
1

Fast tomographic reconstruction from limited data
using artificial neural networks

Daniël M. Pelt* and Kees Joost Batenburg

Abstract—Image reconstruction from a small number of pro-
jections is a challenging problem in tomography. Advanced
algorithms that incorporate prior knowledge can sometimes
produce accurate reconstructions, but they typically require long
computation time. Furthermore, the required prior knowledge
can be very specific, limiting the type of images that can
be reconstructed. Here, we present a reconstruction method
that automatically learns prior knowledge using an artificial
neural network. We show that this method can be viewed as a
combination of filtered backprojection steps, and, as a result, has
a relatively low computational cost. Results for two different cases
show that the new method is able to use the learned information
to produce high quality reconstructions in short time, even when
presented with a small number of projections.

Index Terms—tomography, machine learning, filtered backpro-
jection

EDICS categories: COI-TOM, TEC-FOR

I. INTRODUCTION

THE MAIN problem in tomography is the reconstruction
of an unknown image from its projections, acquired along

a range of angles. This problem occurs in many real world
applications, such as X-ray tomography in medical imaging
and electron tomography in materials science. Because of
its practical relevance, a large amount of research has been
devoted to developing tomographic reconstruction methods
(see [1]–[3] for an overview). Most common reconstruction
methods can be divided into two groups: analytical methods
and algebraic methods.

Analytical methods, of which filtered backprojection (FBP)
is the most widely used example, are based on a continuous
representation of the reconstruction problem. An analytical
inverse formula of the Radon transform is discretized to
obtain a reconstruction algorithm. The advantage of analytical
methods is that they are usually computationally inexpensive.
However, the approach is based on the assumption that the
projection data is available for all angles, which is clearly not
feasible in practice. As a result, the reconstruction quality of
analytical methods tends to become unacceptable when data
is only available for a small number of angles.

In several application of tomography, practical consider-
ations limit the number of angles for which data can be
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acquired. These reconstruction problems are known as limited-
data problems. For example, in electron tomography, the elec-
tron beam damages the sample, imposing a strong limitation
on the number of angles [4]. Furthermore, in most applica-
tions, acquiring data for more projection angles requires more
time. In industrial tomography, process speed considerations
limit the total scan duration, making only a limited number of
angles possible [5]. For such problems, algorithms are needed
that can create accurate reconstructions from limited data.

Algebraic reconstruction methods, such as ART and SIRT
[1], often handle limited-data problems better than analytical
methods. They are based on a discrete representation of the
problem, which leads to a system of linear equations. These
equations can be solved using iterative methods. Since these
methods are based on a model of the data that is actually
available, they can lead to more accurate reconstructions than
analytical methods. The computational cost of these methods
is high however, often several orders of magnitude larger
than analytical methods, even when using highly optimized
implementations on graphic processor units (GPUs) [6].

Recently, a range of algebraic methods have been developed
that exploit prior knowledge about the unknown image to solve
limited-data problems even more accurately. For example, total
variation minimization based methods, such as FISTA [7], can
compute accurate reconstructions if the image has a sparse
gradient [8]. In discrete tomography, reconstruction methods
like DART [9] can solve limited-data problems where the
original image is known to consist of only a small number of
different grey levels. Although these methods produce accurate
results in many cases, they have two main disadvantages:
(i) they are based on algebraic methods, sharing their high
computational cost; (ii) the specific prior knowledge can limit
the types of images that can be reconstructed. As an example
of the second point, total variation minimization methods can
only accurately reconstruct objects with a sparse gradient.

In this paper, we present a reconstruction method for
limited-data problems that is specifically designed to avoid
both problems. The method is computationally similar to
analytical methods, ensuring a low computational cost. Fur-
thermore, the method learns how to use problem specific
knowledge to produce more accurate reconstructions than
existing analytical methods. This learning is accomplished by
using an artificial neural network (ANN). No specific prior
knowledge has to be presented to the method, making it
applicable to any type of image. The result is a very general
method, able to produce accurate reconstructions in short time.

Artificial neural networks have been applied to tomographic
reconstruction problems by several authors (see, e.g. [10] for
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an overview in the context of medical imaging). Some previous
approaches have focused on directly solving a single instance
of the tomographic reconstruction problem using a Hopfield
neural network as an optimization tool [11]–[15]. These meth-
ods compute reconstructions by minimizing the difference
between the measured projection data and projections of the
reconstructed object. As such, they are essentially algebraic
reconstruction methods, since the objective function that is
minimized is algebraic in nature. Since the neural networks
have to solve a nonlinear system instead of a linear one, the
reconstruction time of these methods is often even larger than
the reconstruction time of linear algebraic methods.

Other previous work on using neural networks to solve
tomographic problems is based on methods with a separate
training phase, where the neural network is trained on a set of
example images [16]–[20]. In subsequent reconstruction steps,
no additional training is performed. In these methods, the
neural network reconstructs the entire image from the available
projection data, an approach that leads to large network sizes.
Because of this large size, the training phase of these methods
can take a long time. Furthermore, the number of example
images that the network can be trained on is typically small,
limiting the reconstruction accuracy and generalizability that
can be obtained (see, for example, [18]). In particular, we have
not found reports on successful application of such methods
to reconstruction problems involving large images (i.e. slices
of 512×512 pixels or larger).

In this paper we present a novel neural network approach to
tomography, which does not have the aforementioned draw-
backs. Our approach has some similarities to previous meth-
ods, such as a separate training phase, yet we use a different
network model. In our model, the network reconstructs a single
pixel of the reconstruction grid, using reduced projection data.
This approach leads to small network sizes, which leads to fast
training times, and enables us to use advanced neural network
training methods. Furthermore, in our approach, each pixel of
an example image can be used as an independent example
during training. Therefore, we are able to use a large number
of examples to train the neural network on. As a result, the
trained networks yield accurate reconstructions from limited
data, as well as robustness to noise.

A somewhat similar method is given in [19], [21], where
the reconstruction step is implemented by using the neural
network as a black box, resulting in a slow reconstruction
method. In the current paper, a different network model is
chosen, such that it can be viewed as an analytical recon-
struction method, having both a low computational cost and
a high reconstruction accuracy. As a result, our approach can
be applied to large datasets, at a computational cost that is
comparable to analytical methods.

This paper is structured as follows. In Section II, we
formally define the tomographic reconstruction problem and
artificial neural networks. Section III introduces the new
reconstruction method, which is the key contribution of this
paper. We discuss how we implemented this method in Sec-
tion IV. In Section V, we describe the experiments that we
performed to compare the reconstruction time and accuracy of
the new method with existing methods. The results of these

Fig. 1. The tomography model used in this paper. Several parallel lines,
rotated by angle θ, are passing through the object f . Each line has a
characteristic equation t = x cos θ + y sin θ, with constant t. The projection
Pθ of f is given by the line integrals of f over the different parallel lines.

experiments are given in Section VI, along with a discussion
of these results. We conclude the paper in Section VII with a
summary and some final remarks.

II. NOTATION AND CONCEPTS

In this section, we will define the mathematical notation
that is used in the rest of the paper, and introduce the
relevant concepts. First, we formally define the tomographic
reconstruction problem, and the popular filtered backprojection
algorithm. Then, we introduce artificial neural networks, the
mathematical construct on which our new method is based.

A. Problem definition
We will focus in this paper on reconstructing two-

dimensional objects from parallel-beam projections with a
single rotation axis. The unknown object is modeled as a two-
dimensional finite and integrable function f : R2 → R with
bounded support. We define a projection Pθ of f as the line
integral of f(x, y) over line lθ:

Pθ(t) =

∫
lθ

f(x, y) ds (1)

=

∫∫
R2

f(x, y)δ(x cos θ + y sin θ − t) dxdy (2)

This integral transform is called the Radon transform of f .
Given an image f(x, y), we can model the projection

geometry in parallel-beam tomography as a number of parallel
lines going through f , each rotated by a certain projection
angle θ. A point (x, y) on one such line lθ obeys the equation
t = x cos θ + y sin θ. For each line lθ, a unique constant t
defines all points on that line. This model is shown graphically
in Fig. 1. The basic tomographic problem is to reconstruct the
unknown image f(x, y) from the measured projections.

In practice, only discrete projection data is available, which
consists of a matrix of measured values, one for each combi-
nation of Nθ projection angles θ ∈ Θ = {θ0, θ1, . . . , θNθ−1}
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and Nd detectors p ∈ {0, 1, . . . , Nd − 1}. The position of a
detector p relative to the central detector is given by τp:

τp = d

(
p− Nd − 1

2

)
, (3)

where d is the width of a detector. The entire set of detector
positions is given by T = {τ0, τ1, . . . , τNd−1}.

The projection data is used to reconstruct f on an N ×N
grid of square pixels. Without loss of generality, we define that
each pixel has a width and height of one, and that the center
of the grid is positioned at the origin. In this case, the center
of pixel (xi, yj) is situated in row j and column i of the pixel
grid, with i ∈ {0, 1, . . . , N − 1} and j ∈ {0, 1, . . . , N − 1},
and xi = yi = i− (N − 1)/2.

B. Filtered back projection

One way of solving the reconstruction problem is to find a
direct inverse of Eq. (2). To perform this inversion, we first
convolve the projection data with a filter hθ(t):

qθ(t) =

∫ ∞
−∞

hθ(τ)Pθ(t− τ)dτ (4)

We can also perform this operation in Fourier domain, where
P̂ and H denote the Fourier transforms of P and h:

qθ(t) =

∫ ∞
−∞

P̂θ(u)Hθ(u)e2πıutdu (5)

By taking the formal adjoint of the Radon transform, it can
be shown that if Hθ(u) = |u|, we obtain a direct inverse of
Eq. (2) [1]:

f(x, y) =

∫ π

0

qθ(x cos θ + y sin θ)dθ (6)

In practice, Eq. (6) cannot be used directly, since Pθ(t) can
only be measured for a finite set of angles Θ and a finite set
of detector positions T . Therefore, we need to discretize both
variables to obtain a usable reconstruction algorithm. Inserting
Eq. (4) in Eq. (6) and discretizing, we obtain the filtered back
projection method (FBP):

f(x, y) ≈ FBPh(x, y) =
∑
θd∈Θ

∑
τp∈T

h(τp)Pθd(t− τp) (7)

where t = x cos θd + y sin θd. Because the projection data
is discretized, interpolation is needed to obtain its values at
t − τp, for τp ∈ T . Linear interpolation is often adequate,
since projection data is usually reasonably smooth.

The convolution operation in Eq. (7) can be performed in
Fourier space, leading to an efficient implementation of FBP:
first convolve the projection data with filter h in Fourier space
in O(NθNd logNd) time and afterwards backproject the result
to obtain the reconstruction in O(NθN

2). Various discrete
approximations of the ideal filter Hθ(u) = |u| are used in
practice, such as the Ram-Lak (ramp), Shepp-Logan, and Hann
filters [22]. The Ram-Lak filter, obtained by setting Hθ(u) to
0 when u > uc for some uc is often used. This filter is shown
in real space in Fig. 2.

FBP is one of the most widely used reconstruction methods
in practice, because of the low computational cost compared
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Fig. 2. The widely used discrete Ram-Lak filter for the FBP algorithm
(Eq. (7)). In this image, d is the distance between adjacent detector positions.
This filter is an approximation of the ideal filter, obtained by taking the Fourier
transform Hθ(u) = |u| of the ideal filter, and setting Hθ(u) = 0 when
u > uc for some uc.

(a) (b) (c)

Fig. 3. Various reconstructions of the Shepp-Logan head phantom on a
512 × 512 pixel grid. In (a) the phantom was reconstructed by FBP using
512 projection angles ∈ [0, π). In (b) and (c), only 32 projection angles were
used to reconstruct the phantom. FBP was used in (b), while the image (c) was
obtained by using SIRT, an iterative algebraic method, with prior knowledge
about the minimum and maximum possible image values.

to other methods, and good reconstruction quality if data
of enough projections are available. The accuracy of the
reconstructions depends on how well Eq. (7) approximates
Eq. (6). If data of many projection angles are available (say,
several hundreds), the approximation is often very good. When
using FBP with a small number of angles, artefacts appear in
the reconstructions. These artefacts can make further analysis
of the reconstruction, such as segmentation, very difficult. An
example of artefacts in an FBP reconstruction of limited data
is shown in Fig. 3(b). Note that a reconstruction of the same
data by an algebraic method, shown in Fig. 3(c), contains less
artefacts, but takes more time to compute.

C. Artificial neural networks

An artificial neural network (ANN) is a computational
model that processes input data using artificial neurons. The
model is inspired on the workings of the human brain, al-
though ANNs can also be interpreted mathematically as a class
of functions. Neural networks have many uses, from simple
curve fitting to complex pattern recognition [23], [24].
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Fig. 4. A multilayer perceptron with three input nodes zi, two hidden nodes
hi, and one output node o. The input vector is multiplied by the weight
matrix W to obtain hidden node inputs, and the hidden node output vector is
multiplied by the weight matrix Q to obtain the input of the output node. Note
that the biases b and bo of Eq. (10) are modeled as an additional input node
and hidden node of value −1. Activation functions σh and σo are applied to
the hidden nodes and output node.

An artificial neural network can be used to model an un-
known function r : Rn → Rm. One method to accomplish this
is called a multilayer perceptron [24]. A multilayer perceptron
consists of three distinct layers: the input layer, the hidden
layer and the output layer. The input layer consist of n nodes,
one for each input value, and the output layer has m nodes,
one for each output value. The hidden layer consists of Nh
hidden nodes, where Nh can be chosen freely. Generally, it
is difficult to know what the optimal number of hidden nodes
is for a given problem. Take too few nodes, and the network
will be unable to model the unknown function. Take too many,
and the resulting network will be slower and more prone to
overfitting [25]. The problem of overfitting and the way it is
addressed in this paper are explained in Section IV-B.

In a multilayer perceptron, each input node is connected
to all hidden nodes, and each hidden node is connected to
all output nodes. Every connection has a certain weight, and
the weights can be adjusted to fit different functions r. The
weights of the connections from the n input nodes to the Nh
hidden nodes can be written as a n × Nh matrix W , where
the value wij in row i and column j gives the weight of the
connection between input node i to hidden node j. Similarly,
the weights from hidden nodes to output nodes can be written
as a m ×Nh matrix Q. We denote a single column i of W
as wi, and a single column i of Q as qi.

Scalar offsets b ∈ R are subtracted from the output of
each hidden node and output node. Furthermore, nonlinear
activation functions σh : R → R and σo : R → R are
applied to the outputs of these nodes, making the entire model
nonlinear in nature. In this paper, we used the sigmoid function
as activation function:

σh(t) = σo(t) =
1

1 + e−t
(8)

The equation for the output of a multilayer perceptron, with
a vector z as input, is given by:

nQ,W ,b,bo(z) = σo

(
Nh−1∑
i=0

qigwi,bi(z)− bo

)
(9)

where the activation function σo is evaluated element-wise on
its input vector, and gwi,bi is the output of a hidden node:

gw,b(z) = σh (w · z − b) (10)

The question remains how to choose Q, W ,b and bo, such
that nQ,W ,b,bo(z) ≈ r(z). In this paper, supervised learning
[26] is used, where we assume that, although the function
r is unknown, a set of T inputs {Z0, Z1, . . . , ZT−1} with
corresponding outputs {O0, O1, . . . , OT−1} of r are known,
where Zi ∈ Rn and Oi ∈ Rm. Learning is then defined as the
minimization of the sum of squared differences between the
perceptron output and the correct output:

e(Q,W , b, bo) =

T−1∑
i=0

(nQ,W ,b,bo(Zi)−Oi)2 (11)

Ql,Wl, bl, bol = argmin
Q,W ,b,bo

e(Q,W , b, bo) (12)

Because of the mathematical form of a perceptron, partial
derivatives of the parameters, such as ∂e

∂wij
, can be calculated

quickly and accurately by applying the chain rule. The fact
that these partial derivatives are easily obtained leads to
efficient applications of gradient based minimization methods
to train such networks. Different methods can be used for
training, each with their own advantages and disadvantages.
The specific method used in this paper is given in Section IV.

III. NEURAL NETWORK FILTERED BACKPROJECTION

In this section, we present the key contribution of this paper:
the neural network filtered backprojection method (NN-FBP).
We start by defining a neural network model to reconstruct
a single pixel of an image. We show that this model can be
viewed as a combination of FBP steps, obtaining an efficient
implementation of the method. Finally, we give examples of
how the new method can be used in practice.

A. Neural network model

To solve the basic tomographic problem using an artificial
neural network, we need to define a network model: a method
of converting the given projection data to input for the neural
network. As explained above, we want to be able to view
the chosen model as a combination of filtered backprojection
steps. Therefore, it is informative to look at the equation of
the FBP method:

FBPh(x, y) =
∑
θd∈Θ

∑
τp∈T

h(τp)Pθd(x cos θd + y sin θd − τp)

(13)
A first observation is that Eq. (13) gives the value of a single
point (x, y) of the FBP reconstruction. To mimic this, we
choose to use a network model that reconstructs a single pixel
(xi, yj). The neural network only has a single output node,
and the output of the network is a single value in R.

A second observation is that the FBP method is linear shift
invariant [1]. Suppose we shift an object f by δx horizontally
and δy vertically to obtain a shifted object f ′. The original
projections Pθ shift accordingly to new projections P ′θ:

P ′θ(τ) = Pθ(τ − (δx cos θ + δy sin θ)) (14)

For the FBP reconstruction of f , denoted by FBP fh , and the
FBP reconstruction of f ′, denoted by FBP f

′

h , we have:

FBP f
′

h (x+ δx, y + δy) = FBP fh (x, y) (15)
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Fig. 5. The method of transforming projection data to neural network input
for pixel (xi, yj). For each angle θd, (xi, yj) projects onto a different point
td = xi cos θd + yj sin θd on the detector. We shift each projection Pθd
such that the corresponding td is in the middle. Finally, we sum the shifted
projections point by point and reflect about the center to get the network input.

To mimic the linear shift invariance of FBP, we want the
neural network model to treat every pixel of the reconstruction
grid the same, independent of its actual position on the grid.
An additional advantage of treating each pixel the same is
that we can use every pixel of the grid as an independent
training example during supervised learning (Eq. (11)). In
order to accomplish this position independence, we shift
the reconstructed object such that the pixel that it currently
reconstructs, (xi, yj), is at the origin. In other words, as
input for the neural network, we use projection data of the
shifted object f ′, which can be obtained by shifting f by −xi
horizontally and −yj vertically. For the projection data of the
shifted object, we have (Eq. (14)):

P ′θ(τd) = Pθ(τd + xi cos θ + yj sin θ) (16)

Now, we combine the shifted data of all projection angles
by summing them element-wise:

P ′(τp) =
∑
θd∈Θ

P ′θd(τp) (17)

Finally, we reflect the shifted and summed data about the
detector center:

z(τp) = P ′(−τp) =
∑
θd∈Θ

Pθd(xi cos θd+yj sin θd−τp) (18)

The values of z(τp) are used as input for the neural network,
as an input vector z with Nd elements. Note that in Eq. (18),
only the original projection data Pθd is used. Therefore, we
do not have to explicitly shift f to f ′ for every pixel we
reconstruct, but only have to shift the original projection data
by xi cos θd + yj sin θd. The transformation from projection
data to network input is shown in Fig. 5.

B. Filtered back projection view

To see what the effect of the choice of network model is,
we take the equation of a single hidden node gw,b (Eq. (10)),
and insert our network model (Eq. (18)):

gw,b(z) = σh (w · z − b) (19)

= σh

(∑
i

wi
∑
θd∈Θ

Pθd(t− τi)− b
)

(20)

where t = xi cos θd + yi sin θd. Rearranging the sums and
comparing with Eq. (7) we get:

gw,b(z) = σh

(∑
θd∈Θ

∑
i

wiPθd(t− τi)− b
)

(21)

= σh (FBPw(xi, yj)− b) (22)

The entire neural network equation will now become:

nQ,W ,b,bo(z) =

σo

(
Nh−1∑
k=0

qkσh (FBPwk
(xi, yj)− bk)− bo

)
(23)

This shows that we can view a trained network as a weighted
sum of Nh FBPs with custom filters wi and added biases b.
A sigmoid function is applied to the output of each FBP, and
also to the final sum. The advantage of this view is that in
this case, we do not have to run the network for every pixel to
get the reconstruction image: we can simply apply the FBPs
to obtain the entire reconstruction image in one operation.

To summarize, our new method works as follows:

Algorithm 1 NN-FBP reconstruction method
1) Perform Nh FBP algorithms, each with a different filter.
2) Subtract a bias from each resulting image, and apply

a nonlinear activation function σh to each pixel of the
result.

3) Multiply each resulting image with a certain weight,
and add them together pixel by pixel to obtain a single
image.

4) Subtract a bias from the resulting image, and apply a
nonlinear activation function σo to each pixel to get the
final reconstruction.

Note that the results of this method are identical to the
results of directly applying the standard multilayer perceptron
output equation (Eq. (9)) with Eq. (18) as network input. The
equivalence of both methods is shown in Figs. 4 and 6.

The computational complexity of Algorithm 1, however,
is significantly lower than direct application of Eq. (9). In
Eq. (9), we need to shift, sum and reflect the input data,
costing O(NdN) time, for each of the N2 pixels. Additionally,
applying Eq. (9) takes O(NhN) for every pixel, since there are
NhN connections between the input layer and hidden layer.
Direct application will therefore take O((Nθ +Nh)N3) time
to reconstruct the entire N ×N image.

For Algorithm 1, we need to perform Nh FBPs, and the
computation time of step 1) is O(NhNθN

2). The remaining
operations (adding biases, applying the activation functions
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Fig. 6. The FBP view of NN-FBP. Here, we take the projections Pθ and
apply several FBP algorithms: to obtain the hidden node hi, we apply the
FBP algorithm with custom filter wi and a bias. A linear combination of all
hidden node images and a bias, with a sigmoid function applied to all pixels
of each image, leads to a single image o. After we apply a final sigmoid
function, we get an approximation of f . Note that in this case, we reconstruct
the entire image f , where in the neural network view of Fig. 4 only a single
pixel (xi, yj) is reconstructed.

and weight multiplication) each take O(N2) time. Therefore,
step 2) and step 3) take O(NhN

2) time in total, and step
4) is O(N2). We see that by exploiting the FBP view, we
have reduced the reconstruction time from O((Nθ +Nh)N3)
to O(NhNθN

2). Results from Section VI will show that the
method can produce accurate reconstruction even when Nh �
N . Furthermore, for limited-data problems Nθ � N , so the
reduction in computation time is significant.

C. Training

The filters, biases and weights are trained using standard
training methods from neural network theory [24]. The training
phase is separate from subsequent reconstruction steps: we first
train the network to obtain Ql, Wl, bl and bol, using a set
of training images. Afterwards, the trained network can be
used to quickly reconstruct other images by using the method
described in Algorithm 1, without additional training.

To perform training by supervised learning, we need a set
of inputs Z with corresponding correct outputs O, where
Zi ∈ RNd is shifted and summed projection data for a single
pixel and Oi ∈ R is the correct value of that pixel. This
means that we need a set of projection data with corresponding
correct images f(x, y). This presents a problem: usually, the
correct image f(x, y) is unknown, since that is exactly the
problem we are trying to solve. However, we can take the
projection data, reconstruct it using any other method, and
use the reconstruction as the correct output for learning.

This training approach can be useful in two cases:
1) Nθ-REDUCTION use-case: Suppose that we have a scan-

ner that can acquire projection data along a variable number of
angles. Scanning with a small number of angles is preferred,
because of practical considerations. To use NN-FBP in this
case, we first acquire projection data along a large number
of angles for a set of representative objects. We reconstruct
the images using an existing reconstruction method like FBP.
Then, we train NN-FBP using these reconstructions as correct
output. As input during training, we only use the projection
data along a small subset of angles. After training, we can
scan new objects using this small set of angles, and use NN-
FBP to obtain accurate reconstructions in short time. This can

be useful in many practical cases, for example to increase the
time resolution of tomography of dynamic systems.

2) LIMITED-DATA use-case: If practical considerations
limit the number of angles for which projection data can be
acquired, NN-FBP can be used to lower reconstruction times.
In this case, we use an advanced but slow prior-knowledge
based method like TV-minimization to obtain reconstructions
from the limited projection data. We then train NN-FBP
using these reconstructions as correct images. In other words,
we train NN-FBP to mimic a slower reconstruction method.
Afterwards, we can use NN-FBP to quickly reconstruct images
from similar limited-data problems.

IV. IMPLEMENTATION

We will now discuss our implementation of NN-FBP that
was used in the computational experiments of Section V. The
NN-FBP method consists of two distinct parts: the training
phase, and subsequent reconstruction. In this section, we will
focus on implementation of the training, since implementing
the reconstruction part is fairly straightforward: it consists of
several FBPs and basic image operations. More information
on implementing the FBP algorithm can be found in [27].

A. Minimization method

An important part of neural network training is the mini-
mization of the network error (Eq. (12)). Several minimization
algorithms are well-suited for neural network training. We
used the Levenberg-Marquardt algorithm (LMA) [28]. LMA
is a combination of the gradient descent and Gauss-Newton
algorithm, improving the stability of Gauss-Newton while
retaining its fast convergence. Given a function fw(x) with
n parameters w and a set of m correct input-output pairs
(xi,yi), the method iteratively minimizes the error e(w) =∑
i(yi−fw(xi))

2, with the parameters at iteration j+1 given
by w(j+1) = w(j) + dw(j). The update vector dw(j) is
obtained by solving the LMA equation:

(JTJ + λI)dw(j) = JT (y − fw(j)(x)) (24)

where λ > 0 and J is the m× n Jacobian matrix:

J =


∂fw(x0)
∂w0

∂fw(x0)
∂w1

· · · ∂fw(x0)
∂wn−1

...
...

. . .
...

∂fw(xm−1)

∂w0

∂fw(xm−1)

∂w1
· · · ∂fw(xm−1)

∂wn−1

 (25)

Since (JTJ+λI) is symmetric and positive definite if λ > 0,
we can use cholesky decomposition to solve Eq. (24).

The parameter λ is adjusted at each iteration to ensure
convergence: if e(w(j+1)) > e(w(j)), we increase λ to aλ
and solve Eq. (24) again until e(w(j+1)) < e(w(j)). If no
such λ can be found, w(j) is a local minimum of the error
function, and LMA terminates. After an accepted update, we
decrease λ to λ/a for the next iteration. In this paper, we take
a = 10, and start with λ = 104.

In the case of neural network training, the function we are
minimizing is Eq. (11). As parameters in the LMA method
we use the collection of network parameters W , Q, b and bo.
The initial values for the parameters are calculated randomly
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using the Nguyen-Widrow initialization method [29]. In order
to apply LMA, we need to calculate the Jacobian matrix J at
each iteration. For neural networks, these partial derivatives
can be calculated accurately and efficiently by applying the
chain rule. More information on the use and implementation
of LMA for neural network training can be found in [30].

B. Overfitting

A common problem that can occur when training neural
networks is overfitting. Overfitting occurs when the neural
network learns too much information about the training set.
An overfitted network will be very good at solving problem
instances from the training set, but relatively bad at solving
instances outside the training set. In the case of NN-FBP, the
method will only be able to accurately reconstruct images used
in the training set, and not other, unknown, images. Of course,
this is undesirable: we already know solutions to the training
set problems, and we would like to be able to solve different
reconstruction problems by applying NN-FBP.

The problem of overfitting is well-known in neural network
theory, and several ways of preventing the problem are avail-
able. Here, we use a relatively simple, but effective method.
In addition to a training set, we also use an independent
validation set of input-output pairs during training. We then
calculate the error of the validation set using Eq. (11) after
each iteration of LMA. When this error stops improving for
Nstop iterations, we stop the training method and return the
solution with the lowest validation error. In this paper, we
use Nstop = 25. Because the training and validation set
are generated independently, this prevents the network from
learning too much specific information about the training set.

To summarize, the training method works as follows:

Algorithm 2 Training method
1) Initialize W , Q,b and bo randomly (using [29])
2) Iterate:

a) Perform LMA iteration using training set
b) Calculate error of validation set
c) If validation error has not improved for Nstop

iterations, stop iterating
3) Return W , Q, b and bo which had the lowest validation

error

C. Exponential binning

Neural network training is often very effective at minimizing
the error of Eq. (11), but training can take a long time. In the
case of NN-FBP, we can greatly reduce the training time by
using exponential binning. Exponential binning was also used
effectively in [19] to reduce the reconstruction time of the
neural network.

Looking at the Ram-Lak filter of Fig. 2, we note that
the magnitude of h(τ) is relatively large around τ = 0
and drops to zero quickly for |τ | → ∞. Therefore, during
reconstruction of pixel (xi, yj), projection data values close to
t = xi cos θ+yj sin θ are much more important than far away

1 24 2 1 1 4

B0 B1B2B3

t

B1 B2 B3

s0s1 s1 s3s2 s4

Fig. 7. Exponential binning of the projection data, during reconstruction of
a pixel (xi, yj), which projects onto point t = xi cos θ + yj sin θ of the
detector. Values within a bin Bi are summed to produce a single input value
for the neural network. Note that the bin size increases exponentially away
from t, and that the binning is symmetric, since Bi,i6=0 appears both to the
left and to the right of t.

values. This suggests that we can reduce the number of input
values by rebinning the data with a high resolution around t
and a lower resolution further away. Here, we used exponential
binning, where the bin width grows exponentially away from
t. Formally we can define any binning by specifying the
boundary points si and si+1 of every bin: βi = (si, si+1).
The width of a bin is given by di = si+1− si. In exponential
binning, we take d0 = 1 and di = 2|i|−1 for i 6= 0. A further
reduction can be achieved by making the rebinning symmetric
as well, by creating new bins B0 = β0 and Bi = (βi ∪ β−i)
for i 6= 0.

To use this binning during neural network training, we apply
it after the shift, sum and reflect procedure of Eq. (18). We sum
all input values within a bin Bi to obtain the neural network
input value zi:

zi =

s−i+1∑
j=s−i

z(τj) +

si+1∑
j=si

z(τj) ∀ i 6= 0 (26)

and z0 = z(τ0). This binning procedure is shown in Fig. 7.
If we have Nd detectors, the output of the shift, sum and

reflect procedure will have at most 2Nd values. We define all
values outside this range to be of value 0. During binning, we
only use bins that have one or both boundary points within
this 2Nd range. Therefore, we reduce the number of input
variables from O(Nd) to O(logNd) by using exponential
binning, greatly reducing training time as well.

V. EXPERIMENTS

In order to test the performance of the NN-FBP method, we
implemented both the training and reconstruction parts using
Python 2.7.3 [31] and Numpy 1.6.3 [32] built with ATLAS
3.10.0 [33]. We applied NN-FBP to four different problems,
two for each of the two use-cases from Section III-C. For each
use-case we perform experiments on both simulation data,
where the original images are known, and experimental data.

In every experiment, we are given a set of Nim ’correct’
images, with corresponding projection data. How the correct
images are obtained will be explained below for each use-
case. We divide the Nim images into three separate groups:
the training set, the validation set and the test set. Out of
the training set, we choose Ntrain pixels to use for training,
using Eqs. (18) and (26) to obtain input values for the neural
network. Similarly, we take Nval pixels out of the validation
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set to use for validation, as described in Section IV-B. In this
paper, we use Ntrain = Nval = 106 for every experiment,
unless specified otherwise.

We report results for the test set, where we use the FBP
view of NN-FBP to reconstruct all test images, and report the
mean absolute pixel error. The mean absolute pixel error is
defined as:

ep(R,O) =
〈|R−O|〉

maxO −minO
(27)

where R ∈ RN×N is the reconstructed image, O ∈ RN×N
the correct image, and the average is taken over all pixels that
lie within the disc of radius N/2, centered in the image. The
errors given in this paper are the mean absolute pixel errors,
averaged over all images in the test set. The results for NN-
FBP are compared to results for standard FBP, with the Ram-
Lak filter, and SIRT, an algebraic reconstruction method [1].
For both methods, we used an optimized GPU implementation
from the ASTRA-toolbox [34].

A. Nθ-REDUCTION use-case

For the first use-case, we investigate if NN-FBP can be
used to reduce the number of angles for which projection
data has to be acquired. First, we reconstruct images from
projection data along many angles using FBP. We then train
the neural network to reconstruct these images using only a
small subset of the angles. We compare the results of NN-FBP
with standard FBP using the Ram-Lak filter, and with SIRT,
a slower algebraic reconstruction method.

1) Simulation data: The simulation images used to test
the performance of NN-FBP for Nθ-REDUCTION are sam-
pled from the THREESHAPE family of images. Each image
from the THREESHAPE family consists of a combination of
Gaussian blobs, rectangles and star-shaped objects. These
components were specifically chosen to create a difficult image
to reconstruct: images from the THREESHAPE family contain
both discrete and continuous areas, and both sharp edges
and smooth gradients. The images are constructed as follows:
starting with an image f(x, y) = 0, we add three Gaussian
blobs, three rectangles and three star-shaped objects, each
having a random shape, position, rotation and intensity. The
images are then scaled, such that the darkest pixel has value
0, and the brightest has value 1. An example image of the
THREESHAPE family is shown in Fig. 8(a).

For the training set and validation set, we generated two sets
of 1000 THREESHAPE images of 4096×4096 pixels, and cal-
culated projection data for 4096 detector elements along 1024
equidistant angles ∈ [0, π). Afterwards, we resampled the
projection data to 1024 detector elements, and reconstructed
on a 1024×1024 pixel grid. The test set consists of 100 images
from the THREESHAPE family. We test the network by training
it to use only Nθ = 8, 16, 32, 64 equidistant angles.

2) Experimental data: The dataset we used for experimen-
tal data stems from a small fatigue test sample made from Ti
alloy VST 55531. The sample has been scanned in a parallel,
monochromatic (52 keV) synchrotron X-ray beam at beamline
ID11 of the European Synchrotron Radiation Facility (ESRF).
The sample to detector distance was set to 40 mm and 1500

projections were acquired on a high resolution detector system.
2×2 binning resulted in projections with 10242 pixels and an
effective pixel size of 0.56 microns. For training, validation,
and testing, data from three different time steps were used,
with 438 slices each.

B. LIMITED-DATA use-case
For the second use-case, where only a small number

of projections can be acquired, we performed experiments
to investigate if NN-FBP can be used to mimic advanced
reconstruction algorithms that require a long computation
time. We first reconstruct images using FISTA [7], a TV-
minimization algorithm. We train NN-FBP to approximate the
result of FISTA. Afterwards, we reconstruct the test set using
FISTA and NN-FBP, and report the mean absolute pixel error
between the FISTA and NN-FBP reconstructions. To see the
improvement of NN-FBP over standard FBP, we also report
the mean absolute pixel error between FISTA and FBP.

1) Simulation data: For the simulation data, we sampled
images from a specific family of images. Since we are in-
vestigating whether NN-FBP can mimic a TV-minimization
method, images from this family should be well-suited for
TV-minimization, and have a sparse gradient. Note that the
THREESHAPE family of Section V-A1 is not suitable, as the
Gaussian blobs do not have a sparse gradient. Instead, we
chose the 7ELLIPSES family of images, where each image
consists of 7 overlapping ellipses of random shape, position,
rotation and intensity. We use 1024 × 1024 pixel images,
randomly sampled from the 7ELLIPSES family. The training,
validation, and test sets consist of 100 images each. We
calculate projection data for 1024 detector elements along
Nθ = 8, 16, 24, 32 equidistant angles. For reconstruction, we
resampled the projection data to 256 detector elements, and
obtained reconstructions using FISTA on a 256 × 256 pixel
grid. These reconstructions were used to train the NN-FBP
method, and to report errors on. An example image of the
7ELLIPSES family is shown in Fig. 8(c)

2) Experimental data: Here, we use a set of experimental
µCT data. These datasets were acquired by scanning raw
diamonds in a Scanco 40 µCT scanner. The acquired cone-
beam projection data was rebinned to a parallel beam geom-
etry. The resulting projection data consists of 1024 detector
elements along 500 projection angles, acquired for a number
of two-dimensional slices through the diamonds. In total, three
datasets of different diamonds were used: one for training,
one for validation and one for testing. The number of slices
for each dataset are 629, 358, and 375, respectively. An
example of a single slice is shown in Fig. 8(d). To test
the LIMITED-DATA case, we took 8, 16, 32, and 64 angles
out of the available angles, resampled the projection data
to 256 detector elements, and created reconstructions using
FISTA on a 256 × 256 pixel grid. All calculations were
performed using these reconstructions, thereby training NN-
FBP to approximate the FISTA reconstructions.

VI. RESULTS AND DISCUSSION

The mean absolute error for each use-case, averaged over
the entire test set, is given in Fig. 9. The figure shows that
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(a) (b) (c) (d)

Fig. 8. Example images of the four experiments that we performed in this
paper. The left two images were used for the Nθ -REDUCTION use-case, and
the other two for the LIMITED-DATA use-case, as explained in Section V.
The images of (a) and (c) are computer-generated simulation images, and the
images of (b) and (c) are reconstructions of experimental CT data. The area
indicated in (b) is the area of which results are shown in Figs. 10(e) to 10(h).

for all experiments and number of hidden nodes, NN-FBP
produces images with lower mean absolute error than those
produced by FBP and SIRT. An important observation is that
the improvement of NN-FBP over standard FBP is signifi-
cant. Furthermore, NN-FBP with one hidden node is able to
produce images with significantly lower mean absolute error
compared to FBP, even though their computation complexities
are identical. Although FBP with the Shepp-Logan or Hann
filter performed better than FBP with the Ram-Lak filter,
the NN-FBP method produced significantly more accurate
reconstructions than both.

The dependence of the accuracy of NN-FBP on the number
of hidden nodes Nh can be explained as follows: if not enough
hidden nodes are used, the network is not able to capture
all useful information during training, and the reconstruction
quality suffers. If too many hidden nodes are used, the network
is still able to capture all information, and reconstruction
quality is still good. Since there are more weights to train,
however, networks with too many hidden nodes are more
difficult and time-consuming to train. With more weights, the
risk of ending up in local minima of the objective function is
higher, which explains why the mean absolute error sometimes
increases slightly when more hidden nodes are used.

In the remainder of this section, we give detailed results for
each of the use-cases, and give results of other experiments
investigating the properties of NN-FBP.

A. Nθ-REDUCTION use-case

1) Simulations: The results for the Nθ-REDUCTION case
with simulation data is shown in Table I. The results show that,
for all number of angles, NN-FBP produces more accurate
reconstructions than both FBP and SIRT. The reconstruction
time of NN-FBP is close to the reconstruction time of FBP
multiplied with a factor of Nh. For example, using NN-FBP
with 8 hidden nodes, the mean absolute error is, on average,
roughly 75% lower than FBP and 35% lower than SIRT. The
reconstruction time for that case is 11.5 times larger than
that of FBP, but only 0.6% of that of SIRT. An example
image with reconstructions for Nθ = 32 and Nh = 8 is
shown in Figs. 10(a) to 10(d), where we see that the NN-
FBP reconstruction is sharper than that of SIRT, and has less
streak artefacts than the FBP reconstruction.

2) Experimental data: For the Nθ-REDUCTION case and
experimental data, results are given in Table II. Again, NN-

FBP produces more accurate results than both FBP and SIRT,
although the differences are smaller than for the simulation
data. Images of the reconstructions close to the forming
crack, given in Figs. 10(e) to 10(h), show, however, that the
reconstruction of NN-FBP is visually much clearer than the
FBP and SIRT reconstructions. The FBP reconstruction suffers
from the combined effect of limited data and noise, resulting
in a very noisy reconstruction.

B. LIMITED-DATA use-case
1) Simulations: Results for the LIMITED-DATA use-case

and simulation data are given in Table III. Here, the reported
mean absolute errors are calculated with respect to the FISTA
reconstructions. Note that the images are smaller than the
ones used in Section VI-A. The reconstruction time of NN-
FBP is only a fraction of the reconstruction time of FISTA,
while reconstructions created by NN-FBP have a relatively low
mean absolute error compared to the FISTA reconstructions.
Example reconstruction are given in Figs. 10(i) to 10(l).
Compared to FBP and SIRT, the NN-FBP method is able to
approximate FISTA reconstruction more accurately, although
NN-FBP is not able to mimic FISTA exactly.

2) Experimental data: Results for the LIMITED-DATA use-
case and experimental data, given in Table IV, show similar
results, where the NN-FBP reconstructions approximate the
FISTA reconstructions more accurately than both FBP and
SIRT. Again, it takes significantly more time to reconstruct
the images using FISTA than to reconstruct them using NN-
FBP. Reconstructions of a single slice of the data are given in
Figs. 10(m) to 10(p).

C. Other experiments
We will now discuss other experiments we performed to de-

termine the properties of the NN-FBP reconstruction method.
1) Size of the training and validation set: To investigate

the training and reconstruction properties of the NN-FBP
method, we took the Nθ-REDUCTION use-case with simulation
data over 16 angles, and the NN-FBP method with 8 hidden
nodes. We trained the method 10 times, starting each time
with random weights, for different sizes of the training and
validation set, and calculated the resulting mean absolute error
with the test set, and measured the training time. Results are
given in Fig. 11.

The results show that the mean absolute error of the result-
ing trained network decreases with increasing training set and
validation set size. After a certain size, however, increasing the
size further does not seem to lower the error significantly. The
time it takes to train NN-FBP becomes larger with increasing
set size. Fig. 11 also shows that for sufficient set sizes, the
standard deviation of the mean absolute error is low. This is
important for practical applications, since it shows that one
has to train NN-FBP only once, without risk of obtaining a
badly trained network.

2) Noise in the projection data: To investigate the effect of
noise in the projection data on NN-FBP, we added different
levels of Poisson noise to the simulation data of the Nθ-
REDUCTION use-case. FBP reconstructions of the noisy pro-
jection data with 1024 projection angles were used as training
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(a) Nθ -REDUCTION, simulation data
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(b) Nθ -REDUCTION, experimental data
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(c) LIMITED-DATA, simulation data
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(d) LIMITED-DATA, experimental data

Fig. 9. The mean absolute error, averaged over the entire test set, for each use-case. Given are results for FBP with the Ram-Lak filter (FBP), FBP with the
Shepp-Logan filter (FBP-SL), FBP with the Hann filter (FBP-HN), SIRT, and NN-FBP, where the number of hidden nodes is given between parentheses.

TABLE I
RESULTS FOR THE Nθ -REDUCTION USE-CASE, SIMULATION DATA. 〈ep〉, Tr , AND Tt DENOTE MEAN ABSOLUTE ERROR, RECONSTRUCTION TIME, AND

TRAINING TIME, RESPECTIVELY.

Nθ = 8 Nθ = 16 Nθ = 32 Nθ = 64

Nh 〈ep〉 Tr(s) Tt(s) 〈ep〉 Tr(s) Tt(s) 〈ep〉 Tr(s) Tt(s) 〈ep〉 Tr(s) Tt(s)

FBP 0.149 0.02 0.103 0.02 0.067 0.02 0.041 0.03
SIRT 0.043 29.64 0.036 35.42 0.028 48.37 0.018 70.72
NN-FBP 1 0.039 0.04 2330 0.033 0.04 2362 0.026 0.04 2428 0.018 0.04 2559
NN-FBP 2 0.036 0.06 2499 0.027 0.06 2557 0.026 0.07 2550 0.012 0.08 2815
NN-FBP 4 0.034 0.12 2532 0.025 0.12 2669 0.018 0.13 2630 0.011 0.15 2905
NN-FBP 8 0.032 0.23 2928 0.024 0.23 2873 0.016 0.25 3147 0.011 0.29 2912
NN-FBP 16 0.032 0.44 3092 0.023 0.45 3552 0.016 0.49 3940 0.010 0.56 3681
NN-FBP 32 0.032 0.88 4094 0.024 0.96 4527 0.016 1.04 5160 0.010 1.21 5801
NN-FBP 64 0.032 1.92 7101 0.024 1.79 9027 0.016 2.01 12273 0.010 2.28 11883
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TABLE II
RESULTS FOR THE Nθ -REDUCTION USE-CASE, EXPERIMENTAL DATA. SEE TABLE I FOR MORE INFORMATION.

Nθ = 8 Nθ = 16 Nθ = 32 Nθ = 64

Nh 〈ep〉 Tr(s) Tt(s) 〈ep〉 Tr(s) Tt(s) 〈ep〉 Tr(s) Tt(s) 〈ep〉 Tr(s) Tt(s)

FBP 1.311 0.03 0.865 0.03 0.586 0.03 0.402 0.04
SIRT 0.107 42.97 0.111 52.59 0.111 73.15 0.108 108.17
NN-FBP 1 0.091 0.05 750 0.090 0.05 801 0.089 0.05 777 0.086 0.06 881
NN-FBP 2 0.089 0.09 818 0.089 0.09 770 0.087 0.10 795 0.085 0.11 927
NN-FBP 4 0.088 0.16 845 0.086 0.17 855 0.085 0.18 932 0.084 0.21 1076
NN-FBP 8 0.088 0.32 912 0.086 0.33 979 0.085 0.35 1003 0.084 0.40 1148
NN-FBP 16 0.088 0.62 1181 0.086 0.64 1392 0.085 0.69 1457 0.084 0.79 1923
NN-FBP 32 0.088 1.25 2343 0.086 1.27 2551 0.085 1.39 3221 0.084 1.56 3339
NN-FBP 64 0.088 2.60 4538 0.086 2.71 6229 0.085 2.98 8265 0.084 3.11 5788

TABLE III
RESULTS FOR THE LIMITED-DATA USE-CASE, SIMULATION DATA. SEE TABLE I FOR MORE INFORMATION.

Nθ = 8 Nθ = 16 Nθ = 32 Nθ = 64

Nh 〈ep〉 Tr(s) Tt(s) 〈ep〉 Tr(s) Tt(s) 〈ep〉 Tr(s) Tt(s) 〈ep〉 Tr(s) Tt(s)

FISTA 0.000 23.5 0.000 38.0 0.000 51.2 0.000 58.7
FBP 0.180 0.00 0.111 0.00 0.066 0.00 0.039 0.00
SIRT 0.068 1.60 0.048 1.66 0.034 1.85 0.024 2.19
NN-FBP 1 0.048 0.00 46 0.040 0.00 40 0.030 0.00 44 0.021 0.00 46
NN-FBP 2 0.040 0.02 108 0.031 0.01 122 0.023 0.01 192 0.016 0.01 240
NN-FBP 4 0.038 0.01 246 0.028 0.01 295 0.021 0.01 258 0.015 0.02 165
NN-FBP 8 0.038 0.02 343 0.027 0.02 500 0.019 0.03 436 0.014 0.04 436
NN-FBP 16 0.037 0.04 829 0.027 0.04 643 0.019 0.05 847 0.014 0.07 673
NN-FBP 32 0.037 0.08 1560 0.027 0.08 1557 0.019 0.11 1579 0.015 0.14 1627
NN-FBP 64 0.036 0.16 4710 0.027 0.17 4113 0.019 0.22 3904 0.015 0.29 4375

TABLE IV
RESULTS FOR THE LIMITED-DATA USE-CASE, EXPERIMENTAL DATA. SEE TABLE I FOR MORE INFORMATION.

Nθ = 8 Nθ = 16 Nθ = 32 Nθ = 64

Nh 〈ep〉 Tr(s) Tt(s) 〈ep〉 Tr(s) Tt(s) 〈ep〉 Tr(s) Tt(s) 〈ep〉 Tr(s) Tt(s)

FISTA 0.000 24.1 0.000 30.6 0.000 41.1 0.000 54.6
FBP 0.134 0.00 0.073 0.00 0.051 0.00 0.039 0.00
SIRT 0.048 1.60 0.029 1.66 0.024 1.85 0.023 2.19
NN-FBP 1 0.046 0.00 156 0.031 0.00 146 0.022 0.00 161 0.019 0.01 183
NN-FBP 2 0.040 0.01 187 0.028 0.01 211 0.021 0.01 199 0.019 0.01 208
NN-FBP 4 0.041 0.01 377 0.025 0.01 371 0.020 0.01 261 0.017 0.02 373
NN-FBP 8 0.041 0.02 585 0.023 0.02 327 0.020 0.03 779 0.019 0.04 583
NN-FBP 16 0.045 0.04 1247 0.022 0.04 1166 0.020 0.05 1058 0.019 0.07 896
NN-FBP 32 0.041 0.08 2835 0.023 0.08 3586 0.021 0.11 2605 0.019 0.14 3058
NN-FBP 64 0.041 0.16 13190 0.023 0.17 3901 0.021 0.22 5226 0.019 0.29 4831

examples for training the NN-FBP method. After training NN-
FBP to reconstruct using only 32 projection angles of the
noisy data, we reconstructed a single image of the test set,
and calculated the mean absolute error of the reconstruction,
compared to the noiseless phantom image (Fig. 10(a)). Results
are given in Fig. 12. The reconstructions obtained by NN-FBP
are more accurate than both FBP and SIRT for all noise levels,
with the mean absolute error being much lower than FBP.
The artifacts in the FBP reconstructions would make further
analysis of the object difficult, especially at high noise levels.

To investigate the effect of noise on the training phase
of NN-FBP, we trained the NN-FBP method 10 times on
a single data set, each time with independently generated
noise applied. In every run, the network was trained on 106

pixels from a training and validation set of 100 images of the

THREESHAPE family, generated on a 1024× 1024 pixel grid,
with projection data of 32 angles, rebinned to 256 detectors.
FBP reconstructions of the noisy projection data with 1024
projection angles were used as training examples. For a test set
of 100 images similar to the training set, we report the average
mean absolute error of the noiseless phantom with the NN-
FBP reconstructions, which calculated using noisy projections.

Results are given in Fig. 13. These results show that
the mean absolute error decreases smoothly with decreasing
noise levels. Furthermore, the standard deviation of the mean
absolute error is relatively small compared to the error itself,
for all noise levels. This indicates that noise in the projection
data does not have a large impact on the ability of NN-FBP to
find filters that minimize the training error. One reason for this
robustness could be that we are able to use a large number of
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(a) Original (b) FBP (c) SIRT (d) NN-FBP

(e) Original (f) FBP (g) SIRT (h) NN-FBP

(i) Original (j) FBP (k) SIRT (l) NN-FBP

(m) Original (n) FBP (o) SIRT (p) NN-FBP

Fig. 10. Reconstructions of the objects in the left column, obtained from
projection data over 32 angles by FBP, SIRT, and NN-FBP with 8 hidden
nodes. In the bottom two rows, the original object was obtained by applying
the FISTA algorithm on the full set of 32 available projections.
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Fig. 11. The average mean absolute error and training time for 10 runs of
the Nθ -REDUCTION use-case, simulation data, with Nθ = 16 and Nh = 8.
The error bars indicate standard deviation.

(a) FBP (0.085) (b) SIRT (0.039) (c) NN-FBP (0.034)

(d) FBP (0.189) (e) SIRT (0.042) (f) NN-FBP (0.035)

(g) FBP (0.558) (h) SIRT (0.058) (i) NN-FBP (0.043)

Fig. 12. Reconstructions of the object from Fig. 10(a), obtained from
projection data over 32 angles with Poission noise by FBP, SIRT, and NN-FBP
with 8 hidden nodes. Each row has an increasing amount of added noise. The
mean absolute error of the reconstructions, compared to Fig. 10(a), is given
between parentheses. The errors of FBP with the Shepp-Logan filter are 0.078,
0.157, and 0.452, for increasing amount of added noise. For FBP with the
Hann filter, errors are 0.062, 0.090, and 0.216, respectively.
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Fig. 13. The average mean absolute error for 10 runs of the Nθ -REDUCTION
use-case, simulation data (256 × 256 pixels), with Nθ = 32, Nh = 8, and
Poisson noise. The Poisson noise is generated independently for each of the
10 runs. Lower values of I0 correspond to larger amounts of noise. Error bars
indicate standard deviation.
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(a) (b) (c) (d)

Fig. 14. Hidden node output images of a reconstruction of the object from
Fig. 10(i), obtained from projection data over 32 angles, with 8 hidden nodes.
Blue, green, and red indicate negative, zero, and positive values, respectively.

training examples, thereby reducing the influence of the noise
by averaging its effect on each example.

3) Hidden node output: To gain a better insight in how NN-
FBP is able to produce accurate reconstructions, we can look
at the output of the hidden nodes of the network. Since the
neural network of NN-FBP reconstructs a single pixel, we can
view the output value of a single hidden node as a pixel of an
image. In other words, we can look at the FBP reconstructions
of each hidden node of Eq. (23). To obtain the final output of
NN-FBP, these individual reconstructions are added together
with an additional constant offset, and the sigmoid function is
applied to each pixel value.

Fig. 14 shows four of the eight hidden node output images,
resulting from a reconstruction of Fig. 10(i) with data for
32 projection angles and NN-FBP with 8 hidden nodes. The
results show that each hidden node reconstructs a different
feature of the final reconstruction: some focus on the broad
shape of the object, while others focus on the edges. Fur-
thermore, the relative contrast of the different ellipses in
the reconstructed object differs for each hidden node output
image. These results, in addition to the other results in this
section, show that there is something to gain by using multiple
nonlinear FBPs to reconstruct an object, compared to using a
single standard FBP.

4) Exponential binning: To test the influence of exponential
binning on both the reconstruction quality and training time
of the NN-FBP method, we trained NN-FBP both with and
without exponential binning. Both times, the network was
trained on 106 pixels from a training and validation set
of 100 images of the THREESHAPE family, generated on a
1024 × 1024 pixel grid, with projection data of 32 angles,
rebinned to 256 detectors. After training, both networks were
used to reconstruct a test set of 100 images similar to the
training and validation images.

With exponential binning, training the network took 673
seconds, and the resulting mean absolute error with the test set
was equal to 0.0246. Without exponential binning, the mean
absolute error with the test set was 0.0239, which is 3% lower.
The time to train the network, however, increased to 55178
seconds, 82 times longer than with exponential binning. These
results show that, although exponential binning can slightly
impact the reconstruction quality of NN-FBP, it greatly reduces
the time it takes to train the method.

VII. CONCLUSION

In this paper, we presented a new reconstruction method,
the neural network filtered backprojection method (NN-FBP),

for limited-data 2D parallel-beam tomography problems. The
method is based on artificial neural networks, which allows
it to learn problem specific knowledge to improve its re-
construction quality. Furthermore, we showed that NN-FBP
can be viewed as a combination of several standard FBP
operations, each with a custom filter. This property ensures
that the computation complexity of NN-FBP is low compared
to algebraic reconstruction methods.

In order to train the NN-FBP method, a set of reconstruc-
tions with corresponding projection data is needed. Although
this requirement presents a problem, it can be satisfied in
several practical applications. Here, we focused on two such
applications. In one, we first acquire projection data over a
large number of angles, and use reconstructions obtained by
standard FBP to train NN-FBP on, while using limited data
of only a small subset of angles. Afterwards, NN-FBP can
reconstruct limited data of similar objects accurately. In the
second use-case, we assume that we are not able to acquire
data over a large number of angles, but are given limited-
data of only a small number of angles. In this case, we can
use NN-FBP to imitate a much slower prior-knowledge based
reconstruction method, such as TV-minimization methods.

Results for simulation data and experimental data of both
use-cases show that NN-FBP is able to produce significantly
more accurate reconstructions than standard FBP. The re-
construction time of NN-FBP is slightly higher than the
reconstruction time of FBP multiplied by the number of hidden
nodes. The results show that even for low number of hidden
nodes, NN-FBP is able to outperform FBP. Interestingly, NN-
FBP is also able to produce more accurate reconstructions than
SIRT, a much slower iterative algebraic method. Additional
experiments show that the method is more robust than FBP
when faced with noisy projection data.

The current study focused on two-dimensional parallel-
beam tomographic problems, but a similar method can in
theory be applied to other tomographic problems. In these
cases, the method will be related to other filter-based analytical
reconstruction methods. For example, in three-dimensional
cone-beam tomography problems, we can design a neural net-
work that can be viewed as a combination of Feldkamp-David-
Kress (FDK) operations [35] with custom filters. Similarly, the
current method can also be applied to fan-beam problems, with
the fan-beam variant of FBP [1]. The reconstruction quality
of these new methods remain subject of further research.

NN-FBP can also be used to combine the reconstruction of
an object with subsequent analysis of the reconstruction. This
can be achieved by training NN-FBP using analysed images
of the correct reconstructions as training images. For example,
we can train NN-FBP on segmented images of the training
data, thereby training it to perform both the reconstruction
and segmentation in a single step. Other analyses, such as
highlighting areas of interest, are also possible. Which type
of object analyses can be accurately performed by NN-FBP
remains subject of further research.

Since NN-FBP consists only of FBP operations and image
addition and multiplication, implementation of the method
in current applications is straightforward. Many hardware
CT-scanners currently use FBP as their main reconstruction
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method, which would make replacement with NN-FBP easy,
provided that the user is able to specify custom filters. If a
heavily optimized version of FBP is available, NN-FBP will
be able to use the same optimizations to reduce execution
time. The results from this paper show that NN-FBP can be a
significant improvement over FBP for practical applications.
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