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Topology-preserving rigid transformation
of 2D digital images

Phuc Ngo, Nicolas Passat, Yukiko Kenmochi, Hugues Talbot

Abstract—We provide conditions under which 2D digital im- We then propose, in Sec. IV, some conditions under which
ages, considered in the two most common digital topology mets a 2D digital image preserves its topological propertieseund
(namely, dual adjacency and well-composedness), preserteir oy rigid transformation. Based on these results, we peovid

topological properties under rigid transformation. This study, . . . .
that is developed in a discrete framework, leads to the propsal in Sec. V some methodological solutions for analysing and

of efficient preprocessing strategies that ensure the topogical Preprocessing digital images before rigid transformation
invariance of images under further rigid transformation. These order to preserve their topological properties. This stigly

results and methods are proved to be valid for various kinds ©  generic on two sidegi) the main two digital topology models
images (binary, grey-level, label), thus providing a genec set 5.6 congsidered, namely the dual adjacency, and the well-
of tools, that can be used in particular in the context of imag d ' - and) th f bi ’ level
registration and warping. composedness ones; ad) 1e cases of binary, grey-leve

and label images are dealt with. Sec. VI concludes the articl
by perspective works. For the sake of readability, technica
proofs are reported in Appendix.

Index Terms—Digital imaging, rigid transformation, digital
topology, well-composed images, image correction.

I. INTRODUCTION II. BACKGROUND NOTIONS

I N digital imaging, the preservation of topological projest A. Notations

is a crucial issue in several application fields, involviiy 3 1N sets are noted, BB, C, etc Subsets of these sets are
data €.g, medical imaging [1]) but also 2D ones.§, remote noted A, B,T", etc The power set of a set A is not@d_. The
sensing [2]). In particular, topology preservation —pieres elements of sefcs are notedb, ¢, etc, anda, b, c, etc if the
nearly fifty years ago [3], [4]- has been investigated in teet is a cartesian product. By abuse of notr?ltlon, an elem_ent
context of image transformation, both from the viewpoinits ¢4 that should be noted as a column vector, is noted as a line
registration [5] and warping [6]. It has to be noticed thdoes Vector.e.g, a = (a, b) instead ofa = (5)-
have been mainly devoted to handle complex transformations ' "€ functions defined on continuous sets are noteg, C,
while more simple ones have been globally unconsidered. &i¢, and the ones defined on discrete sets are ndefl, C,

Indeed, the handling of “simple” transformatione.q, ©!¢ A function ” from A to B is notedf" : A — B. If A C A
translations, rotations) is often assumed to be trivialsBan 2"d BC B, we noteF(A) = {F(z) |z € A} andF—'(B) =
be explained by the fact that, in the continuous cass n 1 | £(2) € ?}- It Fis a bijection, its inverse function is
R™), most of such transformations are topology-preservin@/SC notedr”™" : B — A. The restriction off" : A — B to
while this is not necessarily the case for complex oreeg,( 1€ Subset AC A is notedFj : A — B. The composition of
those induced by nonrigid registration [7]). Based on thi§ : A @ BandG : B — Cis notedG o F: A — C. The
“continuous” assertion, it is often thought that simplenga SPaces of functions are notef B, ¢, etc

formations still lead to easy handling of topological prdjess Adjacency {.e., binary, irreflexive and symmetric) relations
in the digital caseife., in Z"). This is a wrong belief. are noted~. Equivalencei(e., binary, reflexive, transitive and

In the case of rigid transformations [8], that include th ymmetric) relations are noted. We recall that a relatiom

family of rotations, €.g, (quasi-)shear rotations [9], [10], or([€SP-~) defined on a set A is actually a subset ok A, and
hinge angle rotations [11], [12], [13]), some topologiceies thata ~ b (resp.a ~ b) means thafa,b) € ~ (resp.~).
have been identified [14], [L5]. These issues are directly GiVEN @ SELA, equipped with an equivalence relationthe
indirectly induced by the sampling policies that are maadat €duivalence class af € A with respect to~ is noted|a].,
to guarantee the stability of the transformations ingide ~ @nd the quotient set of A with respect 4ois noted A/~.
In this article, we propose a study devoted to the topoldgicg Rigid transformations

invariance of 2D digital images under rigid transformatiom
Sec. I, we first provide background notions required to ma
the article self-contained. Secs. IlI-V constitute theecof
the article. The main purposes are first detailed in Sec. lll.

e1) Continuous case:n R?, a rigid transformation is a
i?unction
R? — R?

x = Rx+t @

Phuc Ngo, Yukiko Kenmochi and Hugues Talbot are with the ESIE whereR is a rotation matrix, and € R2. The functioni/ is
Paris and the Université Paris-Est, LIGM UMR CNRS 8049,iRdfrance g5 bijection, and we notg = U~ its inverse function. which
({p.ngo,y.kenmochi,h.talbp@esiee.fr). . L . . '

Nicolas Passat is with the Universite de Reims Champagdemne, 1S @ISO a rigid transformation. We nof@igg. the set of the

CReSTIC EA 3804, Reims, France (nicolas.passat@univstéim rigid transformations.
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2) Discrete case:These definitions cannot be directly apD. Digital topology

plled2|n the discrete casée., when conS|de£|ngZ |Qstead 1) Basic notions:Digital topology [16] provides a simple
of R : Indeed_, there IS no guarantee_ tatz”) < Z°. _The framework for handling the topology of binary imagesZ.
handling of discrete rigid transformat;ons tr21en requires togeyvond its simplicity, it is also a robust framework that has
consider a discretisation operatdr: R* — Z°. In the most paon hroved to be compliant [17] with other discrete models
common cases —and in the present ofie+s the standard (o o khalimsky grids [18] and cubical complexes [19]) but
rounding function. We can then define the discrete analogu§s, \vith continuous notions of topology [20]

.72 2 .72 2 :
U:2° - 27 andT : Z° — 27, of U and T, as Practically, digital topology orZ™ mainly relies on two

U =Dolg @) adjacency relations, noted,, and ~3._1, defined, for any

,qeEZ", b
T=DoTz=DoU ")z (3) P4 Y

. . L. X (p 2n q) — (Hp - qu = 1) (4)
We notefRig;» the set of the discrete rigid transformations. (p ~ ) <= (Ip — allo = 1) )
3) Transformation modelsTwo transformation models can P14 Pl
be considered for discrete (rigid) transformations: thieBan |In the case ofZ?, we retrieve in particular the well-knowh
(or backwards) model, and the Lagragian (or forwards) oneand 8-adjacency relations, namely, and ~g.
The Lagrangian model consists of computitigZ?), i.e., LetQ C Z2, andp, q € Q. We say thap, q are4- (resp.8-)
it determines the image of the “initial” spad® associated adjacent (in2) if p ~4 q (resp.p ~s q). From the reflexive-
to the rigid transformation. From an imaging viewpointsthitransitive closure of~, (resp.~g) on €, we derive the4-
model is not satisfactory, sind€ is, in most cases, neither(resp.8-) connectedness relation, (resp.~g) (on Q); we
injective nor surjective. In other words, if is applied on a say thatp,q are 4- (resp.8-) connected (inQ) if p ~4 q
digital image (see Sec. II-C), it may lead to a transformg@esp.p ~5 q). It is plain that~, (resp.~3g) is an equivalence
image that will present both undefined and conflicted valuesslation onS; the equivalence classes Qfwith respect to~,
By opposition, the Eulerian model consists of computinggesp. ~s), namely the elements dB/~4 (resp.Q/~s) are
T(Z?), i.e, it determines the preimage of the “transformedéalled the4- (resp.8-) connected components 6.
spaceZ? associated to the rigid transformation. From an 2) Dual adjacency and well-composedness mod&lgnite
imaging viewpoint, this model is more satisfactory, sifités set{) c Z? can be modeled as a binary imagec Jmg,
defined on the whole transformed sp&t% thus guaranteeing defined byl ~' ({1}) = Q andI~*({0}) = Q = Z2\, or vice
that any point of a transformed digital image will be unamversa. The topological handling of such a binary image canno
biguously defined. Nevertheless, sinepresents the samerelevantly rely on~g for both Q and Q, due to paradoxes
properties ag/ in terms of non-injectivity and non-surjectivity, related to the discrete version of the Jordan theorem [21]. |
this model is not exempt from (topological) drawbacks.  this context, it has been proved [22] that such paradoxelsicou
be avoided by considering distinct adjacencies Sboand 2,
L leading to the dual adjacency model (see Fig. 1(a—d)).
C. Digital images Definition 2 (Dual adjacency [22]):Let ] € Jmg. Let() =
In this article, we considefinite digital images, that are I~'({1}) andQ = I~1({0}). We say thatl is a(8,4)- (resp.
defined as functions froii? to a value se¥. A digital image a (4, 8)-) imageif  is equipped with~4 (resp.~g), while
I:72% — Vis considered afiniteif there exists avalug. € V. Q is equipped with~g (resp.~4). We define the set of the
such that/=1(V \ {L}) is finite. The infinite parZ —({L}) connected components of t& 4)- (resp.(4,8)-) image! as
is then considered as the “background” of the image. This

8.4 -1 -1
assumption is motivated by practical considerations el CEI[I) = I ({1} /~s U T ({0})/~a (6)
the digital definition of images in computer-based appidre. (resp.CH® I = I ({1})/~s UTH{0}) /s ) (7)
Still motivated by practical considerations, we consider

three kinds of frequently used value sets ¥ar (For the sake of concision, we will often writgk, k) as a
B = {0,1}; unified notation for(8,4) and (4, 8).)

. . _ _ Alternatively, bothQ2 and Q may be equipped with~,. In
» G C Z orR (equipped with the canonical ordey); his context, it has been proposed [23] to only focus on image

« L, being any arbitrary set (non-equipped with an Ordershat avoid the issues related to the Jordan theoremthose
The first case { = B) deals with binary images. The set offor which ~4 and ~g are equivalent for botif2 and Q2, thus
finite binary images is notefimg. The second casé/(= G) |eading to the well-composedness model (see Fig. 1(e-h)).
deals with grey-level images. Without loss of generalitg W Definition 3 (Well-composedness [23]et I € Jmg. We
can assume that = /\g G. The set of finite grey-levelimagessay that/ is awell-composedor awc-) imageif
is notedJmg. The third caseY{ = L) deals with label images.

The set of finite label images is not&eh; . Voe B, I ({v})/~s =T "({v})/~a (8)
2Re_mark 1.For. the sake Of readabqlty, a ?mpt: (m{ y) € We define the set of the connected components ofuthe

7* will be associated to thpixel [z — 5,2+ 5] x [y — 5,y + imacel as

%] C R2. In particular, the figures that illustrate the following g

sections rely on this digital interpretation. CYe[I) = I"Y({1})/~a U T ({0}) )~y (9)
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in a global fashion, and do not model accurately the possible
local modifications of the image topological structure. Broadly
speaking,/ and I may have the same fundamental group,
homotopy-type and/or adjacency-tree while there existesom
topological differences between some regiong ahd/ that
@nhedmg () CEVN] (@ CHIN] (d) 1 €W gre in correspondence with respectltdsee,e.qg, [30]).

In the sequel, we propose some conditions that reach that
first goal. Our conjecture is that these conditionsregeessary
and sufficiento locally preserve image topological properties
under any rigid transformation. However, in this articlee w
only establish that they arsufficientto globally preserve

©) I € Jmp M CED (1) (@) C4)[1,)] (h) I ¢ ey image topological properties under any rigid transfororati

. _ Indeed, on the one hand, the proof of the whole conjecture
g‘g':l' 11,1(’2 1?)” image 45;02:2&@(2) ;hnfpsgggg?secgd ;:OTF??{ESS. of would require to develop a heavy theoretical framework{ tha
(c) The 4-connected components 6f and thes-connected components of falls out of the scope of this journal (see Sec.VI). On theepth
Q. Note that/; has the same topological structure ag8a4)- and as a hand, the sufficiency of these conditions is the part of tkalte

(4, 8)-image. (d) Then/; can also be considered in the well-composedne ; ot ;
model: the boundaries shared by its foreground and backdroegions, That is actually useful to justify and develop methodolagic

depicted in green, aré-manifolds. () An imagel> € Jmg. (f) The 8- t0OIs for image (pre)processing, that is the second purpbse
connected components 6f = I, ' ({1}) and the4-connected components this article, and probably the most interesting for the ezad

re) — _1 - - . . . . .
of =1, ({0}). (g) Thed-connected components Ofand thes-connected v il consider, as (global) topological invariant, the
components of2. Note that/, does not have the same topological structure . Ll ; . .
as a(8,4)- and as a(4,8)-image. (h) Then/> cannot be considered in adjacency-tree [29]. The motivation of this choice is twdfo
the well-composedness model: the boundaries shared byrggrbund and (i) the understanding of this topological invariant is prolgabl

background regions, depicted in green, arelnatanifolds (see the red dots). ; cahd) i ; ;
(a,d,e,h)Q2 is depicted in black, and2 in white. (b,c,f,g) For the sake of ,eaSIEI’,for most readers; a(m‘) n the_ZD case, Its preservation
readability, each connected component is represented fijeeedt colour, 1S €quivalent [31] to the preservation of the homotopy-type

that is the most commonly used topological invariant in imag
processing. We now recall the definition of the adjaceneg-tr
The set of the finite well-composed binary images is noted| et 1 ¢ Jmp (resp.20¢g). Let 1,9, € C*F[I] (resp.
Wig. we[1]), with Q; # Q0. We noteQ; ~*F) 0, (resp.Q, ~we
_ Remark 4:When “interpret_ing” digital topology in a con- 522)[if])t,herte exlis7tép 26 Qf aﬁ;eq le {22 sugh(tfz\?p 1% 21_
tinuous framework [17], an image is well-composed iff thi s plain that .~ P we di lati
boundaries shared by the foreground and background regi tn!ss piain a(k% (resp.~}) is an adjacency relation,
are manifolds [23] (see Fig. 1(d,h)). and that® ~;" Q, implies thatQ, € 7-'({1})/~ and
Remark 5: The well-composedness model is more restrié22 € I~ ({0})/~ or vice versa. We define th, )- (resp.
tive than the dual adjacency one. Indeed, &y Jmz can be we-) adjacency graptof I as&*#) (1) = (kR [1], ()
considered in the dual adjacency model, but not necessarily(resp.&“<(I) = (C*“[I], ~¥¢)). This graph is connected and
the well-composedness oneg. acyclic, and is indeed a tree. It can be equipped with a root
that is the (only) infinite connected component &) |[I]

Wep C Jmp (10) (resp.C*<[I]), thus leading to the following definition.
Definition 6 (Adjacency tree [29])Let I € Jmp (resp.
I1l. PURPOSE AND CHOICES 0¢g). The(k, k)- (resp.wc-) adjacency treef I is the triple
Let us consider an imagé € Jmy, a transformatiori” :
Z? — 7?2, and the transformed imagk € Jmy obtained TP (1) = (C(k,E)m A&kﬁ) Bfrk’E)) (11)

from I andT'. A frequent question in image analysis‘iBoes
T preserve the topology betwednand I?" It is generally
answered by considering topological invariants of the iesag
The most simple ones are,g, the Euler-Poincaré charac-whererr’fvE) e ckP[]] (resp. B¢ € C*°[I]) is the unique
teristic, or the Betti Numbers. However, they are too weak {gfinite connected component df
correctly model the “topology preservation” between inmsage
Itis then mandatory to consider stronger topological iraras,
e.g, the (digital) fundamental group [24], the homotopy-typ

: . . ¢ simpl i 5] [2 %
(considered via notions of simple points/sets [25], [2@]/][ Wes). We say thatl is (k,k)- (resp. we-) topologically

[28]), or the adjacency-tree [29]. Verantif amy T ¢ i ind : Ao
Our first goal is to provide conditions under which 2D digiinvanantitany 1 € =higz. INGUCES an 1ISomorphism between

k.k we k.k we
tal images preserve their topological properties underiay T ?(I) (resp.¢(1)) andT*H) (1o T) (resp.T(k E()IOT))’
transformation. In this context, a crucial issue is the caoiand if [ o7 € Jmg (resp.WCs). We noteJnog ™" (resp.
of the topological invariant used to formalise this problem¥nog ) the set of thek, k)- (resp.we-) topologically invariant

Any of those presented above describe topology presenvatinary images.

(resp.T¥¢(I) = (C¥°[I], ~}¢, BY) ) (12)

We are now ready to present our definition of topology-
greservation under rigid transformation.

Definition 7 (Topological invariance)Let I € Jmg (resp.
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IV. THEORETICAL RESULTS Proposition 11: We have
In this section, we define a notion cdgularity (Sec. IV-C) Tno¥e C (jnnI(Bk,E) A m%) C NGy (17)

that provides conditions under which binary images are-topo

logically invariant (Sec. IV-D). We then derive analogua€o In the sequel, we then carry out our study of topological in-

ditions for grey-level (Sec. IV-E) and label images (SecH)V variance within the set of well-composed non-singular iesag
independently from the considered (dual adjacency, or-well

A. Preliminary remarks composedness) model.

As stated above, we consider the Eulerian transformation )
model (Sec. 1I-B), and we first focus on binary images. Ify- Regularity
other words, given an imagé € Jmg and a discrete rigid Let us now introduce a new notion that strenghtens the
transfomationT’ € Rigy,. (intrinsically associated to a rigid notion of well-composedness.
transformation7 € fRigg-), we consider the transformed Definition 12 (Regularity):Let I € M1Sg. We say that is
image I+ € Jmg defined as k-regular (resp.k-regular) if for any p,q € I-1({1}) (resp.
I71({0})), we have
It =ToT=10DoTj (13) )
By setting @ = I-'({1}), @ = I"'({0}) and Q; = (P ~aq) = 38 inl({l}),p,qeﬁﬂ (18)
I74({1}), Qr = I;1({0}), Eq. (13) rewrites as (resp.(p ~aq) = FBC 17 ({0}),p,acB)  (19)
_ 72 -1 whereH is a “square” elemente., B = {z,z+1} x{y, y+1},
& B 22 3 7'_1(269 D) (14) for (,y) € Z%. We say thatl is regular if it is both k- and
Qr=2"nT- (o) (15) k-regular. We notéRegh (resp.Regh, resp.Megg) the set of
where & is the dilation operator defined in mathematicdhe k-regular (respk-regular, resp. regular) binary images.
morphology (seee.g, [32]-Ch. 1), andd c R? is the unit ~ Remark 13:Following mathematical morphology terminol-

square, namely a pixel. These equations can lead to ditferegy and notations (see,g, [32]-Ch. 1), if I is k- (resp.k-)
results depending on the definition of this pixel, that may begular, therf2 = 1-'({1}) (resp. = I~'({0})) is open by

O=[-1,112 or] — 1, 3[% This motivates the next remark. any structuring elemen, i.e.
Remark 8:In this work, we assume thgt and7" are such Q) =QoBoE =0 (20)

that Z? does not intersect any transformed pixel border. In

other words, we consider that Eqgs. (13)—(15) lead to equal o ) )

results for both definitions ofl. From a theoretical view- D- Topological invariance: the binary case

point, this allows us to develop a general discussion withou We now establish our main result for binary images, that
confusing variants related ®. From a pratical viewpoint, this states that regularity implies topological invariance.
assumption is compliant with computer-based applications Theorem 14:

that generally rely on floating point arithmetic. %eg§ c jnUI(BSA) 1)
k o~ ~.(4,8)

B. Image space restrictions Regp € Tnvg (22)

Regy C Tnog” (23)

We first state that the binary images considered for the study
of topological invariance can be chosen in a subspacengf

Remark 9:We restrict our study of k, k)-topological in- E. Topological invariance: the grey-level case
variance within the binary images to the subspabe€y C In Sec. II-C, it has been observed that a grey-level image
Jmg. This restriction is motivatéd by the fact that any takes its values in a finite (and totally ordered) subset of
I € Jmp \ W presents configurations (see Th. 23) that. Any such image is then equivalent to an imdgeZ? — G,
may be non-compliant with the definition ¢%, k)-topological whereG = [0,m] C Zis afinite interval, and. = 0. Without
invariance. loss of generality, we then focus on such images.

We now introduce a notion of singularity, and we establish A grey-level imagel € Jmg can unambiguously be mod-
that singular images cannot be topologically invariantisth eled by the finite set of its binary level setimage$I) € Jmg
reducing the image subspace to consider. defined, for any € G as

Definition 10 ((Non-)singular image)tet I € Jmp. We

T . , MNI) : Z — B
say thatl is asingular imageif 1 if o< I(p) (24)
IJpeZ*NqeZ? (q~ap) = (I(p) #I(q)) (16) p = { 0 otherwise

We noteN&y the set of the well-composed images that arehe imagel can then be reconstructed as the supremum of
not singular. these|G| level set images, with respect to the pointwise order

< on functions induced by the ordet on G
1This restriction, presented as a motivated —but arbitrasigeice when <
considering a global topological invariant, may however greved when =
considering a local one. As discussed in Sec. lll, such afpsodeyond I = \/ v (1) (25)
the scope of this article. vevy
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Based on this modelling df € Jmg by the set{\,(I)},cg, the topology of a label imagé € Jmg, and its potential
the notions previously introduced for binary images can hmeservation, are considered by observing all the binaages
extended to grey-level ongdn particular, we have exhaustively induced by labels that are the elements of the

B - power set2™. This leads to the following notions.
W = {1 € Img | Vv € G, A\, (1) € Wez} (26) " A jabel imagel € Jm;, can unambiguously be modeled by
NS = {I € Weg | Vv € G, A\ (I) € NS} (27)  the finite set of its binary characteristic images(I) € Jmg

H L
Moreover, we define the analogues of the binary notions @ffined. for anyA € 2+ as

topological invariance (Def. 7) and regularity (Def. 12). xa(I) + Z — B
Definition 15 (Grey-level topological invariance)et I € 1 if I(p) e A (31)
NSe. We say thatl is (k,k)- (resp. wc-) topologically p = 0 otherwise
invariant if for an cG, \I)eTd o R (resp. Inope). . . e
55 yv wc( ) nog " (resp.Jnog"). particular, by identifying(i) the sets{l};cr. and {{i}}cL,

We noteJnog; ™ (resp.Jnog) the set of the(k, k)- (resp.  and(ii) the monoidgB, .) and({L, 0}, U), the imagel can be
wc-) topologically invariant grey-level images. reconstructed —similarly to the case of grey-level image® (

Definition 16 (Grey-level regularity)Let I € NSg. We  Eq. (25))- as the infimum of the¥ characteristic images,
say that! is k-regular (resp.k-regular, resp.regular) if for  with respect to the pointwise order on functions induced by
anyv € G, A\, (I) € Regh (resp.NRegl, resp.fRegy). We note the inclusion orde on 2-

Regh (resp.Regl, resp.fRege) the set of thek-regular (resp. -

k-regular, resp. regular) grey-level images. I = /\ Axa(I) (32)
The following theorem, that is the grey-level analogue of

Th. 14, straightforwardly derives from this last theoremg a

Ae2b

Based on this modelling off € Jmp by the set

Dﬁzlei?énlfﬁ. {xa(I)}rcor, the notions previously introduced for binary
' _ images can be extendetb label ones. In particular, we have
Regh C Tnvg? (28) R .
b (48) Wey, = {I € Imy, | VA € 2%, xa(I) € Wez} (33)
%QEG c JHUG ’ (29) NG, = {I € We, | VA € 2]]_,’ XA(I> c mGB} (34)
Rege C Tnoge (30)

o ) Moreover, we define the analogues of the binary notions of

Remark 18:The topological invariance (and thus, the regppological invariance (Def. 7) and regularity (Def. 12).
ularity) of I € Jmg also leads to the preservation of the pefinition 19 (Label topological invariance):et
hierarchy of its connected components between successjve ma, . We say thatl is (k, k)- (resp.wc-) topologically
!evel_s. '\"Ofe p_remsely, thek, k)- (reSp‘ wc_). topological invariant if for any A € 2%, xA(I) € Jnnﬁf’k) (resp.Jnog ).
invariance implies that for any" € igy:, the images/ and () e —
I o T have isomorphic component-trees [34]. This assertidif¢ Not€Inv, ™" (resp.Jno;") the set of the(k, k)- (resp.
is easy to prove, based on the fact tifat T' establishes a w¢) topologically invariant label images.
bijection between the connected components of the initiel a _Remark 20:In the sequel, we restri"gbur study to the case
transformed level set images (Prop. 35), 4ndl T preserves, Of we-topological invariance for label images.
by construction (see Egs. (3), (24)=(25)), the inclusida-re De€finition 21 (Label regularltyL):Let I € NGy We say
tion between these components at successive levels. A mifat ! is regular if for any A € 2%, xa(I) € Regg. We note
complete discussion on this topic is beyond the scope of tiigd. the set of regular label images.

article; the reader is referred,g, to [34], [35] or [32]-Ch. 7 The following theorem, that is the label analogue of Th. 14,

(and the references therein) for complementary informatio ;tlraightforwardly derives from this last theorem, and Dég

o . Theorem 22:
F. Topological invariance: the label case

Similarly to the case of grey-level images, it has been
observed in Sec. II-C that a label image takes its values in V. METHODOGY
a finite set. Any such image is then equivalent to an image
I : 7> — L, whereL is finite and L € L. Without loss of
generality, we now focus on such images.

Several attempts have been made to propose topologir
frameworks for label images, and more precisely to defi 5
what '_S the exact meaning of the “tOpo_IOgy preservation” in 3The definition of well-composedness for label images pregdsere (see
such images [36], [37], [5], [38]. In this work, we follow Eq. (33)) slightly differs from the one introduced in [36hat only requires
a recent and general proposal [39], [40], that consists ©ftx;(I) € 2¢ for any proto-label & L.

A u ~ ” 4As in Rem. 9 and the associated footnote, this restrictiomdivated
considering the values Gt as “proto-labels”, and any SUbsetsb the fact that the8, 4)- and (4, 8)-topological invariance (that are equal,

of such values as the actual labels of the image. In othersrvorﬁl)c,,m there very definitions) may be proved to be equal tothetopological
invariance. Once again, the proof of this assertion is baybe scope of this
2A notion of grey-level well-composedness has also beengsegpin [33].  article.

Reg; C Tnp’* (35)

In Sec. IV, we have established sufficient conditions for
guaranteeing topological invariance, thanks to the notibn
ularity (Ths. 14, 17, 22). From this theoretical studg w
t propose simple algorithms to characterise the regylaf



JOURNAL OF BTEX CLASS FILES, VOL. X, NO. X, JANUARY 20XX 6

.:. satisfies at least one of the following two conditions (up to
/2 rotations and symmetries)
(@) (b) (©)

I(p—(1,0)) <I(p) > I(p+(1,0)) (41)

Fig. 2. Forbidden patterns B¢y (a) and ini)%egg (a—c), up tor /2 rotations (resp.I(p o (1’ 0>) > I(p) < I(p + (1’ O))) (42)
and symmetries. The patterns forbidderdtagh are obtained from (a—c) by I(p+(0,1)) = I(p) > I(p—(1,0)) > I(p+ (1,1))

value inversion. Black (resp. white) points have valugesp.0). (43)
(resp.I(p +(0,1)) < I(p) < I(p - (1,0)) < I(p+ (1,1)))

(44)

an image (Sec. V-A). Then, we describe some preprocessing

strategies that enable to turn a non-regularimage intowaeg  Corollary 28: Let I € 20¢;. We havel ¢ Reg, iff there

(and then topologically invariant) one (Sec. V-B). existsp € Z that satisfies at least one of the following two
conditions (up tor/2 rotations and symmetries)

A. Pattern-based characterisation of regular images I(p— (1,0)) # I(p) # I(p + (1,0)) (45)
In this section, we show that the regularity of a 2D digitaj(p) #I(p—(1,0) #I(p+(0,1) #I(p+ (1,1)) # I(p)
image can be easily determined by considering a small set (46)

of specific patterns. This result straightforwardly leadsah
algorithm of optimal time and space complexity.

1) Well-composedness characterisatioRegular images
are defined within the set of well-composed ones. A pr
requisite is then to characterig¥¢p. This is tractable by
considering a specifie x 2 pattern [23].

Theorem 23 ([23]):Let I € Jmp. We havel ¢ ¢y iff
there exist distinct pointp, q,r,s € Z2, with p ~4 q ~4
r ~4 s ~4 P, that verify

The characterisation of binary, grey-level and label insage
as regular ones can then be carried out by simply checking
hat they do not contain the forbidden patterns induced by th
inary patterns depicted in Fig. 2(a—c).
3) Complexity: The following result straightforwardly de-
rives from Th. 23, Prop. 26, and their respective corolarie
Proposition 29: Let [ € W¢y (with V =B, G or ). Let
S C Z? be such that ~1(V \ {1}) C S (practically,S is the
finite set wherd is defined in a computer-based application).
I(p) # I(q) # I(r) # I(s) (36) Then, the algorithm that determines the (non-)regularity,o

) “has a time complexity)(|S|), and a space complexit(1).
Based on Th. 23 and Defs. 15, 19, we straightforwardly derive

characterisations of grey-level and label well-compossdn

Corollary 24: Let I € Jmg. We havel ¢ 20¢ iff there
exist distinct pointsp,q,r,s € Z2, wWith p ~4 g ~4 T ~y4
s ~4 p, that verify

B. Image regularisation

We now propose two strategies for preprocessing images
in order to obtain regular —and then topologically invatrian
ones, before further rigid transformation. Such reguédiisn
I(p) > I(q) < I(r) > I(s) < I(p) (37) strategies(i) mustpreserve the topological properties of the
images, andii) should preserve as much as possible their
geometric properties.

1) Iterative homotopic regularisationA first strategy con-
sists of locally modifying the image to eliminate the fortbéh

I(p) # 1(q) # I(r) # I(s) # I(p) (38) configurations defined in Eqgs. (36)—~(46) and Fig. 2.
Let I € Jmy (or ¢y, if we aim to obtain regularity, and

The characterisation of binary, grey-level and label insage@ot only k or k-one). The problem to tackle can be expressed
as well-composed ones can then be carried out by simply a constrained optimisation one, described by
checking that they do not contain the forbidden patterns )
induced by the binary pattern depicted in Fig. 2(a). R(I) = arg Hean (1) Dy (47)

2) Regularity characterisationWe now propose a pattern- , . ! , . )
based characterisation of regular binary images. where R(I) is the regularised version af, Regy (/) is the

Proposition 26: Let I € 0¢5. We havel ¢ %egk (resp. Subset offeg) € {Regl, Regiy, Regy} composed by the
Megk), anda fortiori Degy, iff there existsp € I-1({1}) Imagesthathave the samet_opology?a_nde FJmy — Ry
(resp.I-1({0})) that satisfies at least one of the followingS @ COSt function that describes the "distance” fronirom a
two conditions (up tar/2 rotations and symmetries) geometric wewpomt._(The definition ab; actually depends

on the targeted application, and can redyg, on Hausdorff

I(p—(1,0)) # I(p) # I(p + (1,0)) (39) distance, or any standard (dis)similarity measure.)

I(p+(0,1))=1I(p) # I(p— (1,0)) = I(p+ (1,1)) (40) In real applications/ is defined on a finite st c Z?, and

so is the space of (potential) solutions of Eq. (47). However
Based on Prop. 26 and Defs. 15, 19, we straightforwardiye size O(|V|I°l) of this space is huge. Then, one has to
derive characterisations of grey-level and label regylari  accept to only look for an approximate solution of Eq. (47),

Corollary 27: Let I € 2¢g. We havel ¢ Regf, (resp. instead of an exact one. In this context, a tractable siyasep

iﬁeg(’é), and a fortiori Regg, iff there existsp € Z? that consider the homotopy-guided approach initially devesapp

Corollary 25: Let I € Jmy,. We havel ¢ 20¢, iff there
exist distinct pointsp,q,r,s € Z2, With p ~4 g ~4 T ~y4
s ~4 p, that verify
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embedding, but simply on 2 x 2 super-resolution approach.
More precisely, from/ € 20¢y, we can define a new image
Iryo 72 — Vv
p=(z,y) — I((lz/2].[y/2]))
The proof of the following result straightforwardly ders/e
from this definition.
Fig. 3. Some well-composed images that cannot be regularisthout a Proposition 31:Let I € ¢y (with V =B, G orL). Then
super-resolution approach, due to fine texture effects. we havel,y, € %egv. Moreover,I.> and I have the same
homotopy-type when considered @s k)- (resp.we-) images.
Finally, Eqgs. (48)—(49) provide a global super-resolution
for monotonic transformations [41], and then adapted to-nogtrategy that enables to redefine af#y4)-, (4,8)-, or wc-
monotonic ones [42], [43], [6], [38]. image as a regular —and thus topologically invariant— one. B
This strategy starts from the imadeand iteratively elimi- opposition to the previous strategy, this one has the adgast
nates forbidden configurations by modifying the value of onsf being deterministic and geometrically preserving (up to
pointp € S at each iteration, until stability. The choice pf a possible “thickening” of the interpixel space). Its main
is guided(7) by the position of the forbidden configurationsdrawback, by opposition to the first strategy, is its higher
(¢4) by Dy, and (i) by choosingp as a simple point. This spatial cost, as it models an image of si@gas a new one of
is feasible forV = B, G or L since notions of simple points size 4.|S| (and16.|S| in the worst cases).
have been proposed in binary [44], grey-level [45] and label
cases [39]. VI. CONCLUSION
The obtained algorithm can be seen as an extension of th§ye have investigated the notion of topology preservation
ones presented in [31], [46] for well-composedness regoveps op gigital images under rigid transformation. Based on
to the case of regularity recovery. In particular, it prasehe  yheqretical results established in the digital topologgnfe-
same strenghts and weaknesses. Indeed, in most applicafipfl e have derived efficient algorithms for analysing and
cases, it will converge in linear time with respect to the bem preprocessing such images. The genericity of these resudts
of forbidden configurations, that are often sparsely digted othods; in terms of topological models (dual adjacency and
within images. Nevertheless, in pathological caseg.(in \ye|l.composedness) and values (binary, grey-level andl lab
presence of fine textures, see Fig. 3), it may not converge, oq) ‘authorise their actual use in real applications.
or even fail. To deal Wlth this issue, we propose hereafter an "short term purpose will be to prove that the notion of
second —super-resolution— regularisation stratégy.  reqy|arity provides not only sufficient, but alsecessargon-
2) Super-resolution regularisationiet I € Jmy (With  gitions for topological invariance (in other words, thae th
V = B or G) be a(k, k)-image. Even before the issue olsympols in Ths. 14, 17 and 22, are indeegymbols). To this
regularisation, it may happen thatcannot be modified into eng, it will be necessary to define a relevinttal topological
a topologically-equivalent well-composed image, whemgsi inyariant, relyinge.g, on the topological structure that can be
a strategy such as the one presented above. It is then ESsigkined on tilings ofZ2 induced by rigid transformations.
to oversamplel by explicitely representing its “interpixel” e will also investigate the links between our results,
topological structure. This can be done by embeddingto  estaplished in a discrete framework, and some resultsreatai
the Khalimsky space [18], then leading to a new imafe”’ in the research field of digitisation, that intrinsically rges
defined as both discrete and continuous frameworks. Indeed, as stagyjes

(49)

FCO I v by Egs. (14)—(15) the rigid transfqrmatiqn of a gigital im{;\g
K 5 7 can be interpreted as the (re)digitisation of its assodiate
P ~ (£> continuous pixel-based representation. Based on thist@sse
2p+(0,1) = V; I(p+{0} x {0,1}) our notion of regularity may be seen as a discrete analogue of
2p+(1,0) = V> I(p+{0,1}x{0}) the notion ofr-regularity developped fifteen years ago [47],
2p+(1,1) — VSI(p+{0,1}x{0,1})  [48], for topology-preserving digitisation purpose. Tadisks,
. 48) _ o (48)  that are easy to intuit, are less trivial to formally estsibli
(The image I, is defined by substituting\ to \/ in  From a more methodological viewpoint, the next step will
Eq. (48).) The proof of the following result straightfornelly ~gnsist of passing fronZ? to Z3. This raises supplementary
derives from these definitions. difficulties, related to the more complex definitions of tepo

Proposition 30:Let I € Jmy (with V =B or G). Then we |ogical models [49] and topological invariants [30]. To eop
have I}f’k) € Wy. Moreover,I}f’k) and I have the same with this challenge, various ways may be considered. A first
homotopy-type, when considered @s k)-images. one relies on the possible analogy between regularityrand

From now on, we then assume that 20¢y (with V =B, regularity (see above). A second one relies on a morphabgic
G or LL). It may happen that cannot be modified into a interpretation of regularity. Indeed, as stated in Rem. 13,
regular image when using homotopic iterative regulamsati regular images are open for square structuring elements, bu
Once again, an oversampling strategy can be alternativéihe counterpart is not true. A specific class of open images, f
proposed. This strategy no longer relies on Khalimsky spaaéich the opening relies on homotopic erosions and dilation
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may be considered and compared to the family of regulBx Proof of Theorem 14

images, in a morpho-topological framework [50], [51], [52] Proposition 34: Let I € megg (resp,megg, resp.Regp).

ACKNOWLEDGEMENT Let T' € Rigy.. ThenT|or)-1({1}) establishes a homomor-

i -1 ~ -1 ~
The research leading to these results has received fundg)rbgljsm from((ZoT) " ({1}), ~a) (resp. (Lo T) 7 ({1}), ~s

-1 ~ -1 ~

from the FrenchAgence Nationale de la Rechercl@rant d,ﬁﬁ%;{; jrzs p.(gl)f( {14}?; :i))(lwh(il{; }T)[(Io‘lT))f:iir)).
Agreement ANR-2010-BLAN-0205). establishes a homomorphism frof{/ o 7)~({0}), ~s)
APPENDIX Ereslp(-{((}f)o T))*(l({()}z, Afg’{ ff)sp- (gf ° T)El({l(()%),}f)u)) )t)O

. . I7%({0}), ~g) (resp.(I="({0}), ~4), resp.({ = ({0}), ~4)).

A. Auxiliary propertles ) _ _ i Proof Let I € Regg. Letp’,q’ € (I o T)"1({1}), with
The following two properties deal with configurations thaf)/ ~4 q. Letp = T(p'), q = T(q'). From Eq. (13), two

have already been discussed in the literature (8@, [14], (ases can occufi) p = (’1 and thenp ~4 q; (ii) p A’S q
[15]. Their proofs, that do not present much difficultie® ®ft 4t impliesp ~; q (Def. ’3) and therp s . The same
to the reader. (We recall that we are still under the hypme?easonning holds fof € %egB,and(IoT)*l({O})' I € Regh

of Rem. 8.) L _ . o
_ 2 : ) and (I oT)~'({1}); andI € Regg and (I o 7)1 ({0}).
thaF;roperty 32:Let p € Z*. There existsI' € Rig;> such Let ] c %eg{g. Letp' o ¢ (IoT)—l({o}), With ' s .

9 Letp = T(p’), g = T(q’). From Eqg. (13), three cases can
p ¢ T(Z%) (50) occur: (4) ;E :)q, and g[he)np ~g q; (i) p ~s g, and then
Let T be such a transformation. Léh, e,s,w} = {q € Z* | p ~gq; or (iii) p = q + (2,0) or (2,1), up tor/2 rotations

P ~4 g}, With n ~g e ~g s ~g w. There exist distinct points and symmetries, and thgn~s q derives from Prop. 26. The
n',e s’ w' € 2% withn' ~y e ~; 8 ~y w ~y 1, such same reasonning holds fdre Regh and (I o 7)~1({1}). W

that We can then licitely define the following notions. Léte
Vq € {n,e,s,w},q="T(q) (51) 2wes andT € Rigy. Let us consider the functiodi; (with
Property 33: Let C = {w,x + 1} x {y,y + 1} C 22 Let *= (k.k) orwc) defined as
T € Rigy.. Then we havel 1 (C)/~, = {THC)}. Ty : C[oT] — C*[] (52)
C > Cr 2 T(C)

B. Proof of Proposition 11

Let I € 20¢5. Let us suppose that ¢ MSs. Let p € Z2 We are now ready to establish the first part of the iso-
be such that'q € Z2, (q ~4 p) = (I(p) # I(q)) (Def. 10). morphism, namely the one—to-o_n(_a_correspondence bet\_/veen th
Then, Th. 23 implies thatq € Z2,(q ~s p) = (I(p) # connected components of the initial and transformed images
I(q)), i.e. {p} € C*F[1]. From Prop. 32 (Eq. (50)), there Proposition 35: Let agegﬁ (resp(JéSzeg]’g, resp. Regs).
exists T € Rigz. such thatp ¢ T(Z2). Such a transfor- L&t 7" € Rigz. ThenT; ™ (resp. 17, resp. 17 is a
mation ' does not induce a bijection betwegft-F)[1] and Pilection. X _
¢*P[IoT), and a fortiori an isomorphism betweaf* (1) ~ Proof Let ¢ € C*[/] andp € C. Sincel ¢ NGSg, we

T (ke can choosey € C such thatp ~4 q. Then, from Prop. 32
andT5(I o), and thus we havé ¢ Jnoy™"’ (Def. 7). By (Eq. (50)), '?rjllere existp’ € 7 Is)ucﬁ tgatT(P') € {p,a} CpC.

Jnog© C Jnng’k) is a straightforward consequence of Defs. 3, We assume thaf € Regg. Let p’,q' € (I o T)"}({1}).
7.0 Letp =T(p'), g = T(q'). Let us suppose thags,q € C €

I71({1})/~4. We havep ~, q, i.e, there exists a sdtp; }_,
C. Proof of Proposition 26 (k > 0) such thatpg = p, pr. = q, p; € I ({1}) for anyi ¢

Let I € Megy. Let p € I-1({1}). Since I € NS [0, k], andp; ~4 piy1 foranyi € [0, k—1]. Leti € [0, k—1].
(Def. 12), there exists; € I-'({1}) such thatp ~, q. Then If p;, piy1 € T(Z?), we setp},p;,, € (I oT)"'({1}) such
Eq. (18) forbids Egs. (39)-(40). that T'(p;) = p; andT'(pj,,) = piy1; it then derives from

Let us suppose that for app € I-1({1}) Egs. (39)—(40) Prop. 33 and Def. 12 that; ~, p;,,. Let us now suppose that
are not verified. Letp € I-'({1}). As p does not verify p; or piy1 ¢ T(Z?), for instancep; 1 ¢ T(Z?). It derives
Eq. (39), we choose € I-'({1}) such thatp ~, q. Up to from Prop. 32 (Eq. (51)) thap,,» € T(Z?*) (for the same
7/2 rotations, we can sej = p + (0,1). Sincep does not reasons, we cannot hape, p;+1 ¢ 7(Z*)). We setp), p} ., €
verify Eq. (39), we have+(1,0) orp—(1,0) € I-1({1}).Up (I o T)"'({1}) such thatl'(p;) = p; andT(p} ) = Pit2.
to symmetries, we can spt+(1,0) € I-1({1}). If p+(1,1) € From Prop. 32 (Eqg. (51)), we then hayg ~, p;,,. Then
I71({1}), then,p, q satisfy the RHS of Eq. (18). Let us nowIl = 7! ({p;}%_) is such thatp’,q' € I1 C (I o T)~*({1})
suppose thap + (1,1) € I~*({0}). Sinceq does not verify and that there exist§'r € (I o T)~*({1})/~4 such thafll C
Eqg. (39), we havep + (—1,1) € I~'({1}). But Eq. (40) C7. The same reasonning holds f8eg; and(/o7)~*({0});
impliesp — (1,0) € I71({1}), andp, q then satisfy the RHS 9Regk and (I o T")~1({1}); andRegX and (I o T")~1({0}).
of Eq. (18). Then[ € fRegh. We now assume thdte 9Regp. Letp’,q’ € (IoT)~1({0}).

The result follows by contraposition. The same reasonningt p = 7(p’), q = T(q’). Let us suppose thap,q €
holds for9iegs. B C € I"1({0})/~g. As I € 25, we actually haveC' €
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I71({0})/~4. Then, we havep ~, q, i.e, there exists a set existp’ € C; such thatT'(p’) = p, andq’ € C, such that

{pi}i_y (k > 0) such thatpy = p, pr = q, p; € I ({0})

for anyi € [0,k], andp; ~4 pi+1 for anyi € [0,k — 1].

Leti € [0,k — 1]. If p;,piy1 € T(Z*), we setp},p] ,

such thatT'(p;) = p; andT'(p;,,) = pi+1; it then derives
from Eq. (13) thatp; ~s p; . Let us now suppose that;

or pir1 ¢ T(Z?), for instancep;11 ¢ T(Z?). It derives
from Prop. 32 (Eq. (51)) thap;,» € T'(Z?) (for the same
reasons, we cannot haye, p;4+1 ¢ T(Z?)). We setp}, p/_,

such thatT'(p;) = p; andT'(pj,,) = Pit2. From Prop. 32
(Eq. (51)), we then havp) ~4 p},,. Thenll = T~ ({p;}\_,)

is such thatp’,q’ € II C (I o T)~1({0}) and that there
exists Cr € (I o T)~'({0})/~s such thatll C Cr. The
same reasonning holds fétegh and (I o 7)~1({1}).

It straightforwardly follows from these two sub-reasorgsn
that 77 is indeed an injectiorill (1l

The following proposition is a consequence of this result. 2]

Proposition 36:Let I € QRegk (resp.QRegk, resp.fRegy).
Let T € Rigy. We havel o T € Jmp (resp.Jmg, resp. 3]
20¢g). Moreover, we havd';f(Bj,r) = Bj.

Proof The fact that/ o T € Jmg straightforwardly derives [4]
from the fact thatl’; is a bijection, and from the definition
of T (Eq. (13)), that implies that for any € Z?, T-*({p})
is finite. We havel'}(Bj,,) = B7 for the very same reasons.
Let us now consider that o T' ¢ 20¢. Then, from Th. 23,
there exist distinct pointsi,e,s,w € Z2, withn ~;, e ~4
s ~4 W ~4 n, that verify Eqg. (36). From Eq. (13), we then
derive that there exist distinct pointg, e’,s’, w’ € Z? such
that T(n) = n’, T'(e) = €, T'(s) = ¢/, T(w) = w'. Still
from Eq. (13), we have moreover ~g e’ ~g s’ ~g w' ~g
n’. These equalities authorise only three configurations, u@
to 7/2 rotations and symmetrie$i) ¢’ = n’ + (1,0), s’
n +(2,-1),w =n'+(1,-1); (i) ¢ =n’' +(1,0), ¢ [
n'+(1,-1),w =n'+(0,-1); (zii) e’ =n'+(1,—-1),8" = [10]
n' —(2,0), w = n’ — (1,1). Configuration(i) corresponds
to Eq. (40), configuratior{iz) corresponds to Eq. (36), and11]
configuration(éii) corresponds to Eq. (39); in each case, Wﬁz]
have I ¢ PRegy. By contrapotision,] ¢ PRegy implies that
IToT €Wy A [13]

We are now ready to establish the last part of the isomor-
phism, namely the preservation of the adjacency relation. [14]

Proposition 37:Let I € megfg (resp.%eg{g, resp.Regg).
Let T € Rigy.. Let C1,Cy € C*[I o T| with x = (4, 8) (resp.

(5]

(6]

[15]
(8,4), resp.wc). We have
(Cr ~for C2) <= (I7(C1) ~1 Tf(C2))  (53) 1€
Proof Let C; ~j,, C2. Up to reindexing, we have'; C 7]
(I oT)"*({0}) and Cy C (I o T)"*({1}). Let p’ € C4,
q € C, be such thap’ ~, q¢'. Letp = T(p') € TF(Cy), [18]
q=T(q) € TF(C1). From Eq. (13), we can havé:) p ~4 gq [19]
and thenT7(Cy) ~3 T7F(Cs); or (ii) p ~s q andp 44 q.
In that second case, lete Z? be such thap ~, r ~4 q. [20]
We have either € T7(Cy) or T (C2), and thenT;(Cy) ~3
Ty (Ch). [21]

Let T7(C1) ~% Ty(Cs). Up to reindexing, we have [22]
T{(C) © T({0)) and T(Ch) © T-'({1}). Letp € (g
Tr(Ch), q € TF(Cy) be such thap ~4 gq. Casel: there

T(q') = q. From Eq. (13), three possibilities can occ(i)
p’' ~4 q and thenCy ~% Cy; (i) p’ ~s 9 andp’ A4 ¢/, and
by choosinge’ € Z? such thatp’ ~4 r' ~4 ', we have either
r’ € (4 or Oy, and thenCy ~% Cs; (idi) ' = p’ +(2,0), up
to 7/2 rotations, and by choosing = p’ + (1,0), we have
eitherr’ € C; or Cy, and thenC; ~% Cy. Case2: p ¢ T(Z?)
(the same holds foq ¢ T'(Z?)). Sincel € NSy, there exists
r € Ty(Cy) ands € T7(Cy) such thatp ~4y r ~g s ~4 Pp.
Then, from Prop. 32 (Eg. (51)), there exists= C; such that
T(r') =r, ands’ € Cy such thatT'(s’") = s, andr’ ~4 s/,
and thenC; ~; C>. B
By gathering Props. 35-37, we obtain Th. 14.
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