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Topology-preserving rigid transformation
of 2D digital images

Phuc Ngo, Nicolas Passat, Yukiko Kenmochi, Hugues Talbot

Abstract—We provide conditions under which 2D digital im-
ages, considered in the two most common digital topology models
(namely, dual adjacency and well-composedness), preservetheir
topological properties under rigid transformation. This study,
that is developed in a discrete framework, leads to the proposal
of efficient preprocessing strategies that ensure the topological
invariance of images under further rigid transformation. T hese
results and methods are proved to be valid for various kinds of
images (binary, grey-level, label), thus providing a generic set
of tools, that can be used in particular in the context of image
registration and warping.

Index Terms—Digital imaging, rigid transformation, digital
topology, well-composed images, image correction.

I. I NTRODUCTION

I N digital imaging, the preservation of topological properties
is a crucial issue in several application fields, involving 3D

data (e.g., medical imaging [1]) but also 2D ones (e.g., remote
sensing [2]). In particular, topology preservation –pioneered
nearly fifty years ago [3], [4]– has been investigated in the
context of image transformation, both from the viewpoints of
registration [5] and warping [6]. It has to be noticed that efforts
have been mainly devoted to handle complex transformations,
while more simple ones have been globally unconsidered.

Indeed, the handling of “simple” transformations (e.g.,
translations, rotations) is often assumed to be trivial. This can
be explained by the fact that, in the continuous case (i.e., in
Rn), most of such transformations are topology-preserving,
while this is not necessarily the case for complex ones (e.g.,
those induced by nonrigid registration [7]). Based on this
“continuous” assertion, it is often thought that simple trans-
formations still lead to easy handling of topological properties
in the digital case (i.e., in Zn). This is a wrong belief.

In the case of rigid transformations [8], that include the
family of rotations, (e.g., (quasi-)shear rotations [9], [10], or
hinge angle rotations [11], [12], [13]), some topological issues
have been identified [14], [15]. These issues are directly or
indirectly induced by the sampling policies that are mandatory
to guarantee the stability of the transformations insideZn.

In this article, we propose a study devoted to the topological
invariance of 2D digital images under rigid transformation. In
Sec. II, we first provide background notions required to make
the article self-contained. Secs. III–V constitute the core of
the article. The main purposes are first detailed in Sec. III.
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We then propose, in Sec. IV, some conditions under which
a 2D digital image preserves its topological properties under
any rigid transformation. Based on these results, we provide
in Sec. V some methodological solutions for analysing and
preprocessing digital images before rigid transformation, in
order to preserve their topological properties. This studyis
generic on two sides:(i) the main two digital topology models
are considered, namely the dual adjacency, and the well-
composedness ones; and(ii) the cases of binary, grey-level
and label images are dealt with. Sec. VI concludes the article
by perspective works. For the sake of readability, technical
proofs are reported in Appendix.

II. BACKGROUND NOTIONS

A. Notations

The sets are notedA, B, C, etc. Subsets of these sets are
noted A, B,Γ, etc. The power set of a set A is noted2A . The
elements of sets are noteda, b, c, etc., anda, b, c, etc. if the
set is a cartesian product. By abuse of notation, an element
a, that should be noted as a column vector, is noted as a line
vector,e.g., a = (a, b) instead ofa =

(

a

b

)

.
The functions defined on continuous sets are notedA, B, C,

etc., and the ones defined on discrete sets are notedA, B, C,
etc. A functionF from A to B is notedF : A → B. If A ⊆ A

and B⊆ B, we noteF (A) = {F (x) | x ∈ A} andF−1(B) =
{x | F (x) ∈ B}. If F is a bijection, its inverse function is
also notedF−1 : B → A. The restriction ofF : A → B to
the subset A⊆ A is notedF|A : A → B. The composition of
F : A → B andG : B → C is notedG ◦ F : A → C. The
spaces of functions are notedA, B, C, etc.

Adjacency (i.e., binary, irreflexive and symmetric) relations
are noteda. Equivalence (i.e., binary, reflexive, transitive and
symmetric) relations are noted∼. We recall that a relationa
(resp.∼) defined on a set A is actually a subset of A×A, and
that a a b (resp.a ∼ b) means that(a, b) ∈ a (resp.∼).
Given a set A, equipped with an equivalence relation∼, the
equivalence class ofa ∈ A with respect to∼ is noted[a]∼,
and the quotient set of A with respect to∼ is noted A/∼.

B. Rigid transformations

1) Continuous case:In R
2, a rigid transformation is a

function ∣

∣

∣

∣

U : R2 → R2

x 7→ R.x+ t
(1)

whereR is a rotation matrix, andt ∈ R2. The functionU is
a bijection, and we noteT = U−1 its inverse function, which
is also a rigid transformation. We noteRigR2 the set of the
rigid transformations.
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2) Discrete case:These definitions cannot be directly ap-
plied in the discrete case,i.e., when consideringZ2 instead
of R2. Indeed, there is no guarantee thatU(Z2) ⊆ Z2. The
handling of discrete rigid transformations then requires to
consider a discretisation operatorD : R2 → Z2. In the most
common cases –and in the present one–D is the standard
rounding function. We can then define the discrete analogues
U : Z2 → Z2 andT : Z2 → Z2, of U andT , as

U = D ◦ U|Z2 (2)

T = D ◦ T|Z2 = D ◦ (U−1)|Z2 (3)

We noteRigZ2 the set of the discrete rigid transformations.
3) Transformation models:Two transformation models can

be considered for discrete (rigid) transformations: the Eulerian
(or backwards) model, and the Lagragian (or forwards) one.

The Lagrangian model consists of computingU(Z2), i.e.,
it determines the image of the “initial” spaceZ2 associated
to the rigid transformation. From an imaging viewpoint, this
model is not satisfactory, sinceU is, in most cases, neither
injective nor surjective. In other words, ifU is applied on a
digital image (see Sec. II-C), it may lead to a transformed
image that will present both undefined and conflicted values.

By opposition, the Eulerian model consists of computing
T (Z2), i.e., it determines the preimage of the “transformed”
spaceZ2 associated to the rigid transformation. From an
imaging viewpoint, this model is more satisfactory, sinceT is
defined on the whole transformed spaceZ2, thus guaranteeing
that any point of a transformed digital image will be unam-
biguously defined. Nevertheless, sinceT presents the same
properties asU in terms of non-injectivity and non-surjectivity,
this model is not exempt from (topological) drawbacks.

C. Digital images

In this article, we considerfinite digital images, that are
defined as functions fromZ2 to a value setV. A digital image
I : Z2 → V is considered asfinite if there exists a value⊥ ∈ V

such thatI−1(V \ {⊥}) is finite. The infinite partI−1({⊥})
is then considered as the “background” of the image. This
assumption is motivated by practical considerations related to
the digital definition of images in computer-based applications.

Still motivated by practical considerations, we consider
three kinds of frequently used value sets forV:

• B = {0, 1};
• G ⊆ Z or R (equipped with the canonical order6);
• L, being any arbitrary set (non-equipped with an order).

The first case (V = B) deals with binary images. The set of
finite binary images is notedImB. The second case (V = G)
deals with grey-level images. Without loss of generality, we
can assume that⊥ =

∧6
G. The set of finite grey-level images

is notedImG. The third case (V = L) deals with label images.
The set of finite label images is notedImL.

Remark 1:For the sake of readability, a pointp = (x, y) ∈
Z2 will be associated to thepixel [x− 1

2 , x+
1
2 ]× [y− 1

2 , y+
1
2 ] ⊂ R

2. In particular, the figures that illustrate the following
sections rely on this digital interpretation.

D. Digital topology

1) Basic notions:Digital topology [16] provides a simple
framework for handling the topology of binary images inZn.
Beyond its simplicity, it is also a robust framework that has
been proved to be compliant [17] with other discrete models
(e.g., Khalimsky grids [18] and cubical complexes [19]) but
also with continuous notions of topology [20].

Practically, digital topology onZn mainly relies on two
adjacency relations, noteda2n anda3n−1, defined, for any
p,q ∈ Zn, by

(

p a2n q
)

⇐⇒
(

‖p− q‖1 = 1
)

(4)
(

p a3n−1 q
)

⇐⇒
(

‖p− q‖∞ = 1
)

(5)

In the case ofZ2, we retrieve in particular the well-known4-
and8-adjacency relations, namelya4 anda8.

Let Ω ⊆ Z2, andp,q ∈ Ω. We say thatp,q are4- (resp.8-)
adjacent (inΩ) if p a4 q (resp.p a8 q). From the reflexive-
transitive closure ofa4 (resp.a8) on Ω, we derive the4-
(resp.8-) connectedness relation∼4 (resp.∼8) (on Ω); we
say thatp,q are 4- (resp.8-) connected (inΩ) if p ∼4 q

(resp.p ∼8 q). It is plain that∼4 (resp.∼8) is an equivalence
relation onΩ; the equivalence classes ofΩ with respect to∼4

(resp.∼8), namely the elements ofΩ/∼4 (resp.Ω/∼8) are
called the4- (resp.8-) connected components ofΩ.

2) Dual adjacency and well-composedness models:A finite
set Ω ⊂ Z2 can be modeled as a binary imageI ∈ ImB,
defined byI−1({1}) = Ω andI−1({0}) = Ω = Z2\Ω, or vice
versa. The topological handling of such a binary image cannot
relevantly rely ona8 for both Ω and Ω, due to paradoxes
related to the discrete version of the Jordan theorem [21]. In
this context, it has been proved [22] that such paradoxes could
be avoided by considering distinct adjacencies forΩ andΩ,
leading to the dual adjacency model (see Fig. 1(a–d)).

Definition 2 (Dual adjacency [22]):Let I ∈ ImB. LetΩ =
I−1({1}) andΩ = I−1({0}). We say thatI is a (8, 4)- (resp.
a (4, 8)-) image if Ω is equipped witha4 (resp.a8), while
Ω is equipped witha8 (resp.a4). We define the set of the
connected components of the(8, 4)- (resp.(4, 8)-) imageI as

C(8,4)[I] = I−1({1})/∼8 ∪ I−1({0})/∼4 (6)

(resp.C(4,8)[I] = I−1({1})/∼4 ∪ I−1({0})/∼8 ) (7)

(For the sake of concision, we will often write(k, k) as a
unified notation for(8, 4) and (4, 8).)

Alternatively, bothΩ andΩ may be equipped witha4. In
this context, it has been proposed [23] to only focus on images
that avoid the issues related to the Jordan theorem,i.e., those
for which ∼4 and∼8 are equivalent for bothΩ andΩ, thus
leading to the well-composedness model (see Fig. 1(e–h)).

Definition 3 (Well-composedness [23]):Let I ∈ ImB. We
say thatI is a well-composed(or a wc-) image if

∀v ∈ B, I−1({v})/∼8 = I−1({v})/∼4 (8)

We define the set of the connected components of thewc-
imageI as

Cwc[I] = I−1({1})/∼4 ∪ I−1({0})/∼4 (9)
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(a) I1 ∈ ImB (b) C(8,4)[I1] (c) C(4,8)[I1] (d) I1 ∈ WCB

(e) I2 ∈ ImB (f) C(8,4)[I2] (g) C(4,8)[I2] (h) I2 /∈ WCB

Fig. 1. (a) An imageI1 ∈ ImB. (b) The 8-connected components of
Ω = I−1

1 ({1}) and the 4-connected components ofΩ = I−1
1 ({0}).

(c) The 4-connected components ofΩ and the8-connected components of
Ω. Note thatI1 has the same topological structure as a(8, 4)- and as a
(4, 8)-image. (d) Then,I1 can also be considered in the well-composedness
model: the boundaries shared by its foreground and background regions,
depicted in green, are1-manifolds. (e) An imageI2 ∈ ImB. (f) The 8-
connected components ofΩ = I−1

2 ({1}) and the4-connected components
of Ω = I−1

2 ({0}). (g) The4-connected components ofΩ and the8-connected
components ofΩ. Note thatI2 does not have the same topological structure
as a (8, 4)- and as a(4, 8)-image. (h) Then,I2 cannot be considered in
the well-composedness model: the boundaries shared by its foreground and
background regions, depicted in green, are not1-manifolds (see the red dots).
(a,d,e,h)Ω is depicted in black, andΩ in white. (b,c,f,g) For the sake of
readability, each connected component is represented by a different colour.

The set of the finite well-composed binary images is noted
WCB.

Remark 4:When “interpreting” digital topology in a con-
tinuous framework [17], an image is well-composed iff the
boundaries shared by the foreground and background regions
are manifolds [23] (see Fig. 1(d,h)).

Remark 5:The well-composedness model is more restric-
tive than the dual adjacency one. Indeed, anyI ∈ ImB can be
considered in the dual adjacency model, but not necessarilyin
the well-composedness one,i.e.

WCB ⊂ ImB (10)

III. PURPOSE AND CHOICES

Let us consider an imageI ∈ ImV, a transformationT :
Z2 → Z2, and the transformed imageIT ∈ ImV obtained
from I andT . A frequent question in image analysis is:“Does
T preserve the topology betweenI and IT?” It is generally
answered by considering topological invariants of the images.

The most simple ones are,e.g., the Euler-Poincaré charac-
teristic, or the Betti Numbers. However, they are too weak to
correctly model the “topology preservation” between images.
It is then mandatory to consider stronger topological invariants,
e.g., the (digital) fundamental group [24], the homotopy-type
(considered via notions of simple points/sets [25], [26], [27],
[28]), or the adjacency-tree [29].

Our first goal is to provide conditions under which 2D digi-
tal images preserve their topological properties under anyrigid
transformation. In this context, a crucial issue is the choice
of the topological invariant used to formalise this problem.
Any of those presented above describe topology preservation

in a global fashion, and do not model accurately the possible
local modifications of the image topological structure. Broadly
speaking,I and IT may have the same fundamental group,
homotopy-type and/or adjacency-tree while there exist some
topological differences between some regions ofI andIT that
are in correspondence with respect toT (see,e.g., [30]).

In the sequel, we propose some conditions that reach that
first goal. Our conjecture is that these conditions arenecessary
and sufficientto locally preserve image topological properties
under any rigid transformation. However, in this article, we
only establish that they aresufficient to globally preserve
image topological properties under any rigid transformation.

Indeed, on the one hand, the proof of the whole conjecture
would require to develop a heavy theoretical framework, that
falls out of the scope of this journal (see Sec.VI). On the other
hand, the sufficiency of these conditions is the part of the result
that is actually useful to justify and develop methodological
tools for image (pre)processing, that is the second purposeof
this article, and probably the most interesting for the reader.

We will consider, as (global) topological invariant, the
adjacency-tree [29]. The motivation of this choice is twofold:
(i) the understanding of this topological invariant is probably
easier for most readers; and(ii) in the 2D case, its preservation
is equivalent [31] to the preservation of the homotopy-type,
that is the most commonly used topological invariant in image
processing. We now recall the definition of the adjacency-tree.

Let I ∈ ImB (resp.WCB). Let Ω1,Ω2 ∈ C(k,k)[I] (resp.

Cwc[I]), with Ω1 6= Ω2. We noteΩ1 a
(k,k)
I Ω2 (resp.Ω1 awc

I

Ω2) if there existp ∈ Ω1 and q ∈ Ω2 such thatp a4 q.
It is plain thata(k,k)

I (resp.awc
I ) is an adjacency relation,

and thatΩ1 a
(k,k)
I Ω2 implies thatΩ1 ∈ I−1({1})/∼k and

Ω2 ∈ I−1({0})/∼
k

or vice versa. We define the(k, k)- (resp.

wc-) adjacency graphof I asG(k,k)(I) = (C(k,k)[I],a
(k,k)
I )

(resp.Gwc(I) = (Cwc[I],awc
I )). This graph is connected and

acyclic, and is indeed a tree. It can be equipped with a root
that is the (only) infinite connected component ofC(k,k)[I]
(resp.Cwc[I]), thus leading to the following definition.

Definition 6 (Adjacency tree [29]):Let I ∈ ImB (resp.
WCB). The(k, k)- (resp.wc-) adjacency treeof I is the triple

T(k,k)(I) =
(

C(k,k)[I],a
(k,k)
I , B

(k,k)
I

)

(11)

(resp.Twc(I) =
(

Cwc[I],awc
I , Bwc

I

)

) (12)

whereB(k,k)
I ∈ C(k,k)[I] (resp.Bwc

I ∈ Cwc[I]) is the unique
infinite connected component ofI.

We are now ready to present our definition of topology-
preservation under rigid transformation.

Definition 7 (Topological invariance):Let I ∈ ImB (resp.
WCB). We say thatI is (k, k)- (resp. wc-) topologically
invariant if any T ∈ RigZ2 induces an isomorphism between
T(k,k)(I) (resp.Twc(I)) andT(k,k)(I ◦T ) (resp.Twc(I ◦T )),

and if I ◦ T ∈ ImB (resp.WCB). We noteInv(k,k)
B

(resp.
Invwc

B ) the set of the(k, k)- (resp.wc-) topologically invariant
binary images.
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IV. T HEORETICAL RESULTS

In this section, we define a notion ofregularity (Sec. IV-C)
that provides conditions under which binary images are topo-
logically invariant (Sec. IV-D). We then derive analogue con-
ditions for grey-level (Sec. IV-E) and label images (Sec. IV-F).

A. Preliminary remarks

As stated above, we consider the Eulerian transformation
model (Sec. II-B), and we first focus on binary images. In
other words, given an imageI ∈ ImB and a discrete rigid
transfomationT ∈ RigZ2 (intrinsically associated to a rigid
transformationT ∈ RigR2), we consider the transformed
imageIT ∈ ImB defined as

IT = I ◦ T = I ◦ D ◦ T|Z2 (13)

By setting Ω = I−1({1}), Ω = I−1({0}) and ΩT =
I−1
T ({1}), ΩT = I−1

T ({0}), Eq. (13) rewrites as

ΩT = Z
2 ∩ T −1(Ω⊕�) (14)

ΩT = Z
2 ∩ T −1(Ω⊕�) (15)

where ⊕ is the dilation operator defined in mathematical
morphology (see,e.g., [32]-Ch. 1), and� ⊂ R2 is the unit
square, namely a pixel. These equations can lead to different
results depending on the definition of this pixel, that may be
� = [− 1

2 ,
1
2 ]

2 or ]− 1
2 ,

1
2 [

2. This motivates the next remark.
Remark 8: In this work, we assume thatT andT are such

that Z2 does not intersect any transformed pixel border. In
other words, we consider that Eqs. (13)–(15) lead to equal
results for both definitions of�. From a theoretical view-
point, this allows us to develop a general discussion without
confusing variants related toD. From a pratical viewpoint, this
assumption is compliant with computer-based applications,
that generally rely on floating point arithmetic.

B. Image space restrictions

We first state that the binary images considered for the study
of topological invariance can be chosen in a subspace ofImB.

Remark 9:We restrict our study of(k, k)-topological in-
variance within the binary images to the subspaceWCB ⊂
ImB. This restriction is motivated1 by the fact that any
I ∈ ImB \ WCB presents configurations (see Th. 23) that
may be non-compliant with the definition of(k, k)-topological
invariance.

We now introduce a notion of singularity, and we establish
that singular images cannot be topologically invariant, thus
reducing the image subspace to consider.

Definition 10 ((Non-)singular image):Let I ∈ ImB. We
say thatI is a singular imageif

∃p ∈ Z
2, ∀q ∈ Z

2,
(

q a4 p
)

=⇒
(

I(p) 6= I(q)
)

(16)

We noteNSB the set of the well-composed images that are
not singular.

1This restriction, presented as a motivated –but arbitrary–choice when
considering a global topological invariant, may however beproved when
considering a local one. As discussed in Sec. III, such a proof is beyond
the scope of this article.

Proposition 11: We have

Invwc
B ⊆

(

Inv
(k,k)
B

∩WCB

)

⊆ NSB (17)

In the sequel, we then carry out our study of topological in-
variance within the set of well-composed non-singular images,
independently from the considered (dual adjacency, or well-
composedness) model.

C. Regularity

Let us now introduce a new notion that strenghtens the
notion of well-composedness.

Definition 12 (Regularity):Let I ∈ NSB. We say thatI is
k-regular (resp.k-regular) if for any p,q ∈ I−1({1}) (resp.
I−1({0})), we have

(

p a4 q
)

=⇒ ∃⊞ ⊆ I−1({1}),p,q ∈ ⊞ (18)

(resp.
(

p a4 q
)

=⇒ ∃⊞ ⊆ I−1({0}),p,q ∈ ⊞ ) (19)

where⊞ is a “square” element,i.e., ⊞ = {x, x+1}×{y, y+1},
for (x, y) ∈ Z2. We say thatI is regular if it is both k- and
k-regular. We noteRegkB (resp.RegkB, resp.RegB) the set of
the k-regular (resp.k-regular, resp. regular) binary images.

Remark 13:Following mathematical morphology terminol-
ogy and notations (see,e.g., [32]-Ch. 1), if I is k- (resp.k-)
regular, thenΩ = I−1({1}) (resp.Ω = I−1({0})) is open by
any structuring element⊞, i.e.

γ⊞(Ω) = Ω⊖⊞⊕⊞ = Ω (20)

D. Topological invariance: the binary case

We now establish our main result for binary images, that
states that regularity implies topological invariance.

Theorem 14:

RegkB ⊆ Inv
(8,4)
B

(21)

RegkB ⊆ Inv
(4,8)
B

(22)

RegB ⊆ Invwc
B (23)

E. Topological invariance: the grey-level case

In Sec. II-C, it has been observed that a grey-level image
takes its values in a finite (and totally ordered) subset ofZ or
R. Any such image is then equivalent to an imageI : Z2 → G,
whereG = [[0,m]] ⊂ Z is a finite interval, and⊥ = 0. Without
loss of generality, we then focus on such images.

A grey-level imageI ∈ ImG can unambiguously be mod-
eled by the finite set of its binary level set imagesλv(I) ∈ ImB

defined, for anyv ∈ G as
∣

∣

∣

∣

∣

∣

λv(I) : Z → B

p 7→

{

1 if v 6 I(p)
0 otherwise

(24)

The imageI can then be reconstructed as the supremum of
these|G| level set images, with respect to the pointwise order
≤ on functions induced by the order6 on G

I =

≤
∨

v∈V

v.λv(I) (25)
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Based on this modelling ofI ∈ ImG by the set{λv(I)}v∈G,
the notions previously introduced for binary images can be
extended to grey-level ones2. In particular, we have

WCG =
{

I ∈ ImG | ∀v ∈ G, λv(I) ∈ WCB

}

(26)

NSG =
{

I ∈ WCG | ∀v ∈ G, λv(I) ∈ NSB

}

(27)

Moreover, we define the analogues of the binary notions of
topological invariance (Def. 7) and regularity (Def. 12).

Definition 15 (Grey-level topological invariance):Let I ∈
NSG. We say thatI is (k, k)- (resp. wc-) topologically

invariant if for any v ∈ G, λv(I) ∈ Inv
(k,k)
B

(resp.Invwc
B ).

We noteInv(k,k)
G

(resp.Invwc
G ) the set of the(k, k)- (resp.

wc-) topologically invariant grey-level images.
Definition 16 (Grey-level regularity):Let I ∈ NSG. We

say thatI is k-regular (resp.k-regular, resp.regular) if for
any v ∈ G, λv(I) ∈ RegkB (resp.RegkB, resp.RegB). We note
RegkG (resp.RegkG, resp.RegG) the set of thek-regular (resp.
k-regular, resp. regular) grey-level images.

The following theorem, that is the grey-level analogue of
Th. 14, straightforwardly derives from this last theorem, and
Defs. 15, 16.

Theorem 17:

RegkG ⊆ Inv
(8,4)
G

(28)

RegkG ⊆ Inv
(4,8)
G

(29)

RegG ⊆ Invwc
G (30)

Remark 18:The topological invariance (and thus, the reg-
ularity) of I ∈ ImG also leads to the preservation of the
hierarchy of its connected components between successive
levels. More precisely, the(k, k)- (resp. wc-) topological
invariance implies that for anyT ∈ RigZ2 , the imagesI and
I ◦ T have isomorphic component-trees [34]. This assertion
is easy to prove, based on the fact that(i) T establishes a
bijection between the connected components of the initial and
transformed level set images (Prop. 35), and(ii) T preserves,
by construction (see Eqs. (3), (24)–(25)), the inclusion rela-
tion between these components at successive levels. A more
complete discussion on this topic is beyond the scope of this
article; the reader is referred,e.g., to [34], [35] or [32]-Ch. 7
(and the references therein) for complementary information.

F. Topological invariance: the label case

Similarly to the case of grey-level images, it has been
observed in Sec. II-C that a label image takes its values in
a finite set. Any such image is then equivalent to an image
I : Z2 → L, whereL is finite and⊥ ∈ L. Without loss of
generality, we now focus on such images.

Several attempts have been made to propose topological
frameworks for label images, and more precisely to define
what is the exact meaning of the “topology preservation” in
such images [36], [37], [5], [38]. In this work, we follow
a recent and general proposal [39], [40], that consists of
considering the values ofL as “proto-labels”, and any subsets
of such values as the actual labels of the image. In other words,

2A notion of grey-level well-composedness has also been proposed in [33].

the topology of a label imageI ∈ ImL, and its potential
preservation, are considered by observing all the binary images
exhaustively induced by labelsΛ that are the elements of the
power set2L. This leads to the following notions.

A label imageI ∈ ImL can unambiguously be modeled by
the finite set of its binary characteristic imagesχΛ(I) ∈ ImB

defined, for anyΛ ∈ 2L as
∣

∣

∣

∣

∣

∣

χΛ(I) : Z → B

p 7→

{

1 if I(p) ∈ Λ
0 otherwise

(31)

In particular, by identifying(i) the sets{l}l∈L and{{l}}l∈L,
and(ii) the monoids(B, .) and({L, ∅},∪), the imageI can be
reconstructed –similarly to the case of grey-level images (see
Eq. (25))– as the infimum of these2|L| characteristic images,
with respect to the pointwise order⊑ on functions induced by
the inclusion order⊆ on 2L

I =

⊑
∧

Λ∈2L

Λ.χΛ(I) (32)

Based on this modelling ofI ∈ ImL by the set
{χΛ(I)}Λ∈2L , the notions previously introduced for binary
images can be extended3 to label ones. In particular, we have

WCL =
{

I ∈ ImL | ∀Λ ∈ 2L, χΛ(I) ∈ WCB

}

(33)

NSL =
{

I ∈ WCL | ∀Λ ∈ 2L, χΛ(I) ∈ NSB

}

(34)

Moreover, we define the analogues of the binary notions of
topological invariance (Def. 7) and regularity (Def. 12).

Definition 19 (Label topological invariance):Let
I ∈ NSL. We say thatI is (k, k)- (resp.wc-) topologically

invariant if for any Λ ∈ 2L, χΛ(I) ∈ Inv
(k,k)
B

(resp.Invwc
B ).

We noteInv(k,k)
L

(resp.Invwc
L ) the set of the(k, k)- (resp.

wc-) topologically invariant label images.
Remark 20:In the sequel, we restrict4 our study to the case

of wc-topological invariance for label images.
Definition 21 (Label regularity):Let I ∈ NSL. We say

that I is regular if for any Λ ∈ 2L, χΛ(I) ∈ RegB. We note
RegL the set of regular label images.

The following theorem, that is the label analogue of Th. 14,
straightforwardly derives from this last theorem, and Defs. 19,
21.

Theorem 22:
RegL ⊆ Invwc

L (35)

V. M ETHODOGY

In Sec. IV, we have established sufficient conditions for
guaranteeing topological invariance, thanks to the notionof
regularity (Ths. 14, 17, 22). From this theoretical study, we
first propose simple algorithms to characterise the regularity of

3The definition of well-composedness for label images proposed here (see
Eq. (33)) slightly differs from the one introduced in [36], that only requires
that χ{l}(I) ∈ WCB for any proto-labell ∈ L.

4As in Rem. 9 and the associated footnote, this restriction ismotivated
by the fact that the(8, 4)- and (4, 8)-topological invariance (that are equal,
from there very definitions) may be proved to be equal to thewc-topological
invariance. Once again, the proof of this assertion is beyond the scope of this
article.
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(a) (b) (c)

Fig. 2. Forbidden patterns inWCB (a) and inRegk
B

(a–c), up toπ/2 rotations
and symmetries. The patterns forbidden inRegk

B
are obtained from (a–c) by

value inversion. Black (resp. white) points have value1 (resp.0).

an image (Sec. V-A). Then, we describe some preprocessing
strategies that enable to turn a non-regular image into a regular
(and then topologically invariant) one (Sec. V-B).

A. Pattern-based characterisation of regular images

In this section, we show that the regularity of a 2D digital
image can be easily determined by considering a small set
of specific patterns. This result straightforwardly leads to an
algorithm of optimal time and space complexity.

1) Well-composedness characterisation:Regular images
are defined within the set of well-composed ones. A pre-
requisite is then to characteriseWCB. This is tractable by
considering a specific2× 2 pattern [23].

Theorem 23 ([23]):Let I ∈ ImB. We haveI /∈ WCB iff
there exist distinct pointsp,q, r, s ∈ Z2, with p a4 q a4

r a4 s a4 p, that verify

I(p) 6= I(q) 6= I(r) 6= I(s) (36)

Based on Th. 23 and Defs. 15, 19, we straightforwardly derive
characterisations of grey-level and label well-composedness.

Corollary 24: Let I ∈ ImG. We haveI /∈ WCG iff there
exist distinct pointsp,q, r, s ∈ Z

2, with p a4 q a4 r a4

s a4 p, that verify

I(p) > I(q) < I(r) > I(s) < I(p) (37)

Corollary 25: Let I ∈ ImL. We haveI /∈ WCL iff there
exist distinct pointsp,q, r, s ∈ Z2, with p a4 q a4 r a4

s a4 p, that verify

I(p) 6= I(q) 6= I(r) 6= I(s) 6= I(p) (38)

The characterisation of binary, grey-level and label images
as well-composed ones can then be carried out by simply
checking that they do not contain the forbidden patterns
induced by the binary pattern depicted in Fig. 2(a).

2) Regularity characterisation:We now propose a pattern-
based characterisation of regular binary images.

Proposition 26: Let I ∈ WCB. We haveI /∈ RegkB (resp.
RegkB), and a fortiori RegB, iff there existsp ∈ I−1({1})
(resp. I−1({0})) that satisfies at least one of the following
two conditions (up toπ/2 rotations and symmetries)

I(p− (1, 0)) 6= I(p) 6= I(p+ (1, 0)) (39)

I(p+ (0, 1)) = I(p) 6= I(p− (1, 0)) = I(p+ (1, 1)) (40)

Based on Prop. 26 and Defs. 15, 19, we straightforwardly
derive characterisations of grey-level and label regularity.

Corollary 27: Let I ∈ WCG. We haveI /∈ RegkG (resp.
RegkG), and a fortiori RegG, iff there existsp ∈ Z2 that

satisfies at least one of the following two conditions (up to
π/2 rotations and symmetries)

I(p− (1, 0)) < I(p) > I(p+ (1, 0)) (41)

(resp.I(p− (1, 0)) > I(p) < I(p+ (1, 0))) (42)

I(p+ (0, 1)) > I(p) > I(p− (1, 0)) > I(p+ (1, 1))
(43)

(resp.I(p+ (0, 1)) 6 I(p) < I(p− (1, 0)) 6 I(p+ (1, 1)))
(44)

Corollary 28: Let I ∈ WCL. We haveI /∈ RegL iff there
existsp ∈ Z that satisfies at least one of the following two
conditions (up toπ/2 rotations and symmetries)

I(p− (1, 0)) 6= I(p) 6= I(p+ (1, 0)) (45)

I(p) 6= I(p− (1, 0)) 6= I(p+ (0, 1)) 6= I(p+ (1, 1)) 6= I(p)
(46)

The characterisation of binary, grey-level and label images
as regular ones can then be carried out by simply checking
that they do not contain the forbidden patterns induced by the
binary patterns depicted in Fig. 2(a–c).

3) Complexity: The following result straightforwardly de-
rives from Th. 23, Prop. 26, and their respective corollaries.

Proposition 29: Let I ∈ WCV (with V = B, G or L). Let
S ⊂ Z2 be such thatI−1(V \ {⊥}) ⊆ S (practically,S is the
finite set whereI is defined in a computer-based application).
Then, the algorithm that determines the (non-)regularity of I,
has a time complexityO(|S|), and a space complexityO(1).

B. Image regularisation

We now propose two strategies for preprocessing images
in order to obtain regular –and then topologically invariant–
ones, before further rigid transformation. Such regularisation
strategies(i) must preserve the topological properties of the
images, and(ii) should preserve as much as possible their
geometric properties.

1) Iterative homotopic regularisation:A first strategy con-
sists of locally modifying the image to eliminate the forbidden
configurations defined in Eqs. (36)–(46) and Fig. 2.

Let I ∈ ImV (or WCV, if we aim to obtain regularity, and
not onlyk or k-one). The problem to tackle can be expressed
as a constrained optimisation one, described by

R(I) = arg min
Reg⋆

V
(I)

DI (47)

whereR(I) is the regularised version ofI; Reg⋆V(I) is the
subset ofReg⋆V ∈ {RegkV,RegkV,RegV} composed by the
images that have the same topology asI; andDI : ImV → R+

is a cost function that describes the “distance” fromI, from a
geometric viewpoint. (The definition ofDI actually depends
on the targeted application, and can rely,e.g., on Hausdorff
distance, or any standard (dis)similarity measure.)

In real applications,I is defined on a finite setS ⊂ Z2, and
so is the space of (potential) solutions of Eq. (47). However,
the sizeO(|V||S|) of this space is huge. Then, one has to
accept to only look for an approximate solution of Eq. (47),
instead of an exact one. In this context, a tractable strategy is to
consider the homotopy-guided approach initially developped



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, JANUARY 20XX 7

Fig. 3. Some well-composed images that cannot be regularised without a
super-resolution approach, due to fine texture effects.

for monotonic transformations [41], and then adapted to non-
monotonic ones [42], [43], [6], [38].

This strategy starts from the imageI, and iteratively elimi-
nates forbidden configurations by modifying the value of one
point p ∈ S at each iteration, until stability. The choice ofp
is guided(i) by the position of the forbidden configurations,
(ii) by DI , and (iii) by choosingp as a simple point. This
is feasible forV = B, G or L since notions of simple points
have been proposed in binary [44], grey-level [45] and label
cases [39].

The obtained algorithm can be seen as an extension of the
ones presented in [31], [46] for well-composedness recovery,
to the case of regularity recovery. In particular, it presents the
same strenghts and weaknesses. Indeed, in most application
cases, it will converge in linear time with respect to the number
of forbidden configurations, that are often sparsely distributed
within images. Nevertheless, in pathological cases (e.g., in
presence of fine textures, see Fig. 3), it may not converge,
or even fail. To deal with this issue, we propose hereafter a
second –super-resolution– regularisation strategy.

2) Super-resolution regularisation:Let I ∈ ImV (with
V = B or G) be a (k, k)-image. Even before the issue of
regularisation, it may happen thatI cannot be modified into
a topologically-equivalent well-composed image, when using
a strategy such as the one presented above. It is then possible
to oversampleI by explicitely representing its “interpixel”
topological structure. This can be done by embeddingI into
the Khalimsky space [18], then leading to a new imageI

(k,k)
K

defined as
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

I
(8,4)
K : Z2 → V

2.p 7→ I(p)

2.p+ (0, 1) 7→
∨6

I(p+ {0} × {0, 1})

2.p+ (1, 0) 7→
∨6 I(p+ {0, 1} × {0})

2.p+ (1, 1) 7→
∨6

I(p+ {0, 1} × {0, 1})
(48)

(The image I
(4,8)
K is defined by substituting

∧

to
∨

in
Eq. (48).) The proof of the following result straightforwardly
derives from these definitions.

Proposition 30: Let I ∈ ImV (with V = B or G). Then we
have I

(k,k)
K ∈ WCV. Moreover,I(k,k)K and I have the same

homotopy-type, when considered as(k, k)-images.
From now on, we then assume thatI ∈ WCV (with V = B,

G or L). It may happen thatI cannot be modified into a
regular image when using homotopic iterative regularisation.
Once again, an oversampling strategy can be alternatively
proposed. This strategy no longer relies on Khalimsky space

embedding, but simply on a2× 2 super-resolution approach.
More precisely, fromI ∈ WCV, we can define a new image

∣

∣

∣

∣

I2×2 : Z2 → V

p = (x, y) 7→ I((⌊x/2⌋, ⌊y/2⌋))
(49)

The proof of the following result straightforwardly derives
from this definition.

Proposition 31: Let I ∈ WCV (with V = B, G or L). Then
we haveI2×2 ∈ RegV. Moreover,I2×2 andI have the same
homotopy-type when considered as(k, k)- (resp.wc-) images.

Finally, Eqs. (48)–(49) provide a global super-resolution
strategy that enables to redefine any(8, 4)-, (4, 8)-, or wc-
image as a regular –and thus topologically invariant– one. By
opposition to the previous strategy, this one has the advantages
of being deterministic and geometrically preserving (up to
a possible “thickening” of the interpixel space). Its main
drawback, by opposition to the first strategy, is its higher
spatial cost, as it models an image of size|S| as a new one of
size4.|S| (and16.|S| in the worst cases).

VI. CONCLUSION

We have investigated the notion of topology preservation
of 2D digital images under rigid transformation. Based on
theoretical results established in the digital topology frame-
work, we have derived efficient algorithms for analysing and
preprocessing such images. The genericity of these resultsand
methods, in terms of topological models (dual adjacency and
well-composedness) and values (binary, grey-level and label
images), authorise their actual use in real applications.

A short term purpose will be to prove that the notion of
regularity provides not only sufficient, but alsonecessarycon-
ditions for topological invariance (in other words, that the ⊆
symbols in Ths. 14, 17 and 22, are indeed= symbols). To this
end, it will be necessary to define a relevantlocal topological
invariant, relying,e.g., on the topological structure that can be
defined on tilings ofZ2 induced by rigid transformations.

We will also investigate the links between our results,
established in a discrete framework, and some results obtained
in the research field of digitisation, that intrinsically merges
both discrete and continuous frameworks. Indeed, as suggested
by Eqs. (14)–(15) the rigid transformation of a digital image
can be interpreted as the (re)digitisation of its associated
continuous pixel-based representation. Based on this assertion,
our notion of regularity may be seen as a discrete analogue of
the notion ofr-regularity developped fifteen years ago [47],
[48], for topology-preserving digitisation purpose. These links,
that are easy to intuit, are less trivial to formally establish.

From a more methodological viewpoint, the next step will
consist of passing fromZ2 to Z

3. This raises supplementary
difficulties, related to the more complex definitions of topo-
logical models [49] and topological invariants [30]. To cope
with this challenge, various ways may be considered. A first
one relies on the possible analogy between regularity andr-
regularity (see above). A second one relies on a morphological
interpretation of regularity. Indeed, as stated in Rem. 13,
regular images are open for square structuring elements, but
the counterpart is not true. A specific class of open images, for
which the opening relies on homotopic erosions and dilations,
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may be considered and compared to the family of regular
images, in a morpho-topological framework [50], [51], [52].
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APPENDIX

A. Auxiliary properties

The following two properties deal with configurations that
have already been discussed in the literature (see,e.g., [14],
[15]. Their proofs, that do not present much difficulties, are left
to the reader. (We recall that we are still under the hypotheses
of Rem. 8.)

Property 32: Let p ∈ Z2. There existsT ∈ RigZ2 such
that

p /∈ T (Z2) (50)

Let T be such a transformation. Let{n, e, s,w} = {q ∈ Z
2 |

p a4 q}, with n a8 e a8 s a8 w. There exist distinct points
n′, e′, s′,w′ ∈ Z2, with n′ a4 e′ a4 s′ a4 w′ a4 n′, such
that

∀q ∈ {n, e, s,w},q = T (q′) (51)

Property 33: Let C = {x, x + 1} × {y, y + 1} ⊂ Z2. Let
T ∈ RigZ2 . Then we haveT−1(C)/∼4 = {T−1(C)}.

B. Proof of Proposition 11

Let I ∈ WCB. Let us suppose thatI /∈ NSB. Let p ∈ Z2

be such that∀q ∈ Z2, (q a4 p) ⇒ (I(p) 6= I(q)) (Def. 10).
Then, Th. 23 implies that∀q ∈ Z2, (q a8 p) ⇒ (I(p) 6=
I(q)), i.e., {p} ∈ C(k,k)[I]. From Prop. 32 (Eq. (50)), there
exists T ∈ RigZ2 such thatp /∈ T (Z2). Such a transfor-
mation T does not induce a bijection betweenC(k,k)[I] and
C(k,k)[I ◦T ], and a fortiori an isomorphism betweenT(k,k)(I)

andT(k,k)(I ◦T ), and thus we haveI /∈ Inv
(k,k)
B

(Def. 7). By

contraposition, we have(Inv(k,k)
B

∩ WCB) ⊆ NSB. Finally,

Invwc
B ⊆ Inv

(k,k)
B

is a straightforward consequence of Defs. 3,
7. �

C. Proof of Proposition 26

Let I ∈ RegkB. Let p ∈ I−1({1}). Since I ∈ NSB

(Def. 12), there existsq ∈ I−1({1}) such thatp a4 q. Then
Eq. (18) forbids Eqs. (39)–(40).

Let us suppose that for allp ∈ I−1({1}) Eqs. (39)–(40)
are not verified. Letp ∈ I−1({1}). As p does not verify
Eq. (39), we chooseq ∈ I−1({1}) such thatp a4 q. Up to
π/2 rotations, we can setq = p + (0, 1). Sincep does not
verify Eq. (39), we havep+(1, 0) orp−(1, 0) ∈ I−1({1}). Up
to symmetries, we can setp+(1, 0) ∈ I−1({1}). If p+(1, 1) ∈
I−1({1}), then,p,q satisfy the RHS of Eq. (18). Let us now
suppose thatp + (1, 1) ∈ I−1({0}). Sinceq does not verify
Eq. (39), we havep + (−1, 1) ∈ I−1({1}). But Eq. (40)
impliesp− (1, 0) ∈ I−1({1}), andp,q then satisfy the RHS
of Eq. (18). Then,I ∈ RegkB.

The result follows by contraposition. The same reasonning
holds forRegkB. �

D. Proof of Theorem 14

Proposition 34: Let I ∈ RegkB (resp.RegkB, resp.RegB).
Let T ∈ RigZ2 . ThenT|(I◦T )−1({1}) establishes a homomor-
phism from((I ◦ T )−1({1}),a4) (resp.((I ◦ T )−1({1}),a8

), resp. ((I ◦ T )−1({1}),a4)) to (I−1({1}),∼4) (resp.
(I−1({1}),∼8), resp. (I−1({1}),∼4)), while T|(I◦T )−1({0})

establishes a homomorphism from((I ◦ T )−1({0}),a8)
(resp. ((I ◦ T )−1({0}),a4), resp.((I ◦ T )−1({0}),a4)) to
(I−1({0}),∼8) (resp.(I−1({0}),∼4), resp.(I−1({0}),∼4)).

Proof Let I ∈ RegB. Let p′,q′ ∈ (I ◦ T )−1({1}), with
p′ a4 q′. Let p = T (p′), q = T (q′). From Eq. (13), two
cases can occur:(i) p = q, and thenp ∼4 q; (ii) p a8 q,
that impliesp ∼4 q (Def. 3), and thenp ∼4 q. The same
reasonning holds forI ∈ RegB and(I ◦T )−1({0}); I ∈ RegkB
and (I ◦ T )−1({1}); andI ∈ RegkB and (I ◦ T )−1({0}).

Let I ∈ RegkB. Let p′,q′ ∈ (I ◦ T )−1({0}), with p′ a8 q
′.

Let p = T (p′), q = T (q′). From Eq. (13), three cases can
occur: (i) p = q, and thenp ∼8 q; (ii) p a8 q, and then
p ∼8 q; or (iii) p = q+ (2, 0) or (2, 1), up toπ/2 rotations
and symmetries, and thenp ∼8 q derives from Prop. 26. The
same reasonning holds forI ∈ RegkB and (I ◦ T )−1({1}). �

We can then licitely define the following notions. LetI ∈
WCB andT ∈ RigZ2 . Let us consider the functionT ⋆

I (with
⋆ = (k, k) or wc) defined as

∣

∣

∣

∣

T ⋆
I : C⋆[I ◦ T ] → C⋆[I]

C 7→ CT ⊇ T (C)
(52)

We are now ready to establish the first part of the iso-
morphism, namely the one-to-one correspondence between the
connected components of the initial and transformed images.

Proposition 35: Let I ∈ RegkB (resp.RegkB, resp.RegB).
Let T ∈ RigZ2 . Then T

(4,8)
I (resp.T (8,4)

I , resp.Twc
I ) is a

bijection.
Proof Let C ∈ C⋆[I] and p ∈ C. SinceI /∈ NSB, we

can chooseq ∈ C such thatp a4 q. Then, from Prop. 32
(Eq. (50)), there existsp′ ∈ Z2 such thatT (p′) ∈ {p,q} ⊆ C.
Thus,T ⋆

I is a surjection.
We assume thatI ∈ RegB. Let p′,q′ ∈ (I ◦ T )−1({1}).

Let p = T (p′), q = T (q′). Let us suppose thatp,q ∈ C ∈
I−1({1})/∼4. We havep ∼4 q, i.e., there exists a set{pi}ki=0

(k > 0) such thatp0 = p, pk = q, pi ∈ I−1({1}) for anyi ∈
[[0, k]], andpi a4 pi+1 for anyi ∈ [[0, k−1]]. Let i ∈ [[0, k−1]].
If pi,pi+1 ∈ T (Z2), we setp′

i,p
′
i+1 ∈ (I ◦ T )−1({1}) such

that T (p′
i) = pi and T (p′

i+1) = pi+1; it then derives from
Prop. 33 and Def. 12 thatp′

i ∼4 p′
i+1. Let us now suppose that

pi or pi+1 /∈ T (Z2), for instancepi+1 /∈ T (Z2). It derives
from Prop. 32 (Eq. (51)) thatpi+2 ∈ T (Z2) (for the same
reasons, we cannot havepi,pi+1 /∈ T (Z2)). We setp′

i,p
′
i+2 ∈

(I ◦ T )−1({1}) such thatT (p′
i) = pi andT (p′

i+2) = pi+2.
From Prop. 32 (Eq. (51)), we then havep′

i ∼4 p′
i+2. Then

Π = T−1({pi}ki=0) is such thatp′,q′ ∈ Π ⊆ (I ◦ T )−1({1})
and that there existsCT ∈ (I ◦ T )−1({1})/∼4 such thatΠ ⊆
CT . The same reasonning holds forRegB and(I ◦T )−1({0});
RegkB and(I ◦ T )−1({1}); andRegkB and (I ◦ T )−1({0}).

We now assume thatI ∈ RegkB. Letp′,q′ ∈ (I◦T )−1({0}).
Let p = T (p′), q = T (q′). Let us suppose thatp,q ∈
C ∈ I−1({0})/∼8. As I ∈ WCB, we actually haveC ∈
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I−1({0})/∼4. Then, we havep ∼4 q, i.e., there exists a set
{pi}ki=0 (k > 0) such thatp0 = p, pk = q, pi ∈ I−1({0})
for any i ∈ [[0, k]], andpi a4 pi+1 for any i ∈ [[0, k − 1]].
Let i ∈ [[0, k − 1]]. If pi,pi+1 ∈ T (Z2), we setp′

i,p
′
i+1

such thatT (p′
i) = pi and T (p′

i+1) = pi+1; it then derives
from Eq. (13) thatp′

i ∼8 p′
i+1. Let us now suppose thatpi

or pi+1 /∈ T (Z2), for instancepi+1 /∈ T (Z2). It derives
from Prop. 32 (Eq. (51)) thatpi+2 ∈ T (Z2) (for the same
reasons, we cannot havepi,pi+1 /∈ T (Z2)). We setp′

i,p
′
i+2

such thatT (p′
i) = pi and T (p′

i+2) = pi+2. From Prop. 32
(Eq. (51)), we then havep′

i ∼4 p
′
i+2. ThenΠ = T−1({pi}ki=0)

is such thatp′,q′ ∈ Π ⊆ (I ◦ T )−1({0}) and that there
exists CT ∈ (I ◦ T )−1({0})/∼8 such thatΠ ⊆ CT . The
same reasonning holds forRegkB and (I ◦ T )−1({1}).

It straightforwardly follows from these two sub-reasonnings
that T ⋆

I is indeed an injection.�
The following proposition is a consequence of this result.
Proposition 36: Let I ∈ RegkB (resp.RegkB, resp.RegB).

Let T ∈ RigZ2 . We haveI ◦ T ∈ ImB (resp.ImB, resp.
WCB). Moreover, we haveT ⋆

I (B
⋆
I◦T ) = B⋆

I .
Proof The fact thatI ◦ T ∈ ImB straightforwardly derives

from the fact thatT ⋆
I is a bijection, and from the definition

of T (Eq. (13)), that implies that for anyp ∈ Z2, T−1({p})
is finite. We haveT ⋆

I (B
⋆
I◦T ) = B⋆

I for the very same reasons.
Let us now consider thatI ◦ T /∈ WCB. Then, from Th. 23,
there exist distinct pointsn, e, s,w ∈ Z2, with n a4 e a4

s a4 w a4 n, that verify Eq. (36). From Eq. (13), we then
derive that there exist distinct pointsn′, e′, s′,w′ ∈ Z2 such
that T (n) = n′, T (e) = e′, T (s) = s′, T (w) = w′. Still
from Eq. (13), we have moreovern′ a8 e′ a8 s′ a8 w′ a8

n′. These equalities authorise only three configurations, up
to π/2 rotations and symmetries:(i) e′ = n′ + (1, 0), s′ =
n′ + (2,−1), w′ = n′ + (1,−1); (ii) e′ = n′ + (1, 0), s′ =
n′+(1,−1), w′ = n′+(0,−1); (iii) e′ = n′+(1,−1), s′ =
n′ − (2, 0), w′ = n′ − (1, 1). Configuration(i) corresponds
to Eq. (40), configuration(ii) corresponds to Eq. (36), and
configuration(iii) corresponds to Eq. (39); in each case, we
have I /∈ RegB. By contrapotision,I /∈ RegB implies that
I ◦ T ∈ WCB. �

We are now ready to establish the last part of the isomor-
phism, namely the preservation of the adjacency relation.

Proposition 37: Let I ∈ RegkB (resp.RegkB, resp.RegB).
Let T ∈ RigZ2 . Let C1, C2 ∈ C⋆[I ◦ T ] with ⋆ = (4, 8) (resp.
(8, 4), resp.wc). We have

(

C1 a⋆
I◦T C2

)

⇐⇒
(

T ⋆
I (C1) a

⋆
I T ⋆

I (C2)
)

(53)

Proof Let C1 a⋆
I◦T C2. Up to reindexing, we haveC1 ⊆

(I ◦ T )−1({0}) and C2 ⊆ (I ◦ T )−1({1}). Let p′ ∈ C1,
q′ ∈ C2 be such thatp′ a4 q′. Let p = T (p′) ∈ T ⋆

I (C1),
q = T (q′) ∈ T ⋆

I (C1). From Eq. (13), we can have:(i) p a4 q

and thenT ⋆
I (C1) a⋆

I T ⋆
I (C2); or (ii) p a8 q andp 6a4 q.

In that second case, letr ∈ Z2 be such thatp a4 r a4 q.
We have eitherr ∈ T ⋆

I (C1) or T ⋆
I (C2), and thenT ⋆

I (C1) a
⋆
I

T ⋆
I (C2).
Let T ⋆

I (C1) a⋆
I T ⋆

I (C2). Up to reindexing, we have
T ⋆
I (C1) ⊆ T−1({0}) and T ⋆

I (C2) ⊆ T−1({1}). Let p ∈
T ⋆
I (C1), q ∈ T ⋆

I (C2) be such thatp a4 q. Case1: there

exist p′ ∈ C1 such thatT (p′) = p, andq′ ∈ C2 such that
T (q′) = q. From Eq. (13), three possibilities can occur:(i)
p′ a4 q′ and thenC1 a⋆

I C2; (ii) p′ a8 q′ andp′ 6a4 q′, and
by choosingr′ ∈ Z2 such thatp′ a4 r′ a4 q′, we have either
r′ ∈ C1 or C2, and thenC1 a⋆

I C2; (iii) q′ = p′ + (2, 0), up
to π/2 rotations, and by choosingr′ = p′ + (1, 0), we have
eitherr′ ∈ C1 or C2, and thenC1 a⋆

I C2. Case2: p /∈ T (Z2)
(the same holds forq /∈ T (Z2)). SinceI ∈ NSB, there exists
r ∈ T ⋆

I (C1) and s ∈ T ⋆
I (C2) such thatp a4 r a8 s a4 p.

Then, from Prop. 32 (Eq. (51)), there existsr′ ∈ C1 such that
T (r′) = r, and s′ ∈ C2 such thatT (s′) = s, and r′ a4 s′,
and thenC1 a⋆

I C2. �
By gathering Props. 35–37, we obtain Th. 14.
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