.

In the next Section we provide an iterative algorithm for solving problem (42). When sources are
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disjoint, it is also possible to add a hard thresholding post-processing step that sets the maximum

coefficient of each row of Ŝ equal to one and set to zero the other coefficients.

B. The PPXA Algorithm for Compressive Source Separation

The Parallel Proximal Splitting Algorithm (PPXA) [21] is an iterative method for minimizing an

arbitrarily finite sum of lower semi-continuous (l.s.c.) convex functions. Each of the iteration consists in

computing the proximity operator of all functions (which can be done in parallel), averaging their results

and updating the solution until convergence. The proximity operator of a function f(x) : Rn → R is

defined as proxf : Rn → Rn [21]:

arg min
x̃∈Rn

f(x̃) +
1

2
‖x− x̃‖22. (43)

For solving (42) with PPXA, we rewrite it as the minimization of the sum of three l.s.c. convex

functions:

arg min
S

f1(S) + f2(S) + f3(S), (44)

with f1(S) = P(S), f2(S) = iB2
(S) and f3(S) = iB∆+

(S) and where iC is the indicator function of a

convex set C defined as:

iC(S) =

{
0 if S ∈ C
+∞ otherwise,

and the convex sets B2,B∆+ ⊂ Rn1×ρ are respectively, the set of matrices that satisfy the fidelity

constraint ‖y − AΦSvec‖2 ≤ ε, and the set of matrices whose rows belong to the standard simplex in

Rρ. The template of the PPXA algorithm that solves (44) and hence (42) is given in Algorithm 1. We

now derive the proximity operator of each function fi. Note that the definition of the proximity operator

in (43) naturally extends for matrices by replacing the `2 norm with the Frobenius norm.

For P(S) = ‖Ψ∗Svec‖1, a standard calculation shows that

(proxαP)i = sign
(
(Ψ∗Svec)i

)
.
(
|(Ψ∗Svec)i| − α

)
+
, (45)

which is the soft thresholding operator applied on the wavelet coefficients of S. The proximity operator

of P(S) =
∑ρ

j=1 ‖Sj‖TV can be decoupled and computed in parallel for each of the ρ sources via an

efficient implementation proposed by [22]. By definition, the proximal operator of an indicator function

iC(S) is the orthogonal projection of S onto the corresponding set C. The projection onto the standard

simplex B∆+ can be done in one iteration using the method proposed by Duchi et al. [23]. For a general

implicit operator L , AΦ, the projector onto B2 can be computed using a forward backward scheme as
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Algorithm 1: The Parallel Proximal Algorithm to solve (42).
Input: y, A, Φ, ε, β > 0.

Initializations:
n = 0, S0 = Γ1,0 = Γ2,0 = Γ3,0 ∈ Rn1×n2

repeat

for (i = 1 : 3) do
Pi,n = prox3βfi(Γi,n)

end

Sn+1 = (P1,n + P2,n + P3,n)/3

for (i = 1 : 3) do
Γi,n+1 = Γi,n + 2Sn+1 − Sn − Pi,n

end

until convergence;

proposed in [24]. This projection usually has the dominant computational complexity of the algorithm

because of costly sub-iterations. However if the decorrelating sampling scheme is used and L = Ãρ is a

tight frame (i.e., ∀x ∈ Rm̂ LL∗x = ν x for a constant ν), then according to the semi-orthogonal linear

transform property of proximity operators [21], the orthogonal projection onto B2 has the following

explicit form: (
proxαf2

(S)
)
vec

= Svec +
1

ν
(Ãρ)

∗r

(
1− ε

‖r‖2

)
+

, (46)

with r = y − ÃρSvec.

C. Compressive HSI Source Separation via Iterative Hard Thresholding

If the source images are disjoint, the following non-convex minimization can be alternatively used for

recovering the sparse wavelet coefficients of the sources:

arg min
Θ

‖y −AΦΨΘvec‖22 (47)

subject to ‖Θvec‖0 ≤ k

Off diag(Θ∗Θ) = 0

Ψ2D Θ Iρ = In1

ΨΘvec ≥ 0.
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Algorithm 2: The Iterative Hard Thresholding Algorithm to approximate solution of (47)
Input: y, A, Φ, γ = 1/‖AΦΨ‖2 = 1/‖AΦ‖2 and k.

Initializations:

n = 0, Θ0 ∈ Rn1×ρ

repeat
1- Gradient descent:

Θn+1
vec = Θn

vec − γ∇F (Θn)

2- Hard thresholding:

Θn+1
vec = Thk(Θn+1

vec )

3- Orthogonal matrix procrustes:

Update Ω : [Ω]i,i =
√
n1
‖Θn+1

.,i ‖2
‖Θn+1‖F

Singular value decomposition: UΣV ∗ = Θn+1Ω

Θn+1 = UV ∗Ω

4- Simplex projection:

Θn+1 = Ψ∗2D ProjectB∆+
(Ψ2DΘn+1)

until convergence;

where the operator Off diag(B) returns the off-diagonal elements of matrix B, and the `0 norm constraint

on Θvec imposes the wavelet coefficients to be k-sparse. The second constraint imposes the orthogonality

of the wavelet coefficients which is a consequence of the source disjointness. The two last constraints

are the same as in (41).

Despite its convex objective term, (47) has multiple non-convex constraints and is therefore a non-

convex problem. We propose an algorithm similar to the Iterative Hard Thresholding (IHT) algorithm

[15] to approximate the solution of (47). At each iteration the current solution is updated by a gradient

descent step followed by a hard thresholding step Thk(·) that selects the k largest wavelet coefficients

of Θ̂vec. In addition the three last constraints of (47) are applied sequentially:

• First, a procedure inspired by the orthogonal matrix procrustes is applied to diagonalize Θ̂∗Θ̂. Let

Ω be a ρ× ρ diagonal matrix where for 1 ≤ i ≤ ρ we have

[Ω]i,i =
√
n1
‖Θ̂.,i‖2
‖Θ̂‖F

.

Since for disjoint sources we have ‖S‖F = ‖Θ‖F =
√
n1, then a good orthogonal matrix that would

approximate Θ̂ and keeps the energy of the current estimate of each source image proportional to
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that of the previous estimate would be UV ∗Ω through the following singular value decomposition

UΣV ∗ = Θ̂Ω.

• Second, the current solution Ŝ = Ψ2DΘ̂ is projected onto the standard simplex as in [23].

The description of the this algorithm can be found in Algorithm 2. Note that the gradient of the

objective functional F (Θ) = ‖y −AΦΨΘvec‖22 is:

∇F (Θ) = −(AΦΨ)∗
(
y −AΦΨΘvec

)
. (48)

Using the decorrelating scheme, the objective function in (47) becomes F (Θ) = ‖y− ÃρΨΘvec‖22 with

gradient :

∇F (Θ) = −(ÃρΨ)∗
(
y − ÃρΨΘvec

)
. (49)

The rest of Algorithm 2 remains unchanged.

In the next section, we evaluate the performances of these algorithms on HSI.

VI. EXPERIMENTS

In this section, we evaluate the ability of the methods presented in Section V, (called “SS methods”

and summed up in table II) to separate the sources and recover HSI in various scenarios: various noise

levels (from noiseless to 10 dB SNR), various sampling ratios (from m/(n1n2) = 1/4 to 1/32 sampling

rates), various sampling mechanisms (uniform and dense sampling), on two different HSI (Geneva and

Urban). We also compare the SS methods with the classical methods for CS, such as the BPDN problem

(5) BPDN, the TVDN problem (6) TVDN, both solved with a Douglas-Rachford (DR) splitting algorithm.

A. Sampling Mechanism

We used two different sampling schemes: i) the sensing matrix A is dense (and the methods imple-

menting the decorrelation step cannot be applied), and ii) uniform sampling where the sensing matrix

is block diagonal with identical blocks as in (15). In the latter, the decorrelation step can be applied as

explained in section III-B.

So as to generate the random sampling matrices A and Ã that can be used in practical applications, we

used the Random Convolution (RC) measurement scheme proposed by Romberg [25] that convolves the

image with a random pattern using few optical blocks. More remarkably, sampling matrices generated

by RC are tight frames and thus for decorrelating schemes, they benefit from a closed form expression

(46) for computing proxαf2
(·) that can massively accelerates the recovery procedure.

July 31, 2018 DRAFT



23

TABLE II: Description of the proposed SS methods.

Method name Description
SS-IHT Problem (47) solved with Algorithm 2 with gradient ∇F (Θ) of Eq. (48).

SS-l1
Problem (42) solved with Algorithm 1, with P(S) = ‖Ψ∗Svec‖1 and proxαf2(·) computed using a

forward-backward scheme as proposed in [24].

SS-TV
Problem (42) solved with Algorithm 1, with P(S) =

∑ρ
j=1 ‖Sj‖TV and proxαf2(·) computed using

a forward-backward scheme as proposed in [24].

SS-IHT-decorr Problem (47) solved with Algorithm 2 with gradient ∇F (Θ) of Eq. (49).

SS-l1-decorr
Problem (42) solved with Algorithm 1, with P(S) = ‖Ψ∗Svec‖1, and proxαf2(·) computed with the

closed form Eq. (46).

SS-TV-decorr
Problem (42) solved with Algorithm 1, with P(S) =

∑ρ
j=1 ‖Sj‖TV and proxαf2(·) computed with

(46).
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Fig. 1: Geneva HSI reconstruction performance for different sampling mechanisms and recovery methods.

Points with ∞ reconstruction SNR (exact recovery) are not plotted.

B. The Geneva HSI

We evaluate the different methods, for different sampling rates (Fig. 1(a)), and different noise levels

(Fig. 1(b)), on a HSI generated from a ground truth map image 4 of farms in a suburb of Geneva. The

source spectra (i.e. columns of H) are chosen form the USGS digital spectral library [26].The HSI cube

has spatial slices of the resolution N = 256× 256 that are taken over J = 224 frequency bands.

4We acknowledge Xavier Gigandet and Meritxell Bach Cuadra for providing this ground truth map.
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TABLE III: Source separation performance (Accuracy) of SS methods. Methods with the highest accuracy

are highlighted in each column.

Noise SNR +∞ dB 30 dB 10 dB
Sampling rate 1/4 1/8 1/16 1/32 1/4 1/8 1/16 1/32 1/4 1/8 1/16 1/32

SS-IHT(dense sampling) 0.69 0.61 0.57 0.48 0.71 0.6 0.57 0.48 0.7 0.6 0.57 0.48
SS-l1(dense sampling) 1.0 1.0 0.95 0.81 1.0 1.0 0.95 0.8 1.0 0.98 0.91 0.73
SS-TV(dense sampling) 1.0 1.0 1.0 0.92 1.0 1.0 1.0 0.91 1.0 1.0 0.98 0.88

SS-IHT(uniform sampling) 0.43 0.38 0.31 0.25 0.43 0.37 0.31 0.26 0.43 0.37 0.3 0.26
SS-l1(uniform sampling) 0.97 0.73 0.45 0.31 0.95 0.73 0.48 0.3 0.96 0.75 0.42 0.3
SS-TV(uniform sampling) 1.0 0.98 0.9 0.76 1.0 0.97 0.89 0.74 1.0 0.97 0.88 0.74

SS-IHT-decorr 0.98 0.98 0.96 0.94 0.99 0.98 0.96 0.94 0.98 0.97 0.95 0.92
SS-l1-decorr 1.0 0.99 0.97 0.92 1.0 0.99 0.96 0.91 0.98 0.95 0.92 0.87
SS-TV-decorr 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 0.98 0.96

1) Performance of the SS methods: Concerning the performance of the SS methods, we observe in

Fig. 1 that:

• The dense sampling scheme is always better than the uniform sampling scheme.

• The decorrelated scheme is always better than dense sampling for TV -based and IHT methods, but

is not for the `1-based method.

• The decorrelating method SS-TV-decorr results in perfect reconstruction in the cases where the

sampling ratio is higher or equal to 1/16 and performs better than all the other methods in all

regimes, except in high noise of 10 dB SNR, where the dense approach SS-TV (dense sampling)

performs slightly better.

2) Comparison with Classical CS Methods: We observed that SS-TV-decorr always obtained

significantly better results than the classical CS methods in all regimes.

3) Source Reconstruction: We reported in Tab. III the source separation performance of the SS methods.

Since source images are disjoint, the quality was measured by the source recovery accuracy indicating

the percentage of correctly classified pixels in the spatial domain. The method SS-TV-decorr, based

on TV regularization and decorrelation, which achieved the best performance for HSI reconstruction

also obtain the best performance for source separation. Figure 2 illustrates the reconstructed sources of

different SS methods for various sampling schemes (dense, uniform, decorrelating).

C. The Urban HSI

In order to evaluate different approaches on a real HSI, we consider the Urban HSI of size 256 ×

256× 171 which was obtained from the site [27] of the US Army Topographic Engineering Center.

As the ground truth of this image (i.e., the true source images and their corresponding spectral
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(a) True sources

(b) SS-TV (dense sampling)

(c) SS-TV (uniform non-decorrelating sampling)

(d) SS-TV-decorr (uniform decorrelating sampling)

(e) SS-IHT-decorr (uniform decorrelating sampling)

Fig. 2: Estimated source images of Geneva HSI for different sampling schemes and recovery methods

(subsampling ratio: 1/16, noiseless sampling).

signatures) is not available, we first separate the underlying sources using a blind source separation

algorithm for fully-sampled HSI [10] and later, use these separated sources, depicted in Fig. 3(a), as a

reference. Figure 3 demonstrates the reconstructed sources of Urban using our proposed SS approaches

based on convex minimization, for different noiseless sampling mechanisms (dense, uniform, uniform-
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decorrelating) and for a fixed subsampling ratio.5 Moreover, Figure 4 shows the reconstructed Urban

HSI for a certain spectral band, using the source images estimated by the SS methods based on TV

minimization (i.e., SS-TV and SS-TV-decorr).

a) Results: Similar to our previous experiment, we observe that for a uniform (non-decorrelating)

sampling scheme SS-TV has very poor recovery performance. Meanwhile, adding a decorrelation step

results in a significant improvement in source recovery. As we can see in Figure 3(b), the estimated

source images using SS-TV for a dense sampling scheme have better spatial resolutions, but are not as

well separated as with the SS-TV-decorr method.

b) Computational Performance: Decorrelation step massively decreases the computational complex-

ity. SS-TV-decorr performs within 20 minutes whereas SS-TV for a dense sampling scheme requires

more than 80 hours of computations! The classical BPDN and TVDN methods take between 3 to 14

hours, as the corresponding `1 or TV minimization runs over a large number of channels (rather than few

underlying sources). We ran all the codes on a Mac Pro 2.26 GHz Intel CPU, 16 GB RAM computer.

D. Conclusion on the Experiments

The decorrelation step is of great benefit, and the proposed method SS-TV-decorr, based on TV

regularization and decorrelation, outperforms significantly all the other methods for HSI reconstruction

and source estimation for all tested SNRs and sampling rates. Moreover SS-TV-decorr is clearly the

fastest method and is more than 40 times faster than the classical TVDN.

While finalizing this work we became aware of a recent paper [28] that proposes a source recovery

approach similar to (42), albeit for the particular case of uniform sampling and TV regularization. The

authors also use a ”SVD preprocessing” step for dimensionality reduction and denoising that, contrary to

our decorrelation step, does not cancel the effects of the conditioning of the mixing matrix. Comparing

the fourth source image in Figure 3(e), corresponding to the “roads”, with the similar source recovered

in Figure 6 in [28] indicates that SS-TV-decorr achieves similar or better separation performance

with only half the measurements rate. Additionally we provide a theoretical analysis for the compressive

source separation problem, considering various sampling schemes and multiple recovery methods.

VII. CONCLUSION

In this paper, we exploited a linear mixture of sources model into a Compressed Sensing (CS) scheme

for multichannel signal acquisition and source separation with a particular focus on hyperspectral images

5As the source images of Urban are not spatially disjoint, we do not apply Algo. 2.
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(HSI). We study three different acquisition schemes (dense, uniform and decorrelated) theoretically and

experimentally, and showed that the decorrelating scheme enhances drastically the recovery of the spectral

data and its sources. Indeed, our theoretical analysis showed that, using this scheme, and contrary to the

traditional CS approach, the number of measurements does not scale with the number of channels and does

not depend on the conditioning of the mixing matrix, as long as the mixed spectra are linearly independent.

This leads to a strong reduction in the number of needed measurements for a given reconstruction error.

We also provided algorithms that reconstruct the multichannel signal (more particularly HSI) and its

sources, by exploiting both sparsity of the signal at each channel and the correlation of the signals along

the channels. We provided experiments on HSI and showed that we can reconstruct both the HSI and

its sources with far fewer measurements and less computational effort than traditional CS approaches.

Finally, we showed that it is possible to accurately recover the sources directly from the compressed

measurements, avoiding to run a source separation algorithm on the high-dimensional raw data.

Extension of this work includes dealing with non-linear mixture of sources as well as dealing with the

difficult problem of recovering the sources and the mixing system from the compressed measurements.

VIII. APPENDIX

A. Proof of Theorem 1

Let θ ∈ Rd be the original vector we aim to recover from its CS measurements y with y = ADθ + z

and ‖z‖2 ≤ ε, and let θ̂ be the solution of the `1 minimization (18). The reconstruction error is denoted

h = θ̂ − θ. Let T0 ⊆ {0, . . . , d} be the set that contains the indices of the k coefficients of θ having

the largest magnitudes and, T c0 the complement set of T0. Let θT denote a vector of the same size as θ

whose elements indexed by the set T are identical to that of θ and zero elsewhere.

Minimizing the `1 norm in (18) implies

‖θ‖1 ≥ ‖θ + h‖1

= ‖θT0
+ hT0

‖1 + ‖θT c0 + hT c0 ‖1

≥ ‖θT0
‖1 − ‖hT0

‖1 − ‖θT c0 ‖1 + ‖hT c0 ‖1,

and therefore,

‖hT c0 ‖1 ≤ ‖hT0
‖1 + 2‖θT c0 ‖1. (50)

Let T1 be the set that contains the indices of the τk coefficients of θT c0 having the largest magnitudes,

T2 the set containing the indices of the second τk largest coefficients of θT c0 , and so on. With this
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decomposition, ∀j ≥ 2 we have:

‖hTj‖2 ≤ (τk)−1/2 ‖hTj−1
‖1,

and thus, ∑
j≥2

‖hTj‖2 ≤ (τk)−1/2 ‖hT c0 ‖1.

Now according to (50) and since hT0
is k-sparse we have∑

j≥2

‖hTj‖2 ≤ τ−1/2‖hT0
‖2 + 2(τk)−1/2‖θT c0 ‖1. (51)

On the other hand, since both θ and θ̂ satisfy the fidelity constraint of (18), we have

‖ADh‖2 ≤ ‖y −ADθ‖2 + ‖y −ADθ̂‖2 ≤ 2ε.

Let’s define T01 := T0 ∪ T1 and γ = τ + 1. According to the last inequality we can write

2ε ≥ ‖ADh‖2

≥ ‖ADhT01
‖2 −

∑
j≥2

‖ADhTj‖2

≥
√

1− δ∗γk ‖DhT01
‖2 −

√
1 + δ∗τk

∑
j≥2

‖DhTj‖2

≥ Lγk(D)
√

1− δ∗γk ‖hT01
‖2 − Uτk(D)

√
1 + δ∗τk

∑
j≥2

‖hTj‖2

≥ Lγk(D)
√

1− δ∗γk‖hT01
‖2 − Uτk(D)

√
1 + δ∗τk

(
τ−1/2‖hT0

‖2 + 2(τk)−1/2‖θT c0 ‖1
)
.

The third inequality follows from definition of the D-RIP (see Definition 2) which holds for the matrix A,

together with the fact that hT01
and hTj (∀j ≥ 2) are respectively γk and τk sparse. The fourth inequality

follows from the definition of the A-RIP that holds for matrix D (see Definition 1), and finally the last

inequality uses (51). We apply the bounds δ∗τk ≤ δ∗γk, Uτk(D) ≤ Uγk(D) and ‖hT0
‖2 ≤ ‖hT01

‖2 in the

last inequality and we deduce the following bound:

‖hT01
‖2 ≤ αk−1/2‖θT c0 ‖1 + βε, (52)

where the constants α, β are α = 2

ξ−1
γk (D)

√
τ

(
1−δ∗

γk

1+δ∗
γk

)
−1

, and β =
2Uγk(D)

√
τ(1+δ∗γk)

ξ−1
γk (D)

√
τ

(
1−δ∗

γk

1+δ∗
γk

)
−1

.

Now if we set τ ≥ 2ξ2
γk(D) (equivalently, γ ≥ 1 + 2ξ2

γk(D)), it is sufficient to have δ∗γk < 1/3 so that

α and β remain positive. Finally we conclude the proof of Theorem 1 by using the inequalities (51) and

July 31, 2018 DRAFT



29

(52) to bound the whole error term as follows:

‖h‖2 ≤ ‖hT01
‖2 +

∑
j≥2

‖hTj‖2

≤ (1 + τ−1/2)‖hT01
‖2 + 2(τk)−1/2‖θT c0 ‖1

≤ c′0k
−1/2‖θT c0 ‖1 + c′1ε,

where, the constants of the error bound are c′0 = α+ (2 + α)τ−1/2 and c′1 = β(1 + τ−1/2).
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(a) Reference: Sources estimated with a BSS algorithm.

(b) SS-TV (dense sampling), source reconstruction SNR: 6.34 dB

(c) SS-l1 (dense sampling), source reconstruction SNR: 6.29 dB

(d) SS-TV (uniform non-decorrelating sampling), source reconstruction SNR: 1.88 dB

(e) SS-TV-decorr (uniform decorrelating sampling), source reconstruction SNR: 8.64 dB

(f) SS-l1-decorr (uniform decorrelating sampling), source reconstruction SNR: 5.65 dB

Fig. 3: Estimated source images of Urban HSI using different recovery methods (i.e., TV or wavelet `1

minimization), and for different sampling mechanisms (subsampling ratio: 1/8, noiseless sampling).
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Fig. 4: Reconstructed Urban HSI at spectral band 33, using SS methods based on TV minimization,

for various sampling mechanisms (Dense, Uniform non-decorrelating, Uniform decorrelating) and

subsampling ratios.

July 31, 2018 DRAFT


	I Introduction
	II Background and Notations
	II-A CS of Multichannel Signals
	II-B Sparse Regularization of a Multichannel Signal
	II-C The Linear Mixture Model
	II-D Mixing Parameters as Side Information for Multichannel CS Recovery 

	III Compressive Multichannel Signal Acquisition Schemes
	III-A Multichannel Recovery via Source Recovery
	III-B Decorrelation Scheme 
	III-B1 Decorrelating Multichannel CS Acquisition
	III-B2 Uniform Multichannel CS Acquisition
	III-B3 Decorrelation-based Uniform Sampling


	IV Main Theoretical Analysis
	IV-A Compressed Sensing and Redundant Dictionaries
	IV-B Performance Bounds for Compressed Sensing using Asymmetric-RIP Dictionaries
	IV-C Theoretical Guaranties for Source Recovery using 1 Minimization
	IV-C1 Dense Random Sampling
	IV-C2 Uniform Random Sampling
	IV-C3 Decorrelating Random Sampling

	IV-D Conclusions on the Theoretical Bounds

	V Applications in Compressive Hyperspectral Imagery
	V-A Compressive HSI Source Separation via Convex Minimization
	V-B The PPXA Algorithm for Compressive Source Separation
	V-C Compressive HSI Source Separation via Iterative Hard Thresholding

	VI Experiments 
	VI-A Sampling Mechanism
	VI-B The Geneva HSI 
	VI-B1 Performance of the SS methods
	VI-B2 Comparison with Classical CS Methods
	VI-B3 Source Reconstruction

	VI-C The Urban HSI
	VI-D Conclusion on the Experiments

	VII Conclusion
	VIII Appendix
	-A Proof of Theorem ??

	References

