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Abstract

The planning and evaluation of left atrial ablation procedures are commonly based on the

segmentation of the left atrium, which is a challenging task due to large anatomical variations. In

this paper, we propose an automatic approach for segmenting the left atrium from magnetic

resonance imagery. The segmentation problem is formulated as a problem in variational region

growing. In particular, the method starts locally by searching for a seed region of the left atrium

from an MR slice. A global constraint is imposed by applying a shape prior to the left atrium

represented by Zernike moments. The overall growing process is guided by the robust statistics of

intensities from the seed region along with the shape prior to capture the entire atrial region. The

robustness and accuracy of our approach are demonstrated by experimental results from 64 human

MR images.
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I. Introduction

Automatic segmentation of the left atrium (LA) from MR images is a challenging but major

task in medical imaging analysis. An important application is concerned with the treatment

of left atrial fibrillation [1]. Atrial fibrillation is a cardiac arrhythmia characterized by

unsynchronized electrical activity in the atrial chambers of the heart. One of the treatments

for such arrhythmia is the catheter ablation, which targets specific parts of the LA for radio-

frequency ablation using an intracardiac catheter [2]. Application of radio-frequency energy
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to the cardiac tissue causes thermal injury, which in turn results into scar tissue. Successful

ablation can eliminate, or isolate, the problematic sources of electrical activity and

effectively cure atrial fibrillation. In order to perform such ablation, the extraction of the LA

from the late gadolinium enhancement MR (LGE-MR) images is required and is often

performed manually, which is a very time-consuming task. On the other hand, automatic LA

segmentation is attractive but challenging due to the following factors: 1) the LA size is

relatively small as compared to the left ventricle (LV) or lungs in cardiac MR images; 2)

boundaries are not clearly defined when the blood pool goes into the pulmonary veins from

the LA; 3) the shape variability of the LA is large across subjects.

A. Related Work

In the literature, heart segmentation has been investigated for decades, of which the main

focus has been on extracting the ventricles [3], [4]. Advances have been made in whole heart

segmentation from CT and MR images [5]–[8]. Heart models are used in many of the state-

of-the-art methods for segmentation. In general, the anatomical structure of heart is modeled

either by a triangulated surface or labeled images. A cost functional is commonly defined

driven by the model parameters and image content. Once the model is globally localized, the

cost function is optimized by deforming the model to match image information. These

methods achieve high overall accuracy since the whole heart is modeled so that the

components with strong features, e.g., the LV, help to reduce possible mis-alignments.

However, there has not been as much work reported for the automatic segmentation of the

LA from MR images. Some nice research aimed at LA segmentation was focused on MR

Angiography (MRA) data [9]–[11], where the LA blood pool is highlighted. The geometric

characteristics of the heart chambers are used [9], [10] to identify the LA on the blood pool

surface using a divide-and-merge strategy. In particular, the surface is decomposed into

different subdivisions based on the observation that neighboring heart chambers can be

separated by cutting the locations where the blood pool narrows. The challenges these

surface-decomposition-based techniques face include the wide variability of intensity

distributions and of the anatomic structures of the LA across subjects. To capture a patient

specific LA from C-arm CT images, the LA chamber and pulmonary veins are modeled

separately as parts of an LA model [12].

In contrast to surface-based modeling, atlas-based methods consider the LA segmentation

from another perspective by using transformations found after registering training images to

a target image to align the labels of the training images for segmentation. Different

strategies, e.g., weighted voting [11], are used to build a consistent solution for final

segmentation. The initial registered atlases can also be refined by using a region-based

active contor model [13]. Another common way of representing an anatomical surface is by

learning a subspace of the shapes using the principal component analysis (PCA) technique.

In [14], the shape space of the LA is defined as a linear combination of eigen-shapes

returned by applying the PCA to labeled training images. Then, segmentation is

accomplished via evolving active contors in the shape space.

One common feature shared with most of the methods described so far is that they start with

some global localization and then capture local details. This strategy works well when

Zhu et al. Page 2

IEEE Trans Image Process. Author manuscript; available in PMC 2014 April 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



global features of a given object are well-defined, but may not hold for small structures such

as the LA in an MR image, since the contribution to a cost functional may be overwhelmed

by large structures such as the LV or strong artifacts associated with image quality. Instead

of starting globally, region growing provides another perspective to the problem that begins

locally to capture the entire target. This local property makes it more adaptive to variations

of the dataset. In region-growing approaches [15], starting from seed regions, voxels

neighboring to a given voxel are merged according to an aggregation criterion. Image

intensity homogeneity is a widely used criterion in a growing process. For example, the

statistics of intensities in a region are used to evaluate the homogeneity for region growing

[16], [17]. The preliminary results reported in [18] shows promising results of segmenting

the LA using the region-growing-based framework. Shape priors can be naturally

incorporated into a growing process to segment complex objects. Typically, these priors are

defined as some distance between reference and observed shapes. A point-wise metric such

as the signed distance function between two shapes may be utilized with the prior

information [19], [20]. To this end, the reference shape needs to be aligned to the observed

shape before computing the shape distance. A more abstract way of defining shape distance

employs shape moments, which removes the requirement of aligning shapes for the distance

computation. Legender moments has been proposed to represent a shape prior for 2D images

[21]. The results in [22] demonstrate the advantages of using the Zernike moments [23] in

2D image recognition over other moments-based priors in terms of accuracy and robustness.

The generalization to the 3D case was reported in [24], which has been applied to 3D shape

retrieval [25].

The purpose of this work is to develop an automatic segmentation technique that is robust to

the large variability of the LA datasets. To this end, a variational region-growing framework

was adopted which starts locally by searching for a seed region of the LA from a slice of an

MR image. To prevent leakage in the growing process, a shape prior represented by the

Zernike moments is employed. The overall process is fully automatic and easy to

implement.

B. Contributions

The main contributions of the present work are as follows:

1. In seed region extraction, we present an effective way to locate the LA that is not

sensitive to changes of volume coverage, intensity distribution, and atrial shapes.

2. We formulate the problem of LA segmentation in a variational region-growing

framework, incorporating a shape prior that is invariant to rotation, translation, and

scaling. The advantage of this formulation is that it explicitly separates

segmentation from registration when applying a shape prior, rather than needing to

optimize over additional pose parameters.

3. Instead of fixing the weights while including prior information, the proposed

method adaptively adjusts the weights between the data-driven term and shape

prior constraint. The rationale is that, when the volume of a region is very small,

the data-driven force term plays the main role; as the volume increases, the shape

prior force term gradually dominates the overall process.
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The remainder of this paper is organized as follows. In Section II, we describe the proposed

region-growing method, and show how to locate a proper seed region and formulate the LA

segmentation problem using a variational framework with a shape prior. In Section III, we

provide some experimental results elucidating the proposed methodology. Finally, in

Section IV, we draw some conclusions and outline some future research directions.

II. Proposed Method

The proposed method consists of two key steps: (1) search for a seed region of the LA from

an MR slice in the axial view. (2) explore the LA region using a variational region-growing

process. A shape prior is employed to drive the growing process towards atrium-like shapes.

A. Seed Region Extraction

In region growing, it is common to initialize the seed region close to the center of the target

to be segmented. Suppose an MR image is oriented along the axial plane. Then, as shown in

Figure 1, two features may be utilized to facilitate this task: i) partial boundaries exist that

distinguish the LA from other heart chambers, e.g., the mitral valve (MV) between the LV

and LA (Figure 1 (b), (c), and (e)); ii) the spatial relation between the LV and LA in the

axial view may imply how close a slice is to the center of mass of the LA, which we call the

“centrality” of a slice with respect to the center of mass of the LA (see Figure 1 (d)~(f)).

Suppose the world coordinates XYZ trace from right to left, posterior to anterior, and

inferior to superior, in which the origin of XY plane is defined as the bottom left of a slice.

Denote the LA and LV regions extracted from a slice Ii as ILA and ILV, respectively. Then,

the centrality of the slice Ii is approximated by

(1)

where A(·) is the area of a region, and d(p, ILA) is the Euclidean distance from a point p to

ILA. The first part of this equation evaluates the significance of the LV with respect to the

LA, and the second part measures the greatest distance from the LV region to the LA region.

Figure 2 shows the values of g for the three different cardiac MR images in Figure 1 (b)~(d),

where the LV and the LA are completely covered in the Z direction (about 110 mm). This

indicates that a centralized slice has a relatively small g value and the central slices are close

to their middle slices as well. Based on these observations, we propose an effective method

for detecting a seed region inside the LA. It begins from the middle slice IMID of an MR

image and searches for the seed region in a specific range around IMID (10 mm below and

above) along the Z direction. On each slice, a seed region is detected, which is utilized to

find approximations for the LA and the LV regions to measure the slice centrality g. The

search process stops when termination conditions are satisfied. For MR images with wider

coverages along the Z direction, g may be utilized as well to find a central slice by changing

the initial search slice accordingly. The overview of the seed detection process is

summarized in Algorithm 1. The key steps are described in the following sections.
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1) Heart Region Detection—To evaluate the centrality g of a slice Ii, the heart region

that contains the LA and the LV needs to be segmented. As a pre-processing step, the low

intensity background outside of the chest is removed by using the Ostu's method [26], which

automatically determines the best separation of an image histogram. The largest bounding

box of the foreground pixels is set as the region of interest (ROI) for further processing.

Since the heart region has higher intensity values than its surrounding structures (such as the

lungs), a coarse segmentation is first extracted via thresholding, which is then refined by

utilizing a localized region-based active contor model [13], [27] due to the complexity of the

heart region being viewed from an MR slice where global-based segmentation methods [28]

may fail.

The threshold for a coarse segmentation is determined as

(2)

where Tglobal is the intensity threshold returned by applying the Ostu's method again inside

the ROI and Tlocal is the mean intensity inside the LA mask obtained from training images

(see Section III-A). This thresholding strategy reduces the possibility of missing the heart

region while only the global threshold Tglobal is used when the liver or thoracic wall has

very high intensities. After applying a morphological opening operator to remove noisy

structures, we get a set of connected components L = {Lk}, k = 1, . . . , Ncon, where Ncon is

the number of the components. The heart region is chosen as Lk* such that

(3)

where A(Lk) is the area of component Lk, and d(Lk, CROI) is the Euclidean distance from the

center of component Lk to the center of the ROI, denoted by CROI. This measurement favors

large regions with small distance to the center of the ROI.

The localized region-based active contor energy functional [13], [27] used for refinement is

defined as

(4)

where δ(·) is the Dirac function, ϕ is the signed distance function of a contor defined over

the image domain  with positive distances inside and negative distances otherwise.

B(x, y) is a ball of radius RLG centered at x. F(I (y), ϕ(y)) is a generic internal energy

measure used to represent local adherence to a given model at each point along the contor.

In this work, a localized Chan-Vese energy [13], [28] is used. The term weighted by λLG is

a regularization term that measures the arclength of the contor.

2) Seed Region Extraction—Denote the coordinates of a point p in slice Ii as (p1, p2).

As illustrated in Figure 1, the LA lies at the central bottom of the heart region. To narrow

down the search space, the seed region is explored within the detected heart region Iheart in

the following manner. To begin with, the magnitude of the gradient inside the ROI is

computed, which is then thresholded by using its mean gradient. After that, an edge map
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Iedge of this binarized image is obtained by applying a binary thinning operation. Next, a

distance field image Idist is constructed by performing distance transform [29] on the edge

image. The distance values outside Iheart are set as zero. Finally, the location of a seed

region is detected by searching for a circular region SLA(p*, r) of a fixed radius r centered at

point p* such that

(5)

where B(p, r) is a ball of fixed radius r centered at point p, and d(p, Pref) is the Euclidean

distance from p to a reference point Pref. Denote the set of points inside Iheart as ,

i = 1, . . ., Nht, where Nht is the cardinality of the set. The components of the reference point

 are determined as

(6)

where tref is a constant to prevent the center of SLA(p*, r) being attracted to heart boundary.

As can be seen from equ. (6), the reference point actually lies vertically below the center of

Iheart, which is closer to the LA than to any other structures inside Iheart. The radius of

SLA(p*, r) is set so that the circular region is completely contained in the LA region, which

is empirically set as r = 10 mm.

Figure 3 illustrates the process of detecting a seed region. Note that, although there does not

exist closed contor that identifies the LA, partial edges, e.g., the mitral valve, were detected.

Thus, a distinct cluster containing the LA was formed on each of the distance maps. Seed

regions were successfully identified using the measurement defined in eq. (5).

3) Slice Centralization—To check whether the current slice Ii is approximately

centralized with respect to the LA, the appropriate areas of the LA and LV need to be

determined. To this end, a morphological opening operator is performed on the distance

image Idist to isolate the LA region from other structures, which returns a group of

connected regions. The one containing SLA is selected as the mask of the LA. In this step,

the size of the structure element in the opening operation needs to be smaller than the largest

value of Idist, denoted by dmax, but large enough to disconnect the LA from other structures.

Thus, this value is empirically set as 0.8dmax.

The determination of the LV region is based on the fact that it resides to the top right of LA

as shown in Figure 1. Thus, the center of a seed region p* is used as a reference origin, with

respect to which to divide the top right quadrant equally into two sections. In each of these

two sections, the closest point between the boundary of Iheart and p* is used as a start/end

point for the LV boundary. Connecting these two points to p* gives a close contor for the

LV region and the points inside ILA are removed to get an approximation of ILV. Figure 4

shows the extracted LV and LA regions for the three slices in Figure 3.
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The threshold tg used to guide the centralization process is obtained from training images

(see Section III-B.1). Once a centralized slice is found, its seed radius is adjusted such that

r* = maxr{Idist(q) > 0, ∀q ∈ SLA(p*,r)}.

B. Variational Region Growing With a Shape Prior

Given a properly determined seed region, the robust statistics [30] of intensities inside the

region may be employed to explore the entire LA. However, evolution leakage is almost

inevitable because the computation of the statistics does not provide a global shape

constraint on evolving contors. Adding a regularization term can prevent leakage, but may

fail to capture finer details of the LA. Hence, a shape prior is applied to attract the growing

process towards an expected shape. The details of how to integrate this prior information

into the growing process is described in the following sections.

1) Variational Region Growing—The robust statistics have been integrated into a

generic variational region-growing framework for image segmentation [17]. Robust

statistics of intensities are evaluated to measure the homogeneity among neighboring voxels.

To this end, a feature vector is defined for each voxel  in an image as

(7)

where M E D(x), I Q R(x), and M A D(x) are the intensity median, inter-quartile range, and

median absolute deviation around a neighborhood of x, respectively. Denote the label map

of a seed region as G. Then, the seed region is characterized by the probability density

function of the feature vectors as

(8)

where K is the kernel function and |G| is the cardinality of G. A Gaussian kernel is used in

this work, the variance of which is chosen to be h times the MAD of the seed region. The

region-growing energy functional is defined as

(9)

which evaluates the intensity homogeneity inside a contor where ϕ > 0, and H is the

Heaviside function. The value of h controls the intensity homogeneity favored by the

growing process. The larger the value of h is, the more homogeneous regions the growing

process tries to explore. A regularization term is typically used, while applying this energy

for segmentation, to balance the growing force so that the evolution stops at an expected

location.

2) Zernike Moments as Shape Prior—The Zernike moments are many times used as a

shape descriptor because of their invariance to rotation. The 3D Zernike moments of an

object defined by I(x) are

Zhu et al. Page 7

IEEE Trans Image Process. Author manuscript; available in PMC 2014 April 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(10)

where  is the complex conjugate of the 3D Zernike functions

(11)

Rnl is a radial function and  is the spherical harmonics, where n is the degree of

polynomial in the components of , and m ∈ [–l, l], l

∈ [0, n] such that n – l is an even number. Denote the component of a point x as (x, y, z). As

shown in [25], eq. (10) can be rewritten as a linear combination of geometric moments

(12)

where  is the complex coefficient of the monomial xr yszt when  is expanded as a

linear combination of monomials, and Mrst is the geometric moments of order r + s + t

computed inside a unit ball. A rotationally invariant 3D Zernike descriptor is obtained by

taking the norms of vectors  to get rid of phase terms. The

invariance to translation and scale is achieved by computing the normalized central

moments ηrst for an object. The normalized central moments are defined as

(13)

where (x̄ , ȳ, z̄) is the center of mass of the object,  is the volume of the

object, and ρ is a scale factor so that the object is mapped into a unit ball by ((x –

x̄)/(ρK0)1/3, (y – ȳ)/(ρK0)1/3, (z – z̄)/(ρK0)1/3). That is, as in [25], an object is first

transformed to its center of mass and then rescaled into the unit ball before computing the

geometric moments.

The proposed shape prior defined between an evolving shape, implicitly represented by ϕ,

and a reference shape in terms of the Zernike moments is

(14)

By using the chain rule, the variational derivative of J(ϕ) with respect to ϕ is
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(15)

where n ∈ [0, NZM], l ∈ [0, n such that n – l be an even number, which NZM is the order of

the Zernike moments for a given shape. The variational derivative of ηrst with respect to ϕ is

given in the Appendix.

Gradient descent is employed to minimize J(ϕ). An example of deforming two canonical

geometric shapes, i.e., a sphere and a hyperbola, to minimize the shape distance defined in

eq. (14) is shown in Figure 5. Starting from those two significantly different shapes, the

evolution process deforms these shapes towards an LA shape prior of order 12. This shows

that the Zernike moments are powerful and suitable for representing the LA shapes.

3) Region Growing With a Shape Prior—Combining the region-growing energy eq.

(9) with the shape prior eq. (14), the energy functional to be minimized for the LA

segmentation is defined as

(16)

where the term weighted by γ is a regularization term that measures the surface area of the

LA. The function f(Vj) adjusts the weight between ERS(ϕ) and J(ϕ) based on the volume of

the evolving region Vj so that the robust statistic term dominates the growing process

initially and its role decreases as the volume of the region increases. Since a seed radius is

related to the volume of the LA to be segmented, the function f(Vj) is defined as

(17)

where μV and σV are the mean and standard deviation of the LA volumes from training

images, respectively. β is introduced to reflect the relation between a seed radius and the

volume of the LA to be segmented, which is defined as

(18)

where μr and σr are the mean and standard deviation of the radii of seed regions learned

from the training images (see Section III-A). The use of the floor function ⌊·⌋ gives the

flexibility to radius variation, i.e., for seed regions of radii within a range of σr have the

same impact on β. As can be seen from eq. (17), f(Vj) → 1 – γ when  and f(Vj) →
0 otherwise as expected.
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Starting from a given seed region, which is relatively small as compared to the average LA

size, a small value of h defined in ERS(ϕ) is preferred so that the growing force is strong

enough to capture the whole LA region. A large h value imposes a high homogeneous

constraint on the overall growing process, which may cause the process to stop before

reaching the LA boundary. We found that h = 0.1 works well in all of our experiments.

Note that Vj = K0, and thus the gradient descent flow of eq. (16) is

(19)

The last term is the curvature at point x, which smooths evolving contors.

C. Implementation

Numerically, the sparse level set method [31] was employed for the computer

implementation of the variational region-growing model because of its efficiency. In

particular, the upwind scheme was used in discretizing |∇(·)| in eq. (19) (see [32] for details).

III. Experiments and Results

A. Prior Learning

There were 16 Delayed Enhanced MR images (DE-MRI) used for learning prior information

and tuning parameters. These training data cover 110 mm in the Z direction, in which the

LA has wide shape variations and volume sizes (ranging from 66 to 237 ml). Manual

segmentations are available for each image.

The LA mask for determing the local threshold Tlocal may be obtained in the following

manner. First, for each centralized slice from the training image, a ROI is detected as

described in Section II-A.1. Then, the mask of its manual segmentation inside the ROI is

normalized to [–1, 1]×[–1, 1] by setting the origin at the center of the ROI. Finally, all

normalized masks are summed up and rescaled to [0, 1] as the spatial distribution of the LA

(see Figure 6(a)). The points with values greater than 0.5 were chosen as the LA mask.

When applying this mask to an MR slice to be segmented, it is rescaled to fit into the ROI of

the slice (see Figure 6(b)). Normalizing coordinates can compensate the differences of

volume coverages when applying the LA mask.

The scaling factor ρ in eq. (13) was computed as

(20)

where Ri is the greatest distance between points of an LA and its center of mass, Vi is its

volume. ρ = 31.3 was found from the training images. When applying this scale factor to

new images, points outside the unit ball determined by ρ were set to zero.
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To determine the parameters in eq. (17), the seed detection process was performed on each

central slice. The statistics of the final seed radii were μr = 11.6 mm, σr = 3.1 mm. The

average and standard deviation of manual segmentation volumes were μV = 106 ml and σV

45 ml, respectively. To compute the Zernike moments for=the LA, each manual

segmentation was used individually, and then these moments were averaged componentwise

as the shape prior. In the experiments, the order of the moments was set to be NZM = 12.

B. Parameter Determination and Sensitivity Test

1) Parameters in Seed Extraction—All the central slices from the training images were

used to determine the parameters for seed extraction. All of these slices have a resolution of

0.625 × 0.625 mm2. Specifically, the following three measures were used for the parameter

determination and sensitivity test: i) the average distance between the centers of seed regions

and their corresponding centers of manual segmentations, denoted by d̄(CSeed, CLA); ii) the

average radius of seed regions from the training images, denoted as ; iii) the average

distance between the centralities from manual segmentations (g̃) and proposed method (g),

denoted by d̄(g, g̃).

The parameters λLG and RLG in eq. (4) and tref in eq. (6) were determined as follows: First,

fix an empirical value tref = 50 pixels, then sweep the parameters λLG and RLG in the range

[0.2, 0.8] × [10, 20] to search for the minimum of d̄(g, g̃), since heart region detection may

affect the value of g. The optimal values were found to be λLG = 0.6 and RLG = 15 pixels

(9.38 mm) and the threshold of tg = 10 (6.25 mm) was chosen accordingly. Then, fix λLG

and RLG, and search for tref in the range from 2 to 120 pixels that minimizes d̄(CSeed, CLA),

because the seed location directly depends upon tref. The optimal value of tref was found to

be 58 pixels (36.25 mm).

The sensitivity of these three parameters to seed detection were examined by varying one

parameter in a given range while keeping the other two fixed. As an example, the impact of

tref on seed location and radius as it ranges from 2 to 120 pixels is shown in Figure 7.

Initially, d̄(CSeed, CLA) is very large but  is small, which means seed regions were all

attracted close to the heart boundary. When tref goes to infinity, i.e., eq. (5) is not normalized

by the distance to the reference point, d̄(CSeed, CLA) is relatively large, which means some

seed regions may not reside in the LA region. As can be seen from Figure 7, there is stable

region (when tref varies from 58 to 106 pixels) such that the seed locations and radii are not

sensitive to tref. The coefficient of variation [33], defined as the ratio of the standard

deviation to the mean, was used to evaluate the sensitivity of parameters to seed location,

radius, and slice centrality. The details of this test are summarized in Table I. It shows that

the seed location and radius are controlled by tref, while the slice centrality is mostly

affected by λLG and RLG. Also, these results indicate that the radii of seed regions are not

sensitive to parameters in the given range.

2) Parameters in Region Growing—Due to the computational complexity in

implementing the Zernike moments, the training data were resampled to 2 × 2 × 2 mm3

when tuning parameters, where the LA shape is×well-preserved. The average of the Dice

coefficient [34] between manual and automatic segmentations was used to determine
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parameters and test sensitivity of the region-growing process. The two parameters α and γ
defined in eq. (16) and (17) were determined by first empirically setting α = 0.01 and

searching for γ in the range [0.1, 0.9] that maximizes the average Dice coefficient. Then,

similarly, by fixing γ, we searched for α in the range [0.01, 0.1]. The optimal parameters

were found to be γ = 0.3 and α = 0.03. The coefficient of variation for the average Dice is

3% as α varies from 0.01 to 0.1 by fixing γ = 0.3, which means that α is robust in this

range. The sensitivity of γ will be discussed in the next section.

The sensitivity of seed perturbations to the LA segmentation was tested by translating and

scaling each seed region and comparing the changes of the average Dice values. For

translations, random tests were conducted to shift each seed region from [–10%, 10%] to [–

90%, 90%] of its radius r in the XY plane and along the Z direction separately. Regarding

scale, each seed region was randomly shrunk from 3% to 30% of its radius (about the range

of μr/σr = 27%, which is far larger than the sensitivity of parameters to seed radius (<2% as

shown in Table I)). Each case was randomly tested for 10 times and the average Dice

coefficient was computed. The testing results are given in Figure 8. Overall, perturbations in

translation is less sensitive than scaling to final segmentations, while perturbing the seed

region in XY plane affects segmentation more than along the Z direction. In the scaling test,

a sharp decrease of Dice happens after 18% of shrinking as a smaller seed region may

contain insufficient intensity information for capturing the whole LA region.

3) Importance of Prior Information—Figure 9 shows an example of the region-growing

process, in which Figure 9(f) is the segmentation result without using the prior information

by setting the coefficient of the prior to zero. It shows that the process explores

homogeneous regions at the beginning when the robust statistic force is dominant, and

gradually captures finer details when the shape prior starts to play a main role. The evolution

leakage was avoided by using the shape prior information. A common practice to prevent

evolution leakage in active contor models is by increasing the weight of the curvature term.

Thus, a comparison was made between segmentations with and without using the prior

information under varying γ from 0.1 to 0.9. The overall performance is shown in Figure

10. It was observed that, without using the prior, adding more weight to the curvature term

reduces evolution leakage and thus improves segmentations up to γ = 0.8. Afterwards, the

performance decreases as the curvature term causes under-segmentations since it favors

smooth surfaces. Better segmentations may be achieved by tuning γ case by case. On the

contrary, the curvature term had less effect when the shape prior was used which competes

with the smoothing force and favors LA-like shapes.

4) Moments Order and Computational Complexity—The proposed method was

implemented in C++ and tested on a computer with Quad CPU 3GHz, 8G RAM. In this test,

the training images were resampled to a resolution of 1×1×1 mm3 to test the time

complexity for higher resolution segmentation. The parameters learned from training images

at lower resolution were applied. Figure 11 shows the effect of moments order on

segmentation accuracy and computational complexity. As can be seen from this figure, there

is a slight improvement (about 3%) as the moments order goes from 10 to 20. On the other

hand, the average computational time per image increases sharply by 30 times as moments
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order goes to 20. In applications, we found the moments order of 12 gives a good balance of

time and accuracy.

C. Experiments With Cardiac MR Data

We evaluated the proposed segmentation method using 64 MR images from the

Comprehensive Arrhythmia Research and Management (CARMA) Center that are publicly

accessible at [35]. These data are Late-Gadolium Enhanced (LGE-MRI) from 32 patients

with atrial fibrillation (AF) who have undergone radiofrequency (RF) catheter ablation for

treatment of AF, of which 32 are images before RF ablation and others are after.

Enhancement is hypothesized to fibrosis or endocardial tissue that is correlated with the

progression of AF for the pre-ablation images, and that of post-ablation images is due

mainly to the scars. Thus, these data have large variations in terms of LA shape, intensity

range, and image quality.

In the experiments, the parameters learned from the training images were directly applied.

Starting from the middle slice, the proposed method succeeded in finding the seed regions

for all of the 64 images in presence of large intensity variations and noises, which provides

good initialization for the following region growing process. After the slice centralization

search, the average difference between the indices of automatic and manually determined

central slices was 1.4, which was 3.1 as measured from middle slices. An example of the

final segmentation results is shown in Figure 12 for two LAs with significantly different

shapes and volume coverages. The final segmentations capture the overall LA structure,

only missing parts of the pulmonary veins (PVs).

In addition, the proposed method was compared to the standard multi-atlas-based method

[36], [37]. Let  and , i = 1 · · · 16 be a set of label images, respectively. The multi-

atlas method works as follows: First, each training and images  is registered to a testing

image Ij to be segmented by searching for an optimal affine transformation  using

mutual information [38], [39] as a metric. Then, the corresponding label image  is

transformed using . Let  and  be the transformed training and label images,

respectively. Next, the non-zero region of  is selected as a ROI and refined by registering

the  to Ij using the B-Spline registration method [40]. After registering all the training

images to Ij, we get a set of transformed label images. Finally, these label images are

combined by applying a majority voting method [41] to get the segmentation of the LA.

To quantify errors, the standard Dice coefficient [34], volume overlap [42], surface distance

from the automatic to manual segmentations, and Hausdorff distance [43] (95% Hausdorff

distance [44]) were used. The comparison results are summarized in Table II. Overall, the

proposed method achieves better results in terms of accuracy and the worst cases. A case-

by-case comparison in terms of Dice and volume overlap is shown in Figure 13 where only

the results from the subjects with even ID indices are presented to save displaying space.

These detailed results show that the proposed method outperformed the atlas-based method
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in all of the 32 cases in terms of the Dice measurement, and in 30 out of 32 cases (other than

subjects 4 and 46) with respect to the volume overlap measurement.

In addition, the worst cases with respect to the Dice coefficient are given in Figure 14,

which illustrates the characteristics of these two types of methods. The proposed method is

more flexible to variations of the volume coverage and LA shapes because of its local

characteristics, while under-segmentation may occur due to extensive noise where the

information inside a seed region may not be able to characterize the intensities in the entire

LA volume. In addition, because of the underlying smoothness requirement in variational

derivations, the proposed method has lesser tendency to develop sharp changes over the

shape, which results in missing some of the regions around the PVs. The atlas-based method

suffers severely from changes in volume coverage since it is a global method. As shown in

Figure 14, the existence of an outlier (an arm) on the left side of the MR image makes the

final segmentation deviate away from the expected location, even though the overall

segmentation has a LA-like shape.

Though it is hard to make a fair comparison between different methods because of the use of

different datasets, the performance of our method seems to be competitive with some of the

latest results. For example, one state-of-theart method [8] reports a result of 0.81 ± 0.10

[0.47] and 0.69 ± 0.12 [0.30] for the Dice and volume overlap measures, respectively. The

referenced method achieves higher mean values since it uses a whole heart model that

contains richer information while interpreting an MR image. On the other hand, the

proposed method has a smaller standard deviation and better performance in the worst cases

because of its localized property, which specifically focuses on the LA.

IV. Conclusion

We have described an automatic segmentation scheme for extracting the LA from MR

images by using a variational region growing with a moments-based shape prior. The

method starts from searching for a seed region of the LA by utilizing the anatomical

characteristics of the LA. Then, it explores the LA region by employing locally computed

robust statistics of seed intensities and a shape prior that enforces a global guidance. Thus,

this method is robust to shape variations and image quality. The experimental results

indicate the ability of the proposed approach to give very reasonable results.

As indicated by the experimental results, challenges arise with segmentations near the PVs

and when the information in a circular seed can not characterize the whole LA region. The

first issue may be solved by incorporating certain geometric information of the PVs with

respect to the LA. For the second issue, we will investigate other seed shapes or extract seed

regions from other image views. In applications, we will use the segmentation results as

prior information to identify scars for MR images of post-ablations and apply the moments-

based shape prior for segmenting other anatomical structures.
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Appendix

Define a function Q(x, ϕ, K0, K1, K2, K3) as

(21)

where

(22)

Then eq. (13) can be rewritten as

(23)

By applying the chain rule, the variational derivative of ηrst with respect to ϕ is

(24)

where δ(·) is the Dirac function. It can be shown that the variational derivatives  are

(25)

(26)

(27)

(28)

The variational derivatives of Ki with respect to ϕ are
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(29)

Note that the results for computing the variational derivatives for 3D moments, equs.

(26)~(28), are similar to those of [21] for the 2D case.
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Fig. 1.
(a) Diagram of the heart, including the left ventricle (LV), right ventricle (RV), left atrium (LA), right atrium (RA), mitral valve

(MV), tricuspid valve (TV), and pulmonary veins (PVs). (b)~(c) Heart regions from two subjects with the LV and LA

highlighted. (d)~(e) The spatial relation between the LA and LV in the axial view as tracing from the bottom of the LA (d), to

the middle slice of the MR image (e), and the center of the LA (f).
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Fig. 2.
Examples of the centrality for the three MR images as shown in Fig. 1(b), (c), and (d), as the MR slices tracing from bottom to

up in the Z direction. The indices of central slice are marked by circles.
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Fig. 3.
First row from left to right: middle slices from three MR images. Second to fourth row from left to right: the corresponding heart

region (yellow), edges inside Iheart, distance map (the ’jet’ colormap was used where blue is zero, the smallest value), and

detected seed region with the same fixed radius r = 10 mm (red).
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Fig. 4.
Extracted LV (green) and LA (blue) for the three slices in Fig. 3.
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Fig. 5.
Deformation of sphere and hyperbola to a given LA shape. The moments order is 12.
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Fig. 6.
(a) Spatial distribution of the LA in the normalized coordinate. (b) The ROI (yellow) of the middle slice of an MR image and

applied LA mask (red).
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Fig. 7.
Impact of tref on d̄(CSeed, CLA) (Left) and  (Right).
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Fig. 8.
Variation of the average Dice coefficient as seed regions perturbed in translation (Left) and scaling (Right).
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Fig. 9.
Example of region-growing process. (a) Raw image. (b) to (e) The growing process with the shape prior. (f) Segmentation

without using the shape prior. Manual segmentation is highlighted in red.
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Fig. 10.
Comparison of the LA segmentation with and without using the prior information.
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Fig. 11.
Left: Effect of moments order on segmentation accuracy in terms of average Dice. Right: Average computational time per image

(in minute).
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Fig. 12.
Segmentations of the LA with sharp shape variations and wide volume coverages (second and fourth columns). From top to

bottom: the LA in axial, coronal, and sagittal views, respectively.
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Fig. 13.
Comparison of segmentation accuracy in terms of Dice (Left) and Volume Overlap (Right) between the proposed method

(green) and multi-atlas-based method (yellow).
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Fig. 14.
Comparison of the worst results (in terms of the Dice measurement) obtained using the proposed method (second column) and

the atlas-based method (fourth column). From top to bottom: the LA returned using the proposed method (yellow) and atlas-

based method (green) in axial, coronal, and sagittal views, respectively.
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Zhu et al. Page 34

Algorithm 1

Seed Region Extraction

1: Initialize Ii as the middle slice

2: Segment the heart region Iheart on Ii

3: Extract a seed region inside Iheart

4: Evaluate the centrality g(Ii)

5: If g(IMID) is above a threshold tg, go to a upper slice and repeat steps 2-4 until g(Ii) < tg; otherwise, go to a lower slice and repeat steps 2-4
until g(Ii) > tg. Both cases are terminated when Ii is out of the search range

6: Once the slice is centralized, adjust the seed radius
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TABLE I

Coefficient of Variation for Parameters in Seed Extraction

Parameters Range d̄(CSeed, CLA) r ∗̄ d̄(g,g̃)

λ LG [0.2, 0.8] 4.0% 1.0% 20.6%

R LG [10, 20] 5.5% 1.1% 16.0%

t ref [58, 106] 12.5% 1.4% 1.0%
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TABLE II

Comparison of Segmentation Accuracy Between the Proposed Method and Multi-Atlas-Based Method

Measurements Proposed Method Multi-Atalas

Dice [min] 0.79 ± 0.05 [0.67] 0.69 ± 0.11 [0.27]

Overlap [min] 0.65 ± 0.07 [0.50] 0.54 ± 0.13 [0.15]

Surface distance (mm) 2.79 ± 2.84
5.36 ± 4.60

*

Hausdorff [95%] (mm) 14.40 ± 3.65 [8.39 ± 2.06]
23.10 ± 9.25

*
 [13.01 ± 3.59]

*
Cases with Dice < 0.60 were regarded as completely failures and excluded from computation.
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