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Abstract: Recently a new biometrics identifier, namely finger knuckle print (FKP), has been proposed for 

personal authentication with very interesting results. One of the advantages of FKP verification lies in its 

user friendliness in data collection. However, the user flexibility in positioning fingers also leads to certain 

degree of pose variations in the collected query FKP images. The widely used Gabor filtering based 

Competitive Coding scheme is sensitive to such variations, resulting in many false rejections. We propose to 

alleviate this problem by reconstructing the query sample with a dictionary learned from the template 

samples in the gallery set. The reconstructed FKP image can reduce much the enlarged matching distance 

caused by finger pose variations; however, both the intra-class and inter-class distances will be reduced. We 

then propose a score level adaptive binary fusion rule to adaptively fuse the matching distances before and 

after reconstruction, aiming to reduce the false rejections without increasing much the false acceptances. 

Experimental results on the benchmark PolyU FKP database show that the proposed method significantly 

improves the FKP verification accuracy. 
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1. Introduction 

Reliable personal identity verification is crucial in a variety of applications such as building access control, 

e-banking, airport, computer system login, and mobile phones, etc. Compared with the passwords or ID 

cards based solutions, biometrics authentication is much more preferable and reliable to those applications 

requiring high security. In the past decades, various biometrics traits, such as face [1, 2], fingerprint [3, 4], 

iris [5, 6], etc., have been widely studied. Meanwhile, hand-based biometrics methods are popular in the 

biometrics community, and techniques such as palmprint [7-9], hand geometry [10], hand vein [11], etc., 

have been developed. Nonetheless, every biometrics identifier has its pros and cons, and no biometric 

identifier can supersede the other one. Therefore, it is desired that new biometrics identifiers, as well as the 

associated feature extraction and pattern recognition techniques, can be further developed to improve and 

enrich the biometrics methods and technologies.      

 

   
 

Figure 1: Outlook of the FKP image acquisition device. 

 

Recently, a novel biometric identifier, namely finger-knuckle-print (FKP), has been developed for online 

personal verification [12-16]. FKP refers to the inherent skin pattern of the outer surface around the 

phalangeal joint of one’s finger. Fig. 1 shows the FKP image acquisition device and the use of the system. 

Preprocessing and region of interest (ROI) extraction algorithms for FKP images can be found in [12, 13]. In 

[12], Zhang et al. applied the Gabor filtering based Competitive Coding (CompCode) scheme, which was 

originally proposed for palmprint recognition [8], to the FKP image for orientation feature extraction and 

matching. In [13], this scheme was extended by combining the Gabor filtering magnitude information. The 

Gabor filtering based methods extract image local features. In [14], the Fourier transform based band-limited 

phase only correlation (BLPOC) was adopted to extract the global features of FKP images for matching, and 

in [15] the local and global information was combined for FKP verification, which achieves very promising 
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accuracy of FKP verification. Recently, a set of phase congruency induced local features were defined in [16]. 

By fusing those local features in the matching score level, the proposed local feature integration (LFI) 

method [16] leads much better results than other local feature based methods such as CompCode [12] and 

improved CompCode [13].  

 
 

 
(a) 

    
(b) 

 
Figure 2: (a) A template FKP sample and (b) two testing FKP samples from the same finger but collected at 
different sessions. Obvious pose variations can be observed from the samples in (b). 

 

Refer to Fig. 1, although a triangular block is used to control the finger freedom in FKP image acquisition, 

there is still much flexibility for the users to position their fingers. This is good to increase the user 

friendliness but also allows much variation of the finger pose in query sample collection process. Fig. 2 

shows some examples. We can see obvious deformations between the two FKP samples due to the finger 

pose variations. Unfortunately, the CompCode and LFI based FKP recognition methods are sensitive to such 

variations, resulting in false rejections and degrading the FKP verification performance. 

From the above discussions, we can see that the main difficulty in FKP recognition is the false rejections 

caused by finger-pose-variation in the query samples. One strategy to solve this problem is to correct the 

pose deformations by affine transformations. However, estimating the affine transformation parameters is 

itself a very difficult problem, particularly for FKP images where very few distinctive key points can be 

extracted. Since our ultimate goal is FKP verification but not pose deformation correction, another strategy is 

to enhance the FKP matching process without pose deformation correction. Considering that the finger pose 

variation caused FKP image deformation enlarges the matching distance between two FKP images from the 

same person and hence results in false rejections, we propose a reconstruction based matching scheme to 

reduce the enlarged matching distance.  
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First, a dictionary is learned from the template FKP images, and this dictionary defines the subspace of 

the gallery FKP dataset. For a given query sample which may have pose variation, we represent it as the 

linear combination of the atoms in the learned dictionary. This process actually projects the query sample 

onto the subspace spanned by the gallery FKP images. The CompCode scheme can then be applied to the 

reconstructed image for feature extraction and matching. Nonetheless, the reconstruction of the query sample 

will not only reduce the intra-class distance, but also reduce the inter-class distance. In other words, it can 

reduce false rejections but may also increase the false acceptances. To effectively exploit the discriminative 

information of the query sample before and after reconstruction, a simple yet powerful score level adaptive 

binary fusion (ABF) rule is proposed to make the final decision by fusing the matching scores before and 

after reconstruction. The ABF ensures a good reduction of false rejections without increasing much the false 

acceptances, leading to much lower equal error rates than state-of-the-art methods.  

The rest of this paper is organized as follows. Section 2 briefly reviews the CompCode scheme and 

indicates its problems. Section 3 presents the proposed reconstruction based methodology for FKP 

recognition. Section 4 presents the ABF rule. Section 5 summaries the proposed algorithm. Section 6 

presents extensive experimental results and discussions, and Section 7 concludes the paper. 

 

2. Brief Review of Competitive Coding based FKP Verification  

Gabor filtering has been widely used as an effective feature extraction technique in face, iris, fingerprint, 

palmprint, as well as FKP recognition systems. A 2D Gabor filter can be mathematically expressed as 

                                               
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where nθ = ncosθ + msinθ, mθ = -nsinθ + mcosθ, f is the frequency of the sinusoid factor, θ is the 

orientation of the normal to the parallel stripes of the Gabor function, σn and σm are the standard deviations of 

the 2D Gaussian envelop. 

Based on the observation that the FKP images contain abundant line-like structures, the orientation 

features can be extracted for FKP image recognition. Let’s denote by GR the real part of a Gabor filter, and 

by IROI an FKP ROI (region of interest) image. With a bank of Gabor filters, at each pixel IROI(n,m), the 

CompCode scheme [8, 12, 13] extracts and codes the dominant orientation feature as follows: 
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                     ( , ) arg min ( , ) ( , , )jRROIj
CompCode n m I n m G n m                      (2) 

where symbol “*” denotes the convolution operation, and θj=jπ/6, j={0,…,5}. CompCode(n,m) is assigned 

the orientation along which the smallest response is obtained. 

In order for real-time recognition, CompCode uses three bits to represent each orientation [8]. For 

matching two CompCode maps P and Q, the normalized Hamming distance based angular distance is 

commonly adopted [8]: 
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where S is the area of the code map, Pi (Qi) is the ith bit plane of P (Q), and   represent the bitwise 

“exclusive OR” operation. In practice, multiple matches are performed by translating one of the two feature 

maps vertically and horizontally, and the minimum matching distance is regarded as the final angular 

distance. Nonetheless, the CompCode scheme is sensitive to the variation of FKP image and then resulting in 

false rejection. Even a small rotation and misalignment can lead to an incorrect matching.    

 

3. Recognition via Reconstruction 

3.1 Motivation 

The CompCode scheme is simple and fast, and it leads to acceptable accuracy in FKP verification [12, 13]. If 

the query FKP image is well aligned after ROI extraction, the CompCode scheme can work very well. As we 

discussed in the introduction section, however, there can be certain degree of variations of the finger pose in 

the data collection process (refer to Fig. 2 please), which lead to deformations in the FKP images and 

consequently result in false rejections because CompCode is sensitive to image deformations.  
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Figure 3: The distribution of matching distance of a typical FKP verification system. 

 

Fig. 3 shows the genuine and imposter matching distance distributions of a typical FKP verification 

system. Based on the curves, it is obvious that we can divide the matching distance into two parts: an 

uncertain interval, which is between thresholds t1 and t2, and a confidence interval, which covers the 

remaining part. Generally speaking, if the matching distance of two FKP feature maps falls into the 

confidence interval, it can be easily decided if the query sample is a genuine or an imposter, while most of 

the false acceptances and false rejections occur when the matching distance falls into the uncertain interval 

[t1, t2]. On the other hand, the finger pose variation is the main cause that increases the intra-class distance 

(see the long tail of the blue genuine curve in Fig. 3), making the false rejections happen.    

The FKP verification accuracy can be improved if we could correct the finger-pose-variation caused 

deformations of query samples via affine transformation. Unfortunately, it is a particularly difficult problem 

to estimate the affine transformation parameters for FKP images because very few distinctive key points can 

be extracted from them. Therefore, this solution is impractical. In this paper, we propose to reduce the pose 

variation caused false rejections by enhancing the matching process without pose deformation correction.  

Denote by X= [x1, x2, …, xk] the set of gallery FKP samples, where xi is a vectorized FKP sample. We can 

use the hull of X, denoted by  ( )  w  , where w=[w1, …, wk]
T is the vector of weights, to 

characterize the subspace of gallery FKP images. If the gallery set is big enough, we can reasonably assume 

that each regular FKP image will fall into the hull H(X), i.e., it can be well represented as the linear 
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combination of the template samples in X. For a query image y, we can project it into the hull H(X), and 

rewrite it as ˆ  y w e , where weight ŵ  is determined by minimizing the distance between y and its 

projection ŷ ˆ w  (usually some regularization will be imposed on ŵ ), and e is the projection residual. 

For a regular query image, there is no much finger pose variation caused deformation in it, and the 

projection residual e will be very small (i.e., ||e||2 is very small). In such case, the query sample y can be 

accurately recognized by using the efficient CompCode scheme. However, if the finger pose varies much in 

the data acquisition process, the query sample y can have much deformation and fall outside the hull H(X), 

i.e., ||e||2 becomes much bigger. In this case, the CompCode scheme can fail since it is sensitive to image 

deformations, which can be reflected by the big values of ||e||2. 

Let’s plot the distribution of ||e||2 by using the PolyU FKP database [32]. We use the first 6 samples of 

each of the 660 classes in the PolyU FKP database to construct the gallery dataset X, and take the remaining 

6 samples of each class as the query samples. In projecting each query sample into the hull H(X), we use the 

l2-norm regularized least square to compute the weight: 
2 2

2 2
ˆ arg min    ww y w w . Then e is 

computed as ˆ  e y w . In Fig. 4 we plot the distribution of ||e||2 by using all the 6606=3,960 query 

samples. We can see that the distribution has a long tail, which is mainly caused by those samples with large 

deformations. Since it is mainly the big residual e that makes the CompCode feature of query sample y 

deviates much from the CompCode features of gallery samples in X, one intuitive idea is that we can 

compute the CompCode of ŷ ˆ w  for verification. 
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Figure 4: The distribution of ||e||2. 
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Note that we use all the gallery samples, not only the samples from the class that y claims, to compute ŷ . 

There are two reasons for such a configuration. First, the number of samples of each class is usually small 

(e.g., 6 samples per class in the gallery set of PolyU FKP database), and thus reconstructing y using only the 

samples from one class is not accurate. Second, the query sample y can be an imposter, i.e., it may come 

from a class out of the gallery set, or from a class that is different from the class it claims. Reconstructing y 

using only the samples of one class will make the distance from ŷ  to this class too small so that false 

acceptance will happen. Therefore, all the classes in the gallery set should be involved in reconstructing y.  

 

3.2 Reconstruction with l1-norm sparse regularization 

By approximating y with X · w, one solution to w is the least square solution: 
2

2
ˆ arg min  ww y w . It is 

easy to see that   1
ˆ T T
w y   . Though the least square solution is simple to compute and it ensures the 

minimal l2-norm reconstruction residual of ŷ , it is not the best choice for the verification purpose. The least 

square solution aims to minimize the reconstruction residual, and the weights w tend to be densely 

distributed, hence many classes in X will contribute in reconstructing y. Finally, some discriminative features 

in y may be smoothed out in ŷ . 

In order to preserve the discriminative features of y in ŷ , some regularization term could be imposed on 

w. Intuitively, we hope that only a small portion of the weights in w are significant so that only several 

classes are dominantly involved to reconstruct y. The l1-norm based sparse representation (or sparse coding) 

is a very good choice to this end. In recent years sparse coding has been successfully used in various image 

reconstruction and pattern classification applications [17-22]. It represents a given signal as a sparse linear 

combination over a dictionary of atoms. By imposing the l1-norm constraint on w, we have  

                 
2

2 1
ˆ arg min    ww y w w                             (4) 

where λ is a positive scalar balancing the reconstruction residual and the sparsity of w. Eq. (4) can be solved 

by many convex optimization algorithms such as l1-magic [17], l1-ls [18], etc.  

The sparse coding in Eq. (4) still has two problems. First, it is known that the commonly used 

l1-minimization solvers such as l1_ls have an empirical complexity of O(z2k1.3) [18], where z is the dimension 

of y and k is the number of samples in X. In practice, k can be very big so that the sparse coding complexity 
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is high. Second, the atoms in X are the original gallery FKP images, which may contain noise and some 

trivial structures that can be negative to the representation of y.   

To solve the above problems and considering the fact that the FKP images in X have much redundancy 

across samples, we can learn a more compact dictionary D from X, and then use D to code the input FKP 

image y. Dictionary learning has been widely used in image processing and pattern recognition [19-21, 23, 

24]. In this paper, we simply adopt the method in [21] to learn the dictionary D. Denote by D= [d1, d2, …, dp], 

where p≤k and each dj is a unit column vector. The dictionary learning can be formulated as the following 

minimization problem: 

        2

, , 1
arg min

F
J   D W D W DW W                          (5) 

Eq. (5) is a joint optimization of dictionary D and the coefficient matrix W, and it can be solved by 

optimizing D and W alternatively [21]. Once the dictionary D, which has less number of atoms than X, is 

computed, we use it to code the input FKP image y as follows: 

                            
2

2 1
ˆ arg min    ww y w wD                           (6) 

Finally, the image is reconstructed as: 

                                     ˆ ˆ y wD                                    (7) 

 

     
 

Figure 5: From left column to right column: original FKP image; reconstructed FKP image by l1-regularization 
(Eq. (6)), reconstructed FKP image by l2-regularization (Eq. (8)), and reconstructed FKP image without 
regularization (i.e., let λ=0). 

 

Let’s show an example of the reconstruction results. We take 1980 images from the first 330 classes in the 

gallery set of PolyU FKP dataset as X, and learn from it a dictionary D with 1386 atoms. D is then used to 

reconstruct the input image y. The parameter λ is set as 0.1 and 2 in Eq. (5) and Eq. (6), respectively. The left 

column of Fig. 5 shows an input FKP image, and the second column shows the reconstructed image using D. 

One can see that the reconstructed image is smoother than the original one because some details as well as 

variations in the query sample y, which cannot be represented by the learned dictionary D, are suppressed.    

3.3 Reconstruction with l2-norm regularization 



 

10 
 

In Eq. (6), the l1-norm sparsity constraint is imposed on the coding coefficients to enforce that only a small 

portion of the atoms are dominantly used to reconstruct y. However, l1-minimization is time consuming.  

Though many fast l1-minimization solvers such as FISTA [25], ALM [26] and Homotopy [27] have been 

developed, they may not be fast and accurate enough for practical use in the application of FKP verification, 

where real time implementation is expected. One intuitive solution is to relax the strong l1-regularization to 

the weaker l2-regularization in Eq. (6). The l2-regularization offers a closed form solution to w, which can be 

very efficiently computed. Though the resolved coefficient w is not sparse anymore, the l2-regularization can 

still make w have a small energy. As we will see in the experimental results, the FKP verification accuracy 

by l2-regularized reconstruction is only a little lower than that by l1-regularized reconstruction, but the 

computational complexity is greatly reduced.  

By using l2-norm to regularize w, the coding becomes a regularized least square problem:  

                         
2 2

2 2
ˆ arg min    ww y w wD                            (8) 

and a closed form solution can be readily obtained as: 

                                 1
ˆ T T


 w yD D I D                               (9) 

Let   1T T


 P D D I D . Clearly, P can be pre-calculated so that the coding vector can be obtained by 

projecting y over P: ˆ w Py . This process is very fast. 

In the third column of Fig. 5, we show the reconstructed FKP image by l2-regularization in Eq. (8). The 

parameter λ is set as 4. (Note that the parameter λ in l2-regularized coding is usually set bigger than that in 

l1-regularized coding because l2-regularization is much weaker than l1-regularization.) For a better 

illustration, we also show in the right column of Fig. 5 the reconstructed FKP image without regularization 

(i.e., set λ=0 in Eq. (8)). It can be observed that due to the non-sparse l2-regularization, more classes are 

involved in the reconstruction of y, and thus the reconstructed image is smoother than that by l1-sparse 

regularization. This will lead to some lose of the distinctive features in the original FKP image. Nonetheless, 

this is the price we should pay for the great reduction in time complexity. In the section of experimental 

results, we will see that the reconstructed image by l2-regularization can still lead to quite competitive 

verification accuracy. It can also be observed from Fig. 6 that the reconstructed image without regularization 

is the smoothest and more distinctive features are lost. Our experiments also show that the verification 
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accuracy by the reconstructed image without regularization is lower than that with l2-regularization2, which 

validates that l2-regularization is very helpful for verification. Note that the complexity of reconstruction 

with l2-regularization is the same as that without l2-regularization.  

3.4 Patch based reconstruction 

In Sections 3.2 and 3.3, we stretch the whole FKP image as a vector y for coding and reconstruction. In 

coding y over D by Eq. (6) or Eq. (8), we actually enforce that all the elements (i.e., all the pixels) in y, 

denoted by yi , i=1,2,…,n, share the same coding vector w over their corresponding sub-dictionary (i.e., the 

ith row of D). The good side of such a global coding strategy is that the solution is very stable because only 

one global coding vector needs to be solved. The bad side of such a coding strategy, however, lies in its less 

flexibility because it does not allow the different parts of the FKP image to have different coding vectors. 

Considering the fact that different portions of a query FKP sample y may have different variations, it is 

reasonable to allow them to have different coding vectors so that the reconstruction can be spatially adaptive. 

Therefore, we can partition the FKP image into several patches, reconstruct separately each patch, and then 

combine them to obtain the whole reconstructed image.      

If we partition the image into too many patches, the size of each patch will become small and the 

sub-dictionary corresponding to each patch will tend to be under-determined (i.e., the sub-dictionary will 

tend to be a fat matrix). This will reduce the stability of the coding process, no matter l1-regularization or 

l2-regularization is used. Based on our experimental experience and considering the special pattern of FKP 

images, we partition the FKP image (size: 110220) into 6 overlapped patches, as illustrated in Fig. 6. Four 

patches of size 6045 lie in the four corners of the FKP images, and two patches of size 60155 lie in the 

middle of the image. The reason that we set two fat rectangle patches in the middle is based on the 

observation that the pose variation along vertical direction has bigger effect than that along horizontal 

direction on the FKP recognition accuracy. Therefore, we should pay more attention to the pose variation 

along vertical direction in the partition.     

 

                                                              
2 For example, we use the first 165 classes in the first session as the gallery set and the whole 660 classes in the second session as 

the probe set. By using the algorithm described in Table 2 together with the ABF rule (refer to Section 4 please), if the query 
sample is reconstructed with l2-regularization, the equal error rate is 1.27%, while if the query sample is reconstructed without 
regularization, the equal error rate is 1.41%. We see that the l2-regularization is helpful for verification without increasing the time 
complexity.    
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Figure 6: The patch partition of FKP images.  

Let’s denote by yj, j=1,2,…,6, the six patches of an FKP image y. For each patch, we can learn a 

dictionary Dj from the training samples by using the same method described in Section 3.2. Then for an input 

query sample y, each patch yj of it can be reconstructed by Dj. Similarly, both l1-regularization and 

l2-regularization can be employed in the reconstruction of yj via    

                    
2

2 1
ˆ argmin

jj j j j j   ww y w wD                          (10) 

and 

             
2 2

2 2
ˆ argmin

jj j j j j   ww y w wD                          (11)           

respectively. After each patch is reconstructed, the whole reconstructed image can be obtained by combining 

them. For the overlapped area of neighboring patches, we simply average the results. Similar to our 

discussions in Sections 3.2 and 3.3, the l1-regularization in Eq. (10) may preserve more discrimination 

information, but the l2-regularization in Eq. (11) is much faster.  

At last, let’s use an example to illustrate the performance of patched based reconstruction. Fig. 7 shows a 

query sample y and a template image which is from the same class of y. We reconstruct y with 

l2-regularization in this example. Image ˆ
gy  is the output of global reconstruction by Eq. (8) (we set λ=1), 

while ˆ py  is the output of patch based reconstruction by Eq. (11) (we set λ=0.1). One can see that the patch 

based reconstruction can preserve more distinctive features than the global reconstruction due to the higher 

flexibility in coding coefficients of each patch. After extract the CompCode feature maps (refer to Section 2 

please), the matching distances between the template image and y, ˆ
gy  and ˆ

py  are 0.3783, 0.3761 and 

0.3631, respectively. One can see that the global reconstruction can reduce the genuine matching distance, 

while the patched based reconstruction can further reduce the matching distance. Though imposter matching 

distance will also be reduced after reconstruction, we will see that with an adaptive binary fusion strategy 

proposed in next section, more accurate verification results can be obtained by adaptively fusing the 
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matching distances before and after reconstruction. In the experimental results in Section 6, we will also see 

that patch based reconstruction can lead to better verification performance. 

                                                     

Figure 7: A query sample y and the reconstructed images of it with l2-regularization. ˆ
gy  is the output of global 

reconstruction while ˆ
py  is the output of patch based reconstruction. The matching distances between a gallery 

image (which is from the same class as y) and y, ˆ
gy  and ˆ

py  are 0.3783, 0.3761 and 0.3631, respectively. One 

can see that the global reconstruction can reduce the genuine matching distance, while the patched based 
reconstruction can further reduce the matching distance.  
 

4. Verification by Binary Score Level Fusion 

As can be observed in Fig. 5 and Fig. 7, the reconstruction can reduce the deformation caused matching 

distance so that the intra-class matching distance can be reduced. At the same time, however, the inter-class 

matching distance may also be reduced. Fig. 8 shows some examples. One can see that the imposter 

inter-class matching distance is also reduced after the query sample is reconstructed (global reconstruction 

with l2-regularization is used). What we expected is that the intra-class genuine matching distance can be 

reduced more than the inter-class imposter matching distance, but there is no guarantee for such an ideal 

situation. If we directly apply the CompCode scheme [8] to the reconstructed image for verification, 

incorrect decision can be made. To make this clear, we apply CompCode to the original images and the 

reconstructed images, respectively, for FKP verification. The equal error rates (EER) are shown in Table 1, 

from which we can see that using only the reconstructed images for verification leads to worse performance 

because some useful texture features are smoothed out in the reconstructed images. For a more robust and 

accurate verification, the matching scores (or distances) of both the original image y and the reconstructed  

 

                                                   

                   

                         

s=0.3761 s=0.3631

s=0.3783 

query image y 

ˆ
gy   ˆ

py  

gallery image 
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Figure 8: Examples of matching distances before and after reconstruction. (a) inter-class; (b) intra-class. 

 
Table 1: FKP verification by using only the original image and only the reconstructed image, respectively.  

Images used Original Reconstructed 
EER 1.65% 2.09% 

 

image ŷ  should be considered for decision making.  

Denote by s1 and s2 the matching distances of y and ŷ to a gallery image, respectively. We propose to fuse 

the two distance scores for final decision making. In the following, we first briefly review the existing 

popular score level fusion methods, and then propose a simple but very effective adaptive fusion method, 

namely the adaptive binary fusion rule. 

 

4.1 Popular score level fusion methods 

The score level fusion is a kind of combination-based approach, where the matching scores of individual 

matchers are integrated to generate a single scalar score for final decision making. Denote by s the fusion 

result of s1 and s2. Three commonly used score level fusion methods [28] are the simple-sum (SS): 

s = s1 + s2                                    (12) 

the min-score (MIN): 

s = min{s1, s2}                                  (13) 

and the max-score (MAX): 

s = max{s1, s2}                                  (14) 

The above three fusion rules do not use any additional information apart from the matching scores s1 and 

s2. Another popular method is the matcher weighting (MW) scheme [28]. The fused score is the weighted 

 

                 

                                     

(a) 

y ŷ  

s1=0.3774 s2=0.3509 gallery image 

                 

                                     

(b) 

y ŷ  

s1=0.3736 s2=0.3613 gallery image 
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average of the two scores:  

                                 s = 1s1 + 2s2                                  (15) 

where 0≤1,2≤1 and 1+2=1. To determine 1 and 2, some prior knowledge needs to be known. Often 

the EERs of the two matchers (i.e., matching by y and matching by ŷ ) are used. Using some training dataset, 

the two EERs, denoted by e1 and e2, can be obtained, and the weight can then be calculated as 

                           2

1
1/1 jj jj

e e


 
 
 

                              (16) 

It is obvious that the weight is inversely proportional to the corresponding EER. A higher weight will be 

assigned to a more reliable (i.e., lower EER) matcher, and vice versa. 

There are also some other score level fusion formulas. For example, in [29] Kumar et al. proposed the 

exponential sum rule 
1
exp( )

n

j jj
s s 


  and the tan-hyperbolic sum rule 

1
tanh( )

n

j jj
s s 


 . The 

Particle Swarm Optimization (PSO) [30] is employed to dynamically select the weights j. Such dynamic 

rules may work better than the SS, MIN, MAX and MW rules when there are multiple biometric identifiers 

for fusion, but they need to optimize the fusion rules, weights, and decision thresholds. Overall, the PSO 

based dynamic score level fusion is complex and has high computational complexity [29]. 

 

4.2 Adaptive binary fusion 

In general, the MW fusion rule works better than SS, MIN and MAX rules. However, the MW rule has two 

drawbacks. First, it needs a preset training dataset to train the weights. Second, once the weights are learned, 

they are applied to all query images y and the reconstructed images ŷ . In other words, the MW rule is not 

adaptive to the input query image, limiting its performance. This phenomenon can be seen in Fig. 8. In Fig. 

8(b), the reconstructed image is more reliable for verification, so the weight 2 assigned to this matcher is 

higher (1<2). However, the situation is opposite in Fig. 8(a). Because the query sample is an imposter, it is 

hoped that the weight 1 assigned to the original image is higher (1>2) so that the final matching distance 

can be larger. The MW rule cannot meet this requirement because 1 and 2 are fixed. 

In this paper, we propose a new fusion rule, which is adaptive to the query image and does not need a 

preset training dataset. The weights 1 and 2 are adaptively determined online based on the input image 
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pair y and ŷ . The idea is as follows. For the query image y which is claimed to belong to class c, we can 

calculate its within-class and between-class matching distances. Using CompCode, those matching distances 

can be computed very fast by Eq. (3). So does for the reconstructed query image ŷ . Then the higher weight is 

assigned to the matcher whose within-class and between-class matching distances are better separated.  

Denote by 1,w and 1,b the mean values of the within-class and between-class matching distances of y, 

respectively, and by 1,w and 1,b the standard deviations of the within-class and between-class matching 

distances, respectively. For both genuine matching and imposter matching, the within-class distances are 

calculated between the query image and the class which it claims to belong to, and the between-class 

distances are calculated between the query image and other classes. Because of the fast speed of CompCode, 

this process can be implemented in less than one second on the PolyU FKP database. For very large scale 

databases, computing the between-class distance using the whole dataset can be costly. To save cost, we can 

randomly select an enough number of samples from the classes other than the claimed class to compute a 

good approximation of the between-class distance. 

The decidability index [31] can be used to measure the separability of the distributions of within-class and 

between-class matching distances. The decidability index for y is calculated as follows: 

                                
 

1, 1,
1

2 2
1, 1, / 2

w b

w b

d
 

 





                              (17) 

Similarly, we can calculate the decidability index of ŷ  and denote it as d2. A bigger decidability index 

means that the within-class and between-class matching scores can be better separated, and hence the 

matcher is more accurate, vice versa. Therefore, d1 and d2 can be used to adaptively determine the weights 1 

and 2 that are assigned to s1 and s2. The higher the decidability index, the higher the weight. However, 

designing an optimal function to map d1 and d2 to 1 and 2 is not a trivial work. In this paper, we propose to 

use the simple binary logic operation for the weight determination. The so-called adaptive binary fusion 

(ABF) rule is defined as follows: 

Adaptive Binary Fusion (ABF): If d1≥d2, 1=1 and 2=0; otherwise, 1=0 and 2=1.  

The above proposed ABF rule is a kind of “winner-take-all” strategy and is similar to the notion of using 

cohort scores for multi-biometric fusion [28]. However, there are clear differences between them. In cohort 
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score based multi-biometric fusion, the fusion weight is fixed for each biometric identifier once the weights 

are learned offline. All the users of one biometric identifier share the same pre-learned fusion weight. 

Instead, in the proposed ABF the fusion weight is adaptively determined for each user online. The ABF rule 

is simple but fits our application very well. The reconstruction of y can only lead to two situations: the 

reconstructed image ŷ  is either better or worse than y for verification. Hence, it is reasonable and effective 

to adaptively choose one of them for the final decision making. Our experimental results in Section 6 

validate the effectiveness of the proposed ABF rule. 

 

5. Summary of the Verification Algorithm 

Table 2: Summary of the proposed FKP verification algorithm. 

Input: The gallery dataset X and the trained dictionary D;  
      The query image y; 

 The interval [t1, t2]. 
Output: Matching distance s.  
1. Calculate the minimal matching distance, denoted by s1, from y to the class it claims by using the 

CompCode scheme. 
2. If s1 is outside [t1, t2], output s= s1 and end the matching process. 
3. Otherwise, reconstruct ŷ  from y by using the dictionary D. 

4. Calculate the minimal matching distance, denoted by s2, from ŷ   to the class y claims by using the 

CompCode scheme. 
5. Calculate the decidability indices d1 and d2, and then fuse s1 and s2 using the ABF rule. 
6. Output the fused matching distance s and end the matching process.

 

In practice, it is not necessary to reconstruct every input query image for verification. As shown in Fig. 4, if 

the matching distance of a query image y falls into the confident interval, we can directly make the decision; 

only when the matching distance falls into the uncertain interval [t1, t2], the reconstruction is needed, and the 

ABF rule is applied for the verification. The proposed algorithm of reconstruction based FKP verification 

with ABF is summarized in Table 2. The output is the final matching distance s. The final decision (accept or 

reject) is then made by applying a threshold to s, as in existing FKP verification systems [12-16].  

 

6. Experimental Results 
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The PolyU FKP database, which can be freely downloaded at http://www.comp.polyu.edu.hk/~biometrics/ 

FKP.htm, was used in our experiments. This database contains the cropped FKP region of interest (ROI) 

images of 4 fingers (the left index finger, the left middle finger, the right index finger and the right middle 

finger) from 165 persons. Each finger knuckle was acquired 12 samples in two separated sessions with 6 

samples per session, giving a total of 165×4×12=7,920 samples from 660 (i.e., 165×4) fingers. 

In the following experiments, the gallery set is always extracted from the first session while the probe set 

is extracted from the second session. As in [12-16], each image in the probe set was matched with all the 

images in the gallery set. If the two images were from the same finger, a genuine matching was counted; 

otherwise, an imposter matching was counted.  

6.1 Comparison between different fusion rules 

In this section, we verify that the proposed ABF rule is more effective than the commonly used SS, MIN, 

MAX and MW rules. In the experiment, the gallery set is composed of the first 165 fingers in the PolyU FKP 

gallery set, and the probe set is composed of the first 330 fingers in the PolyU FKP probe set. (Other settings 

of the gallery and probe sets lead to similar conclusions.) That is, there are 165 classes out of the gallery set. 

The gallery set is used to train the dictionary D to code the samples in the probe set.    

Table 3: EER (%) values by different fusion rules. 

Fusion rules SS MIN MAX MW ABF 
EER 2.22 2.07 2.33 1.99 1.10 

 

In this experiment the l1-regularization is used in the reconstruction of query samples. In the dictionary 

learning (Eq. (5)) and sparse coding (Eq. (6)), the parameter λ is set as 0.1 and 0.5. The number of atoms in 

the learned dictionary is 0.7 times the number of samples in the gallery set. The parameters for uncertain 

interval setting is t1=0.35 and t2=0.39 based on our experimental experience. If the class label of the query 

sample is out of the gallery set, only the imposter matching distance will be counted when calculating EER. 

The algorithm described in Table 2 is used to perform the FKP verification experiments with different 

fusion rules in step 5. For the MW rule, the whole dataset is used to train the weights. The EER results by 

using the different fusion rules are listed in Table 3. We can clearly see that the lowest EER is obtained by 

the proposed ABF rule, which works much better than other rules. Even that the MW rule uses more 
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information with a training dataset, it is only slightly better than the MIN, SS and MAX rules. In the 

following experiments, we only report the results by using the ABF rule. 

6.2 Experiment settings and parameter selection 

We compare the proposed reconstruction based FKP verification method with ABF, denoted by “R-ABF”, 

with state-of-the-art FKP verification methods, including the improved CompCode (ImCompCode) [13], 

BLPOC [14], LGIC [15] and the local feature integration (LFI) method [16]. Considering that the LGIC 

scheme is a combination of the CompCode (which employs the image local orientation features) and the 

BLPOC (which employs the image global Fourier transform features) methods, for fair comparison we will 

first compare R-ABF with ImCompCode, BLPOC and LFI, and then couple R-ABF with BLPOC and 

compare it with the LGIC method. 

In the proposed method, the query image reconstruction can be regularized by either l1-norm or l2-norm, 

and can be done either globally or patch-by-patch. Therefore, there are four variants of the proposed R-ABF 

scheme, denoted by R-ABF-g-l1, R-ABF-g-l2, R-ABF-p-l1 and R-ABF-p-l2, respectively, where “g” is for 

“global” and “p” is for “patch”. In order to evaluate the proposed R-ABF method more comprehensively, we 

conduct 3 experiments with different sizes of the gallery set (165, 330 and 660 fingers, respectively). In all 

the experiments, the gallery set is extracted from the FKP images collected in the first session, while all the 

FKP samples collected in the second session are used as the probe set (all the 660 fingers).  

There are some parameters to set in our algorithm. For the parameters in CompCode, we adopt the 

settings in the original paper [12]. The uncertain interval is set by letting t1=0.35 and t2=0.39. The thresholds 

t1 and t2 can also be automatically determined based on the training set. By using the “leave-one-out” 

strategy, each image of one subject is matched with all the other images in the training set to obtain the 

distribution of matching distances. The point where the false acceptance rate equals to the false rejection rate 

is taken as the decision threshold t, and the width of the uncertain interval (refer to Fig. 3) can be set as w0. 

Then t1 and t2 can be determined as: t1= t-w0/2 and t2= t+w0/2. By using this strategy, the computed t1 and t2 

are 0.34 and 0.38, respectively, which are very close to the manually set thresholds (i.e., 0.35 and 0.39). 

In the global reconstruction scheme, we set the parameter λ in dictionary learning (i.e., in Eq. (5)) as 0.1 

by experience. The selection of parameter λ in dictionary learning has small influence on the final 

verification result in terms of EER. The parameter λ for l1-regularized coding in Eq. (6) and l2-regularized 
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coding in Eq. (8) is related to the number of atoms in dictionary D. We determine it by the following 

criterion: λ=0.5(n/990)2 in l1-regularized coding and λ=(n/990)2 in l2-regularized coding, where n is the 

number of atoms in the dictionary. In patch based reconstruction, the parameter λ in dictionary learning and 

coding is set as 1/10 of that in global reconstruction. The partition of patches is discussed in Section 6.5.  

Our method needs to train a dictionary D with atom number p≤k, where k is the number of samples in 

gallery set X. If p is too small, much information contained in the gallery sample set X can be lost and thus 

the test sample may not be well represented by the learned dictionary D. On the other hand, the commonly 

used l1-minmization solvers such as l1_ls have an empirical complexity of O(z2p1.3) [18] (z is the dimension 

of samples). So if p is big, the computational cost can be high. To balance the computational cost and the 

representation capability, we set the ratio of p to k as 0.7 in our method, and this configuration leads to 

satisfying experimental results. 

6.3 FKP verification results 

6.3.1 Experiment 1 

In this experiment, only the FKP images of the first 165 (out of the 660) fingers (i.e., 165×6=990 samples) 

are used as the gallery set. Hence, there are 5,940 genuine matchings and 3,914,460 imposter matchings, 

respectively. Fig. 9(a) plots the DET (Detection Error Tradeoff) curves, which are the plots of false rejection 

rates (FRR) against false acceptance rates (FAR) for all possible thresholds. Table 4 lists the results of 

competing methods in terms of EER and decidability index.  

It can be seen that the R-ABF methods outperform much ImCompCode, BLPOC and LFI. This validates 

that the reconstruction of query sample y can reduce much the image deformation induced intra-class 

distance, and the ABF rule can prevent the less discriminative reconstruction of y from being adopted for 

final decision making. Among the four variants of R-ABF, the l1-regularized ones have higher accuracy than 

the l2-regularized ones, while the patch based ones have higher accuracy than the global based ones. 

Specifically, R-ABF-p-l1 achieves the lowest EER. This is consistent with our discussions in Section 3. 

Table 5 lists the percentage of matchings in which the score from y or the reconstruction ŷ  is selected as 

the final matching score. We can see that for genuine matchings, about 40%~45% of the matching scores 

from ŷ  are selected by the ABF rule. For imposter matchings, about 28%~35% of the matching scores 
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from ŷ  are adopted. 

 
Figure 9: DET curves by different methods in (a) experiment 1; (b) experiment 2; and (c) experiment 3.  

 

Table 4: EER (%) values and decidability indices by the competing methods.  

Method 
Experiment 1 Experiment 2 Experiment 3 

EER 
(%) 

Decidability 
index 

EER 
(%) 

Decidability 
index 

EER 
(%) 

Decidability 
index 

ImCompCode [17] 1.62 4.1478 1.28 4.4518 1.39 4.4302 
BLPOC [18] 1.44 4.1925 1.35 3.4311 1.44 3.4218 

LFI [20] 1.32 4.1951 1.03 4.4821 1.13 4.4625 
R-ABF-g-l1 1.24 4.2291 0.84 4.5699 0.94 4.5305 
R-ABF-p-l1 1.12 4.2309 0.76 4.6385 0.82 4.2572 
R-ABF-g-l2 1.27 4.1948 0.91 4.5014 1.19 4.1882 
R-ABF-p-l2 1.28 4.2170 0.82 4.6188 0.92 4.2461 
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Table 5: The percentage (%) of matchings in which the score from y or ŷ   is selected. 

 Matching type 
Experiment 1 Experiment 2 Experiment 3 

1=1 2=1 1=1 2=1 1=1 2=1 
Genuine 60 40 55 45 57 43 
Imposter 71.59 28.41 65.36 34.61 68.74 31.26 

 

 
6.3.2 Experiment 2 

In the 2nd experiment, 330 classes are involved in the gallery set. Therefore, the numbers of genuine and 

imposter matchings are 11,880 and 7,828,920, respectively. Fig. 9 (b) shows the DET curves by the different 

verification schemes, while the EER values and decidability indices are listed in Table 4. The percentage of 

matchings in which the score from the reconstruction ŷ  is selected is listed in Table 5. Again, the proposed 

R-ABF methods get much better results than ImCompCode, BLPOC and LFI. 

 
6.3.3 Experiment 3 

At last, all the classes (i.e., all fingers) are involved in the gallery set, and the numbers of genuine and 

imposter matchings are 23,760 and 15,657,840, respectively. The DET curves by different verification 

schemes are illustrated in Fig. 9(c). Table 4 lists the EER values and decidability indices, and Table 5 lists the 

percentage of matchings in which the score from the reconstruction ŷ  is selected. Similar conclusions to 

the previous two experiments can be made. 

It can be seen that the EER decreases from Experiment 1 to Experiment 2, and increases from Experiment 

2 to Experiment 3. The reason can be as follows. From Experiment 1 to Experiment 3, the number of gallery 

classes is increasing. The increased number of gallery samples makes the dictionary D more capable to 

reconstruct the query sample, but it also makes the verification tasks more challenging. There are only 165 

gallery classes in Experiment 1, so the learned dictionary D may not be representative enough to reconstruct 

the query sample. The number of gallery classes is increased to 330 in Experiment 2, and the 

representativeness of D is much improved so that the FAR and FRR are decreased simultaneously. As a 

consequence, the overall EER in Experiment 2 is reduced. With 330 gallery classes, the representativeness of 

learned dictionary D is already good. Thus, the benefit of using 660 gallery classes in Experiment 3 is not 

big in term of learning dictionary D; however, the FAR and FRR are increased simultaneously due to the 
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increased number of gallery classes, resulting in a bigger EER than Experiment 2. 

6.4 Integrating with global features 

The LGIC scheme [15] combines CompCode, which employs the image local orientation features, and 

BLPOC, which employs the global Fourier transform features. In this section, for fair comparison, we also 

combine R-ABF, which basically employs the image local orientation features, with the BLPOC method in 

the same way as that in [15]. According to the reconstruction strategy, we denote the fused methods as 

R-ABF-g-l1+BLPOC, R-ABF-g-l2+BLPOC, R-ABF-p-l1+BLPOC and R-ABF-p-l2+BLPOC, respectively. 

We compare the performance of LGIC with the proposed methods under the same experiment settings as 

described in Section 6.3. The combination of LFI and BLPOC is also used for more comprehensive 

comparison. The DET curves of the competing methods are shown in Fig. 10, and the EER values and 

decidability indices are summarized in Table 6.  

From the experimental results in both Sections 6.3 and 6.4, we can see that the proposed R-ABF scheme 

leads to state-of-the-art verification accuracy, no matter using only the local orientation feature or using both 

local and global features. Specifically, the R-ABF-p-l1 and R-ABF-p-l1+BLPOC methods achieve the best 

accuracy, respectively. By relaxing the l1-regularized sparsity constraint in the reconstruction, the 

l2-regularized reconstruction can also lead to very competitive verification results but with much less 

complexity, which is a good solution in practical FKP recognition systems.  
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Figure 10: DET curves by the fused methods in (a) experiment 1; (b) experiment 2; and (c) experiment 3.  

 

Table 6: EER (%) values and decidability indices by the competing methods.  

Method 
Experiment 1 Experiment 2 Experiment 3 

EER 
(%) 

Decidability 
index 

EER 
(%) 

Decidability 
index 

EER 
(%) 

Decidability 
index 

LGIC [19] 0.38 4.3882 0.39 4.6182 0.41 4.6522 
LFI+BLPOC 0.33 4.3946 0.35 4.6378 0.35 4.6635 

R-ABF-g-l1+BLPOC 0.29 4.4197 0.25 4.6886 0.29 4.6940 
R-ABF-p-l1+BLPOC 0.25 4.4150 0.21 4.7479 0.22 4.4823 
R-ABF-g-l2+BLPOC 0.29 4.4048 0.29 4.5937 0.33 4.4641 
R-ABF-p-l2+BLPOC 0.27 4.4076 0.26 4.7354 0.26 4.4764 
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6.5 Discussions 

In the proposed method, we learn a dictionary D from the gallery set to reconstruct a query sample. When a 

new subject is enrolled, we can update D by solving Eq. (5). However, if the dataset has a large scale, this 

can be very costly. Fortunately, it is not necessary to update D for a new enrollment in large-scale dataset. 

The dictionary D in our algorithm is just used for reconstruction, and it is not used in the classification 

stage. This is very different from the works in [21-23], where the atoms in the dictionary have class labels 

and they will be used to calculate the class-specific distances for classification. The role of dictionary D in 

our work is similar to the dictionaries in image restoration such as K-SVD [19]. There are no class labels of 

the atoms in D, and D is a universal dictionary shared by all classes. Once enough gallery classes are 

involved in learning the dictionary D, this D will be able to well represent any FKP image. Therefore, when 

there are some new enrollments, we actually do not need to update the dictionary. Kindly note that the online 

learning algorithms in [33, 34] aim for updating classifiers when new individuals are enrolled. The problem 

is very different from ours. 

Let us use two experiments to validate the above statement. We use the first 600 classes out of the 660 

classes in the PolyU FKP database as the gallery set (6 samples per class in the first session) to learn a 

dictionary, denoted by D1. We then use all the 660 classes to learn another dictionary, denoted by D2. In the 

first experiment, we take D1 as the dictionary and take the 60 new classes (6 samples per class) as the query 

set, and the EER is 0.8% by the proposed R-ABF-g-l2 method. If we take D2 as the dictionary and take the 60 

same classes as the query set, the EER is 0.76% by R-ABF-g-l2. In the second experiment, with D1 and using 

all the 660 classes as the query set (6 samples per class in the second session), the EER is 1.21% by 

R-ABF-g-l2, while with D2 and using all the 660 classes as the query set, the EER is 1.19% by R-ABF-g-l2. 

Clearly, in both the two experiments, the EER values by D1 and D2 are very close, implying that there is no 

necessary to further update the dictionary since D1 is already good in reconstruction.  

If we do want to update the dictionary D when new enrollments come, there are two strategies to save 

cost. First, we can update D once a batch of new enrollments is available. Second, we can let the new 

dictionary be Dnew= [Do Da], where Do is the old dictionary and Da includes the new atoms to be added. In 

this way, we only need to learn the several new atoms by using dictionary learning algorithms such as [21].  
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7. Conclusions 

This paper presented a novel reconstruction based finger-knuckle-print (FKP) verification method to reduce 

the false rejections caused by finger pose variations in data collection process. For an input query image 

whose matching distance falls into the uncertain interval, we reconstructed a new version of it by using a 

dictionary learned from the gallery set. Then a new matching distance can be obtained. An adaptive binary 

fusion (ABF) rule was then proposed to fuse the two matching distances for the final decision making. The 

proposed reconstruction based FKP verification with ABF, denoted by R-ABF, can effectively reduce the 

false rejections without increasing much the false acceptances. Our extensive experimental results 

demonstrated that the R-ABF can result in much lower equal error rate than existing state-of-the-art methods. 
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